Repository logo
 

Using Visual Analytics and Interpretability Strategies to Understand the Impact of Input Variables on Indexes derived from Municipality (Urban) Data Sets

dc.contributor.authorDhakshinamoorthy, Balaji
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Computer Scienceen_US
dc.contributor.departmentFaculty of Computer Scienceen_US
dc.contributor.ethics-approvalReceiveden_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. Michael McAllisteren_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Derek Reillyen_US
dc.contributor.thesis-readerDr. Israat Haqueen_US
dc.contributor.thesis-supervisorDr. Fernando Vieira Paulovichen_US
dc.date.accessioned2020-04-29T17:55:17Z
dc.date.available2020-04-29T17:55:17Z
dc.date.defence2020-04-14
dc.date.issued2020-04-29T17:55:17Z
dc.description.abstractComposite indices have been widely used in several domains as a measure to describe abstract concepts through the combination of variables. The current approaches for index creation and analysis do not have a comprehensive visual interface to enable the use of external information to support interpretation. We propose a visual analytics framework that places users in the loop for creating and interpreting indexes. It helps users to compose an index with the flexibility of determining a weight for the linear combination of indicators. For the interpretation, we use regression analysis to provide explanations for indexes from both internal and external variables. we demonstrated use-case scenarios using crime and demographic datasets to show the benefits of our interface for decision-making tasks at the municipal level. we validate our results through a comprehensive user evaluation, showing that most users reach similar conclusions when using our framework to execute analytical tasks.en_US
dc.identifier.urihttp://hdl.handle.net/10222/79024
dc.language.isoenen_US
dc.subjectData Visualizationen_US
dc.subjectMachine Learningen_US
dc.titleUsing Visual Analytics and Interpretability Strategies to Understand the Impact of Input Variables on Indexes derived from Municipality (Urban) Data Setsen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dhakshinamoorthy-Balaji-MCSc-CSCI-April-2020.pdf
Size:
33.08 MB
Format:
Adobe Portable Document Format
Description:
Masters Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: