Repository logo

Strengthening Slender Reinforced Concrete Columns Using High-Modulus Bonded Longitudinal Reinforcement for Buckling Control

Loading...
Thumbnail Image

Authors

Sadeghian, Pedram
Fam, Amir

Journal Title

Journal ISSN

Volume Title

Publisher

American Society of Civil Engineers

Abstract

This paper introduces a model for strengthening slender reinforced concrete columns. The proposed technique aims at controlling second-order lateral deflections using longitudinal high-modulus bonded reinforcement, thereby altering the loading path to intercept the axial load-bending moment (P-M) interaction curve at a higher axial capacity. With the availability of high and ultra-high-modulus carbon fiber–reinforced polymer (CFRP) plates, this approach should be quite efficient according to Euler’s buckling rule, in which column strength is stiffness-controlled. This approach is different from the classical transverse-wrapping method for confinement, a technique that achieves strengthening by enlarging the (P-M) diagram in the compression-controlled region. The proposed model accounts for concrete nonlinearity in compression, cracking in tension, steel rebar plasticity, and certainly geometric nonlinearity, in addition to the possibility of premature CFRP-debonding failure in tension and the lower CFRP strength in compression than tension. The model is validated against experimental results and used in a parametric study to assess the effects of slenderness ratio λλ, axial load initial eccentricity ratio e0/h, CFRP reinforcement ratio ρfρf, and modulus Ef. It was shown that significant gains in axial strength, ranging from 17 to 90%, occur as the magnitudes of λ, ρf, Ef and e0/h increase.

Description

Keywords

Slender, Concrete, Column, FRP, Strengthening, CFRP, Buckling

Citation

Publisher's version: Sadeghian, Pedram, and Fam, Amir. (2015). Strengthening Slender Reinforced Concrete Columns Using High-Modulus Bonded Longitudinal Reinforcement for Buckling Control. American Society of Civil Engineers, 141 (4), 04014127-1 - 04014127-12. doi: 10.1061/(ASCE)ST.1943-541X.0001066