Repository logo
 

Pseudocolimits of Small Filtered Diagrams of Internal Categories

dc.contributor.authorSalja, Deni
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. Sara Faridien_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Robert Pareen_US
dc.contributor.thesis-readerDr. Peter Sellingeren_US
dc.contributor.thesis-supervisorDr. Dorette Pronken_US
dc.date.accessioned2022-08-30T17:51:29Z
dc.date.available2022-08-30T17:51:29Z
dc.date.defence2022-08-24
dc.date.issued2022-08-30
dc.description.abstractPseudocolimits are formal gluing constructions that combine objects in a category indexed by a pseudofunctor. When the objects are categories and the domain of the pseudofunctor is small and filtered it is known in SGA4 that the pseudocolimit can be computed by taking the Grothendieck construction of the pseudofunctor and inverting the class of cartesian arrows with respect to the canonical fibration. In this thesis we present a set of conditions on an ambient category E for defining the Grothendieck construction as an oplax colimit and another set of conditions on E along with conditions on an internal category, C, and a map picking out arrows in C that allow us to translate the axioms for a category of (right) fractions, and construct an internal category of (right) fractions. We combine these results in a suitable context to compute the pseudocolimit of a small filtered diagram of internal categories.en_US
dc.identifier.urihttp://hdl.handle.net/10222/81928
dc.language.isoen_USen_US
dc.subjectCategory Theoryen_US
dc.titlePseudocolimits of Small Filtered Diagrams of Internal Categoriesen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeniSalja2022.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: