Repository logo
 

HIERARCHICAL LOCATION CLASSIFICATION OF TWITTER USERS WITH A CONTENT BASED PROBABILITY MODEL

dc.contributor.authorNukala, Mounika
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Computer Scienceen_US
dc.contributor.departmentFaculty of Computer Scienceen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. Evangelos Milliosen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Qigang Gaoen_US
dc.contributor.thesis-readerDr. Nur Zincir-Heywooden_US
dc.contributor.thesis-supervisorDr. Srini Sampallien_US
dc.date.accessioned2015-04-01T18:28:52Z
dc.date.available2015-04-01T18:28:52Z
dc.date.defence2015-03-23
dc.date.issued2015-04-01
dc.descriptionAnalysing twitter data for extracting geographic information of Twitter usersen_US
dc.description.abstractExtraction of geographical information from the content is gaining importance due to the huge growth of textual data on social media and a phenomenal increase in the location based personalized services. Knowledge of online user’s content and location enables location based personalized services. Existing approaches to predict the location of Twitter users have not incorporated geographical information from geo-tagged tweets and are content driven only. A hybrid approach using a combination of hierarchical location classification and tweet geo-location is proposed to predict location based on tweet content and metadata. Our approach uses an ensemble of content based statistic classifiers trained on words, hashtags, places and heuristic classifiers for place names, geo-coordinates in tweets to predict locations at different granularities like time zone, state and city. Experimental results suggest that our hybrid approach achieves a city prediction accuracy of 70.7% for Twitter users and outperforms the existing hierarchical location classification methods.en_US
dc.identifier.urihttp://hdl.handle.net/10222/56293
dc.language.isoenen_US
dc.subjectTwitter data analysis for extracting location informationen_US
dc.titleHIERARCHICAL LOCATION CLASSIFICATION OF TWITTER USERS WITH A CONTENT BASED PROBABILITY MODELen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nukala-Mounika-MCSc-CS-March-2015.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: