Repository logo
 

Analogues of the Binomial Coefficient Theorems of Gauss and Jacobi

dc.contributor.authorAl-Shaghay, Abdullah
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. Sara Faridien_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Keith Johnsonen_US
dc.contributor.thesis-readerDr. Rob Nobleen_US
dc.contributor.thesis-readerDr. Sara Faridien_US
dc.contributor.thesis-supervisorDr. Karl Dilcheren_US
dc.date.accessioned2014-03-31T14:39:36Z
dc.date.available2014-03-31T14:39:36Z
dc.date.defence2014-03-20
dc.date.issued2014-03-31
dc.description.abstractTwo of the more well known congruences for binomial coefficients modulo p, due to Gauss and Jacobi, are related to the representation of an odd prime (or an integer multiple of the odd prime) p as a sum of two squares (or an integer linear combination of two squares). These two congruences, along with many others, have been extended to analogues modulo p^2 and are well documented. More recently, J. Cosgrave and K. Dilcher have extended the congruences of Gauss and Jacobi to analogues modulo p^3. In this thesis we discuss their methods as well as the potential of applying them to similar congruences found in the literature.en_US
dc.identifier.urihttp://hdl.handle.net/10222/47610
dc.language.isoenen_US
dc.subjectNumber Theoryen_US
dc.subjectBinomial Coefficienten_US
dc.titleAnalogues of the Binomial Coefficient Theorems of Gauss and Jacobien_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Al-Shaghay-Abdullah-MSc-MATH-March-2014.pdf
Size:
739.83 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: