Repository logo
 

Resolutions of Monomial Ideals Via Quasi-Trees

dc.contributor.authorHersey, Benjamin
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDavid Ironen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerJason Brownen_US
dc.contributor.thesis-readerRichard Nowakowskien_US
dc.contributor.thesis-supervisorSara Faridien_US
dc.date.accessioned2015-08-21T17:08:03Z
dc.date.available2015-08-21T17:08:03Z
dc.date.defence2015-08-18
dc.date.issued2015
dc.description.abstractWe examine ways in which simplicial complexes can be used for describing, classifying, and studying multigraded free resolutions of monomial ideals. By using homgenizations of frames and dehomogenizations of resolutions we can, under appropriate circumstances, describe the structure of a resolution of a monomial ideal by a simiplicial complex. We discuss the successes and failures of this approach. We finish by applying the tools we have presented to quasi-trees, providing a new proof to a theorem of Herzog, Hibi, and Zheng which classifies monomial ideals with minimal projective dimension.en_US
dc.identifier.urihttp://hdl.handle.net/10222/60768
dc.language.isoenen_US
dc.subjectresolutionen_US
dc.subjectQuasi-treeen_US
dc.subjectMonomial Idealen_US
dc.titleResolutions of Monomial Ideals Via Quasi-Treesen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hersey-Benjamin-MSc-MATH-August-2015.pdf
Size:
970.08 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: