Repository logo
 

Compact Open Sets in the Dual Space of a Wallpaper Group

dc.contributor.authorCarline, Emma
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDavid Ironen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerKeith Johnsonen_US
dc.contributor.thesis-readerRobert Milsonen_US
dc.contributor.thesis-supervisorKeith Tayloren_US
dc.date.accessioned2018-12-18T18:15:34Z
dc.date.available2018-12-18T18:15:34Z
dc.date.defence2018-12-14
dc.date.issued2018-12-18T18:15:34Z
dc.descriptionSee abstract.en_US
dc.description.abstractKnowledge of the compact open sets in the dual space of a locally compact group can be used to study projections in the L1-algebra of the group.The wallpaper groups are a class of almost abelian groups which arise as the symmetry groups of wallpaper patterns. We characterize the compact open subsets in the dual space of a wallpaper group G. This is achieved by associating to G a graph that captures the stratified nature of the dual space. We show how this can be applied to the problem of finding projections in L1(G) by constructing a novel projection in the L1-algebra of the wallpaper group, p2.en_US
dc.identifier.urihttp://hdl.handle.net/10222/75051
dc.language.isoenen_US
dc.subjectabstract harmonic analysisen_US
dc.subjectfunctional analysisen_US
dc.subjectFourier Transformen_US
dc.subjectwallpaper groupsen_US
dc.subjectcrystallographic groupsen_US
dc.subjecttopologyen_US
dc.subjectlocally compact groupen_US
dc.titleCompact Open Sets in the Dual Space of a Wallpaper Groupen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carline-Emma-Msc-December-2018.pdf
Size:
3.83 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: