Repository logo
 

A Study of the Geometric Horizon Conjecture as Applied to a Binary Black Hole Merger

dc.contributor.authorPeters, Jeremy
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDavid Ironen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerRobert van den Hoogenen_US
dc.contributor.thesis-readerDavid Ironen_US
dc.contributor.thesis-supervisorAlan Coleyen_US
dc.date.accessioned2020-08-26T16:01:33Z
dc.date.available2020-08-26T16:01:33Z
dc.date.defence2020-08-14
dc.date.issued2020-08-26T16:01:33Z
dc.description.abstractWe study the algebraic structure of the Weyl tensor by tracing the level--0 set of the complex scalar polynomial invariant, D, through a numerical simulation of a quasi-circular binary black hole merger. We approximate the level-0 sets of D with level--epsilon sets of |D| for small epsilon. We locate the local minima of |D| and find that the positions of these local minima correspond closely to the level-epsilon sets of |D| and we also compare with the level-0 sets of Re(D). The analysis provides strong evidence that the level-epsilon sets track a unique geometric horizon. By studying the behaviour of the zero sets of Re(D), Im(D) and their product, we observe that the level-epsilon set that best approximates this geometric horizon is given by epsilon = 0.001.en_US
dc.identifier.urihttp://hdl.handle.net/10222/79721
dc.language.isoenen_US
dc.subjectGeometric Horizonen_US
dc.subjectGeometric Horizon Conjectureen_US
dc.subjectMarginally Outer Trapped Surfaceen_US
dc.subjectApparent Horizonen_US
dc.subjectEvent Horizonen_US
dc.subjectBlack Hole Horizonen_US
dc.subjectBinary Black Hole Mergeren_US
dc.subjectPetrov Classificationen_US
dc.subjectBoost Weight Classificationen_US
dc.subjectScalar Polynomial Invarianten_US
dc.subjectDifferential Scalar Polynomial Invarianten_US
dc.subjectExtended Cartan Invarianten_US
dc.subjectWeyl Tensoren_US
dc.subjectLevel Setsen_US
dc.subjectNumerical Relativityen_US
dc.subjectDifferential Geometryen_US
dc.titleA Study of the Geometric Horizon Conjecture as Applied to a Binary Black Hole Mergeren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Peters-Jeremy-MSc-MATH-Aug-2020.pdf
Size:
29.44 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: