Repository logo
 

Vision-aided obstacle avoidance for the formation of multi-agent vehicles

dc.contributor.authorWang, Zike
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Applied Scienceen_US
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinerDr. Jason Guen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Ted Hubbarden_US
dc.contributor.thesis-readerDr. Ya-Jun Panen_US
dc.contributor.thesis-readerDr. Jason Guen_US
dc.contributor.thesis-supervisorDr. Ya-Jun Panen_US
dc.date.accessioned2023-12-18T15:47:50Z
dc.date.available2023-12-18T15:47:50Z
dc.date.defence2023-12-05
dc.date.issued2023-12-15
dc.description.abstractThis thesis presents an in-depth study of vision-aided obstacle avoidance for multiagent formation control, integrating formation control, path planning, and the use of vision sensors. The paper thoroughly reviews the literature on coordination strategies, obstacle avoidance methods and sensor technologies in robotics. The main contributions of the thesis include the design and validation of formation controllers and obstacle avoidance algorithms, supported by simulations and experimental results with mobile robots equipped with an advanced vision sensor. Algorithms are validated in both MATLAB and Gazebo environments for their efficacy in the goal point navigation, narrow gap passing, and leader-follower obstacle avoidance. The research validates the robustness and adaptability of the proposed control algorithms through experiments, showcasing the ability to navigate towards designated goals while achieving precise formation configurations, encountering unforeseen challenges in real-world scenarios.en_US
dc.identifier.urihttp://hdl.handle.net/10222/83303
dc.language.isoenen_US
dc.subjectRoboticsen_US
dc.subjectObstacle avoidanceen_US
dc.subjectFormation controlen_US
dc.subjectMulti agent systemen_US
dc.subjectVision-aideden_US
dc.titleVision-aided obstacle avoidance for the formation of multi-agent vehiclesen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ZikeWang2023.pdf
Size:
37.09 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: