Generators and Relations for the Group U₄(ℤ[1/√2, i])
| dc.contributor.author | Greylyn, Seth E. M. | |
| dc.contributor.copyright-release | Not Applicable | en_US |
| dc.contributor.degree | Master of Science | en_US |
| dc.contributor.department | Department of Mathematics & Statistics - Math Division | en_US |
| dc.contributor.ethics-approval | Not Applicable | en_US |
| dc.contributor.external-examiner | n/a | en_US |
| dc.contributor.graduate-coordinator | Dr. Sara Faridi | en_US |
| dc.contributor.manuscripts | Not Applicable | en_US |
| dc.contributor.thesis-reader | Dr. Jason I. Brown | en_US |
| dc.contributor.thesis-reader | Dr. Karl Dilcher | en_US |
| dc.contributor.thesis-supervisor | Dr. Peter Selinger | en_US |
| dc.date.accessioned | 2014-08-22T14:46:43Z | |
| dc.date.available | 2014-08-22T14:46:43Z | |
| dc.date.defence | 2014-08-18 | |
| dc.date.issued | 2014-08-22 | |
| dc.description.abstract | We give a presentation by generators and relations of the group U₄(ℤ[1/√2, i]) of unitary 4×4 matrices with entries in the ring ℤ[1/√2, i]. This is motivated by the problem of exact synthesis for the Clifford+T gate set in quantum computation. | en_US |
| dc.identifier.uri | http://hdl.handle.net/10222/54000 | |
| dc.language.iso | en | en_US |
| dc.subject | quantum computing, synthesis of quantum circuits, circuit simplification, Clifford+T circuits, generators and relations, unitary group | en_US |
| dc.title | Generators and Relations for the Group U₄(ℤ[1/√2, i]) | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Greylyn-Seth-MSc-MATH-August-2014.pdf
- Size:
- 563.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Seth E. M. Greylyn's Master's thesis.
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
