The use of Fermat quotients in cryptography
dc.contributor.author | Agboola, Titilayo | |
dc.contributor.copyright-release | Not Applicable | en_US |
dc.contributor.degree | Master of Science | en_US |
dc.contributor.department | Department of Mathematics & Statistics - Math Division | en_US |
dc.contributor.ethics-approval | Not Applicable | en_US |
dc.contributor.external-examiner | n/a | en_US |
dc.contributor.graduate-coordinator | Theo Johnson-Freyd | en_US |
dc.contributor.manuscripts | No | en_US |
dc.contributor.thesis-reader | Keith Johnson | en_US |
dc.contributor.thesis-reader | Peter Selinger | en_US |
dc.contributor.thesis-supervisor | Karl Dilcher | en_US |
dc.date.accessioned | 2023-04-14T12:45:03Z | |
dc.date.available | 2023-04-14T12:45:03Z | |
dc.date.defence | 2023-04-12 | |
dc.date.issued | 2023-04-13 | |
dc.description.abstract | Fermat quotients are based on Fermat’s little theorem. They possess properties that make them suitable for generating pseudo-random numbers. They can also be used to generate Boolean functions. This thesis presents an overview of major milestones in the study of Fermat quotients and related concepts. In particular, applications of Fermat quotients in cryptography are discussed. | en_US |
dc.identifier.uri | http://hdl.handle.net/10222/82406 | |
dc.language.iso | en | en_US |
dc.subject | cryptography | en_US |
dc.subject | pseudorandomness | en_US |
dc.subject | Legendre sequence | en_US |
dc.subject | well-distribution measure | en_US |
dc.subject | correlation measure | en_US |
dc.subject | Boolean function | en_US |
dc.subject | Fermat quotient | en_US |
dc.title | The use of Fermat quotients in cryptography | en_US |