Visualizing Object Clouds Through Energy Minimization
Date
2020-12-15T15:32:05Z
Authors
Okesanjo, Omobola
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
When visualizing an object cloud, the pairwise similarity between an object and a
central object of interest is used to determine the position of each object within the cloud.
This however does not capture the semantic relationship of all the objects and it reduces
the expectation of finding an object when performing visual search. To generate a semantic
object cloud, we define and subsequently minimize an energy function that captures the
pairwise similarity amongst all the objects within the cloud. The energy is minimized using
several statistical machine learning techniques and we show that the generated layouts from
such techniques outperform those of other object cloud algorithms on a variety of metrics
for evaluating word and object cloud layouts.
Description
Keywords
Visualization, Tag clouds, Object clouds, Energy minimization, Graph drawing