Repository logo
 

Neutral Signature CSI Spaces in Four Dimensions

dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinerNoneen_US
dc.contributor.graduate-coordinatorKeith Johnsonen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerRobert Milsonen_US
dc.contributor.thesis-readerRoman Smirnoven_US
dc.contributor.thesis-supervisorAlan Coleyen_US
dc.date.accessioned2011-09-06T13:59:50Z
dc.date.available2011-09-06T13:59:50Z
dc.date.defence2011-08-18
dc.date.issued2011-09-06
dc.description.abstractScalar curvature invariants are scalars formed by the contraction of the Riemann tensor and its covariant derivatives. The main motivation for studying scalar curvature invariants is that they can be used to classify certain spaces uniquely. For example, the I-non-degenerate spaces in Lorentzian signature. Lorentzian metrics that fail to be I-non-degenerate are Kundt metrics and have a very special structure. In this thesis we study pseudo-Riemannian spaces with the property that all of their scalar curvature invariants vanish (VSI spaces) or are constant (CSI spaces). These spaces include pseudo-Riemannian Kundt metrics. VSI and CSI spaces are not only of interest from a mathematical standpoint but also have applications to current theoretical physics. In particular, we focus on studying VSI and CSI spaces in four-dimensional neutral signature. We construct new, very general, classes of CSI and VSI pseudo-Riemannian spaces.en_US
dc.identifier.urihttp://hdl.handle.net/10222/14164
dc.language.isoenen_US
dc.titleNeutral Signature CSI Spaces in Four Dimensionsen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MacDougall_Andrew_MSc_MATH_August_2011.pdf
Size:
609.5 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: