Repository logo
 

Valuative Capacity of Compact Subsets of Ultrametric Spaces

dc.contributor.authorJohnson, Anne
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDavid Ironen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerKarl Dilcheren_US
dc.contributor.thesis-readerDorothea Pronken_US
dc.contributor.thesis-supervisorKeith Johnsonen_US
dc.date.accessioned2019-08-29T11:49:25Z
dc.date.available2019-08-29T11:49:25Z
dc.date.defence209-08-09
dc.date.issued2019-08-29T11:49:25Z
dc.descriptionSee abstract.en_US
dc.description.abstractA p−ordering is a combinatorial concept introduced by Bhargava to generalize the factorial function. K. Johnson noticed in his paper “p−orderings, Fekete n−tuples and capacity in ultrametric spaces” that p−orderings also give a construction for Fekete n−tuples. Fekete n−tuples, in turn, can be used to compute the capacity of a metric space. In this thesis, we explore some properties of capacity in compact ultrametric spaces. When our space has algebraic structure, we show how this structure can be exploited to compute capacity. We then develop conditions for computing capacity in spaces that lack algebraic structure by studying the lattice of closed balls in the space. At the end of the thesis, we compute the capacity of n−fold products of (Z, ρpi ), for a set of p−adic metrics ρpi . While this is a straightforward process when using a fixed prime, we see that allowing distinct primes on each component produces interesting results even for n = 2. We conjecture that these spaces have transcendental capacity.en_US
dc.identifier.urihttp://hdl.handle.net/10222/76336
dc.language.isoenen_US
dc.subjectUltrametric spacesen_US
dc.subjectValuative capacityen_US
dc.subjectNumber theoryen_US
dc.titleValuative Capacity of Compact Subsets of Ultrametric Spacesen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Johnson-Anne-MSc-MATH-August-2019.pdf
Size:
589.23 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: