Repository logo
 

Towards a New Mathematical Paradigm for the Development of Economic Growth Theory

dc.contributor.authorWang, Kunpeng
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeDoctor of Philosophyen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinerDavide La Torreen_US
dc.contributor.graduate-coordinatorDavid Ironen_US
dc.contributor.manuscriptsYesen_US
dc.contributor.thesis-readerCaroline Cochranen_US
dc.contributor.thesis-readerTheodore Kolokolnikoven_US
dc.contributor.thesis-supervisorRoman Smirnoven_US
dc.date.accessioned2019-12-17T18:16:58Z
dc.date.available2019-12-17T18:16:58Z
dc.date.defence2019-12-16
dc.date.issued2019-12-17T18:16:58Z
dc.description.abstractWe contribute to the development of the growth theory in economics, using mathematical and statistical tools. In particular, we employ various techniques rooted in the theory of Hamiltonian systems on Poisson manifolds, jet bundles theory, calculus of variation, and statistical data analysis to study the properties of the Cobb-Douglas production function as an invariant of the one-parameter Lie group action determined by exponential growth in factors (capital and labor) and production. This approach is extended to more general models determined by logistic growth and the Lotka-Volterra type interactions between factors. The resulting new production functions are shown with the aid of statistical methods to provide a good fit to the current economic data.en_US
dc.identifier.urihttp://hdl.handle.net/10222/76830
dc.language.isoenen_US
dc.subjectGrowth thoery in economicsen_US
dc.subjectCobb-Douglas production functionen_US
dc.subjectHamiltonian systemsen_US
dc.subjectPoisson geometryen_US
dc.subjectJet bundlesen_US
dc.subjectLogistic growthen_US
dc.titleTowards a New Mathematical Paradigm for the Development of Economic Growth Theoryen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang-Kunpeng-PhD-MATH-December-2019.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: