Repository logo
 

A Minimal Morse Resolution of Path Ideals of Lines of Projective Dimension 2

dc.contributor.authorWang, Kyle
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Keith Johnsonen_US
dc.contributor.thesis-readerDr. Peter Selingeren_US
dc.contributor.thesis-supervisorDr. Sara Faridien_US
dc.date.accessioned2024-04-09T17:24:45Z
dc.date.available2024-04-09T17:24:45Z
dc.date.defence2024-02-29
dc.date.issued2024-04-08
dc.description.abstractWe study the connection between a special class of monomial ideals and CW complexes. Let I denote the ideal $I_t(L_{2t+1})$, i.e., a path ideal of line graph of projective dimension 2. We study cellular resolutions and discrete Morse theory as a tool to find a CW complex that supports the minimal free resolution of $I$. As a result, we have constructed an explicit Morse matching that induces a CW complex supporting the minimal free resolution of $I$. We also used the results from Bayer and Sturmfels to prove that the minimal free resolution of $I$ is supported on a solid $(t+2)$-gon.en_US
dc.identifier.urihttp://hdl.handle.net/10222/83720
dc.language.isoenen_US
dc.subjectdiscrete Morse theoryen_US
dc.subjectcellular resolutionen_US
dc.subjectpath idealen_US
dc.titleA Minimal Morse Resolution of Path Ideals of Lines of Projective Dimension 2en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KyleWang2024.pdf
Size:
637.75 KB
Format:
Adobe Portable Document Format
Description:
Order of preliminary pages corrected as required

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: