Repository logo
 

Generators and Relations for Real Stabilizers

dc.contributor.authorMakary, Justin J.
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. David Ironen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Dorette Pronken_US
dc.contributor.thesis-readerDr. Peter Selingeren_US
dc.contributor.thesis-supervisorDr. Neil J. Rossen_US
dc.date.accessioned2020-09-02T11:14:51Z
dc.date.available2020-09-02T11:14:51Z
dc.date.defence2020-08-20
dc.date.issued2020-09-02T11:14:51Z
dc.description.abstractReal stabilizer operators, which are also known as real Clifford operators, are generated, through composition and tensor product, by the Hadamard gate, the Pauli Z gate, and the controlled-Z gate. We introduce a normal form for real stabilizer circuits and show that every real stabilizer operator admits a unique normal form. Moreover, we give a finite set of relations that suffice to rewrite any Clifford circuit to its normal form. This yields a presentation by generators and relations of the strict spatial monoidal category of real stabilizer operators.en_US
dc.identifier.urihttp://hdl.handle.net/10222/79798
dc.language.isoenen_US
dc.subjectQuantum Computationen_US
dc.subjectQuantum Circuitsen_US
dc.subjectClifford Circuitsen_US
dc.subjectStabilizer Circuitsen_US
dc.subjectGenerators and Relationsen_US
dc.titleGenerators and Relations for Real Stabilizersen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makary-Justin-MSc-MATH-August-2020.pdf
Size:
423.3 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: