Repository logo
 

Simplicial Complexes of Placement Games

dc.contributor.authorHuntemann, Svenja
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorSara Faridien_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerJason Brownen_US
dc.contributor.thesis-readerPeter Selingeren_US
dc.contributor.thesis-readerSara Faridien_US
dc.contributor.thesis-readerRichard Nowakowskien_US
dc.contributor.thesis-supervisorSara Faridi, Richard Nowakowskien_US
dc.date.accessioned2013-08-23T15:32:12Z
dc.date.available2013-08-23T15:32:12Z
dc.date.defence2013-08-15
dc.date.issued2013-08-23
dc.description.abstractPlacement games are a subclass of combinatorial games which are played on graphs. In this thesis, we demonstrate that placement games could be considered as games played on simplicial complexes. These complexes are constructed using square-free monomials. We define new classes of placement games and the notion of Doppelgänger. To aid in exploring the simplicial complex of a game, we introduce the bipartite flip and develop tools to compare known bounds on simplicial complexes (such as the Kruskal-Katona bounds) with bounds on game complexes.en_US
dc.identifier.urihttp://hdl.handle.net/10222/35472
dc.language.isoenen_US
dc.subjectCombinatorial Game Theoryen_US
dc.subjectCommutative Algebraen_US
dc.subjectCombinatorial commutative algebraen_US
dc.subjectCombinatoricsen_US
dc.subjectSimplicial Complexen_US
dc.subjectPlacement Gameen_US
dc.titleSimplicial Complexes of Placement Gamesen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Huntemann-Svenja-MSc-Math-August-2013.pdf
Size:
377.18 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.42 KB
Format:
Item-specific license agreed upon to submission
Description: