Ocean Ambient Noise Field Modelling and the Optimized Noise Term
dc.contributor.author | Kovaloff, Nikita | |
dc.contributor.copyright-release | Not Applicable | en_US |
dc.contributor.degree | Master of Science | en_US |
dc.contributor.department | Department of Oceanography | en_US |
dc.contributor.ethics-approval | Not Applicable | en_US |
dc.contributor.external-examiner | Dr. Carolyn Binder | en_US |
dc.contributor.graduate-coordinator | Dr. David Barclay | en_US |
dc.contributor.manuscripts | Not Applicable | en_US |
dc.contributor.thesis-reader | Dr. Alexander Hay | en_US |
dc.contributor.thesis-reader | Dr. Sean Pecknold | en_US |
dc.contributor.thesis-supervisor | Dr. David Barclay | en_US |
dc.date.accessioned | 2023-03-16T15:00:50Z | |
dc.date.available | 2023-03-16T15:00:50Z | |
dc.date.defence | 2022-12-13 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | The objective of this thesis is to determine the frequency and wind-wave forcing dependent effective sea surface noise source level per unit area (NSL/A) extracted from the hourly minimum sound power levels of six month-long acoustic recordings. The effect of the propagation environment was accounted for using Bellhop. The simulated environment was configured using climatological sound velocity profiles to capture seasonal effects. Bottom sound speed estimates were made from seabed sediment maps. Hourly meteorological data were extracted from ERA5 providing relevant wind and wave parameters from which noise levels may be predicted. A weighted composite model consisting of neutral wind and significant wave height leveraging the two-term exponential regression function maximized model R2. Hourly minimum sound power level derived model-data comparisons using horizontal wind speed magnitude 10 m above sea level expressed a decrease in NSL/A estimates versus Kewley (1990) by 10 to 15 dB from 1 to 3 kHz. | en_US |
dc.identifier.uri | http://hdl.handle.net/10222/82338 | |
dc.subject | Oceanography | en_US |
dc.subject | Acoustics | en_US |
dc.subject | Wind noise | en_US |
dc.subject | Wave noise | en_US |
dc.subject | Noise field modelling | en_US |
dc.subject | Ice cull | en_US |
dc.subject | Charnock parameter | en_US |
dc.subject | Significant wave height | en_US |
dc.subject | Hourly minimum sound power level | en_US |
dc.subject | Acoustical oceanography | en_US |
dc.subject | Two term exponential | en_US |
dc.subject | Composite parameter | en_US |
dc.subject | Passive SONAR equation | en_US |
dc.subject | Active SONAR equation | en_US |
dc.subject | Bubble cloud penetration depth | en_US |
dc.subject | Cross correlation | en_US |
dc.subject | Two mechanism fit | en_US |
dc.subject | Kewley | en_US |
dc.subject | Kuperman | en_US |
dc.subject | Ferla | en_US |
dc.subject | Low frequency | en_US |
dc.subject | Noise source level | en_US |
dc.subject | Underwater acoustics | en_US |
dc.subject | JASCO | en_US |
dc.subject | Hydrophone | en_US |
dc.subject | Regression model | en_US |
dc.subject | Low frequency noise | en_US |
dc.subject | Underwater ambient noise | en_US |
dc.subject | Ambient noise | en_US |
dc.subject | Neutral wind | en_US |
dc.title | Ocean Ambient Noise Field Modelling and the Optimized Noise Term | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- NikitaKovaloff2023.pdf
- Size:
- 11.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- Thesis Document
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: