Repository logo

Subspaces of L^2(R^n) Invariant Under Crystallographic Shifts

dc.contributor.authorPotter, Tom
dc.contributor.copyright-releaseNot Applicable
dc.contributor.degreeDoctor of Philosophy
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Division
dc.contributor.ethics-approvalNot Applicable
dc.contributor.external-examinerDr. Yemon Choi
dc.contributor.manuscriptsNot Applicable
dc.contributor.thesis-readerDr. Keith Johnson
dc.contributor.thesis-readerDr. Theo Johnson-Freyd
dc.contributor.thesis-supervisorDr. Keith Taylor
dc.date.accessioned2025-10-14T16:47:12Z
dc.date.available2025-10-14T16:47:12Z
dc.date.defence2025-09-29
dc.date.issued2025-10-14
dc.description.abstractIn this thesis we consider crystal groups in dimension n and their natural unitary representation on L^2(R^n). We show that this representation is unitarily equivalent to a direct integral of factor representations, and use this to characterize the subspaces of L^2(R^n) invariant under crystal symmetry shifts. Finally, by giving an explicit unitary equivalence of the natural crystal group representation, we find the central decomposition guaranteed by direct integral theory.
dc.identifier.urihttps://hdl.handle.net/10222/85472
dc.language.isoen
dc.subjectcrystallographic groups
dc.subjectcrystal symmetry shifts
dc.subjectcentral decomposition
dc.subjectdirect integral theory
dc.subjectunitary representation
dc.titleSubspaces of L^2(R^n) Invariant Under Crystallographic Shifts

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HarryThompsonPotter2025.pdf
Size:
6.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: