COMPARING STATISTICAL METHODS FOR INFERRING CONTRIBUTIONS OF VISUAL ONLINE CONTROL FROM HUMAN LIMB TRAJECTORIES
Date
2018-12-03T15:47:23Z
Authors
d'Entremont, Ghislain
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Visual motor control involves using visual information about the limb and the target to adjust the trajectory of the limb towards the target to improve movement accuracy. The primary objective of the thesis was to demonstrate that improvements to the standard methods of statistical analysis of movement trajectory data can substantially improve the quality of the inferences made about those data. A Bayesian hierarchical gaussian process regression (GPR) model was compared to traditional analysis techniques in its ability to accurately estimate experimental effects. Analyses were run on experimental data collected from a basic vision/no-vision goal-directed reaching task, and simulated data from theoretically plausible generative model. Broadly, the expected experimental effects of vision were generated. The Bayesian hierarchical GPR method was successfully implemented and conferred some substantial benefits in contrast to many of the traditional methods. However, given several usability limitations, the Bayesian hierarchical GPR method may be best used as a specialty tool for statistically savvy researchers seeking to maximize the inferential capacity of their analysis of movement trajectories.
Description
Statistical Modelling for Human Limb Trajectories
Keywords
Statistical Modelling