Repository logo
 

Supervised Non-negative Matrix Factorization for Analysis of Microbiome Data

dc.contributor.authorCai, Yun
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Statistics Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDavid Hamiltonen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerBruce Smithen_US
dc.contributor.thesis-readerChris Fielden_US
dc.contributor.thesis-supervisorHong Gu and Toby Kenneyen_US
dc.date.accessioned2014-08-25T18:23:51Z
dc.date.available2014-08-25T18:23:51Z
dc.date.defence2014-08-21
dc.date.issued2014-08-25
dc.description.abstractNon-Negative Matrix Factorization (NMF) is a very useful tool to reduce dimension of data in machine learning and data mining. But it is an unsupervised learning method. To extract more discriminant information in the training data and improve the performance of classification, we developed a new supervised NMF method. We combine feature matrices from different classes as the feature matrix for the whole data and fit a non-negative Poisson regression to calculate the weight matrix. Our method is tested on the animal dataset and moving picture dataset. The experimental results show that our supervised NMF could greatly enhance the performance of NMF for classification.en_US
dc.identifier.urihttp://hdl.handle.net/10222/54041
dc.language.isoenen_US
dc.subjectMicrobiome Dataen_US
dc.subjectNMFen_US
dc.titleSupervised Non-negative Matrix Factorization for Analysis of Microbiome Dataen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cai-Yun-MSc-STAT-August-2014.pdf
Size:
822.13 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: