Repository logo
 

P-Generating Polynomials and the P-Fractal of a Graph

dc.contributor.authorCameron, Ben
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. Sara Faridien_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Jeannette Janssenen_US
dc.contributor.thesis-readerDr. Richard Nowakowskien_US
dc.contributor.thesis-supervisorDr. Jason Brownen_US
dc.date.accessioned2014-08-19T14:47:33Z
dc.date.available2014-08-19T14:47:33Z
dc.date.defence2014-08-11
dc.date.issued2014-08-19
dc.description.abstractWe define the P -generating polynomial for a graph G and property P as the generating polynomial for the number of P-subgraphs of G of each size. This polynomial is a generalization of the independence polynomial and so results for the independence polynomial are generalized to hold for properties other than independence. We look at computing the P -generating polynomial of product graphs for certain properties P. We then look at determining the nature and location of the roots of P-generating polynomials in general, showing for which properties the roots are real for all graphs. The roots of the P-generating polynomials of graph products lead to the P-fractal of a graph for all properties P that are closed under graph substitution.en_US
dc.identifier.urihttp://hdl.handle.net/10222/53946
dc.language.isoen_USen_US
dc.subjectGraph theoryen_US
dc.subjectPolynomialsen_US
dc.titleP-Generating Polynomials and the P-Fractal of a Graphen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cameron-Ben-MSc-MATH-August-2014.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: