Repository logo

GRPO-Rad: Group Relative Policy Optimization for Radiology Report Summarization

dc.contributor.authorNassiri, Fargol
dc.contributor.copyright-releaseNot Applicable
dc.contributor.degreeMaster of Computer Science
dc.contributor.departmentFaculty of Computer Science
dc.contributor.ethics-approvalNot Applicable
dc.contributor.external-examinerN/A
dc.contributor.manuscriptsNo
dc.contributor.thesis-readerVlado Keselj
dc.contributor.thesis-readerHassan Sajjad
dc.contributor.thesis-supervisorFrank Rudzicz
dc.date.accessioned2025-12-11T15:22:40Z
dc.date.available2025-12-11T15:22:40Z
dc.date.defence2025-11-28
dc.date.issued2025-12-10
dc.description.abstractRadiology report summarization requires condensing detailed findings into concise impressions, a task where traditional supervised fine-tuning (SFT) often struggles to balance syntactic correctness, clinical accuracy, and brevity. This thesis investigates Group Relative Policy Optimization (GRPO) as a superior alternative, enabling direct optimization of a composite reward function combining ROUGE-L syntactic similarity and length constraint. Using the MIMIC-III dataset and Qwen 3.0 decoder-only models (0.6B and 1.7B parameters) with parameter-efficient LoRA fine-tuning, we systematically evaluate 24 configurations varying model size, prompting, and few-shot learning. Results demonstrate that GRPO consistently outperforms both zero-shot baseline and SFT across syntactic (ROUGE-L) and clinical (F1-RadGraph) metrics. The optimal GRPO configuration achieves 32.65 ROUGE-L and 30.28 F1-RadGraph, representing a 16% improvement over SFT with statistical significance (p < 0.05). This work presents the first application of GRPO to medical text, establishing it as a robust framework for clinical documentation tasks requiring multi-objective optimization.
dc.identifier.urihttps://hdl.handle.net/10222/85559
dc.language.isoen
dc.subjectGroup Relative Policy Optimization
dc.subjectMedical Text Summarization
dc.subjectReinforcement Learning from Human Feedback
dc.titleGRPO-Rad: Group Relative Policy Optimization for Radiology Report Summarization

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FargolNassiri2025.pdf
Size:
4.41 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.12 KB
Format:
Item-specific license agreed upon to submission
Description: