Recent Submissions

  • Li-ion Battery Negative Electrodes Based on the FexZn1-x Alloy System (Preprint) 

    Published Version: L. MacEachern, R.A. Dunlap and M.N. Obrovac, Li-ion Battery Negative Electrodes Based on the FexZn1−x Alloy System, J. Non-Cryst. Solids, 409 (2015), 183-190. https://doi.org/10.1016/j.jnoncrysol.2014.11.026
    Thin-film Fe-Zn libraries were investigated as negative electrode materials for Li-ion batteries using combinatorial and high-throughput techniques. X-ray diffraction, Mössbauer effect spectroscopy and electron microprobe ...
  • Investigation of the NaNixMn1-xO2 (0 ≤ x ≤ 1) System for Na-ion Battery Cathode Materials (Preprint) 

    Published Version: R. Fielden and M. N. Obrovac, Investigation of the NaNixMn1-xO2 (0 ≤ x ≤ 1) System for Na-Ion Battery Cathode Materials, J. Electrochem. Soc., 162 (2015), A453-A459. https://doi.org/10.1149/2.0551503jes
    Layered NaNixMn1-xO2 (0 ≤ x ≤ 1) oxides were prepared via solid state reactions. Different reaction conditions were required to obtain phase pure samples, depending on the value of x. The 0 ≤ x ≤ 0.1 compositions were ...
  • Mössbauer and Electrochemical Investigations of Carbon-Rich Fe1-xCx Films (Preprint) 

    Published Version: Xiuyun Zhao, R.J. Sanderson, L. MacEachern, R.A. Dunlap and M.N. Obrovac, Mössbauer and Electrochemical Investigations of Carbon-Rich Fe1-xCxFilms, Electrochim. Acta, 170 (2015), 16-24. https://doi.org/10.1016/j.electacta.2015.04.116
    A thin film binary library of carbon-rich Fe1-xCx (0.47 ≤ x ≤ 0.97) alloys was prepared by combinatorial sputtering of carbon and iron. The sputtered library was characterized by X-ray diffraction and room temperature 57Fe ...
  • The Reversible Magnesiation of Pb (Preprint) 

    Published Version: Kalani Periyapperuma, Tuan T. Tran, M.I. Purcell and M.N. Obrovac, The Reversible Magnesiation of Pb, Electrochim. Acta, 165 (2015) 162-165. https://doi.org/10.1016/j.electacta.2015.03.006
    Sputtered Pb films have been found to reversibly alloy electrochemically with magnesium in Grignard based electrolytes. The voltage curve shows a single plateau at about 125 mV vs. Mg, corresponding to the formation of ...
  • Mixed Transition Metal Titanate and Vanadate Negative Electrode Materials for Na-Ion Batteries (Preprint) 

    Published Version: L. Brown, S. Smith and M. N. Obrovac, Mixed Transition Metal Titanate and Vanadate Negative Electrode Materials for Na-Ion Batteries, J. Electrochem. Soc., 162 (2015), A15-A20. https://doi.org/10.1149/2.0171501jes
    Sodium-ion batteries have the potential to be a low cost, sustainable replacement for lithium-ion batteries in large scale energy storage. The lack of practical negative electrode materials limit the development of Na-ion ...
  • A Combinatorial Investigation of Fe-Si-Zn Thin Film Negative Electrodes for Li-ion 2 Batteries (Preprint) 

    Published Version: L. Brown, S. Smith and M. N. Obrovac, Mixed Transition Metal Titanate and Vanadate Negative Electrode Materials for Na-Ion Batteries, J. Electrochem. Soc., 162 (2015), A15-A20.
    Sodium-ion batteries have the potential to be a low cost, sustainable replacement for lithium-ion batteries in large scale energy storage. The lack of practical negative electrode materials limit the development of Na-ion ...
  • A Combinatorial Investigation of Fe-Si-Zn Thin Film Negative Electrodes for Li-ion 1 Batteries (Preprint) 

    Published Version: L. MacEachern, R.A. Dunlap and M.N Obrovac, A Combinatorial Investigation of Fe-Si-Zn Thin Film Negative Electrodes for Li-Ion Batteries, J. Electrochem. Soc., 162 (2015), A229-A234. https://doi.org/10.1149/2.1051501jes
    Thin-film Fe-Si-Zn libraries were investigated as negative electrode materials for Li-ion batteries using combinatorial and high-throughput techniques. X-ray diffraction and electron microprobe measurements were used to ...
  • Synthesis, Lithium Insertion and Thermal Stability of Si–Mo Alloys 

    Simeng Cao, Shayne Gracious, J. Craig Bennett and M. N. Obrovac. Synthesis, Lithium Insertion and Thermal Stability of Si–Mo Alloys. J. Electrochem. Soc. (2020), 167 (13), 130531.
    Li insertion was investigated in SixMo100−x (90 ≥ x ≥ 70, Δx = 10) alloys prepared by mechanical ball milling. X-ray diffraction (XRD) and quantitative phase analysis were used to analyze phase compositions of these Si–Mo ...
  • Electrochemistry and Thermal Behavior of SiOx Made by Reactive Gas Milling 

    Yidan Cao, R. Dunlap, and M. N. Obrovac. Electrochemistry and Thermal Behavior of SiOx Made by Reactive Gas Milling. J. Electrochem. Soc. (2020), 167 (11), 110501.
    SiOx with various oxygen contents were synthesized from Si powder by a simple room-temperature ball milling method by controlling the air exposure time during milling. The resulting SiOx consists of nano and amorphous Si ...
  • Engineered Particle Synthesis by Dry Particle Microgranulation 

    Lituo Zheng, M. D. L. Garayt, and M. N. Obrovac, Engineered Particle Synthesis by Dry Particle Microgranulation. Cell Reports Physical Science (2020), 1 (6), 100063.
    Highlights * A method of making monodisperse engineered ∼10-μm particles is introduced * Core-shell, spherical, and tetrahedral particles demonstrated at ∼100% yield * Spherical layered oxides for Li-ion batteries ...
  • Polyaniline Electrode Activation in Li Cells 

    Michael Charlton, T. D. Hatchard, and M. N. Obrovac. Polyaniline Electrode Activation in Li Cells. J. Electrochem. Soc. (2020), 167 (8), 080501.
    Polyaniline (PANi) can be used as an electroactive organic cathode material in Li-cells with multiple redox states. The theoretical specific capacity of the emeraldine base (PEB) is 150 mAh g−1. In this study, we show how ...
  • Spherically Smooth Cathode Particles by Mechanofusion Processing 

    Lituo Zheng, Congxiao Wei, M. D. L. Garayt, Judy MacInnis, and M. N. Obrovac, Spherically Smooth Cathode Particles by Mechanofusion Processing, J. Electrochem. Soc., 166 (2019) A2924-A2927.
    Surface modification has been shown to be useful for improving the cycling performance of cathode materials. Typically hetero-compositional coatings are applied on cathode particle surfaces using methods, such as aqueous ...
  • Quantitative Determination of Carbon Dioxide Content in Organic Electrolytes by Infrared Spectroscopy 

    Haonan Yu and M. N. Obrovac, Quantitative Determination of Carbon Dioxide Content in Organic Electrolytes by Infrared Spectroscopy, J. Electrochem. Soc., 166 (2019) A2467 - A2470
    CO2 has been shown to be an effective additive to improve the cycling characteristics of silicon negative electrodes for Li-ion batteries. However, a quantitative technique for measuring the CO2 content in electrolyte is ...
  • Stabilizing NaCrO2 by Sodium Site Doping with Calcium 

    Lituo Zheng, J. C. Bennett, and M. N. Obrovac, Stabilizing NaCrO2 by Sodium Site Doping with Calcium, J. Electrochem. Soc., 166 (2019) A2058 - A2064.
    Layered cathode materials based on abundant, low cost raw materials have garnered interest in recent years. O3-type NaCrO2 is a promising cathode material as it offers decent energy density and is easy to synthesize. In ...
  • An Investigation of the Fe-Mn-Si System for Li-Ion Battery Negative Electrodes 

    Yidan Cao, Benjamin Scott, R.A. Dunlap, Jun Wang and M.N. Obrovac, An Investigation of the Fe-Mn-Si System for Li-Ion Battery Negative Electrodes, J. Electrochem. Soc., 166 (2019) A21-A26. doi: 10.1149/2.1111816jes
    Fe-Mn-Si alloys prepared by ball milling were investigated as negative electrodes for Li-ion batteries. X-ray diffraction and room temperature 57Fe Mössbauer measurements were used to characterize alloy structure, which ...
  • Li Insertion in Ball Milled Si-Mn Alloys 

    Yidan Cao, J.C. Bennett, R.A. Dunlap and M.N. Obrovac, Li Insertion in Ball Milled Si-Mn Alloys, J. Electrochem. Soc., 165 (2018) A1734-A1740.
    Si1-xMnx (0 ≤ x ≤0.5, x=0.05)alloyswereprepared by ball milling and studied as negative electrode materials in Li cells. These alloys were found to be unique amongtransition metals. When x ≤ 0.35, the alloys are essentially ...
  • Sintered polymeric binders for Li-ion battery alloy anodes 

    T.D. Hatchard, R.A. Fielden and M.N. Obrovac, Sintered Polymeric Binders for Li-ion Battery Alloy Anodes, Can. J. Chem., 96 (2018) 765-770.
    The cycling performance in lithium half cells of Si alloy electrodes with polyvinylidene fluoride or polyimide binders were evaluated after the electrodes were cured at temperatures below and above the binder carbonization ...
  • Preparation of Low Surface Area Si-Alloy Anodes for Li-Ion Cells by Ball Milling 

    Simeng Cao, Mohammad H. Tahmasebi, Shayne Gracious, J. Craig Bennett, and M. N. Obrovac. Preparation of Low Surface Area Si-Alloy Anodes for Li-Ion Cells by Ball Milling. J. Electrochem. Soc. (2022), 169 (6), 060540.
    A new and simple 2-step milling technique is utilized to produce Si–Ti–N alloys with significantly reduced surface area compared to conventional ball milling, while still attaining a full amorphous active Si phase. Surface ...
  • Si85Fe15Ox Alloy Anode Materials with High Thermal Stability for Lithium Ion Batteries 

    Yijia Liu, Michael Charlton, Jun Wang, J. Craig Bennett and M. N. Obrovac. Si85 Fe15 Ox Alloy Anode Materials with High Thermal Stability for Lithium Ion Batteries. J. Electrochem. Soc. (2021), 168 (11), 110521.
    The synthesis, microstructure and electrochemical properties of ball milled Si85Fe15Ox alloys with different oxygen contents are investigated. These materials combine the features of Si-M alloys (low irreversible capacity) ...
  • Isothermal Calorimetry Evaluation of Metallurgical Silicon as a Negative Electrode Material for Li-Ion Batteries 

    Chevrier, Zilai Yan, Stephen L. Glazier, M. N. Obrovac and L.J. Krause. Isothermal Calorimetry Evaluation of Metallurgical Silicon as a Negative Electrode Material for Li-Ion Batteries. J. Electrochem. Soc. (2021), 168 (3), 030504.
    The structural evolution of Si during lithiation and delithiation is uniquely dependent on the cycling conditions and can show either reversible or path dependent behavior. In this paper, metallurgical Si (large crystalline ...

View more