Show simple item record

dc.contributor.authorNickerson, Nicholas
dc.date.accessioned2014-08-21T18:49:14Z
dc.date.available2014-08-21T18:49:14Z
dc.date.issued2014-08-21
dc.identifier.urihttp://hdl.handle.net/10222/53986
dc.description.abstractAtmospheric concentrations of greenhouse gases (GHGs) play an extremely important role in regulating Earth’s climate system. Researchers need to understand how GHGs are produced at a process-level in order to predict what might happen under future climate scenarios. A great deal of work has gone into understanding the fundamental processes that control GHG production and consumption, but many questions remain. To date, much of this research has focused on the biology of the soil system but there are also many physical processes that control the transport of decomposable substrate, nutrient supply, the local-environment (e.g. temperature and moisture) as well as the eventual emission of GHGs to the atmosphere (i.e. diffusion and advection). Some recent soil respiration studies suggest that the physical aspects of the soil have an equal or greater influence on the measurement and interpretation of soil respiration data. Here a combination of numerical and analytical models, laboratory experiments and field studies are used to help understand the effect that soil physics has on the measurement and interpretation of soil respiration data. These analyses focus mainly on high-resolution and istopologue techniques for understanding soil respiration, and how considerations including gas diffusion and thermal conduction affect results obtained using these methods. The interpretation of soil respiration data is also carefully considered, again with a focus on how physical drivers can explain patterns in field measurements, and how physical and biological processes might be disentangled in GHG investigations. The results presented here show clearly how gaseous diffusion, thermal conduction and poor methodological assumptions can bias the measurement and interpretation of GHG emissions data. These biases and misinterpretations can often be resolved through application of physical principles and mathematical modelling. The physical and mathematical approaches presented here form a basis for making robust measurements of GHG emissions and also for forming process-based models that can be more universally applicable across space and time.en_US
dc.language.isoenen_US
dc.subjectcarbonen_US
dc.subjectcarbon dioxideen_US
dc.subjectsoilen_US
dc.subjectrespirationen_US
dc.subjectisotopesen_US
dc.subjectdiffusionen_US
dc.titleUSING PHYSICAL PRINCIPLES TO ENHANCE THE MEASUREMENT, INTERPRETATION AND UNDERSTANDING OF SOIL RESPIRATIONen_US
dc.date.defence2014-07-23
dc.contributor.departmentDepartment of Earth Sciencesen_US
dc.contributor.degreeDoctor of Philosophyen_US
dc.contributor.external-examinerDavid Bowlingen_US
dc.contributor.graduate-coordinatorThomas Trappenbergen_US
dc.contributor.thesis-readerClaire Phillipsen_US
dc.contributor.thesis-readerJohn Gosseen_US
dc.contributor.thesis-supervisorDavid Risk, Lawrence Plugen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.manuscriptsYesen_US
dc.contributor.copyright-releaseYesen_US
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record