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Abstract

Insider threats represent a significant challenge for organizations. They cost organizations

money, time and resources. In 2024, a recent report by Code42 found that the average cost

of an insider incident is $15 million. There are also costs to security teams, who are wasting

time with limited resources. Thus, as artificial intelligence and machine learning has become

mainstream, more and more security teams are looking to leverage these models to maximize

their impact. This thesis explores a machine learning based approach in the field of insider

threat detection with a specific focus on infiltration attacks. In particular, the impact of four

dimensionality reduction and three sampling techniques are explored on the performance of

machine learning models for detecting such attacks. These techniques are evaluated on three

publicly available datasets using six ML models. The results indicate that in comparison

to the original data features, it is possible to achieve comparable performances in detect-

ing filtration attacks where dimensionality reduction is used. This capability potentially

facilitates faster operational responses by reducing computational costs. The thesis research

provides results and observations on the feasibility of utilizing reduced dimensionality for

insider threat detection in filtration attack scenarios, presenting a foundation for further

exploratory work in this field.
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Chapter 1

Introduction

Insider threats represent a significant and complex challenge within the realm of cybersecu-

rity. These threats are perpetrated by individuals within an organization—whether they be

employees, contractors, or business partners—who have authorized access to the organiza-

tion’s systems and data. The motivations behind these actions vary widely, encompassing

personal grievances, financial gain, or espionage, making them difficult to detect and miti-

gate. According to the CERT Insider Threat Center, insider threats are defined as threats

originating from malicious or unintentional insiders whose authorized access to networks,

systems, and data of an organization is exploited to negatively affect the confidentiality, in-

tegrity, availability, or physical state of the organization’s information, information systems,

or workforce [1].

The financial and operational consequences of insider threats are substantial. Organiza-

tions globally spend millions annually to address the fallout, which can range from severe

data breaches to extensive operational disruptions. As reported by the Code42 in early

2024, the average annual cost of dealing with insider threats has escalated to $15 million [2],

marking a significant increase from previous years [3].

Recent advancements in the field of cybersecurity have increasingly focused on the use of

sophisticated machine learning techniques to combat insider threats. Research has explored a

variety of approaches, including genetic programming, neural networks, and ensemble meth-

ods, each demonstrating significant potential in enhancing detection accuracy. Studies have

utilized advanced feature reduction techniques, and various machine learning models across

multiple datasets, revealing that tailored algorithms can effectively adapt to the dynamic

nature of insider behaviors.

This thesis addresses the challenge of detecting two prevalent forms of insider threats: in-

filtration, which involves unauthorized access to systems to extract sensitive information, and

exfiltration, which refers to the unauthorized transfer of information out of the organization.

To combat these threats, the study explores the application of sampling, namely Stratified

1
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sampling, Undersampling and Oversampling, as well as dimensionality reduction techniques,

namely Principal Component Analysis (PCA), Independent Component Analysis (ICA), and

Genetic Programming (GP) with and without fitness sharing. These techniques are applied

across three cybersecurity datasets: CIC-IDS2017, CSE-CIC-IDS2018, and CERT r4.2 with

different granularity levels of Week, Day, and Session. Additionally, six machine learning

models, including Decision Tree (DT), Random Forest (RF), Gaussian Naive Bayes (GNN),

K-Nearest Neighbour (kNN), Logistic Regression (LR), and XGBoost (XGB) are utilized to

detect insider threats integrated with the sampling and dimensionality reduction techniques.

Thus, the primary objective of this research is to explore how these dimensionality reduc-

tion and sampling techniques can enhance (if at all) the performance of the aforementioned

six machine learning models in detecting insider threats, thereby aiding Security Operations

Centers (SOCs) and threat hunting teams. By reducing the dimensionality of data, these

teams can potentially accelerate the detection processes, enabling quicker and more effective

responses. This capability is crucial in reducing the time between threat identification and

resolution, thereby minimizing the impact on organizational assets.

Moreover, the thesis provides a comparative analysis of different pipelines incorporat-

ing datasets, granularity levels, sampling techniques, and feature dimensionality reduction

methods. This comprehensive approach allows SOCs and threat hunting teams to assess and

choose the most effective technique — PCA, ICA, or GP—based — on their specific opera-

tional requirements. The insights gained from this research are intended to lay ground work

for future approaches to enhance the effectiveness and efficiency of insider threat detection

mechanisms.

Thus, in this research, my goal is to explore the effect of sampling and dimensionality

reduction techniques on filtration attacks in the field of insider thread detection. To achieve

this, I work on network traffic traces, transform them from traffic packets to traffic flows, en-

suring data consistency and reliability — a key for the accurate training of machine learning

models. I also examine the impact of various sampling methods, namely stratified sampling,

oversampling, and undersampling. These sampling methods are essential for addressing class

imbalances in the training data of machine learning models. These imbalances, if not cor-

rected, can adversely affect the detection performance of the models. Through my findings,

this thesis makes contributions to the field of cybersecurity by integrating multiple advanced

techniques to enhance the insider threat detection. In particular, the novel contribution of
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my research lies in exploration of the synergistic application of these techniques within a

single investigative framework while specifically focusing on filtration attack scenarios for

insider threat detection. My holistic approach aims to explore and leverage the strengths of

the following to provide a more comprehensive and effective insider threat detection strategy:

• Exploring Sampling Techniques: Investigates the effects of stratified sampling,

oversampling, and undersampling on machine learning models training and perfor-

mance, focusing on insider threat detection and filtration attack scenarios.

• Exploring the Dimensionality Reduction Techniques: Evaluate the impact of

PCA, ICA, and Genetic Programming (with and without fitness sharing) on the perfor-

mance of machine learning models across various datasets—CIC-IDS2017, CSE-CIC-

IDS2018, and CERT r4.2.

• Comparison of Reduced Feature Sets: Compares the performance of machine

learning models trained with reduced feature sets (e.g., PCA-5 through PCA-20 and

ICA-5 through ICA-20) against models trained with original feature sets to assess the

efficacy of dimensinality reduction.

• Granularity-Based Analysis: Provides insights into model performance across dif-

ferent data granularities —Week, Day, and Session—specifically using the CERT r4.2

dataset. This approach could enable SOCs and threat hunting teams to understand

how data segmentation affects threat detection.

• Scenario-Based Model Analysis: Provides insights into performances of machine

learning models under specific scenario combinations, specificially in the CERT r4.2

dataset (0vsAll and 0vs1 3), enhancing detection strategies for SOCs and threat hunt-

ing teams.

The remainder of this thesis is structured as follows: Chapter 2 reviews the literature

pertinent to insider threat detection and the application of machine learning and dimension-

ality reduction techniques within this domain. Chapter 3 details the datasets utilized, the

data preprocessing methods employed, and the specific machine learning models and dimen-

sionality reduction techniques implemented. Chapter 4 presents the experimental setup and

discusses the results obtained from the comparative analysis of the models. Finally, Chapter
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5 concludes the thesis with a discussion of the findings and potential directions for future

research.



Chapter 2

Related Work

This chapter examines the evolving landscape of insider threat detection within the field of

cybersecurity. It critically reviews the development of detection methodologies, emphasizing

the challenges and innovations that have shaped current practices. The focus is on how

various strategies, from behavioral analytics to advanced computational techniques, have

been employed to enhance the detection and mitigation of insider threats.

Specifically, this work underscores the important benefits these methodologies provide for

Threat Hunting teams and Security Operation Centers (SOCs), facilitating more effective

and efficient operations. Various machine learning approaches have become integral tools in

this domain, supporting and refining cybersecurity methodologies by providing sophisticated

data analysis capabilities that improve threat identification and response mechanisms.

A notable area of research within insider threat detection is the application of dimen-

sionality reduction techniques, such as Principal Component Analysis (PCA), Independent

Component Analysis (ICA), and Genetic Programming-based Feature Selection (GP-FS).

These techniques aim to reduce the complexity of the data while preserving the essential

features that contribute to effective threat detection.

This chapter also reviews the implementation of sampling techniques, including stratified

sampling, under-sampling, and over-sampling, to address class imbalance issues commonly

encountered in cybersecurity datasets. Additionally, it highlights the importance of a granu-

lar approach to data analysis in providing detailed insights that can further enhance detection

capabilities.

By synthesizing these methodologies, the chapter sets the context for the thesis research,

which explores the combination of these advanced techniques within the specific scenario of

insider threat detection in general, and infiltration attacks, in particular.

5
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Le et al. [4] explored the adaptability of genetic programming to detect dynamic insider

threats, showcasing how such methods can effectively handle the evolving nature of insider

behaviors. They experimented on evolving GP on expanded feature space and evolving GP

to recognize new malicious behaivours on the CERT r4.2 and CERT r5.2 datasets. The final

results of the experiments were showing around 98% on the Normal Detection Rate (DR)

whereas around 44% and 48% Insider Threat DR on 100 and 300 generations respectively.

Overall, the results were comparable with the conventional machine learning algorithms such

as LR, RF and Neural Networks.

Khan et al. [5] utilized neural networks to optimize hyper-parameter tuning for intrusion

detection. Their proposed model achieved 99% accuracy on the CSE-CIC-IDS2018 dataset.

The paper utilized DT based feature reduction and selection algorithm to obtain 19 features

from the original 80 features.

Le et al. [6] analyzed how data granularity affects the performance of machine learning

models such as LR, Neural Networks, RF and XGB in insider threat detection using the

CERT r5.2 insider threat dataset. Among the models, RF performed the best with F1-score

being higher than 75% on different granularity levels of the dataset. their research revealed

that precision in data processing significantly impacts the effectiveness of models, advocating

for a granular approach to data analysis to improve threat detection accuracy.

Raut et al. [7] provided a comprehensive review of the role of deep learning models such

as Deep Belief Network, Autoencoder, Recurrent Neural Network (RNN) and Convolutional

Neural Network (CNN) in detecting CERT Insider Threat Dataset. Among the models the

paper utilized, RNN proved to be the most suitable solution with 95% AUC score due to its

ability to process temporal log data.

Le et al. [8] introduced unsupervised learning ensembles such as Autoencoders, Lightweight

Online Detector of Anomalies (LODA), Isolation Forest (IF) and Local Outlier Factor (LOF)

to detect anomalies in insider threat scenarios on the CERT r4.2 and CERT r6.2 datasets.

Autoencoders using percentile representation found to be the most useful with 20% inves-

tigation budget among day and week granularity levels with 90% and 98% AUC score for

CERT r4.2 and r6.2 respectively.

Acharya et al. [9] explored the effectiveness of machine learning classifiers for network

intrusion detection, utilizing the KDD99, UNSW-NB15 and CIC-IDS2017 datasets. Among

the classifiers they used, Bagging and AdaBoost performed the best with close to 0% incorrect
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classification rate and 1 AUC score.

Le et al. [10] explored the effectiveness of semi-supervised learning methods for insider

threat detection under various label availability conditions. They employed three semi-

supervised learning algorithms—Label Propagation, Label Spreading, and Self-Training—with

the Self-Training method using a RF base classifier showing superior performance. Particu-

larly notable were the results on the CERT insider threat test dataset (release 4.2), where

the Self-Training method achieved an AUC of 0.992 and was able to detect 90% of malicious

instances at a false positive rate of only 1%.

Karna et al. [11] proposed an ensemble-based filter feature selection technique to improve

intrusion detection systems. By integrating multiple classifiers, their approach focused on

enhancing the selection process for network security features, which significantly increased

the detection rates of network anomalies. Their proposed model provided promising results

in terms of accuracy by achieving 99.16% accuracy for the CIC-IDS2017 and 99.91% accuracy

for the NSL-KDD datasets.

Pantelidis et al. [12] investigated the use of deep autoencoders and variational autoen-

coders for insider threat detection using the CERT r4.2 dataset. Their research emphasized

the role of neural networks in extracting and analyzing complex data patterns. Their re-

sults showed that while Autoencoder performed slightly better in insider threat detection

with 95% accuracy, Variational Autoencoder was overall proved to be the most effective in

identifying threats with 96% accuracy.

Zheng et al. [13] introduced a novel approach using Dirichlet Marked Hawkes Processes

for real-time insider threat detection. This method uniquely applied probabilistic learning

to model the sequential behavior of users, enhancing the detection capabilities by focusing

on temporal data patterns and anomaly detection with varying levels of base intensity λ0

for the Hawkes process. Overall the best result of 88% AUC score has been achieved with

λ0 = 0.1 on the CERT insider threat dataset.

Li et al. [14] proposed a transformer based extreme semi-supervised framework (ESet)

and achieved 97.60% F1-score on a dataset with only 1% of the instances being labeled. Their

study demonstrated the use of semi-supervised models to effectively classify and predict

different types of network intrusions, with varying ratios of labeled data on CIC-IDS2017

and CSE-CIC-IDS2018 datasets.
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Xu and Zhou [15] explored byte pair encoding (BPE) algorithms for payload classifica-

tion in network traffic, introducing a novel sub-word model that significantly enhances the

precision of intrusion detection systems. Their methodology focused on feature extraction

from payload data using the CIC-IDS 2017 dataset. The proposed feature extraction model

applied on kNN, SVM and RF models shown comparable results with n-gram approach

where both achieved around 99% F1-score.

Similarly, Erokhin et al. [16] addressed the challenge of feature selection for network

intrusion detection, emphasizing the use of artificial neural networks and multilayer percep-

trons to analyze the CSE-CIC-IDS2018 dataset. The paper applied Gini Index and Pearson

Coefficient to select and reduce features, both achieving around 99% F1-score with only

using around 20 features in contrast to 77 original features.

In another study, Guarino et al. [17] employed various machine learning techniques for

early classification of network intrusions, utilizing a set of features pre-selected through a

rigorous analytical process on the CSE-CIC-IDS2018 dataset. Among DT, RF, k-NN, GNB

and SVM, RF gave the best results with Np = 10 where Np represents the initial packet

amount of each biflow on the network.

Zhao et al. [18] developed a hybrid intrusion detection system that integrates feature

selection and a weighted stacking classifier called (CFS-DE). By applying their proposed

system on the NSL-KDD and CSE-CIC-IDS2018 dataset using RF, XGB and kNN, they

demonstrated the proposed system’s robustness in identifying and classifying network threats

by achieving 88.25% F1-score on KDDTest+ and 99.88% F1-score on CSE-CIC-IDS2018

dataset.

Arshad et al. [19] introduced ML-IBotD, a machine learning-based intelligent botnet

detection framework that utilizes traffic classification to identify botnet activities with high

accuracy. Their work, which also used the CIC-IDS2017 dataset, showcased the application of

SVM, kNN, DT and Ensemble Classifiers, whereas Ensemble Classifiers achieved an accuracy

rate of 99.56%, emphasizing the potential usage of this framework against sophisticated cyber

threats.

In his work, Turčańık [20] compares various evolutionary data clustering algorithms

namely Genetic Algorithm, Particle Swarm Optimization and Differential Evolution for net-

work attacks, using the CSE-CIC-IDS2018 dataset. Genetic Algorithm Clustering shown

to obtain the lowest global distance from the correct instance in multi-dimensional search



9

space.

On the other hand, Singh and Chattopadhyay [21] explored hierarchical classification us-

ing an ensemble of feed-forward networks to analyze activity logs for insider threat detection

in time-series data on different windows sizes. This approach enabled them to achieve around

99% AUC score on CERT r4.2 dataset, indicating the effectiveness of combining multiple

neural network models to improve detection accuracy, especially in time-series data.

Bertrand et al. [22] proposed an unsupervised insider threat detection system based on

Bayesian Gaussian Mixture Models, to detect insider threats based on user behavior using the

CERT r4.2 dataset. The proposed approach competes with the state-of-the-art approaches

such as LSTM-AutoEncoder and DBN-OCSVM with an accuracy and true negative rate of

93% Their research highlights the capability of unsupervised models to adaptively learn from

data without predefined labels, offering a robust tool for real-time threat analysis.

Siregar et al. [23] presented a novel approach for optimizing the One-Class SVMs to

identify cyber threats that are previously unknown. Their method utilized CIC-IDS2017

intrusion detection dataset and KBest for feature selection. The highest accuracy of 99%

has been achieved with OCSVM with KBest-15 throughout different scenarios of the dataset.

It is important to note that, in addition to machine learning methods, significant research

also employs non-ML approaches such as statistical and psychological methodologies for in-

sider threat detection. For example, Padayachee [24] utilized opportunity theories from crim-

inology to conceptualize insider threats and explore opportunity-reducing measures, while

Greitzer et al. [25] developed a predictive modeling framework that incorporated psycholog-

ical and motivational factors to identify potential insider threats. Furthermore, Guarino et

al. [17] applied statistical methods, specifically Gaussian Naive Bayes, to enhance early clas-

sification in network intrusion detection. Additionally, Chadza et al. [26] employed Hidden

Markov Models to predict sequential network attacks, further showcasing the application of

statistical methods in this field.

In the following tables 2.1, 2.2, and 2.3 presents an overview of the aforementioned liter-

ature in terms of the machine learning methods, techniques utilized, and datasets employed.

In the light of the literature I also utilize the CERT Insider Threat Dataset, CIC-IDS2017,

and CSE-CIC-IDS2018. Additionally, I use feature extraction techniques such as GP, PCA,

and ICA. Also, I employ a variety of machine learning models, including DT, RF, GNN,

kNN, LR, and XGB. This exploratory approach aims to provide SOCs and threat hunting
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teams with insights on optimizing model deployment for fast and effective insider threat

detection.
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Author Evolutionary
Computation

Tree Based
Algorithms

Ensemble
Learning

Neural
Networks

Probabilistic
Learning

Instance-Based
Learning

Regression
Models

Le et al.,
2019

✓ ✓ ✓ ✓ × × ✓

Khan et
al,. 2019

× × × ✓ × × ×

Le et al.,
2020

× ✓ ✓ ✓ × × ✓

Raut et al,.
2020

× × × ✓ × × ×

Le et al.,
2021

× ✓ ✓ ✓ × × ×

Acharya et
al,. 2021

✓ ✓ ✓ × ✓ × ×

Le et al.,
2021

× ✓ ✓ ✓ × × ×

Karna et
al,. 2021

× ✓ ✓ × ✓ × ×

Pantelidis
et al,. 2021

× × × ✓ × × ×

Zheng et
al,. 2021

× ✓ ✓ × × × ×

Li et al,.
2022

× ✓ ✓ ✓ × ✓ ×

Xu et al,.
2022

× ✓ ✓ × × ✓ ×

Erokhin et
al,. 2022

× × × ✓ × × ×

Guarino et
al,. 2022

× ✓ ✓ × ✓ ✓ ×

Zhao et al,.
2022

× ✓ ✓ × × × ×

Arshad et
al,. 2023

× ✓ ✓ × × ✓ ×

Siregar et
al,. 2023

× × × × × ✓ ×

Singh et
al,. 2023

× × × × ✓ × ×

Bertrand
et al,. 2023

× × × × ✓ × ×

Turčańık
et al,. 2023

✓ × × × × × ×

Proposed
Approach

✓ ✓ ✓ × ✓ ✓ ✓

Table 2.1: Summary of Machine Learning Methods used in the literature for insider threat
detection
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Author Dimensionality
Reduction

Feature
Extraction

Explainability Model
Comparison

Granular
Approach

Sampling
Techniques

Le et al.,
2019

× ✓ × ✓ ✓ ×

Khan et
al,. 2019

✓ × × ✓ × ✓

Le et al.,
2020

× ✓ ✓ ✓ ✓ ✓

Raut et al,.
2020

✓ ✓ × ✓ × ×

Le et al.,
2021

× ✓ × ✓ ✓ ×

Acharya et
al,. 2021

✓ × ✓ ✓ ✓ ✓

Le et al.,
2021

× ✓ × ✓ ✓ ×

Karna et
al,. 2021

× ✓ × ✓ × ✓

Pantelidis
et al,. 2021

× × × ✓ × ×

Zheng et
al,. 2021

× × × ✓ ✓ ✓

Li et al,.
2022

× ✓ × ✓ × ×

Xu et al,.
2022

× ✓ × ✓ × ×

Erokhin et
al,. 2022

✓ ✓ × × × ✓

Guarino et
al,. 2022

✓ ✓ × ✓ × ×

Zhao et al,.
2022

✓ ✓ × ✓ × ×

Arshad et
al,. 2023

× ✓ ✓ ✓ × ×

Siregar et
al,. 2023

✓ ✓ × × ✓ ×

Singh et
al,. 2023

✓ ✓ × × ✓ ✓

Bertrand
et al,. 2023

× ✓ ✓ ✓ × ×

Turčańık
et al,. 2023

✓ × ✓ ✓ × ×

Proposed
Approach

✓ ✓ ✓ ✓ ✓ ✓

Table 2.2: Characteristics observed in machine learning based approaches used in the liter-
ature for insider threat detection
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Author CERT Insider

Threat Dataset

CIC-IDS2017 CSE-CIC-

IDS2018

Le et al., 2019 ✓ × ×
Khan et al,. 2019 × × ✓

Le et al., 2020 ✓ × ×
Raut et al,. 2020 ✓ × ×
Le et al., 2021 ✓ × ×
Acharya et al,.

2021

× ✓ ×

Le et al., 2021 ✓ × ×
Karna et al,. 2021 × ✓ ×
Pantelidis et al,.

2021

✓ × ×

Zheng et al,. 2021 ✓ × ×
Li et al,. 2022 × ✓ ✓

Xu et al,. 2022 ✓ × ×
Erokhin et al,. 2022 × × ✓

Guarino et al,.

2022

× × ✓

Zhao et al,. 2022 × × ✓

Arshad et al,. 2023 × ✓ ×
Siregar et al,. 2023 × ✓ ×
Singh et al,. 2023 ✓ × ×
Bertrand et al,.

2023

✓ × ×

Turčańık et al,.

2023

× × ✓

Proposed Approach ✓ ✓ ✓

Table 2.3: Datasets that include infiltration attacks, are used in the literature, and publicly
available
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2.1 Summary

In this chapter, I review the application of machine learning based approaches to explore

insider threat detection in cybersecurity. Building upon the previous works - as summarized

in Tables 2.1, 2.2, and 2.3 - I have identified the research gaps and aim to address them

in my research. Thus, this thesis explores the use of PCA, ICA, and GP-FS with and

without fitness sharing, alongside six machine learning models across three different datasets,

while implementing three sampling techniques, namely stratified sampling, undersampling,

and oversampling. This comprehensive approach is tailored specifically for insider threat

detection within two defined attack categories, namely infiltration and exfiltration attacks.
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In evaluating the transformed datasets, a suite of supervised learning models are deployed.

These include DT (DT), RF (RF), GNB (GNB), K-Nearest Neighbors (kNN), LR (LR),

and XGB (XGB). The goal is to investigate how the dimensionality reduction influences

an ML model’s performance. The comparison of results between models trained on the

original versus the reduced-feature datasets aims to highlight the feasibility of achieving

comparable performance with fewer features, thereby enhancing the computational efficiency

and shortening the reaction time of Security Operations Centers (SOCs), and Threat Hunting

teams within an organization.

3.2 Datasets

In this thesis, I investigate dimensionality reduction techniques to streamline the process of

insider threat detection through machine learning. Central to this exploration is the analysis

of datasets with varying scenarios of benign and infiltration activities. To this end, I metic-

ulously selected three datasets for my study: CIC-IDS2017, CSE-CIC-IDS2018, and three

granularity versions of the CERT r4.2 Insider Threat dataset. Each dataset encompasses

distinct scenarios of benign activity and infiltration attempts. In doing so, the primary

aim is to explore the performance of different features sets (using dimensionality reduction)

across a variety of ML models compared to the original feature sets. This evaluation seeks to

determine the feasibility of employing a reduced number of features without compromising

the performance of the original datasets with more extensive feature sets. Given the consid-

erable reduction in features from potentially hundreds to a mere handful, the implications

for a threat hunting or machine learning team are important.

Understanding the composition and context of each dataset is crucial for this research.

Therefore, the following sections will delve into the specifics of the CIC-IDS2017, CSE-CIC-

IDS2018, and CERT r4.2 datasets, outlining their scenarios and relevant metrics that will

shape the analysis.

3.2.1 CIC-IDS2017

The CIC-IDS2017 dataset, designed by the Canadian Institute for Cybersecurity, is a com-

prehensive resource for intrusion detection research, containing a mix of benign and the

most up-to-date malicious network activities that resemble real-world data. Captured over a

week-long period in July 2017, this dataset features a variety of network behaviors including
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normal operations and a series of sophisticated attacks such as DoS, DDoS, and infiltra-

tion, among others. This diversity allows for a rich analysis of network security measures

under various attack scenarios. For this study, the Monday PCAP file, which represents be-

nign activities, and the Thursday afternoon PCAP file which includes infiltration attacks, are

specifically utilized to focus on the normal and attack vectors within network traffic, towards

examination of dimensionality reduction in machine learning models for threat detection.

PCAP files Number of Packets
Monday (Benign) 11,709,971
Thursday (Attack) 9,322,025

Table 3.1: CIC-IDS2017 PCAP files - Number of packets

3.2.2 CSE-CIC-IDS2018

The CSE-CIC-IDS2018 dataset, developed in a collaborative effort by the Canadian Institute

for Cybersecurity and the Communications Security Establishment, extends the groundwork

laid by its predecessor datasets by providing a more complex array of network behaviors,

including benign operations and varied attack scenarios such as Brute-force, Heartbleed,

and DoS attacks. This dataset captures the intricate dynamics of network traffic involving

multiple departments and a broad range of networked devices, reflecting the challenges faced

by contemporary intrusion detection systems. For this research, the dataset from Thursday-

01-03-2018 is utilized, focusing on infiltration activities that simulate multi-tiered attack

scenarios, thereby providing a detailed context for evaluating the effectiveness of dimension-

ality reduction techniques in identifying sophisticated cyber threats.

PCAP files Number of Packets
Monday (Benign from CIC-IDS2017) 11,709,971
Thursday Part 1 (Attack) 198,804
Thursday Part 2 (Attack) 121,383
Thursday Part 3 (Attack) 462,067

Table 3.2: CSE-CIC-IDS2018 PCAP files - Number of packets

3.2.3 CERT r4.2

Evaluating insider threat detection systems is particularly challenging due to privacy con-

cerns and the protection of organizational intellectual property. The CERT Insider Threat
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Dataset, designed to mitigate these challenges, provides a simulated environment represent-

ing organizations with a detailed composition of employee activities. In this thesis, I focus

on release 4.2 (CERT R4.2), which simulates a company with 1000 employees, encompassing

70 malicious insiders across three key scenarios: data exfiltration, intellectual property theft,

and IT sabotage. Following Le et al.’s previous works [4, 6, 8], a granularity extractor script

is built upon an open-source granularity extraction algorithm 1 to transform the CERT R4.2

dataset into subsets with weekly, daily, and session-based granularity, including statistically

extracted features. This process allows for a more detailed analysis, with further discussion

available in the preprocessing section.

Scenarios Description
1-Data Exfiltra-
tion

A user, previously not using removable drives or working after hours,
starts logging in late, uses a removable drive, and uploads sensitive data
externally, leaving the organization shortly after.

2-Intellectual
Property Theft

A user begins exploring job opportunities with competitors online and
eventually steals data using a thumb drive at significantly higher rates
than before, just before exiting the company.

3-IT Sabotage A system administrator, after becoming disgruntled, deploys a keylogger
to a superior’s machine via a thumb drive, uses the logged information to
cause organizational panic through a mass email, and exits the organiza-
tion immediately.

Table 3.3: Summary of Insider Threat Scenarios in CERT r4.2 Dataset

Files Description
Device.csv Log of user’s activity regarding connecting and disconnecting a thumb drive
Email.csv Log of user’s e-mail communication
File.csv Log of user’s activity regarding copying files to removable media devices
http.csv Log of user’s internet browsing history
Logon.csv Log of user’s workstation logon and logoff activity

Table 3.4: Description of CERT r4.2 Dataset Files

3.3 Data Engineering Workflow

In this section, I outline the preprocessing workflow that transforms raw datasets into refined

data ready for analysis. For the CIC-IDS2017 and CSE-CIC-IDS2018 datasets, I begin by

1https://github.com/lcd-dal/feature-extraction-for-CERT-insider-threat-test-datasets
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Attributes Values
Duration 72 weeks (01/02/2010 - 05/16/2011)
# of Users 1,000
Scenarios (# of Mal. insiders) 1 (30), 2 (30), 3 (10)
# of Log on/off 854,860
# of Emails 2,629,979
# of Web 28,434,423
# of USB 405,380
# of File Access 445,581

Table 3.5: Overview of the CERT r4.2 dataset

procuring the PCAP files. These files are processed using Tranalyzer22, which converts them

into flow data. I then filter out specific infiltration instances from the flow traffic, guided

by timestamps. This subset is combined with benign instances to compile a comprehensive

dataset. The datasets can be accessed from the Canadian Institute for Cybersecurity: CIC-

IDS20173 and CSE-CIC-IDS20184 respectively. For the CERT r4.2 dataset, a granularity

extraction script is employed to segment the data into daily, weekly, and session-based sets

with statistically extracted features. The CERT r4.2 dataset can be accessed here5.

3.3.1 Tranalyzer2

Tranalyzer2 is a sophisticated flow processing tool designed for decomposing network traf-

fic captured in PCAP files into analyzable flows. It enhances network traffic analysis by

providing detailed statistics and insights through its modular plugin architecture. In my

thesis, I utilized Tranalyzer2 to convert the PCAP files from the CIC-IDS2017 and CSE-

CIC-IDS2018 datasets into flow data, enabling the precise extraction of relevant features for

analysis. Table 3.6 presents the Tranalyzer2 plugins used in this research. Using this default

set of plugins, I initially obtained a flow aggregated dataset with 110 features, which were

then meticulously refined to 77 by removing features that could potentially bias the target

label, were redundant, exhibited no variability across the dataset, or contained null values

for all its instances. Table 3.7 presents Tranalyzer2 Features used in this study.

2https://tranalyzer.com/
3https://www.unb.ca/cic/datasets/ids-2017.html
4https://www.unb.ca/cic/datasets/ids-2018.html
5https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247
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duration numHdrs hdrDesc ethType
l4Proto numPktsSnt numPktsRcvd numBytesSnt
numBytesRcvd minPktSz maxPktSz avePktSize
stdPktSize maxIAT aveIAT stdIAT
pktps bytps pktAsm bytAsm
tcpFStat ipMindIPID ipMaxdIPID ipMinTTL
ipMaxTTL ipTTLChg ipToS ipFlags
ipOptCnt ipOptCpCl Num ip6OptCntHH D ip6OptHH D
tcpISeqN tcpPSeqCnt tcpSeqSntBytes tcpSeqFaultCnt
tcpPAckCnt tcpFlwLssAckRcvdBytes tcpAckFaultCnt tcpBFlgtMx
tcpInitWinSz tcpAveWinSz tcpMinWinSz tcpMaxWinSz
tcpWinSzDwnCnt tcpWinSzUpCnt tcpWinSzChgDirCnt tcpWinSzThRt
tcpFlags tcpAnomaly tcpOptPktCnt tcpOptCnt
tcpOptions tcpMSS tcpWS tcpTmS
tcpTmER tcpEcI tcpUtm tcpBtm
tcpSSASAATrip tcpRTTAckTripMin tcpRTTAckTripMax tcpRTTAckTripAve
tcpRTTAckTripJitAve tcpRTTSseqAA tcpRTTAckJitAve tcpStatesAFlags
icmpStat icmpTCcnt icmpBFTypH TypL Code icmpEchoSuccRatio
icmpPFindex connF connG connNumPCnt
connNumBCnt

Table 3.7: Tranalyzer2 aggregated 77 Flow Features used in this thesis

Flow Type Number of Flows
Benign Flows 703,383
Infiltration Flows 181,571
Total Flows 884,954

Table 3.8: CIC-IDS2017 - Number of Flows

CSE-CIC-IDS2018, benign flows from CIC-IDS2017 were utilized. These elements were then

combined into a single dataset for analysis. Table 3.9 shows the flow counts for the CSE-

CIC-IDS2018 dataset after employing Tranalyzer2 and preprocessing steps.

Flow Type Number of Flows
Benign Flows 703,382
Infiltration Flows 177,308
Total Flows 880,690

Table 3.9: CSE-CIC-IDS2018 - Number of Flows

3.3.4 Preprocessing of CERT r4.2

The preprocessing of the CERT r4.2 dataset involved several steps designed to enhance

its utility for analyzing cybersecurity insider threats. A granularity extraction script was
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Table 3.11: Summary of the CERT r4.2 Scenarios
Feature Set Normal Sc 1 Sc 2 Sc 3 Number of Users
Week 66,840 52 254 10 1,000
Day 329,466 85 861 20 1,000
Session 469,497 69 1,013 32 1,000

3.4 Dimensionality Reduction

In this section, I provide the dimensionality reduction techniques applied to the datasets

employed in this research. These include Principal Component Analysis (PCA) and Inde-

pendent Component Analysis (ICA), implemented using the scikit-learn library. These al-

gorithms serve to reduce the dimensionality of the proposed datasets, aiming to simplify the

machine learning models without substantially compromising the performance. Addition-

ally, I present a Genetic Programming (GP) based approach, which is a novel contribution

of this research. In this case, GP is employed under two conditions: with fitness sharing

(GP-FS) to promote diversity in the generated models (solutions), and without fitness shar-

ing (GP-NFS), aimed at optimizing a specific objective function. This approach allows me

to evaluate the impact of diversity in genetic programming solutions on the overall effec-

tiveness and efficiency of the model in handling complex, multidimensional data. In doing

so, the aim is to explore whether this approach would yield a dimensionality reduction and

how it would affect the performance of the approach compared to the other dimensionality

reduction techniques.

The number of features in the opriginal datasets used for training the machine learning

models, without applying any further feature extraction or dimensionality reduction meth-

ods, is shown in Table 3.12. The number of features after applying various feature extraction

or dimensionality reduction methods are shown in Table 3.13.

Table 3.12: Original Feature Counts for Each Dataset
Dataset Feature Count
CIC-IDS2017 77
CSE-CIC-IDS2018 77
CERT r4.2 (Weekly) 667
CERT r4.2 (Daily) 507
CERT r4.2 (Session) 127
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Table 3.13: Feature Counts after Applying Feature Extraction or Dimensionality Reduction
Methods

Method Feature Count
PCA/ICA-5 5
PCA/ICA-10 10
PCA/ICA-15 15
PCA/ICA-20 20
GP-FS ≈ 8-15
GP-NFS ≈ 10-15

3.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used for dimensionality reduc-

tion while preserving as much variance as possible. It transforms a set of possibly correlated

variables into a set of values of linearly uncorrelated variables called principal components.

This method is central to the study of multivariate data and continues to be a significant

area of research within the field [27].

The process begins by standardizing the data matrix X, where each variable has zero

mean and unit variance. PCA seeks to identify the eigenvectors (vi) and eigenvalues of the

covariance matrix Σ ofX, which are crucial in defining the new feature space. The covariance

matrix is calculated as:

Σ =
1

n− 1
X⊤X (3.1)

The principal components are then the directions along which the variance of the data is

maximized. They are obtained by projecting the standardized data onto the eigenvectors.

For instance, the projection ofX onto the eigenvector corresponding to the largest eigenvalue

gives the first principal component:

PCi = X · vi (3.2)

In practice, the number of components retained is based on the amount of variance these

components capture from the data. Typically, enough components are chosen to explain a

high percentage of the total variance, simplifying data analysis without substantial informa-

tion loss. PCA is extensively used in fields like genetics, finance, and image processing where

reducing the number of variables is crucial without losing critical information.
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3.4.2 Independent Component Analysis

Independent Component Analysis (ICA) is a computational method for separating a multi-

variate signal into additive subcomponents that are statistically independent or as indepen-

dent as possible. This technique is commonly used in signal processing and data analysis to

discover underlying factors or features [28].

ICA models the observed multivariate data as a linear combination of independent com-

ponents. Mathematically, the model is described as:

X = AS (3.3)

whereX is the matrix of observed multivariate data,A is the mixing matrix, and S represents

the matrix of independent components. The goal of ICA is to compute the unmixing matrix

W, which is the inverse of A, to retrieve the independent components from the observed

data.

The process of ICA involves several steps, including pre-processing to center and often

whiten the observed data. This transforms the observed data so that their covariance matrix

is the identity matrix, which simplifies the problem of finding the unmixing matrix. The

core of the algorithm then iteratively adjusts W to maximize the statistical independence

of the outputs computed as WX.

The FastICA algorithm, as implemented in the scikit-learn library, is used in this research.

It is an efficient and popular method for performing ICA. FastICA uses a fixed-point iteration

scheme to find an estimate of the unmixing matrix W. The algorithm maximizes the non-

Gaussianity of the components, as measured by the negentropy, which provides a robust

measure for statistical independence. It is particularly useful in scenarios such as signal

processing (e.g., the cocktail party problem where multiple overlapping audio signals are

separated), medical data analysis, and image processing. It excels in tasks where the hidden

components are non-Gaussian and statistically independent from each other. The FastICA

algorithm can be outlined as the following:

1. Center and whiten the observed data X to make it as Gaussian as possible, simplifying

the unmixing process.

2. Choose an initial random weight vector w.
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3. Iterate over:

w+ = E
{

Xg(wTX)
}

− E
{

g′(wTX)
}

w (3.4)

where g is a non-linear function, typically the logarithm of hyperbolic cosine or the

exponential function.

4. Normalize the weight vector: w = w
+

∥w+∥
.

5. Check for convergence and repeat until the components are maximally independent.

3.4.3 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm that evolves programs to solve

specific problems. GP simulates the process of natural selection to breed a population

of candidate programs through the use of genetic operators such as mutation, crossover,

and selection. This method has been detailed in foundational texts that explore both its

theoretical and practical applications [29].

In GP, a population of programs is evolved over a series of generations. Each program

is evaluated for its performance on a given task, with better-performing programs being

more likely to be selected as parents for the next generation. Through the application of

crossover and mutation, new programs —’children’— are created from the ’parents’. These

children then replace some of the less fit programs in the population, a process known as

’replacement’.

The cycle of selection, crossover, mutation, and replacement continues until the termi-

nation criteria are met, which often involves finding a program that meets the performance

requirements or reaching a maximum number of generations. GP is particularly adept at dis-

covering solutions to problems that are hard to define explicitly in traditional programming

terms.

In this thesis a Linear Genetic Programming (LGP) based apporach is employed. The

LGP is an adaptation of the GP paradigm that evolves linear sequences of instructions,

similar to an assembly language, rather than tree-based structures [30]. This approach

uses a set of registers to store intermediate values during the execution of the program.

In LGP, each individual in the population is a computer program composed of a list of

imperative instructions, where each instruction operates on one or more registers and possibly

on constants from a predefined set.
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Fitness Selection Criteria

The fitness selection in the (L)GP framework is a process that evaluates the predictive

strength of teams [32], [33], not individuals. Each team’s fitness score is determined by

its ability to accurately predict dataset instances, and this score forms the basis of the

evolutionary selection process.

Within a team, the evaluation begins at the individual level. Each individual’s equation,

representing its genotype, is applied to the dataset instances. Taking an example of an

individual’s equation such as (F0 + F1) + (F40 − F0) + (F23/2), the feature values from an

instance are substituted into the equation, and the result is computed. This process is

repeated for all individuals in a team to ascertain their respective classification scores.

The individual within the team that yields the highest value for a given instance dictates

the team’s classification for that instance. The fitness score is dictated by comparing the

predicted labels against the true classification of the instance, with correct classifications

enhancing the team’s overall fitness score.

Crossover and Mutation

Crossover is a genetic operation used to combine the information of two parent individuals to

produce new offspring. In the context of my GP algorithm, I employ both single-point and

double-point crossover methods with equal probability. For a given pair of parents within the

same population, a single crossover point is chosen for single-point crossover, while two points

are selected for double-point crossover. Parts of the parent equations are then exchanged at

these points to create two new offspring, maintaining the diversity within a population that

is evolving towards predicting a specific target label. The crossover process is denoted for a

single point as:

Offspring1 = Parent1[: c] + Parent2[c :] (3.6)

Offspring2 = Parent2[: c] + Parent1[c :] (3.7)

and similarly extended for double-point crossover.

Mutation follows crossover and involves altering a single operation or operand within an

offspring’s equation. This process introduces new genetic variations and is parametrized to

occur with a certain probability, implying that not all offspring from crossover will experience
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mutation. The mutation can be represented as:

Mutatedi = Offspringi[operation] or Offspringi[operand] (3.8)

where the operation or operand is selected and changed randomly.

Newly created and possibly mutated offspring are then incorporated into their corre-

sponding population. With each generation, the algorithm maintains the top n performing

teams based on fitness scores and replace the remainder of the population with offspring

generated through crossover and mutation. These fresh teams are then evaluated for fitness,

contributing to the evolving population. This iterative cycle of selection, genetic opera-

tions, and fitness evaluation continues, driving the GP system towards optimal predictive

performance.

Genetic Programming with Fitness Sharing

Fitness Sharing in (L)GP is a strategy employed to maintain diversity within the population

of solutions, aiming to prevent premature convergence on sub-optimal solutions. It operates

on the principle that individuals within a population should share their fitness with other

similar individuals, effectively reducing the fitness of common solutions and encouraging the

exploration of the solution space. The fitness sharing mechanism used in this study is based

on the methodologies developed by Lichodzijewski et al. [33] in genetic programming.

The fitness sharing mechanism is represented as:

G(gi, pk)
∑

G(gj, pk)
(3.9)

where G(gi, pk) denotes the fitness of a team gi with respect to a data point pk, and the

denominator represents the sum of fitness scores of all teams gj for the data point pk. This

formulation ensures that teams are rewarded not only for their predictive accuracy but also

for their uniqueness in the population.

In the (L)GP implementation, teams evolve across generations to optimize the amount

of instances predicted, which is utilized as the fitness function. The evolutionary process

spans 1000 generations to identify the champion team, distinguished by selecting the highest

amount of instances that is correctly predicted by each team. The algorithm, executed

20 times with and without Fitness Sharing, facilitates the derivation of the most effective

reduced feature set for transforming the original training dataset.
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Genetic Programming without Fitness Sharing

In contrast to the approach that employs fitness sharing, (L)GP without fitness sharing re-

tains the raw fitness scores of teams. This conventional method evaluates teams based on

their predictive accuracy without adjusting for the diversity of solutions within the popula-

tion. The absence of fitness sharing means that each team’s fitness is assessed in isolation

from others, strictly based on its success in predicting dataset instances.

Without the mechanism to discourage the clustering of similar solutions, GP without

fitness sharing may exhibit faster convergence, but with an increased risk of premature con-

vergence to sub-optimal solutions. However, this direct approach allows for a straightforward

selection process, where the fitness of a team is the sole criterion for its survival and repro-

duction. Teams with higher raw fitness scores are considered more fit and are more likely to

be selected for generating offspring in the next generation.

The proposed (L)GP model applies this non-adjusted fitness evaluation as a baseline to

contrast the effects of fitness sharing. By executing the GP algorithm in this manner, it’s

possible to observe the impact of diversity preservation on the evolutionary process and the

resulting feature set effectiveness.

3.5 Sampling Techniques

This section explores the sampling techniques used for each dataset. I initially partition

the data into stratified testing and training subsets, using an 80/20 split to ensure that the

representation of classes within both subsets accurately reflects the overall dataset. Following

this, I apply oversampling and undersampling techniques exclusively to the stratified training

data. This methodology is utilized across both the original dataset and those obtained

through dimensionality reduction techniques such as PCA, ICA, and GP.

3.5.1 Stratified Sampling

Stratified sampling is a technique where the dataset D is divided into K homogeneous

subgroups or strata {S1, S2, . . . , SK} based on the class labels. Samples are then drawn from

each stratum to ensure proportional representation:

Dtrain ∪Dtest =
K
⋃

k=1

S ′
k (3.10)
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where S ′
k is a random sample from stratum Sk. This preserves the original class distribu-

tions in both training Dtrain and testing sets Dtest. For an extensive understanding and

applications of this technique, please see [34].

3.5.2 Oversampling

Oversampling targets the imbalance in class distribution by augmenting the minority class

Cmin in the training set. If the minority class has nmin instances and the majority nmax,

oversampling replicates the minority instances to satisfy:

|C ′
min| = nmax (3.11)

where C ′
min is the augmented minority class. This results in a balanced training set, allowing

for equal learning opportunities across classes. For an advanced approach to generating

synthetic samples, please see [35].

3.5.3 Undersampling

In contrast, undersampling reduces the prevalence of the majority class Cmax by randomly

removing instances until the class sizes are balanced:

|C ′
max| = nmin (3.12)

where C ′
max is the reduced majority class. This process leads to a smaller, balanced dataset

Dbalanced that the model can learn from more equitably. For advanced techniques and method-

ologies on undersampling, please see [36].

3.6 Supervised Learning Techniques

In this section, machine learning models employed are summarized.

3.6.1 Decision Tree (DT)

A Decision Tree is a non-parametric supervised learning algorithm widely employed in both

classification and regression tasks. It operates by recursively splitting the data set into

increasingly specific subsets based on the most discriminative features. This splitting results

in a tree-like model of decisions, where each internal node represents a decision based on a
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single input feature, each branch represents the outcome of that decision, and each leaf node

represents a class label or continuous outcome. For an in-depth discussion and practical

examples of decision trees, please see [37].

The decision at each node is made using criteria such as entropy or Gini impurity, which

help in selecting the feature that best separates the data into homogenous sets. Entropy, a

measure of impurity or randomness, is calculated using the formula:

H(S) = −
n

∑

i=1

pi log2 pi (3.13)

where pi is the probability of an element being classified to a specific class. Alternatively,

Gini impurity can be used and is defined as:

G(S) = 1−
n

∑

i=1

p2i (3.14)

The feature providing the highest information gain, calculated as the difference in entropy

or Gini impurity before and after the split, is selected for splitting at each node:

IG(T, a) = H(T )−
∑

v∈V alues(a)

|Tv|

|T |
H(Tv) (3.15)

where T denotes the training set, a the attribute, and Tv the subset of T for a particular

value v of attribute a.

3.6.2 Random Forest (RF)

The Random Forest algorithm is an advanced ensemble learning technique used for both

classification and regression tasks. It enhances the stability and accuracy of classifications

by combining the results of multiple Decision Trees, each constructed using a subset of the

training data and a subset of the features. For an extensive discussion on Random Forests,

including their implementation and optimization, please see [38].

RF addresses the overfitting problem common in single DTs by averaging multiple DTs

that individually suffer from high variance but are decorrelated from each other. This

approach not only improves classification accuracy but also helps in achieving robustness

against noise present in the training data. The key elements of RF include:

• Bootstrap Aggregating (Bagging): Each tree is built on a bootstrap sample of the

data — a random selection with replacement. This introduces variability among the

trees.
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• Feature Randomness: When growing each tree, at each split, a random subset of

features is considered. This ensures that the trees are different and adds an extra layer

of diversity to the model.

Mathematically, the classification of the RF is obtained by averaging the classifications

from all the trees. This reduces the variance component of the error, as indicated by the

equation:

V (ŶRF ) = ρσ2 +
1− ρ

B
σ2 (3.16)

where ŶRF is the RF classification, ρ is the correlation between any two trees in the forest,

σ2 is the variance of the trees, and B is the number of trees.

3.6.3 Gaussian Naive Bayes (GNB)

The Gaussian Naive Bayes classifier is a probabilistic model that adapts the Naive Bayes

approach for continuous data, assuming that the features associated with each class follow

a Gaussian distribution. This makes it suitable for many real-world scenarios where data

features are continuous. For a feature xi in class y, the probability P (xi|y) is estimated using

the Gaussian probability density function:

P (xi|y) =
1

√

2πσ2
y

exp

(

−
(xi − µy)

2

2σ2
y

)

(3.17)

where µy and σ2
y are the mean and variance of the features for class y, estimated from the

data. For an extensive discussion on Gaussian Naive Bayes and its applications, please see

[39].

The classifier’s effectiveness hinges on the assumption of conditional independence among

features given the class, simplifying the computation of probabilities. While this assumption

can limit the classifier in cases of feature correlation, GNB is still efficient and performs well in

scenarios like text classification and medical diagnosis, where the independence assumption

is reasonably met.

Despite its simplicity, GNB can rival more complex models when the data’s distribution

aligns well with its assumptions. However, its performance might falter with highly correlated

features. Techniques like feature selection can sometimes mitigate this issue. In essence,

GNB provides a straightforward yet powerful approach to classification problems involving

continuous data, balancing performance and computational efficiency effectively.
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3.6.4 K-Nearest Neighbors (kNN)

The K-Nearest Neighbors algorithm is a non-parametric method used primarily for classifi-

cation and regression. By design, kNN is based on a simple principle: an object is classified

by a majority vote of its neighbors, with the object being assigned to the class most common

among its nearest neighbors. For practical implementations and a deeper understanding of

kNN, please see [40].

In the kNN approach, the input consists of the k closest training examples in the feature

space. The output is a class membership. An object is classified by a plurality vote of its

neighbors, with the object being assigned to the class most common among its k nearest

neighbors measured by a distance function. If k = 1, then the object is simply assigned to

the class of that single nearest neighbor.

The kNN algorithm involves a simple but fundamental distance metric to measure the

closeness of instances. The most commonly used metric is the Euclidean distance given by:

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (3.18)

where x and y are two points in a n-dimensional space and d(x, y) is the Euclidean distance

between them. The Euclidean distance effectively governs how the nearest neighbors are

identified, influencing the classification or regression outcome.
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The probability that an observation x belongs to the default class can be modeled as:

P (y = 1|x) =
1

1 + e−z
(3.19)

where z is the linear combination of the input features x and the model parameters β.
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3.6.5 Logistic Regression (LR)

Logistic Regression is a statistical method for binary classification. It extends the linear

regression model by applying a logistic function to the output, enabling the model to estimate

the probability of a binary outcome based on one or more predictor variables. For a thorough

discussion on logistic regression and its applications across various fields, please see [41].

LR models the probability that a given input point belongs to a particular category.

This is particularly useful in cases where the outcome to be predicted is categorical (usually

binary: Yes/No, True/False). The logistic function, also known as the sigmoid function, is

what transforms the linear equation into a probability measure that ranges between 0 and

1.

The probability that an observation x belongs to the default class (often represented as

”1”) can be modeled as:

P (y = 1|x) =
1

1 + e−z
(3.20)

where z is the linear combination of the input features x and the model parameters β, given

by:

z = β0 + β1x1 + β2x2 + . . .+ βnxn (3.21)

The coefficients β0, β1, β2, . . . , βn are learned during model training through a process of

maximizing the likelihood of the observed data, often using methods like gradient descent

or other optimization algorithms.

3.6.6 XGBoost (XGB)

XGBoost, which stands for eXtreme Gradient Boosting, is an optimized distributed gradient

boosting library designed to be highly efficient, flexible, and portable. It implements ma-

chine learning algorithms under the Gradient Boosting framework. XGB provides a scalable

machine learning system for tree boosting that is widely used in winning solutions for many

data science competitions. For a detailed exploration of XGBoost and its applications, please

see [42].

XGB improves upon the traditional gradient boosting method by introducing a more

regularized model formalization to control over-fitting, which gives it better performance.

This is achieved through both hardware and algorithmic enhancements, including systems

optimizations such as cache access patterns, data compression, and sharding.
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At its core, XGB uses a series of DTs, where each tree is built in a sequential man-

ner. Each new tree in the series attempts to correct the errors or residuals made by the

previous trees. The final classification is an ensemble of these weak classification models.

Mathematically, the classification model for a given data set D with n features is defined as:

ŷi =
K
∑

k=1

fk(xi), fk ∈ F (3.22)

where K is the number of trees, fk represents a tree, F is the space of all possible trees, and

xi is the vector of predictors for the ith instance.

XGB’s learning objective combines a specific loss function to be optimized and a regu-

larization term, which helps in reducing model complexity and overfitting. The general form

of the objective function can be represented as:

Obj(Θ) = L(Θ) + Ω(Θ) (3.23)

where L is the loss function that measures the difference between the predicted and actual

values, and Ω represents the regularization term, which is typically the sum of the norms of

the parameters of the model.

3.7 Summary

In this chapter, the methodology employed in this thesis has been outlined, covering the

selection and analysis of datasets, feature extraction techniques, sampling strategies, and

machine learning models utilized for infiltration attacks in insider threat detection. The

datasets analyzed — CIC-IDS2017, CSE-CIC-IDS2018, and CERT r4.2 — were meticulously

preprocessed to ensure data integrity and relevance for the subsequent stages of analysis.

For the CERT r4.2 dataset, a granular approach was adopted, analyzing the data at weekly,

daily, and session-based granularity levels, which allowed for a detailed examination of user

behavior over varying time frames.

Feature extraction techniques such as Genetic Programming with (GP-FS) and without

(GP-NFS) Fitness Sharing, Principal Component Analysis (PCA) and Independent Com-

ponent Analysis (ICA) were implemented to effectively reduce the dimensionality of the

datasets. The aim was to enhance the computational efficiency of the machine learning
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models. The application of diverse sampling techniques, including stratified sampling, over-

sampling, and undersampling, addressed potential imbalances in the datasets, facilitating a

more equitable training environment.

The machine learning models deployed, including DT, RF, GNB, K-Nearest Neighbors,

LR, and XGB, were evaluated for their efficacy in detecting insider threats. Each model was

chosen based on its potential to provide distinct insights into the problem, thereby enriching

the analysis.

The combination of these methodologies forms a comprehensive framework designed to

explore the effectiveness of dimensionality reduction and data sampling in enhancing the

performance of machine learning models in the context of infiltration attacks for insider

threat detection.



Chapter 4

Evaluation and Results

This chapter discussed the results and observations of experiments performed for this thesis

research.

4.1 Experimental Setup

In this research, experiments are performed on a machine with specifications including an

Nvidia GeForce RTX 3070 GPU, 32GB of RAM, and an Intel Core i7-12700K processor.

This ensured sufficient computational resources for the data processing and analysis tasks.

Dimensionality reduction is conducted using PCA, and ICA (namely Fast ICA) with

scikit-learn’s default parameters, producing feature sets of 5, 10, 15, and 20 components

to evaluate the impact on model efficiency and performance. Moreover, the LGP is imple-

mented with and without fitness sharing for dimensionality reduction, GP-FS and GP-NFS,

respectively. To this end, the specific parameters used are: individual count set to 100,

operation count set to 5, gap percentage set to 0.8, mutation probability set to 0.5, and

generations were over 10,000. The population count matched the dataset’s unique target

labels, with resampling at every 100 generations, and a sample size of 10,000 instances.

As for the supervised machine learning models used, I utilize default settings for scikit-

learn’s supervised learning algorithms including DT, FR, GNB, kNN, LR, and XGB. The

objective is to explore the effectiveness of these models trained on reduced feature sets derived

from PCA, ICA, GP-FS, and GP-NFS, compared to models trained by using the complete

feature set of the original datasets.

4.2 Performance Metrics

In order to evaluate the effectiveness of the models, several performance metrics are utilized:

F1 Macro, Precision, and Recall. These metrics are crucial for understanding model behavior,

especially in scenarios with imbalanced classes.

41
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Precision

Precision is the ratio of correctly predicted positive observations to the total predicted pos-

itives. It is a measure of a classifier’s exactness. A higher precision score indicates a model

that yields more relevant results. Precision is particularly important in situations where the

cost of a false positive is high. The formula for precision is given by:

Precision =
TP

TP + FP
(4.1)

where TP represents true positives and FP represents false positives.

Recall

Recall, also known as sensitivity, measures the ability of a model to find all the relevant

cases (i.e., true positives) within a dataset. High recall is crucial in cases where missing a

positive instance is significantly detrimental. The formula for recall is:

Recall =
TP

TP + FN
(4.2)

where TP represents true positives and FN represents false negatives.

F1-Score

The F1-score is the harmonic mean of precision and recall, providing a balance between

them. It is particularly useful when the class distribution is uneven. F1-Score averages the

F1 scores, calculated separately for each class, hence taking into account the balance between

precision and recall across all classes without being influenced by any class imbalance. The

formula for F1-Score is:

F1-Score = 2 ·
Precision · Recall

Precision + Recall
(4.3)

This metric is especially critical in assessing the overall performance of the model across

diverse scenarios and datasets.

4.3 CIC-IDS2017 Stratified Performance Results

In this section, results on the evaluations performed using the CIC-IDS2017 Stratified

datasets are presented.
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4.3.1 CIC-IDS2017 stratified results with Original features

ML Model F1-Score Precision Recall
DT 0.982 0.982 0.983
RF 0.971 0.987 0.957
GNB 0.443 0.397 0.500
kNN 0.904 0.927 0.884
LR 0.443 0.397 0.500
XGB 0.979 0.989 0.970

Table 4.1: CIC-IDS2017 Stratified results for the Original

The analysis of the CIC-IDS2017 dataset with the original 77 features, shown in Table 4.1.

DT, RF, and XGB are the top performers based on F1-Score and Precision. The DT leads

with an F1-Score and Precision of 0.982, followed by RF with the highest Precision at 0.987

and an F1-Score of 0.971. XGB also demonstrates robust performance with a Precision of

0.989 and an F1-Score of 0.979. These models are effective for insider threat detection in

cybersecurity, offering high accuracy and minimal false positives.

4.3.2 CIC-IDS2017 stratified results with PCA features

ML Model Metric PCA-5 PCA-10 PCA-15 PCA-20

DT
F1-Score 0.844 0.831 0.799 0.843
Precision 0.843 0.824 0.785 0.835
Recall 0.845 0.839 0.819 0.851

RF
F1-Score 0.889 0.890 0.873 0.899
Precision 0.939 0.939 0.923 0.945
Recall 0.856 0.856 0.840 0.867

Gaussian NB
F1-Score 0.524 0.524 0.579 0.731
Precision 0.593 0.594 0.609 0.726
Recall 0.639 0.641 0.666 0.737

k-NN
F1-Score 0.881 0.880 0.888 0.897
Precision 0.912 0.907 0.916 0.922
Recall 0.857 0.860 0.866 0.877

LR
F1-Score 0.803 0.808 0.807 0.811
Precision 0.917 0.900 0.891 0.899
Recall 0.755 0.763 0.765 0.767

XGB
F1-Score 0.849 0.855 0.856 0.871
Precision 0.934 0.937 0.929 0.934
Recall 0.804 0.811 0.814 0.833

Table 4.2: CIC-IDS2017 Stratified results for PCA
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An analysis of the CIC-IDS2017 dataset using PCA-reduced features is detailed in Table 4.2.

Among the PCA configurations, PCA-20 consistently shows the highest performance for top

models when compared to other PCA settings. Specifically, RF with PCA-20 achieves an

F1-Score of 0.899 and Precision of 0.945, approaching its performance with the original

features (F1-Score of 0.971 and Precision of 0.987). XGB and k-NN also exhibit robust

results at PCA-20, with XGB achieving an F1-Score of 0.871 and Precision of 0.934, and

k-NN achieving an F1-Score of 0.897 and Precision of 0.922. These models retain substantial

detection performance with PCA-20, offering a streamlined feature set while maintaining

comparable performance to the original 77-feature dataset.

4.3.3 CIC-IDS2017 stratified results with ICA features

ML Model Metric ICA-5 ICA-10 ICA-15 ICA-20

DT
F1-Score 0.842 0.893 0.895 0.912
Precision 0.855 0.894 0.894 0.910
Recall 0.831 0.893 0.896 0.914

RF
F1-Score 0.898 0.926 0.928 0.942
Precision 0.942 0.960 0.962 0.972
Recall 0.867 0.900 0.901 0.918

Gaussian NB
F1-Score 0.314 0.404 0.395 0.514
Precision 0.562 0.570 0.569 0.592
Recall 0.546 0.581 0.576 0.636

k-NN
F1-Score 0.881 0.887 0.891 0.897
Precision 0.912 0.917 0.919 0.921
Recall 0.858 0.863 0.869 0.878

LR
F1-Score 0.443 0.808 0.443 0.811
Precision 0.397 0.901 0.397 0.900
Recall 0.500 0.764 0.500 0.767

XGB
F1-Score 0.857 0.884 0.891 0.919
Precision 0.927 0.940 0.948 0.963
Recall 0.816 0.848 0.854 0.887

Table 4.3: CIC-IDS2017 Stratified results for ICA

Table 4.3 shows the performance metrics of machine learning models using ICA-reduced

features. ICA-20 outperforms other ICA configurations for the top models. Specifically,

RF with ICA-20 reaches an F1-Score of 0.942 and Precision of 0.972, which surpasses its

performance with PCA-20 (F1-Score of 0.899, Precision of 0.945) and closely approaches the

performance with the original 77 features (F1-Score of 0.971, Precision of 0.987). XGB at
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ICA-20 also excels, achieving an F1-Score of 0.919 and Precision of 0.963. DT with ICA-20

achieves an F1-Score of 0.912 and Precision of 0.910, which is an improvement over its PCA-

20 performance (F1-Score of 0.843, Precision of 0.835). These results suggest that ICA-20,

with only 20 features, provides an effective dimensionality reduction while maintaining or

even enhancing model performance compared to both PCA-reduced and original feature sets.

4.3.4 CIC-IDS2017 stratified results with GP features

ML Model Metric GP-FS-13 GP-NFS-10

DT
F1-Score 0.813 0.816
Precision 0.854 0.877
Recall 0.786 0.781

RF
F1-Score 0.830 0.817
Precision 0.900 0.881
Recall 0.790 0.781

Gaussian NB
F1-Score 0.443 0.322
Precision 0.397 0.564
Recall 0.500 0.549

k-NN
F1-Score 0.826 0.826
Precision 0.901 0.911
Recall 0.786 0.782

LR
F1-Score 0.443 0.793
Precision 0.397 0.854
Recall 0.500 0.760

XGB
F1-Score 0.832 0.827
Precision 0.945 0.941
Recall 0.780 0.776

Table 4.4: CIC-IDS2017 Stratified results for GP-FS-13 and GP-NFS-10

Table 4.4 examines the impact of Genetic Programming (GP) feature reduction, both with

Fitness Sharing (GP-FS-13) and without (GP-NFS-10), on machine learning model perfor-

mance, using 10 and 13 features. Among the models, XGB with GP-FS-13 achieves an

F1-Score of 0.832 and Precision of 0.945, showing a notable performance considering the

reduced feature count, though slightly lower than its performance with ICA-20 (F1-Score of

0.919, Precision of 0.963) and the original features (F1-Score of 0.979, Precision of 0.989).

RF also demonstrates competitive results with GP-FS-13 (F1-Score of 0.830, Precision of

0.900) compared to its PCA-20 and original performances. These results highlight that

GP, with fewer than 15 features, manages to retain a high portion of the models’ detection
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capabilities, offering a promising avenue for feature reduction in cybersecurity applications.

4.4 CSE-CIC-IDS2018 Stratified Performance Results

In this section, results on the evaluations performed using the CSE-CIC-IDS2018 Stratified

datasets are presented.

4.4.1 CSE-CIC-IDS2018 stratified results with Original features

ML Model F1-Score Precision Recall
DT 0.999 0.999 0.999
RF 0.999 0.999 0.999

Gaussian NB 0.183 0.602 0.507
k-NN 0.979 0.987 0.971
LR 0.805 0.789 0.827
XGB 0.999 1.000 0.999

Table 4.5: CSE-CIC-IDS2018 Stratified results for the Original

The analysis of the CSE-CIC-IDS2018 dataset with the original 77 features, shown in Ta-

ble 4.5, identifies DT, RF, and XGB as top performers based on F1-Score and Precision. DT

and RF both achieve an F1-Score and Precision of 0.999. XGB also demonstrates strong

performance with an F1-Score of 0.999 and a Precision of 1.000. These models exhibit high

accuracy in detecting threats within the dataset.
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4.4.2 CSE-CIC-IDS2018 stratified results with PCA features

ML Model Metric PCA-5 PCA-10 PCA-15 PCA-20

DT
F1-Score 0.984 0.957 0.956 0.959
Precision 0.984 0.974 0.972 0.976
Recall 0.984 0.942 0.941 0.944

RF
F1-Score 0.991 0.993 0.994 0.995
Precision 0.995 0.997 0.997 0.997
Recall 0.987 0.990 0.991 0.992

Gaussian NB
F1-Score 0.945 0.948 0.948 0.949
Precision 0.952 0.957 0.958 0.958
Recall 0.938 0.940 0.939 0.940

k-NN
F1-Score 0.990 0.993 0.994 0.994
Precision 0.993 0.995 0.996 0.996
Recall 0.986 0.991 0.992 0.993

LR
F1-Score 0.950 0.950 0.953 0.958
Precision 0.961 0.961 0.964 0.970
Recall 0.940 0.941 0.942 0.946

XGB
F1-Score 0.988 0.991 0.993 0.994
Precision 0.993 0.995 0.996 0.997
Recall 0.983 0.987 0.990 0.992

Table 4.6: CSE-CIC-IDS2018 Stratified results for PCA

Table 4.6 presents the performance of machine learning models on the CSE-CIC-IDS2018

dataset using PCA-reduced features. For the top-performing models, PCA-20 emerges as the

most effective configuration. RF, with PCA-20, attains an F1-Score of 0.995 and Precision of

0.997, which is nearly identical to its performance with the original 77 features (F1-Score of

0.999 and Precision of 0.999). XGB also performs well with PCA-20, achieving an F1-Score

of 0.994 and Precision of 0.997, closely mirroring its original feature performance. Similarly,

k-NN shows strong results with PCA-20, with an F1-Score of 0.994 and Precision of 0.996.
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4.4.3 CSE-CIC-IDS2018 stratified results with ICA features

ML Model Metric ICA-5 ICA-10 ICA-15 ICA-20

DT
F1-Score 0.977 0.991 0.992 0.993
Precision 0.985 0.992 0.992 0.993
Recall 0.971 0.991 0.992 0.993

RF
F1-Score 0.992 0.995 0.995 0.996
Precision 0.995 0.998 0.998 0.998
Recall 0.990 0.992 0.993 0.994

Gaussian NB
F1-Score 0.835 0.839 0.841 0.838
Precision 0.806 0.810 0.813 0.810
Recall 0.895 0.894 0.895 0.888

k-NN
F1-Score 0.984 0.993 0.992 0.993
Precision 0.980 0.996 0.991 0.991
Recall 0.988 0.991 0.994 0.994

LR
F1-Score 0.936 0.950 0.952 0.953
Precision 0.933 0.961 0.963 0.963
Recall 0.939 0.941 0.943 0.943

XGB
F1-Score 0.988 0.994 0.994 0.995
Precision 0.988 0.997 0.997 0.997
Recall 0.988 0.992 0.994 0.994

Table 4.7: CSE-CIC-IDS2018 Stratified results for ICA

Table 4.7 showcases the performance of machine learning models using ICA-reduced features

on the CSE-CIC-IDS2018 dataset. Among the ICA configurations, ICA-20 shows the best

performance for top models. RF with ICA-20 achieves an F1-Score of 0.996 and Precision of

0.998, closely matching its results with PCA-20 (F1-Score of 0.995 and Precision of 0.997)

and the original 77 features (F1-Score of 0.999 and Precision of 0.999). XGB and k-NN also

deliver strong results with ICA-20, with XGB achieving an F1-Score of 0.995 and Precision

of 0.997, and k-NN achieving an F1-Score of 0.993 and Precision of 0.991.
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4.4.4 CSE-CIC-IDS2018 stratified results with GP features

ML Model Metric GP-FS-15 GP-NFS-15

DT
F1-Score 0.985 0.988
Precision 0.986 0.988
Recall 0.984 0.988

RF
F1-Score 0.988 0.990
Precision 0.992 0.992
Recall 0.985 0.988

Gaussian NB
F1-Score 0.289 0.457
Precision 0.608 0.635
Recall 0.559 0.660

k-NN
F1-Score 0.987 0.989
Precision 0.991 0.993
Recall 0.984 0.986

LR
F1-Score 0.929 0.471
Precision 0.957 0.888
Recall 0.907 0.513

XGB
F1-Score 0.985 0.987
Precision 0.990 0.992
Recall 0.980 0.982

Table 4.8: CSE-CIC-IDS2018 Stratified results for GP-FS-15 and GP-NFS-15

Table 4.8 presents the performance of machine learning models using Genetic Programming

(GP) with and without Fitness Sharing (FS and NFS) on the CSE-CIC-IDS2018 dataset. For

top-performing models, GP-FS-15 and GP-NFS-15 both show strong results. RF with GP-

NFS-15 achieves an F1-Score of 0.990 and Precision of 0.992, closely matching its performance

with ICA-20 (F1-Score of 0.996 and Precision of 0.998), PCA-20 (F1-Score of 0.995 and

Precision of 0.997), and the original features (F1-Score of 0.999 and Precision of 0.999). XGB

and k-NN also perform well with GP-NFS-15, with XGB achieving an F1-Score of 0.987 and

Precision of 0.992, and k-NN achieving an F1-Score of 0.989 and Precision of 0.993. These

results indicate that GP, using 15 features, maintains high detection performance, providing

a competitive alternative to both the original and other dimensionality reduction techniques.

4.5 CERT r4.2 Stratified Performance Results

In this section, results on the evaluations performed using the CERT r4.2 Stratified datasets

are presented at different granularity levels.
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4.5.1 CERT r4.2 Week

For the CERT r4.2 Week datasets, ”0vsAll” is used hereafter to denote benign vs. all insider

threat scenarios in the dataset. While, ”0vs1 3” is used hereafter to denote benign vs. data

exfiltration (scenario-1) and IT sabotage (scenario-3) scenarios.

CERT r4.2 Week Original Stratified

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.770 0.764 0.777 1.000 1.000 1.000
RF 0.731 0.998 0.651 1.000 1.000 1.000

Gaussian NB 0.499 0.498 0.500 0.500 0.500 0.500
k-NN 0.499 0.498 0.500 0.500 0.500 0.500
LR 0.499 0.498 0.500 0.500 0.500 0.500
XGB 0.872 0.935 0.825 1.000 1.000 1.000

Table 4.9: CERT r4.2 Week Stratified results for the Original features

The analysis of the CERT r4.2 dataset with week granularity level using the original 667

features, shown in Table 4.9, identifies XGB, DT, and RF as the top performers based on

F1-Score and Precision. For the 0vsAll classification, XGB achieves the highest F1-Score

of 0.872 and Precision of 0.935. DT follows with an F1-Score of 0.770 and Precision of

0.764, while RF shows a strong Precision of 0.998 but a lower F1-Score of 0.731. In the

0vs1 3 classification, all three models—XGB, DT, and RF—achieve very high scores with

an F1-Score and Precision of 0.999.
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CERT r4.2 Week PCA Stratified

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.581 0.661 0.638 0.682 0.816 1.000 1.000 1.000
Precision 0.586 0.674 0.642 0.670 0.928 1.000 1.000 1.000
Recall 0.578 0.649 0.633 0.697 0.750 1.000 1.000 1.000

RF
F1-Score 0.586 0.659 0.681 0.691 0.868 1.000 0.978 0.978
Precision 0.998 0.998 0.998 0.998 0.999 1.000 1.000 1.000
Recall 0.548 0.595 0.611 0.619 0.792 1.000 0.958 0.958

Gaussian NB
F1-Score 0.510 0.527 0.521 0.515 0.514 0.546 0.537 0.528
Precision 0.508 0.518 0.515 0.512 0.510 0.526 0.522 0.518
Recall 0.537 0.584 0.582 0.593 0.739 0.992 0.990 0.988

k-NN
F1-Score 0.596 0.712 0.679 0.672 0.929 0.978 0.978 0.978
Precision 0.887 0.998 0.965 0.887 1.000 1.000 1.000 1.000
Recall 0.555 0.635 0.611 0.611 0.875 1.000 0.958 0.958

LR
F1-Score 0.499 0.648 0.659 0.659 0.571 1.000 1.000 1.000
Precision 0.498 0.998 0.998 0.998 0.750 1.000 1.000 1.000
Recall 0.500 0.587 0.595 0.595 0.542 1.000 1.000 1.000

XGB
F1-Score 0.606 0.719 0.713 0.725 0.850 0.955 0.954 0.954
Precision 0.831 0.972 0.927 0.951 0.937 0.999 0.999 0.999
Recall 0.563 0.643 0.643 0.651 0.792 0.917 0.917 0.917

Table 4.10: CERT r4.2 Week Stratified results for PCA

Table 4.10 presents the performance of machine learning models on the CERT r4.2 Week

dataset using PCA-reduced features. Among the PCA configurations, PCA-20 consistently

shows the highest performance. XGB with PCA-20 achieves an F1-Score of 0.725 and Pre-

cision of 0.951 for the 0vsAll classification, compared to its original feature performance

(F1-Score of 0.872 and Precision of 0.935). For the 0vs1 3 classification, XGB maintains

high scores with an F1-Score of 0.954 and Precision of 0.999, slightly lower than the scores

with the original features. RF and DT also perform well with PCA-20, with RF achieving

an F1-Score of 0.691 and Precision of 0.998 for 0vsAll, and both models scoring 1.000 for

0vs1 3. This shows the comparable performance of PCA-20 with reduced feature dimension-

ality while maintaining the detection performance against the original 667 features.
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CERT r4.2 Week ICA Stratified

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.607 0.655 0.662 0.623 0.958 1.000 1.000 1.000
Precision 0.591 0.646 0.653 0.615 0.958 1.000 1.000 1.000
Recall 0.632 0.665 0.673 0.633 0.958 1.000 1.000 1.000

RF
F1-Score 0.636 0.691 0.699 0.681 0.929 1.000 0.978 0.955
Precision 0.998 0.998 0.969 0.998 1.000 1.000 1.000 1.000
Recall 0.579 0.619 0.627 0.611 0.875 1.000 0.958 0.917

Gaussian NB
F1-Score 0.506 0.538 0.527 0.533 0.540 0.561 0.549 0.553
Precision 0.506 0.525 0.518 0.522 0.523 0.534 0.528 0.530
Recall 0.528 0.595 0.585 0.601 0.745 0.993 0.992 0.993

k-NN
F1-Score 0.591 0.699 0.689 0.697 0.929 0.978 0.978 1.000
Precision 0.767 0.969 0.967 0.943 1.000 1.000 1.000 1.000
Recall 0.555 0.627 0.619 0.627 0.875 0.958 0.958 1.000

LR
F1-Score 0.499 0.648 0.648 0.659 0.571 1.000 1.000 1.000
Precision 0.498 0.998 0.998 0.998 0.750 1.000 1.000 1.000
Recall 0.500 0.587 0.587 0.595 0.542 1.000 1.000 1.000

XGB
F1-Score 0.660 0.716 0.704 0.749 0.868 0.958 0.929 0.955
Precision 0.790 0.948 0.923 0.938 1.000 0.958 1.000 1.000
Recall 0.611 0.643 0.635 0.674 0.792 0.958 0.875 0.917

Table 4.11: CERT r4.2 Week Stratified results for ICA

Table 4.11 provides the performance metrics for machine learning models on the CERT

r4.2 Week dataset using ICA-reduced features. Among the ICA configurations, ICA-20

demonstrates the highest performance for the top models. XGB with ICA-20 achieves an

F1-Score of 0.749 and Precision of 0.938 for the 0vsAll classification, which is slightly lower

than its original feature performance (F1-Score of 0.872 and Precision of 0.935). For the

0vs1 3 classification, XGB maintains high scores with an F1-Score of 0.955 and Precision

of 1.000, closely matching the original feature performance. RF and DT also perform well

with ICA-20, with RF achieving an F1-Score of 0.681 and Precision of 0.998 for 0vsAll, and

DT achieving scores of 1.000 for 0vs1 3. These results suggest that ICA-20 can effectively

reduce the feature count while maintaining a high level of performance comparable to the

original 667 features.
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CERT r4.2 Week GP Stratified

ML Model Metric
0vsAll 0vs1 3

GP-FS-13 GP-NFS-14 GP-FS-14 GP-NFS-14

DT
F1-Score 0.650 0.662 1.000 0.929
Precision 0.781 0.706 1.000 1.000
Recall 0.603 0.634 1.000 0.875

RF
F1-Score 0.647 0.632 0.955 0.929
Precision 0.758 0.720 0.999 1.000
Recall 0.603 0.595 0.917 0.875

Gaussian NB
F1-Score 0.544 0.540 0.643 0.500
Precision 0.531 0.527 1.000 0.500
Recall 0.589 0.581 0.583 0.500

k-NN
F1-Score 0.666 0.619 1.000 0.929
Precision 0.931 0.873 1.000 1.000
Recall 0.603 0.571 1.000 0.875

LR
F1-Score 0.648 0.499 1.000 1.000
Precision 0.998 0.498 1.000 1.000
Recall 0.587 0.500 1.000 1.000

XGB
F1-Score 0.664 0.634 0.955 0.929
Precision 0.904 0.953 1.000 1.000
Recall 0.603 0.579 0.917 0.875

Table 4.12: CERT r4.2 Week Stratified results for GP

Table 4.12 shows the performance of machine learning models on the CERT r4.2 Week

dataset using Genetic Programming (GP) with and without Fitness Sharing (FS and NFS).

Among the models, XGB with GP-FS-13 achieves an F1-Score of 0.664 and Precision of 0.904

for the 0vsAll classification, which is lower compared to its performance with the original

667 features (F1-Score of 0.872 and Precision of 0.935). For the 0vs1 3 classification, XGB

achieves an F1-Score of 0.955 and Precision of 1.000, closely matching the results with the

original features. RF and DT also perform well with GP-FS-13 and GP-NFS-14. RF achieves

an F1-Score of 0.647 and Precision of 0.758 for 0vsAll, and an F1-Score of 0.955 and Precision

of 0.999 for 0vs1 3. DT shows an F1-Score of 0.650 and Precision of 0.781 for 0vsAll, and

an F1-Score of 1.000 and Precision of 1.000 for 0vs1 3. These results suggest that GP, using

13 and 14 features, can maintain a high level of performance comparable to that achieved

with the original, more extensive feature set.
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4.5.2 CERT r4.2 Day

For the CERT r4.2 Day datasets, ”0vsAll” is used hereafter to denote benign vs. all insider

threat scenarios in the dataset. While, ”0vs1 3” is used hereafter to denote benign vs. data

exfiltration (scenario-1) and IT sabotage (scenario-3) scenarios.

CERT r4.2 Day Original Stratified

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.899 0.920 0.881 0.932 0.913 0.952
RF 0.836 0.999 0.754 0.962 1.000 0.929

Gaussian NB 0.503 0.505 0.502 0.499 0.501 0.520
k-NN 0.499 0.499 0.500 0.500 0.500 0.500
LR 0.499 0.499 0.500 0.500 0.500 0.500
XGB 0.974 1.000 0.951 0.962 1.000 0.929

Table 4.13: CERT r4.2 Day Stratified results for the Original features

The analysis of the CERT r4.2 Day dataset with the original 507 features, shown in Ta-

ble 4.13, identifies XGB, DT, and RF as the top performers based on F1-Score and Precision.

For the 0vsAll classification, XGB achieves the highest F1-Score of 0.974 and Precision of

1.000. DT follows with an F1-Score of 0.899 and Precision of 0.920, while RF shows a strong

Precision of 0.999 but a lower F1-Score of 0.836. In the 0vs1 3 classification, XGB and RF

both achieve high scores, with XGB attaining an F1-Score of 0.962 and Precision of 1.000,

and RF achieving an F1-Score of 0.962 and Precision of 1.000. DT also performs well with

an F1-Score of 0.932 and Precision of 0.913. These results are based on models trained using

the original feature set of 507 features.
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CERT r4.2 Day PCA Stratified

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.561 0.588 0.591 0.602 0.867 0.890 0.913 0.963
Precision 0.557 0.585 0.585 0.592 0.821 0.900 0.880 0.975
Recall 0.566 0.592 0.597 0.613 0.928 0.881 0.952 0.952

RF
F1-Score 0.570 0.582 0.583 0.579 0.947 0.962 0.962 0.975
Precision 0.874 0.874 0.908 0.924 1.000 1.000 1.000 1.000
Recall 0.539 0.547 0.547 0.544 0.905 0.929 0.929 0.952

Gaussian NB
F1-Score 0.504 0.506 0.503 0.501 0.511 0.520 0.509 0.506
Precision 0.504 0.505 0.504 0.504 0.507 0.512 0.507 0.506
Recall 0.519 0.528 0.530 0.539 0.756 0.970 0.966 0.964

k-NN
F1-Score 0.574 0.584 0.598 0.597 0.975 0.975 0.975 0.975
Precision 0.880 0.805 0.854 0.832 1.000 1.000 1.000 1.000
Recall 0.541 0.549 0.557 0.557 0.952 0.952 0.952 0.952

LR
F1-Score 0.515 0.549 0.548 0.548 0.728 0.950 0.950 0.939
Precision 0.874 0.999 0.953 0.915 0.786 0.974 0.974 0.950
Recall 0.508 0.526 0.526 0.526 0.690 0.929 0.929 0.929

XGB
F1-Score 0.581 0.607 0.618 0.662 0.936 0.962 0.962 0.975
Precision 0.832 0.764 0.824 0.876 0.972 1.000 1.000 1.000
Recall 0.547 0.567 0.572 0.604 0.905 0.929 0.929 0.952

Table 4.14: CERT r4.2 Day Stratified results for PCA

Table 4.14 presents the performance of machine learning models on the CERT r4.2 Day

dataset using PCA-reduced features. Among the PCA configurations, PCA-20 demonstrates

the highest performance for the top models. XGB with PCA-20 achieves an F1-Score of

0.662 and Precision of 0.876 for the 0vsAll classification, which is lower compared to its

performance with the original 507 features (F1-Score of 0.974 and Precision of 1.000). For

the 0vs1 3 classification, XGB achieves an F1-Score of 0.975 and Precision of 1.000, closely

matching the results with the original features.

RF and k-NN also show strong results with PCA-20. RF achieves an F1-Score of 0.579

and Precision of 0.924 for 0vsAll, and an F1-Score of 0.975 and Precision of 1.000 for 0vs1 3.

k-NN attains an F1-Score of 0.597 and Precision of 0.832 for 0vsAll, and an F1-Score of

0.975 and Precision of 1.000 for 0vs1 3. These results suggest that PCA-20 can reduce

feature dimensionality while maintaining a substantial level of performance comparable to

the original 507 features.
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CERT r4.2 Day ICA Stratified

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.583 0.610 0.640 0.616 0.872 0.880 0.913 0.909
Precision 0.579 0.603 0.632 0.612 0.864 0.828 0.880 0.891
Recall 0.587 0.618 0.649 0.621 0.881 0.952 0.952 0.929

RF
F1-Score 0.590 0.605 0.601 0.567 0.962 0.963 0.962 0.975
Precision 0.869 0.959 0.977 0.999 1.000 0.975 1.000 1.000
Recall 0.552 0.560 0.557 0.536 0.929 0.929 0.929 0.952

Gaussian NB
F1-Score 0.503 0.508 0.502 0.503 0.519 0.520 0.518 0.515
Precision 0.503 0.506 0.504 0.504 0.511 0.512 0.511 0.510
Recall 0.514 0.531 0.532 0.530 0.758 0.970 0.970 0.968

k-NN
F1-Score 0.572 0.576 0.581 0.597 0.975 0.962 0.975 0.975
Precision 0.806 0.782 0.820 0.843 1.000 1.000 1.000 1.000
Recall 0.541 0.544 0.547 0.557 0.952 0.929 0.952 0.952

LR
F1-Score 0.499 0.549 0.549 0.548 0.693 0.950 0.950 0.950
Precision 0.499 0.999 0.999 0.883 0.800 0.974 0.974 0.974
Recall 0.500 0.526 0.526 0.526 0.643 0.929 0.929 0.929

XGB
F1-Score 0.592 0.648 0.671 0.637 0.932 0.932 0.962 0.975
Precision 0.817 0.915 0.870 0.850 1.000 1.000 1.000 1.000
Recall 0.554 0.591 0.611 0.585 0.881 0.929 0.929 0.952

Table 4.15: CERT r4.2 Day Stratified results for ICA

Table 4.15 shows the performance of machine learning models on the CERT r4.2 Day dataset

using ICA-reduced features. Among the ICA configurations, ICA-20 generally exhibits the

highest performance. XGB with ICA-20 achieves an F1-Score of 0.637 and Precision of 0.850

for the 0vsAll classification, which is lower compared to its performance with the original

507 features (F1-Score of 0.974 and Precision of 1.000) and slightly lower than with PCA-20

(F1-Score of 0.662 and Precision of 0.876). For the 0vs1 3 classification, XGB achieves an

F1-Score of 0.975 and Precision of 1.000, which is comparable to the results with both the

original features and PCA-20.

RF and DT also perform well with ICA-20. RF attains an F1-Score of 0.567 and Precision

of 0.999 for 0vsAll, and an F1-Score of 0.975 and Precision of 1.000 for 0vs1 3, which is

comparable to its performance with PCA-20. DT achieves an F1-Score of 0.616 and Precision

of 0.612 for 0vsAll, and an F1-Score of 0.909 and Precision of 0.891 for 0vs1 3.
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CERT r4.2 Day GP Stratified

ML Model Metric
0vsAll 0vs1 3

GP-FS-12 GP-NFS-12 GP-FS-12 GP-NFS-14

DT
F1-Score 0.508 0.701 0.947 0.915
Precision 0.528 0.769 1.000 0.925
Recall 0.505 0.660 0.905 0.905

RF
F1-Score 0.504 0.694 0.905 0.925
Precision 0.526 0.753 0.969 0.947
Recall 0.502 0.658 0.857 0.905

Gaussian NB
F1-Score 0.515 0.500 0.500 0.750
Precision 0.515 0.505 0.500 0.673
Recall 0.517 0.563 0.500 0.952

k-NN
F1-Score 0.504 0.595 0.917 0.947
Precision 0.599 0.738 1.000 1.000
Recall 0.503 0.559 0.857 0.905

LR
F1-Score 0.499 0.534 0.932 0.917
Precision 0.499 0.999 1.000 1.000
Recall 0.500 0.518 0.881 0.857

XGB
F1-Score 0.504 0.539 0.917 0.895
Precision 0.749 0.899 1.000 0.941
Recall 0.503 0.521 0.857 0.857

Table 4.16: CERT r4.2 Day Stratified results for GP

Table 4.16 presents the performance of machine learning models on the CERT r4.2 Day

dataset using Genetic Programming (GP) with and without Fitness Sharing (FS and NFS).

GP for the Day granularity reduces the feature count to 12 and 14 features. Among the

models, XGB with GP-FS-12 achieves an F1-Score of 0.917 and Precision of 1.000 for the

0vs1 3 classification, closely matching its performance with the original 507 features (F1-

Score of 0.962 and Precision of 1.000). For the 0vsAll classification, XGB shows an F1-Score

of 0.504 and Precision of 0.749 with GP-FS-12, lower than its original performance (F1-Score

of 0.974 and Precision of 1.000).

RF with GP-NFS-12 attains an F1-Score of 0.694 and Precision of 0.753 for 0vsAll, and

an F1-Score of 0.925 and Precision of 0.947 for 0vs1 3, demonstrating robust performance

comparable to the original feature set. DT with GP-NFS-12 achieves an F1-Score of 0.701

and Precision of 0.769 for 0vsAll, and an F1-Score of 0.915 and Precision of 0.925 for 0vs1 3.
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4.5.3 CERT r4.2 Session

For the CERT r4.2 Session datasets, ”0vsAll” is used hereafter to denote benign vs. all

insider threat scenarios in the dataset. While, ”0vs1 3” is used hereafter to denote benign

vs. data exfiltration (scenario-1) and IT sabotage (scenario-3) scenarios.

CERT r4.2 Session Original Stratified

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.871 0.881 0.861 0.987 1.000 0.975
RF 0.802 0.994 0.717 0.894 1.000 0.825

Gaussian NB 0.499 0.499 0.500 0.500 0.500 0.500
k-NN 0.499 0.499 0.500 0.500 0.500 0.500
LR 0.499 0.499 0.500 0.500 0.500 0.500
XGB 0.961 0.985 0.939 0.987 1.000 0.975

Table 4.17: CERT r4.2 Session Stratified results for the Original features

The analysis of the CERT r4.2 Session dataset with the original 127 features, shown in Ta-

ble 4.17, identifies XGB, DT, and RF as the top performers based on F1-Score and Precision.

For the 0vsAll classification, XGB achieves the highest F1-Score of 0.961 and Precision of

0.985. DT follows with an F1-Score of 0.871 and Precision of 0.881, while RF shows a strong

Precision of 0.994 but a lower F1-Score of 0.802. In the 0vs1 3 classification, both XGB and

DT achieve high scores, with XGB attaining an F1-Score of 0.987 and Precision of 1.000,

and DT also achieving an F1-Score of 0.987 and Precision of 1.000. RF achieves an F1-Score

of 0.894 and Precision of 1.000. These results are based on models trained using the original

feature set of 127 features.
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CERT r4.2 Session PCA Stratified

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.559 0.592 0.590 0.596 0.929 0.925 0.915 0.959
Precision 0.557 0.587 0.588 0.598 1.000 0.925 0.905 1.000
Recall 0.562 0.598 0.593 0.593 0.875 0.925 0.925 0.925

RF
F1-Score 0.558 0.566 0.570 0.566 0.929 0.929 0.929 0.959
Precision 0.966 0.969 0.946 0.999 1.000 1.000 1.000 1.000
Recall 0.531 0.536 0.538 0.536 0.875 0.875 0.875 0.925

Gaussian NB
F1-Score 0.525 0.510 0.503 0.500 0.789 0.521 0.524 0.531
Precision 0.536 0.507 0.503 0.503 0.760 0.512 0.513 0.517
Recall 0.520 0.521 0.520 0.528 0.825 0.822 0.822 0.823

k-NN
F1-Score 0.560 0.616 0.620 0.645 0.894 0.894 0.894 0.894
Precision 0.811 0.749 0.787 0.817 1.000 1.000 1.000 1.000
Recall 0.534 0.576 0.576 0.594 0.825 0.825 0.825 0.825

LR
F1-Score 0.538 0.538 0.538 0.538 0.894 0.894 0.894 0.894
Precision 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
Recall 0.520 0.520 0.520 0.520 0.825 0.825 0.825 0.825

XGB
F1-Score 0.549 0.585 0.598 0.645 0.912 0.912 0.912 0.929
Precision 0.799 0.822 0.824 0.884 1.000 1.000 1.000 1.000
Recall 0.527 0.549 0.558 0.590 0.850 0.850 0.850 0.875

Table 4.18: CERT r4.2 Session Stratified results for PCA

Table 4.18 shows the performance of machine learning models on the CERT r4.2 Session

dataset using PCA-reduced features. Among the PCA configurations, PCA-20 demonstrates

the highest performance. For the 0vsAll classification, XGB with PCA-20 achieves an F1-

Score of 0.645 and Precision of 0.884, compared to its original feature performance (F1-Score

of 0.961 and Precision of 0.985). k-NN with PCA-20 achieves an F1-Score of 0.645 and

Precision of 0.817, and DT with PCA-20 achieves an F1-Score of 0.596 and Precision of

0.598.

For the 0vs1 3 classification, XGB, k-NN, and DT maintain high scores with PCA-20.

XGB achieves an F1-Score of 0.929 and Precision of 1.000, k-NN achieves an F1-Score of

0.894 and Precision of 1.000, and DT achieves an F1-Score of 0.959 and Precision of 1.000.
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CERT r4.2 Session ICA Stratified

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.591 0.620 0.634 0.647 0.878 0.925 0.962 0.917
Precision 0.589 0.616 0.630 0.637 0.840 0.925 0.974 0.969
Recall 0.593 0.625 0.638 0.658 0.925 0.925 0.950 0.875

RF
F1-Score 0.570 0.591 0.589 0.596 0.885 0.929 0.929 0.894
Precision 0.946 0.896 0.999 0.979 0.895 1.000 1.000 1.000
Recall 0.538 0.552 0.550 0.554 0.875 0.875 0.875 0.825

Gaussian NB
F1-Score 0.515 0.508 0.503 0.499 0.537 0.515 0.534 0.530
Precision 0.512 0.505 0.503 0.502 0.520 0.509 0.519 0.516
Recall 0.518 0.531 0.532 0.518 0.823 0.821 0.823 0.823

k-NN
F1-Score 0.552 0.573 0.622 0.652 0.894 0.894 0.894 0.894
Precision 0.794 0.707 0.814 0.838 1.000 1.000 1.000 1.000
Recall 0.529 0.545 0.576 0.599 0.825 0.825 0.825 0.825

LR
F1-Score 0.499 0.538 0.538 0.538 0.875 0.894 0.894 0.894
Precision 0.499 0.999 0.999 0.883 1.000 1.000 1.000 1.000
Recall 0.500 0.520 0.520 0.520 0.800 0.825 0.825 0.825

XGB
F1-Score 0.554 0.624 0.648 0.726 0.917 0.912 0.929 0.974
Precision 0.881 0.892 0.886 0.920 0.969 1.000 1.000 1.000
Recall 0.529 0.573 0.592 0.655 0.875 0.850 0.875 0.950

Table 4.19: CERT r4.2 Session Stratified results for ICA

Table 4.19 shows the performance of machine learning models on the CERT r4.2 Session

dataset using ICA-reduced features. Among the ICA configurations, ICA-20 demonstrates

the highest performance. For the 0vsAll classification, XGB with ICA-20 achieves an F1-

Score of 0.726 and Precision of 0.920, compared to its original feature performance (F1-Score

of 0.961 and Precision of 0.985). DT with ICA-20 achieves an F1-Score of 0.647 and Precision

of 0.637, and k-NN with ICA-20 achieves an F1-Score of 0.652 and Precision of 0.838.

For the 0vs1 3 classification, XGB, DT, and k-NN maintain high scores with ICA-20.

XGB achieves an F1-Score of 0.974 and Precision of 1.000, DT achieves an F1-Score of 0.917

and Precision of 0.969, and k-NN achieves an F1-Score of 0.894 and Precision of 1.000. These

results suggest that ICA-20 effectively reduces the feature count while retaining a substantial

level of performance, comparable to the original and PCA-reduced feature sets.
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CERT r4.2 Session GP Stratified

ML Model Metric
0vsAll 0vs1 3

GP-FS-8 GP-NFS-10 GP-FS-11 GP-NFS-13

DT
F1-Score 0.514 0.655 0.894 0.833
Precision 0.520 0.733 1.000 0.875
Recall 0.511 0.616 0.825 0.800

RF
F1-Score 0.499 0.653 0.894 0.853
Precision 0.499 0.716 1.000 0.929
Recall 0.500 0.618 0.825 0.800

Gaussian NB
F1-Score 0.513 0.509 0.522 0.561
Precision 0.511 0.507 0.512 0.534
Recall 0.516 0.574 0.822 0.824

k-NN
F1-Score 0.508 0.599 0.894 0.875
Precision 0.665 0.740 1.000 1.000
Recall 0.504 0.563 0.825 0.800

LR
F1-Score 0.499 0.538 0.894 0.833
Precision 0.499 0.999 1.000 0.924
Recall 0.500 0.520 0.825 0.775

XGB
F1-Score 0.499 0.538 0.750 0.812
Precision 0.499 0.999 0.833 0.917
Recall 0.500 0.520 0.700 0.750

Table 4.20: CERT r4.2 Session Stratified results for GP

Table 4.20 presents the performance of machine learning models on the CERT r4.2 Session

dataset using Genetic Programming (GP) with and without Fitness Sharing (FS and NFS).

Among the models, k-NN with GP-NFS-10 achieves an F1-Score of 0.599 and Precision of

0.740 for the 0vsAll classification, compared to its performance with the original 127 features

(F1-Score of 0.499 and Precision of 0.499). For the 0vs1 3 classification, k-NN achieves an

F1-Score of 0.894 and Precision of 1.000, closely matching its performance with the original

features (F1-Score of 0.500 and Precision of 0.500).

DT with GP-NFS-10 achieves an F1-Score of 0.655 and Precision of 0.733 for 0vsAll,

and an F1-Score of 0.833 and Precision of 0.875 for 0vs1 3. RF with GP-NFS-10 shows an

F1-Score of 0.653 and Precision of 0.716 for 0vsAll, and an F1-Score of 0.853 and Precision

of 0.929 for 0vs1 3. These results suggest that GP, particularly with NFS, can effectively

reduce the feature count to 8, 10, 11 and 13 features, while maintaining a substantial level

of performance. This performance is comparable to that achieved with the original and

PCA/ICA-reduced feature sets in the case of 0vs1 3 scenarios.
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4.6 Summary

This section evaluated the performance of various machine learning models using different

feature extraction and dimensionality reduction techniques on the CIC-IDS2017, CSE-CIC-

IDS2018, and CERT r4.2 datasets. The aim was to determine the impact of feature reduction

on the models’ ability to detect insider threats.

For the CIC-IDS2017 dataset, XGB and RF consistently performed well. Using the

original features, XGB achieved an F1-Score of 0.979 and Precision of 0.989. Among reduced

feature sets, ICA-20 showed the best performance, with XGB achieving an F1-Score of 0.919

and Precision of 0.963. PCA-20 and GP-FS also retained high performance.

In the CSE-CIC-IDS2018 dataset, RF and XGB maintained high detection performance

with PCA-20, achieving F1-Scores and Precision close to their original feature set results.

ICA-20 also yielded comparable results.

For the CERT r4.2 dataset, PCA-20 and ICA-20 demonstrated high performance across

different granularity levels (Week, Day, and Session). However, reductions beyond 20 compo-

nents generally led to declines in performance. Genetic Programming (GP) without Fitness

Sharing (GP-NFS) often outperformed GP with Fitness Sharing (GP-FS), particularly in

broader threat detection scenarios.

Overall, PCA, ICA, and GP effectively reduced feature dimensionalities while maintain-

ing high detection performances in many cases. However, there were variations in perfor-

mance depending on the technique and dataset. For detailed results of the datasets using

different sampling techniques, please refer to Appendix A for results on undersampling and

Appendix B for oversampling conditions.
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Conclusions and Future Works

This thesis has systematically explored the role of dimensionality reduction and sampling

techniques in enhancing the detection of insider threats within filtration scenarios. The re-

search specifically investigated how different dimensionality reduction techniques, namely

Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Ge-

netic Programming with and without Fitness Sharing (GP-FS and GP-NFS), impact the

performance of machine learning models. These models were applied to three datasets, CIC-

IDS2017, CSE-CIC-IDS2018, and CERT r4.2 (with varying granularities of Week, Day, and

Session levels) using three sampling methods, including stratified sampling, undersampling,

and oversampling. The research goal is to explore and evaluate how much (if any) these

techniques effect the performance of detecting insider threats using infiltration and exfiltra-

tion attacks. To achieve this goal, different combinations of sampling and dimensionality

reduction techniques are integrated and their performances are compared to the original

dimensions on the aforemtioned three network traffic datasets.

Results of this research reveal that models trained on reduced feature sets often yield com-

parable performances to those trained on original (full) feature sets. Specifically, the research

demonstrated that in scenarios of both infiltration and exfiltration attacks, reduced feature

sets facilitated by selected techniques allow for efficient data processing while maintaining

effective threat detection. This outcome is pivotal for threat hunting teams and security op-

erations centers, which potentially could benefit from deploying lighter, faster, and effective

models. The following summarizes the new contributions achieved in this thesis:

• Exploring Sampling Techniques: The investigation into the impact of sampling

techniques on model performance revealed significant findings across multiple datasets

and machine learning models. Stratified sampling consistently provided the best out-

comes, enhancing model robustness across all scenarios and datasets. Notably, in the

CIC-IDS2017 dataset, stratified sampling enabled models to maintain high detection

performance with reduced features. For instance, with original features, RF and XGB
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models achieved F1-Scores and Precision above 0.97. When PCA-20 was applied, RF’s

performance was an F1-Score of 0.90 and Precision of 0.95, while XGB showed an

F1-Score of 0.87 and Precision of 0.93. Similarly, ICA-20 and Genetic Programming

(GP-FS and GP-NFS) also demonstrated commendable performances, with ICA-20 en-

abling RF to nearly match its full feature set performance with an F1-Score of 0.94 and

Precision of 0.97. XGB maintained a high F1-Score of 0.92 and Precision of 0.96 with

ICA-20. Even under the more aggressive feature reduction with GP, XGB achieved

an F1-Score of 0.83 and Precision of 0.95 using GP-FS. These patterns were consis-

tent across the CSE-CIC-IDS2018 and CERT r4.2 datasets, where stratified sampling

helped retain high detection rates under various dimensionality reduction conditions,

confirming the efficacy of this technique in managing dataset imbalances and enhancing

the overall accuracy and reliability of insider threat detection systems.

• Exploring the Dimensionality Reduction Techniques: This exploration focuses

on evaluating the effects of Principal Component Analysis (PCA), Independent Com-

ponent Analysis (ICA), and Genetic Programming (GP) on the performance of machine

learning models across three key datasets. PCA and ICA were implemented with re-

duced feature sets, namely PCA-20 and ICA-20, significantly maintaining high model

performance levels, often achieving near-original performance metrics. For instance,

in the CSE-CIC-IDS2018 dataset, both RF and XGB models retained F1-score and

Precision of 0.99 under PCA-20 and ICA-20 conditions, demonstrating minimal per-

formance degradation despite the reduced complexity. Similarly, in the CERT r4.2

dataset, although there was a slight decrease in performance under PCA-20 and ICA-

20 conditions with XGB’s F1-score dropping to 0.65 and 0.73 respectively, these tech-

niques still provided a substantial benefit in reducing feature dimensionality without

overly compromising detection capabilities.

Moreover, Genetic Programming, both with and without Fitness Sharing (GP-FS and

GP-NFS), showed a remarkable ability to reduce features drastically to a range of 8 to

15 features while maintaining commendable model efficacy. For example, in the CIC-

IDS2017 dataset, XGB managed an F1-score of 0.83 and Precision of 0.95 using GP-FS,

underscoring the potential of GP-based methods to provide substantial dimensionality

reduction with a lesser but acceptable impact on model performance.
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• Comparison of Reduced Feature Sets: This analysis focuses on comparing the per-

formance of machine learning models trained with reduced feature sets to those trained

with original feature sets, particularly using Principal Component Analysis (PCA) and

Independent Component Analysis (ICA) across various dimensionalities (from PCA-5

to PCA-20 and ICA-5 to ICA-20). The comparison underscores the efficacy of di-

mensionality reduction in maintaining competitive model performances without a full

feature set, providing a nuanced view of performance trade-offs at different levels of

feature reduction.

In the CIC-IDS2017 and CSE-CIC-IDS2018 datasets, models like Random Forest (RF)

and XGBoost (XGB) showed remarkable adaptability to reduced feature sets. For

example, when employing PCA-20, RF and XGB almost mirrored their performance

with the original feature set, achieving F1-Scores and Precision rates close to 0.99

in the CSE-CIC-IDS2018 dataset. However, at lower dimensionalities such as PCA-

5 and ICA-5, there was a more noticeable decline in performance, indicating that

while substantial reductions are possible, they come with diminishing returns in model

accuracy and precision.

Further exploration in the CERT r4.2 dataset, particularly with granularity levels like

Week, Day, and Session, revealed more pronounced effects of feature reduction on model

performance. For instance, XGB’s performance at ICA-20 maintained high precision

but saw a reduction in F1-Score from 0.97 to as low as 0.64 in more challenging 0vsAll

scenarios, highlighting the critical balance between feature reduction and the ability

to detect broader threat scenarios effectively.

• Granularity-Based Analysis: This section explores the impact of different data

granularities —Week, Day, and Session— on the detection performance of various ma-

chine learning models across the CERT r4.2 dataset. The findings of this thesis sup-

port those reported by Le et al. [8], i.e. a model’s effectiveness depends on the data’s

temporal resolution. For instance, at the Week level granularity, RF and XGB demon-

strated exceptional consistency, maintaining high Precision and F1-Scores close to 0.99

across various configurations. This suggests robustness in a coarser granularity level.

However, at the Day level granularity, there was a notable decrease in performance

with more aggressive dimensionality reduction techniques like GP-FS, where XGB’s
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F1-Score dropped to 0.64 in broader threat detection scenarios (0vsAll). Also, at the

Session level granularity, again a notable decrease in the performance was observed,

specifically with PCA-20 and ICA-20, where XGB’s F1-Score reduced to as low as

0.65 in 0vsAll scenarios, significantly impacting the model’s ability to generalize across

broader threat landscapes. These findings are crucial for security operations centres

and threat hunting teams as they suggest that finer granularities might require careful

consideration of the balance between dimensionality reduction and model accuracy to

ensure effective insider threat detection.

• Scenario-Based Model Analysis: The effectiveness of machine learning models in

specific detection scenarios, particularly comparing the 0vs1 3 (benign vs. data exfil-

tration and IT sabotage) with the 0vsAll (benign vs. all scenarios including intellectual

property theft), was thoroughly analyzed across the CERT r4.2 dataset. This compar-

ative study highlighted the high performance of models in the 0vs1 3 scenarios, where

models were able to achieve more accurate and consistent detection rates compared to

the broader 0vsAll scenario.

Specifically, models like RF and XGB demonstrated substantial efficacy in 0vs1 3 sce-

narios, consistently maintaining high F1-Scores and Precision. For example, in the

Week granularity setting of the CERT r4.2 dataset, RF managed to maintain a high

F1-Score of 0.978 and Precision of 1.000 under PCA-20, showcasing its robustness in

targeted RF’s F1-Score was 0.691 under PCA-20 in broader threat detection scenarios,

indicating a potential loss in the ability to generalize across more diverse threat types.

This pattern was consistently observed across other granularity levels and datasets, re-

inforcing the notion that while dimensionality reduction techniques such as PCA and

ICA can be effective in targeted scenarios, their application in scenarios such as in-

tellectual property theft requires careful calibration and potentially different modeling

strategies to maintain effectiveness.

Furthermore, the comprehensive analysis across all datasets and feature reduction settings

has shown that PCA-20 features and ICA-20 features consistently delivered high performance

across RF, and XGB models. These techniques offer dimensionality reduction without losing

much in terms of detection capability, making them suitable for scenarios where operational

efficiency is critical. Whereas, GP-NFS offers a unique advantage by reducing the feature
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set, which may be more suitable in situations where a smaller and condensed feature set is

necessary, rather than mapping the features to a lower dimensionality. This capability can

be particularly beneficial when original features need to be minimized to speed up model

training phase, while maintaining model effectiveness.

Ultimately, the choice between using PCA, ICA, or GP depends on the specific needs of

the security operations centre and threat hunting team. This thesis has laid out a framework

for a foundation to explore and evaluate different pipelines, namely integrating sampling, and

dimensionality reduction techniques, to better understand which combination yields the best

results for detecting and classifying insider threats. The aim is to enable security experts to

make more informed decisions on sampling methods and whether to prioritize dimensionality

reduction or feature count reduction to select the most appropriate combination for their

specific situation in the context of insider threat detection.

In summary, this thesis has set the groundwork for further exploration into advanced

feature extraction and dimensionality reduction techniques for filtration attacks in the insider

threat detection field. Future research could focus on several promising directions as the

following:

• Sampling Methodologies: Diversify the sampling methodologies used in model

training. Future studies would consider different techniques like Synthetic Minority

Over-sampling Technique (SMOTE) to address class imbalances, which are prevalent

in cybersecurity datasets. Additionally, varying the data splits, using different ratios or

cross-validation methods, could help ensure the models are robust and not overfitting

to specific data nuances.

• Dimensionality Reduction Techniques: Expand the scope of dimensionality re-

duction techniques. Systematic testing of methods such as Recursive Feature Elimina-

tion (RFE) and Linear Discriminant Analysis (LDA) could ascertain their effectiveness

in preserving essential features while reducing redundancy.

• GP Optimization: Continue to explore and optimize the application of GP for fea-

ture reduction. A deeper exploration into the tuning of GP parameters, such as pop-

ulation size, mutation rates, and crossover probabilities, could uncover more efficient

ways to reduce feature dimensions while maintaining or enhancing model accuracy.

Additionally, a nuanced approach to fitness sharing and non-fitness sharing within GP
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could be examined to determine the best strategy for feature selection in various threat

detection scenarios.

• Operational Efficiency: Extend the evaluation of machine learning models by in-

corporating other indicators that measure efficiency alongside performance. Future

research could include metrics such as training and testing time to assess the practical

performance of models. This dual approach will allow for a comprehensive comparison

of reduced versus original feature sets, evaluating not only their performances, but also

their operational efficiency, which is crucial for real-time threat detection applications.

• Data Granularities: Explore varying levels of data granularity. While this research

primarily focused on week, day, and session levels, finer granularities such as minute-

level data or broader aggregates such as monthly data could affect the effectiveness of

threat detection models. Determining the optimal granularity for model training could

improve the model performance.

• Deep Neural Network Models: Study the utilization of deep neural network archi-

tectures with a focus on unsupervised learning techniques to improve the classification

rate for insider threat detection across various scenarios. To this end, Autoencoder

models are a good starting point to utilize Latent Space Representation for feature

extraction and assess their effectiveness and efficiency in modeling complex data rela-

tionships.

• Generalization of the ML models: Investigate the generalization and robustness

capabilities of machine learning models across diverse contexts to assess adaptability.

• Access Control Policy Integration: Explore the inclusion of datasets featuring

organizational access control policies to determine their impact on threat detection

models.



Bibliography

[1] M. L. Collins et al. Common sense guide to mitigating insider threats, fifth edition.
Technical Report CMU/SEI-2015-TR-010, The CERT Insider Threat Center, 2016.

[2] Code42. 2024 annual data exposure report. Technical report, Code42, 2024.

[3] Ponemon Institute. 2020 cost of insider threats: Global report. Technical report,
Ponemon Institute, 2020.

[4] Duc C. Le, A. Nur Zincir-Heywood, and Malcolm I. Heywood. Dynamic insider threat
detection based on adaptable genetic programming. In 2019 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 2579–2586, 2019.

[5] Minhaj Khan and Mohd. Haroon. Artificial neural network-based intrusion detection
in cloud computing using cse-cic-ids2018 datasets. In 2023 3rd Asian Conference on
Innovation in Technology (ASIANCON), pages 1–4, 2023.

[6] Duc C. Le, Nur Zincir-Heywood, and Malcolm I. Heywood. Analyzing data granular-
ity levels for insider threat detection using machine learning. IEEE Transactions on
Network and Service Management, 17(1):30–44, 2020.

[7] Madhu Raut, Sunita Dhavale, Amarjit Singh, and Atul Mehra. Insider threat detection
using deep learning: A review. In 2020 3rd International Conference on Intelligent
Sustainable Systems (ICISS), pages 856–863, 2020.

[8] Duc C. Le and Nur Zincir-Heywood. Anomaly detection for insider threats using
unsupervised ensembles. IEEE Transactions on Network and Service Management,
18(2):1152–1164, 2021.

[9] Toya Acharya, Ishan Khatri, Annamalai Annamalai, and Mohamed F Chouikha. Effi-
cacy of machine learning-based classifiers for binary and multi-class network intrusion
detection. In 2021 IEEE International Conference on Automatic Control Intelligent
Systems (I2CACIS), pages 402–407, 2021.

[10] Duc C. Le, Nur Zincir-Heywood, and Malcolm Heywood. Training regime influences
to semi-supervised learning for insider threat detection. In 2021 IEEE Security and
Privacy Workshops (SPW), pages 13–18, 2021.

[11] Ishita Karna, Aniket Madam, Chinmay Deokule, Rahul Adhao, and Vinod Pachghare.
Ensemble-based filter feature selection technique for building flow-based ids. In 2021
2nd International Conference on Advances in Computing, Communication, Embedded
and Secure Systems (ACCESS), pages 324–328, 2021.

69



70

[12] Efthimios Pantelidis, Gueltoum Bendiab, Stavros Shiaeles, and Nicholas Kolokotronis.
Insider threat detection using deep autoencoder and variational autoencoder neural
networks. In 2021 IEEE International Conference on Cyber Security and Resilience
(CSR), pages 129–134, 2021.

[13] Panpan Zheng, Shuhan Yuan, and Xintao Wu. Using dirichlet marked hawkes processes
for insider threat detection. Digital Threats, 3(1), oct 2021.

[14] Yangmin Li, Xinhang Yuan, and Wengen Li. An extreme semi-supervised framework
based on transformer for network intrusion detection. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, CIKM ’22, page
4204–4208, New York, NY, USA, 2022. Association for Computing Machinery.

[15] Tianci Xu and Peng Zhou. Feature extraction for payload classification: A byte pair
encoding algorithm. In 2022 IEEE 8th International Conference on Computer and
Communications (ICCC), pages 1–5, 2022.

[16] S. D. Erokhin, B. B. Borisenko, I. D. Martishin, and A. S. Fadeev. The dataset features
selection for detecting and classifying network attacks. In 2022 Systems of Signal Syn-
chronization, Generating and Processing in Telecommunications (SYNCHROINFO),
pages 1–8, 2022.

[17] Idio Guarino, Giampaolo Bovenzi, Davide Di Monda, Giuseppe Aceto, Domenico
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Appendix A

Results Using Undersampling Technique

A.1 CIC-IDS2017 Undersampled

A.1.1 CIC-IDS2017 Original with Undersampling

ML Model F1-Score Precision Recall
DT 0.966 0.956 0.977
RF 0.964 0.960 0.969

Gaussian NB 0.186 0.592 0.506
k-NN 0.845 0.822 0.879
LR 0.563 0.599 0.652
XGB 0.976 0.975 0.976

Table A.1: CIC-IDS2017 Undersampled results for the Original
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A.1.2 CIC-IDS2017 PCA Undersampled Results

ML Model Metric PCA-5 PCA-10 PCA-15 PCA-20

DT
F1-Score 0.779 0.774 0.753 0.792
Precision 0.755 0.751 0.732 0.768
Recall 0.833 0.829 0.807 0.842

RF
F1-Score 0.851 0.859 0.848 0.877
Precision 0.835 0.843 0.836 0.866
Recall 0.872 0.878 0.862 0.891

Gaussian NB
F1-Score 0.446 0.467 0.502 0.568
Precision 0.579 0.583 0.590 0.605
Recall 0.602 0.614 0.630 0.662

k-NN
F1-Score 0.815 0.815 0.824 0.837
Precision 0.792 0.790 0.799 0.811
Recall 0.857 0.860 0.868 0.879

LR
F1-Score 0.657 0.758 0.763 0.766
Precision 0.647 0.769 0.776 0.782
Recall 0.697 0.748 0.752 0.753

XGB
F1-Score 0.834 0.837 0.832 0.848
Precision 0.829 0.829 0.821 0.836
Recall 0.839 0.844 0.845 0.862

Table A.2: CIC-IDS2017 Undersampled results for PCA
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A.1.3 CIC-IDS2017 ICA Undersampled Results

ML Model Metric ICA-5 ICA-10 ICA-15 ICA-20

DT
F1-Score 0.797 0.836 0.841 0.863
Precision 0.772 0.810 0.815 0.837
Recall 0.849 0.882 0.886 0.903

RF
F1-Score 0.863 0.900 0.904 0.927
Precision 0.846 0.887 0.894 0.923
Recall 0.886 0.915 0.915 0.930

Gaussian NB
F1-Score 0.309 0.385 0.382 0.460
Precision 0.562 0.568 0.568 0.581
Recall 0.544 0.573 0.571 0.609

k-NN
F1-Score 0.816 0.820 0.828 0.837
Precision 0.792 0.796 0.803 0.812
Recall 0.858 0.864 0.871 0.879

LR
F1-Score 0.632 0.759 0.769 0.766
Precision 0.634 0.770 0.789 0.782
Recall 0.695 0.749 0.754 0.753

XGB
F1-Score 0.835 0.862 0.868 0.899
Precision 0.823 0.848 0.856 0.893
Recall 0.850 0.879 0.881 0.906

Table A.3: CIC-IDS2017 Undersampled results for ICA
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A.1.4 CIC-IDS2017 GP Undersampled Results

ML Model Metric GP-FS GP-NFS

DT
F1-Score 0.741 0.763
Precision 0.726 0.758
Recall 0.765 0.769

RF
F1-Score 0.764 0.762
Precision 0.755 0.756
Recall 0.776 0.768

Gaussian NB
F1-Score 0.173 0.225
Precision 0.532 0.554
Recall 0.501 0.515

k-NN
F1-Score 0.753 0.641
Precision 0.743 0.713
Recall 0.765 0.621

LR
F1-Score 0.170 0.737
Precision 0.269 0.734
Recall 0.500 0.741

XGB
F1-Score 0.828 0.824
Precision 0.919 0.920
Recall 0.782 0.778

Table A.4: CIC-IDS2017 Undersampled results for GP-FS and GP-NFS

A.2 CSE-CIC-IDS2018 Undersampled

A.2.1 CSE-CIC-IDS2018 Original with Undersampling

ML Model F1-Score Precision Recall
DT 0.997 0.996 0.998
RF 0.999 0.999 0.999

Gaussian NB 0.183 0.602 0.507
k-NN 0.962 0.957 0.969
LR 0.634 0.682 0.782
XGB 0.999 0.999 0.999

Table A.5: CSE-CIC-IDS2018 Original with Undersampling
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A.2.2 CSE-CIC-IDS2018 PCA Undersampled Results

ML Model Metric PCA-5 PCA-10 PCA-15 PCA-20

DT
F1-Score 0.971 0.948 0.978 0.951
Precision 0.962 0.956 0.971 0.961
Recall 0.981 0.939 0.984 0.942

RF
F1-Score 0.989 0.993 0.993 0.995
Precision 0.990 0.995 0.994 0.996
Recall 0.989 0.992 0.992 0.994

Gaussian NB
F1-Score 0.944 0.947 0.948 0.949
Precision 0.951 0.956 0.958 0.959
Recall 0.937 0.939 0.939 0.940

k-NN
F1-Score 0.984 0.989 0.991 0.991
Precision 0.981 0.988 0.990 0.989
Recall 0.987 0.991 0.992 0.993

LR
F1-Score 0.941 0.942 0.945 0.944
Precision 0.940 0.941 0.945 0.941
Recall 0.941 0.944 0.946 0.946

XGB
F1-Score 0.985 0.991 0.991 0.993
Precision 0.984 0.991 0.991 0.993
Recall 0.986 0.991 0.992 0.993

Table A.6: CSE-CIC-IDS2018 Undersampled results for PCA
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A.2.3 CSE-CIC-IDS2018 ICA Undersampled Results

ML Model Metric ICA-5 ICA-10 ICA-15 ICA-20

DT
F1-Score 0.975 0.983 0.985 0.985
Precision 0.967 0.978 0.979 0.980
Recall 0.984 0.989 0.990 0.990

RF
F1-Score 0.991 0.995 0.995 0.995
Precision 0.992 0.996 0.996 0.996
Recall 0.990 0.994 0.994 0.995

Gaussian NB
F1-Score 0.932 0.904 0.841 0.877
Precision 0.929 0.887 0.813 0.855
Recall 0.935 0.923 0.895 0.908

k-NN
F1-Score 0.985 0.990 0.991 0.991
Precision 0.982 0.988 0.990 0.989
Recall 0.987 0.991 0.992 0.993

LR
F1-Score 0.936 0.942 0.952 0.953
Precision 0.932 0.941 0.962 0.963
Recall 0.939 0.944 0.943 0.944

XGB
F1-Score 0.987 0.993 0.994 0.994
Precision 0.987 0.993 0.994 0.994
Recall 0.988 0.993 0.994 0.994

Table A.7: CSE-CIC-IDS2018 Undersampled results for ICA
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A.2.4 CSE-CIC-IDS2018 GP Undersampled Results

ML Model Metric GP-FS GP-NFS

DT
F1-Score 0.975 0.978
Precision 0.968 0.972
Recall 0.982 0.985

RF
F1-Score 0.983 0.984
Precision 0.980 0.981
Recall 0.986 0.987

Gaussian NB
F1-Score 0.287 0.444
Precision 0.608 0.432
Recall 0.558 0.500

k-NN
F1-Score 0.983 0.984
Precision 0.981 0.983
Recall 0.985 0.985

LR
F1-Score 0.471 0.690
Precision 0.628 0.705
Recall 0.662 0.818

XGB
F1-Score 0.983 0.986
Precision 0.985 0.988
Recall 0.982 0.984

Table A.8: CSE-CIC-IDS2018 Undersampled results for GP-FS and GP-NFS

A.3 CERT r4.2 Week Undersampled

A.3.1 CERT r4.2 Week Original with Undersampling

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.535 0.529 0.954 0.521 0.514 0.985
RF 0.522 0.524 0.946 0.730 0.650 0.999

Gaussian NB 0.495 0.516 0.902 0.509 0.509 0.970
k-NN 0.366 0.503 0.653 0.408 0.501 0.684
LR 0.478 0.512 0.876 0.375 0.500 0.596
XGB 0.533 0.528 0.953 0.520 0.514 0.969

Table A.9: CERT r4.2 Week results for Original with Undersampling
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A.3.2 CERT r4.2 Week PCA Undersampled

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.489 0.498 0.503 0.497 0.518 0.588 0.588 0.588
Precision 0.514 0.516 0.518 0.515 0.514 0.550 0.550 0.550
Recall 0.859 0.877 0.883 0.875 0.968 0.993 0.993 0.993

RF
F1-Score 0.488 0.488 0.492 0.490 0.506 0.648 0.586 0.598
Precision 0.515 0.515 0.516 0.515 0.509 0.589 0.548 0.556
Recall 0.850 0.850 0.858 0.854 0.952 0.996 0.992 0.993

Gaussian NB
F1-Score 0.484 0.503 0.500 0.498 0.482 0.507 0.505 0.506
Precision 0.504 0.508 0.507 0.507 0.503 0.511 0.510 0.511
Recall 0.577 0.591 0.602 0.607 0.788 0.977 0.976 0.977

k-NN
F1-Score 0.483 0.489 0.485 0.484 0.507 1.000 1.000 1.000
Precision 0.514 0.515 0.514 0.513 0.510 1.000 1.000 1.000
Recall 0.840 0.855 0.844 0.841 0.954 1.000 1.000 1.000

LR
F1-Score 0.488 0.467 0.485 0.486 0.546 1.000 1.000 1.000
Precision 0.514 0.511 0.514 0.514 0.526 1.000 1.000 1.000
Recall 0.856 0.806 0.848 0.847 0.984 1.000 1.000 1.000

XGB
F1-Score 0.489 0.489 0.494 0.494 0.515 0.770 0.770 0.770
Precision 0.514 0.515 0.516 0.516 0.512 0.700 0.700 0.700
Recall 0.854 0.851 0.863 0.862 0.965 0.999 0.999 0.999

Table A.10: CERT r4.2 Week Stratified results for PCA Undersampled
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A.3.3 CERT r4.2 Week ICA Undersampled

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.520 0.494 0.492 0.489 0.547 0.541 0.518 0.487
Precision 0.523 0.515 0.514 0.513 0.527 0.524 0.514 0.505
Recall 0.908 0.867 0.868 0.860 0.985 0.982 0.968 0.915

RF
F1-Score 0.511 0.491 0.489 0.488 0.524 0.536 0.511 0.531
Precision 0.520 0.515 0.515 0.515 0.516 0.522 0.511 0.519
Recall 0.893 0.856 0.852 0.851 0.973 0.981 0.960 0.978

Gaussian NB
F1-Score 0.502 0.513 0.500 0.512 0.506 0.524 0.490 0.508
Precision 0.507 0.512 0.508 0.502 0.509 0.512 0.506 0.510
Recall 0.944 0.957 0.932 0.956 0.957 0.973 0.921 0.956

k-NN
F1-Score 0.486 0.491 0.481 0.479 0.519 1.000 1.000 1.000
Precision 0.514 0.515 0.513 0.513 0.514 1.000 1.000 1.000
Recall 0.847 0.856 0.836 0.831 0.969 1.000 1.000 1.000

LR
F1-Score 0.522 0.468 0.484 0.484 0.529 1.000 1.000 1.000
Precision 0.519 0.511 0.514 0.514 0.518 1.000 1.000 1.000
Recall 0.718 0.806 0.848 0.848 0.988 1.000 1.000 1.000

XGB
F1-Score 0.514 0.499 0.499 0.500 0.540 0.638 0.509 0.514
Precision 0.522 0.517 0.517 0.517 0.523 0.582 0.510 0.512
Recall 0.898 0.873 0.874 0.879 0.981 0.996 0.958 0.964

Table A.11: CERT r4.2 Week Stratified results for ICA Undersampled
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A.3.4 CERT r4.2 Week GP Undersampled

ML Model Metric
0vsAll 0vs1 3

GP-FS GP-NFS GP-FS GP-NFS

DT
F1-Score 0.519 0.516 0.486 0.443
Precision 0.523 0.522 0.505 0.502
Recall 0.905 0.903 0.912 0.783

RF
F1-Score 0.528 0.518 0.978 0.411
Precision 0.527 0.523 1.000 0.501
Recall 0.958 0.951 0.958 0.688

Gaussian NB
F1-Score 0.567 0.554 0.488 0.373
Precision 0.542 0.536 0.504 0.500
Recall 0.711 0.873 0.876 0.592

k-NN
F1-Score 0.521 0.515 1.000 0.436
Precision 0.524 0.522 1.000 0.501
Recall 0.907 0.898 1.000 0.765

LR
F1-Score 0.539 0.538 1.000 0.978
Precision 0.530 0.530 1.000 1.000
Recall 0.941 0.934 1.000 0.958

XGB
F1-Score 0.530 0.514 0.805 0.423
Precision 0.527 0.522 0.729 0.502
Recall 0.951 0.948 0.958 0.724

Table A.12: CERT r4.2 Week Stratified results for GP Undersampled

A.4 CERT r4.2 Day Undersampled

A.4.1 CERT r4.2 Day Original with Undersampling

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.523 0.520 0.935 0.457 0.501 0.894
RF 0.539 0.527 0.951 0.509 0.507 0.980

Gaussian NB 0.480 0.508 0.866 0.491 0.502 0.952
k-NN 0.377 0.501 0.593 0.403 0.500 0.673
LR 0.449 0.505 0.781 0.476 0.501 0.898
XGB 0.563 0.538 0.966 0.488 0.502 0.936

Table A.13: CERT r4.2 Day Original with Undersampling
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A.4.2 CERT r4.2 Day PCA Undersampled

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.475 0.474 0.469 0.471 0.454 0.447 0.458 0.442
Precision 0.508 0.508 0.507 0.507 0.501 0.501 0.501 0.501
Recall 0.849 0.846 0.834 0.838 0.826 0.803 0.839 0.789

RF
F1-Score 0.486 0.493 0.492 0.490 0.490 0.492 0.494 0.497
Precision 0.510 0.511 0.511 0.511 0.503 0.503 0.503 0.504
Recall 0.873 0.888 0.886 0.882 0.943 0.948 0.953 0.960

Gaussian NB
F1-Score 0.499 0.501 0.502 0.497 0.494 0.499 0.501 0.495
Precision 0.503 0.504 0.504 0.503 0.503 0.504 0.505 0.503
Recall 0.964 0.967 0.970 0.957 0.953 0.954 0.968 0.956

k-NN
F1-Score 0.484 0.473 0.466 0.466 0.486 0.493 0.495 0.497
Precision 0.509 0.508 0.507 0.507 0.502 0.503 0.503 0.504
Recall 0.871 0.840 0.824 0.822 0.931 0.951 0.956 0.959

LR
F1-Score 0.464 0.454 0.461 0.467 0.506 0.528 0.529 0.498
Precision 0.505 0.505 0.506 0.507 0.506 0.516 0.516 0.504
Recall 0.829 0.797 0.814 0.829 0.976 0.991 0.991 0.961

XGB
F1-Score 0.486 0.491 0.492 0.493 0.484 0.485 0.489 0.480
Precision 0.510 0.511 0.511 0.512 0.502 0.502 0.503 0.502
Recall 0.873 0.884 0.887 0.888 0.924 0.928 0.939 0.913

Table A.14: CERT r4.2 Day Stratified results for PCA
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A.4.3 CERT r4.2 Day ICA Undersampled

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.470 0.469 0.479 0.473 0.449 0.456 0.440 0.461
Precision 0.507 0.507 0.509 0.507 0.501 0.501 0.501 0.501
Recall 0.839 0.835 0.859 0.843 0.811 0.832 0.780 0.850

RF
F1-Score 0.489 0.495 0.497 0.490 0.495 0.498 0.494 0.502
Precision 0.511 0.512 0.513 0.511 0.503 0.504 0.503 0.505
Recall 0.880 0.893 0.895 0.882 0.955 0.962 0.953 0.970

Gaussian NB
F1-Score 0.500 0.503 0.500 0.501 0.494 0.496 0.493 0.488
Precision 0.503 0.504 0.503 0.504 0.503 0.504 0.503 0.502
Recall 0.973 0.973 0.968 0.964 0.953 0.952 0.949 0.934

k-NN
F1-Score 0.482 0.466 0.461 0.461 0.486 0.491 0.496 0.498
Precision 0.509 0.507 0.507 0.507 0.502 0.503 0.503 0.504
Recall 0.868 0.824 0.810 0.838 0.931 0.951 0.958 0.962

LR
F1-Score 0.501 0.454 0.458 0.466 0.505 0.526 0.529 0.511
Precision 0.504 0.505 0.506 0.507 0.506 0.515 0.519 0.508
Recall 0.968 0.796 0.806 0.829 0.953 0.991 0.953 0.982

XGB
F1-Score 0.487 0.495 0.500 0.496 0.477 0.484 0.486 0.488
Precision 0.510 0.512 0.513 0.512 0.502 0.502 0.503 0.502
Recall 0.876 0.891 0.903 0.894 0.901 0.925 0.932 0.936

Table A.15: CERT r4.2 Day Stratified results for ICA
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A.4.4 CERT r4.2 Day GP Undersampled

ML Model Metric
0vsAll 0vs1 3

GP-FS GP-NFS GP-FS GP-NFS

DT
F1-Score 0.495 0.524 0.447 0.502
Precision 0.511 0.521 0.501 0.505
Recall 0.896 0.936 0.802 0.970

RF
F1-Score 0.495 0.523 0.444 0.505
Precision 0.512 0.521 0.501 0.506
Recall 0.893 0.936 0.796 0.974

Gaussian NB
F1-Score 0.494 0.503 0.396 0.519
Precision 0.509 0.508 0.500 0.511
Recall 0.906 0.948 0.653 0.987

k-NN
F1-Score 0.497 0.522 0.463 0.768
Precision 0.511 0.520 0.501 0.690
Recall 0.906 0.936 0.856 0.999

LR
F1-Score 0.493 0.501 0.509 0.550
Precision 0.509 0.512 0.507 0.527
Recall 0.901 0.912 0.980 0.995

XGB
F1-Score 0.495 0.531 0.459 0.527
Precision 0.512 0.524 0.501 0.515
Recall 0.895 0.946 0.856 0.991

Table A.16: CERT r4.2 Day Stratified results for GP

A.5 CERT r4.2 Session Undersampled

CERT r4.2 Session Original with Undersampling

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.4997 0.5119 0.9212 0.4691 0.5008 0.9138
RF 0.5161 0.5171 0.9582 0.4982 0.5032 0.9591

Gaussian NB 0.3955 0.5024 0.7392 0.4672 0.5006 0.8362
k-NN 0.3673 0.5015 0.6575 0.4048 0.5002 0.7143
LR 0.4507 0.5038 0.7646 0.4601 0.5005 0.8243
XGB 0.5448 0.5289 0.9785 0.4902 0.5019 0.9485

Table A.17: CERT r4.2 Session Original with Undersampling



86

CERT r4.2 Session PCA Undersampled

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.4742 0.4789 0.4741 0.4723 0.4848 0.4897 0.4897 0.4931
Precision 0.5068 0.5073 0.5069 0.5067 0.5013 0.5018 0.5018 0.5023
Recall 0.8597 0.8594 0.8703 0.8701 0.8906 0.9230 0.9478 0.9527

RF
F1-Score 0.4924 0.4987 0.4918 0.4916 0.4944 0.4903 0.4930 0.4997
Precision 0.5100 0.5116 0.5101 0.5099 0.5024 0.5019 0.5022 0.5035
Recall 0.9010 0.9202 0.9110 0.9043 0.9544 0.9487 0.9526 0.9607

Gaussian NB
F1-Score 0.4932 0.4970 0.4934 0.4924 0.5215 0.5038 0.5109 0.5129
Precision 0.5004 0.5016 0.5034 0.5039 0.5118 0.5041 0.5068 0.5077
Recall 0.5066 0.5190 0.5771 0.6003 0.8222 0.9831 0.9900 0.9911

k-NN
F1-Score 0.4824 0.4720 0.4708 0.4650 0.4801 0.4827 0.4866 0.4788
Precision 0.5082 0.5068 0.5068 0.5063 0.5012 0.5013 0.5016 0.5011
Recall 0.8916 0.8783 0.8875 0.8841 0.9324 0.9366 0.9430 0.9302

LR
F1-Score 0.4512 0.4491 0.4582 0.4611 0.4814 0.4863 0.4881 0.4916
Precision 0.5035 0.5042 0.5049 0.5052 0.5012 0.5015 0.5017 0.5021
Recall 0.7437 0.8014 0.8163 0.8291 0.9345 0.9350 0.9453 0.9512

XGB
F1-Score 0.4830 0.4897 0.4891 0.4929 0.4929 0.4883 0.4894 0.4966
Precision 0.5084 0.5095 0.5095 0.5103 0.5020 0.5017 0.5018 0.5112
Recall 0.8965 0.9002 0.9037 0.9121 0.9561 0.9413 0.9445 0.9542

Table A.18: CERT r4.2 Session Undersampled results for PCA
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CERT r4.2 Session ICA Undersampled

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.4739 0.4804 0.4791 0.4774 0.4809 0.4916 0.4678 0.4905
Precision 0.5070 0.5078 0.5073 0.5072 0.5012 0.5021 0.5008 0.5019
Recall 0.8744 0.8827 0.8575 0.8681 0.9337 0.9507 0.9117 0.9489

RF
F1-Score 0.4969 0.4928 0.4933 0.4913 0.4921 0.4945 0.4932 0.4903
Precision 0.5111 0.5103 0.5105 0.5099 0.5021 0.5025 0.5023 0.5019
Recall 0.9099 0.9142 0.9191 0.9083 0.9514 0.9546 0.9528 0.9487

Gaussian NB
F1-Score 0.4967 0.5017 0.4935 0.4937 0.5049 0.5124 0.5082 0.5060
Precision 0.5019 0.5025 0.5019 0.5025 0.5044 0.5075 0.5057 0.5048
Recall 0.5260 0.5166 0.5355 0.5495 0.8173 0.8205 0.8190 0.8180

k-NN
F1-Score 0.4803 0.4665 0.4682 0.4600 0.4757 0.4817 0.4892 0.4826
Precision 0.5078 0.5061 0.5066 0.5059 0.5010 0.5013 0.5018 0.5013
Recall 0.8783 0.8667 0.8905 0.8837 0.9249 0.9350 0.9470 0.9365

LR
F1-Score 0.5382 0.4469 0.4583 0.4598 0.4795 0.4835 0.4885 0.4924
Precision 0.9989 0.5039 0.5049 0.5051 0.5012 0.5014 0.5017 0.5022
Recall 0.5202 0.7852 0.8166 0.8251 0.9314 0.9345 0.9453 0.9513

XGB
F1-Score 0.4879 0.4919 0.4965 0.4966 0.4817 0.4871 0.4903 0.4927
Precision 0.5093 0.5103 0.5112 0.5113 0.5013 0.5016 0.5019 0.5022
Recall 0.8853 0.9218 0.9203 0.9225 0.9350 0.9437 0.9486 0.9521

Table A.19: CERT r4.2 Session Undersampled results for ICA
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CERT r4.2 Session GP Undersampled

ML Model Metric
0vsAll 0vs1 3

GP-FS GP-NFS GP-FS GP-NFS

DT
F1-Score 0.4854 0.4912 0.5316 0.5316
Precision 0.5078 0.5099 0.5171 0.5171
Recall 0.8354 0.9083 0.9721 0.9721

RF
F1-Score 0.4835 0.4906 0.5316 0.5316
Precision 0.5081 0.5098 0.5171 0.5171
Recall 0.8715 0.9076 0.9721 0.9721

Gaussian NB
F1-Score 0.4792 0.5058 0.4771 0.4718
Precision 0.5054 0.5094 0.5011 0.5009
Recall 0.7445 0.6964 0.9273 0.9185

k-NN
F1-Score 0.4881 0.5099 0.7261 0.5764
Precision 0.5083 0.5139 0.6484 0.5418
Recall 0.8450 0.8747 0.9748 0.9739

LR
F1-Score 0.4901 0.4528 0.4780 0.4803
Precision 0.5082 0.5050 0.5011 0.5012
Recall 0.8153 0.8500 0.9288 0.9327

XGB
F1-Score 0.4887 0.4975 0.5316 0.5316
Precision 0.5090 0.5113 0.5171 0.5171
Recall 0.8798 0.9149 0.9721 0.9721

Table A.20: CERT r4.2 Session Undersampled results for GP



Appendix B

Results Using Oversampling Technique

B.1 CIC-IDS2017 Oversampled

B.1.1 CIC-IDS2017 Original with Oversampling

ML Model F1-Score Precision Recall
DT 0.981 0.981 0.980
RF 0.975 0.986 0.965

Gaussian NB 0.186 0.592 0.506
k-NN 0.862 0.839 0.893
LR 0.563 0.599 0.652
XGB 0.976 0.977 0.976

Table B.1: CIC-IDS2017 Original with Oversampling

89
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B.1.2 CIC-IDS2017 PCA Oversampled Results

ML Model Metric PCA-5 PCA-10 PCA-15 PCA-20

DT
F1-Score 0.846 0.841 0.809 0.847
Precision 0.846 0.839 0.802 0.845
Recall 0.846 0.843 0.818 0.849

RF
F1-Score 0.890 0.894 0.874 0.903
Precision 0.919 0.928 0.913 0.938
Recall 0.867 0.868 0.846 0.876

Gaussian NB
F1-Score 0.389 0.417 0.440 0.476
Precision 0.571 0.574 0.578 0.585
Recall 0.576 0.589 0.600 0.618

k-NN
F1-Score 0.823 0.826 0.838 0.853
Precision 0.799 0.802 0.814 0.829
Recall 0.862 0.868 0.877 0.889

LR
F1-Score 0.660 0.758 0.763 0.766
Precision 0.650 0.769 0.778 0.783
Recall 0.700 0.749 0.752 0.753

XGB
F1-Score 0.836 0.842 0.835 0.854
Precision 0.832 0.837 0.827 0.847
Recall 0.841 0.847 0.844 0.862

Table B.2: CIC-IDS2017 Oversampled results for PCA
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B.1.3 CIC-IDS2017 ICA Oversampled Results

ML Model Metric ICA-5 ICA-10 ICA-15 ICA-20

DT
F1-Score 0.846 0.894 0.898 0.916
Precision 0.862 0.894 0.898 0.917
Recall 0.833 0.893 0.897 0.916

RF
F1-Score 0.899 0.930 0.931 0.946
Precision 0.924 0.951 0.954 0.968
Recall 0.880 0.911 0.911 0.927

Gaussian NB
F1-Score 0.237 0.344 0.321 0.376
Precision 0.550 0.563 0.561 0.573
Recall 0.518 0.556 0.547 0.573

k-NN
F1-Score 0.825 0.838 0.845 0.855
Precision 0.801 0.814 0.821 0.832
Recall 0.864 0.876 0.882 0.891

LR
F1-Score 0.633 0.759 0.768 0.766
Precision 0.634 0.770 0.787 0.783
Recall 0.695 0.749 0.753 0.753

XGB
F1-Score 0.839 0.864 0.873 0.906
Precision 0.828 0.851 0.864 0.906
Recall 0.853 0.879 0.883 0.907

Table B.3: CIC-IDS2017 Oversampled results for ICA
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B.1.4 CIC-IDS2017 GP Oversampled Results

ML Model Metric GP-FS GP-NFS

DT
F1-Score 0.795 0.799
Precision 0.806 0.823
Recall 0.786 0.781

RF
F1-Score 0.803 0.799
Precision 0.821 0.821
Recall 0.789 0.781

Gaussian NB
F1-Score 0.170 0.173
Precision 0.491 0.535
Recall 0.500 0.501

k-NN
F1-Score 0.738 0.786
Precision 0.723 0.805
Recall 0.762 0.771

LR
F1-Score 0.170 0.737
Precision 0.269 0.733
Recall 0.500 0.740

XGB
F1-Score 0.826 0.825
Precision 0.913 0.923
Recall 0.782 0.778

Table B.4: CIC-IDS2017 Oversampled results for GP-FS and GP-NFS

B.2 CSE-CIC-IDS2018 Oversampled

B.2.1 CSE-CIC-IDS2018 Original with Oversampling

ML Model F1-Score Precision Recall
DT 0.999 0.999 0.998
RF 0.999 1.000 0.999

Gaussian NB 0.183 0.602 0.507
k-NN 0.959 0.950 0.969
LR 0.634 0.682 0.782
XGB 0.999 1.000 0.999

Table B.5: CSE-CIC-IDS2018 Original with Oversampling
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B.2.2 CSE-CIC-IDS2018 PCA Oversampled Results

ML Model Metric PCA-5 PCA-10 PCA-15 PCA-20

DT
F1-Score 0.985 0.987 0.984 0.956
Precision 0.985 0.987 0.983 0.976
Recall 0.984 0.987 0.985 0.939

RF
F1-Score 0.991 0.992 0.994 0.995
Precision 0.995 0.996 0.997 0.997
Recall 0.988 0.988 0.991 0.993

Gaussian NB
F1-Score 0.911 0.942 0.934 0.923
Precision 0.896 0.946 0.933 0.916
Recall 0.928 0.938 0.935 0.930

k-NN
F1-Score 0.983 0.989 0.992 0.992
Precision 0.979 0.987 0.990 0.990
Recall 0.987 0.992 0.994 0.994

LR
F1-Score 0.940 0.942 0.945 0.944
Precision 0.939 0.941 0.945 0.942
Recall 0.942 0.944 0.946 0.946

XGB
F1-Score 0.986 0.980 0.992 0.994
Precision 0.985 0.988 0.992 0.994
Recall 0.986 0.973 0.992 0.993

Table B.6: CSE-CIC-IDS2018 Oversampled results for PCA
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B.2.3 CSE-CIC-IDS2018 ICA Oversampled Results

ML Model Metric ICA-5 ICA-10 ICA-15 ICA-20

DT
F1-Score 0.978 0.992 0.992 0.993
Precision 0.985 0.993 0.992 0.993
Recall 0.971 0.992 0.992 0.993

RF
F1-Score 0.993 0.996 0.996 0.996
Precision 0.995 0.998 0.998 0.998
Recall 0.990 0.994 0.993 0.994

Gaussian NB
F1-Score 0.835 0.690 0.733 0.838
Precision 0.806 0.698 0.725 0.810
Recall 0.895 0.804 0.835 0.888

k-NN
F1-Score 0.984 0.991 0.992 0.993
Precision 0.980 0.989 0.991 0.991
Recall 0.988 0.991 0.994 0.994

LR
F1-Score 0.936 0.942 0.952 0.953
Precision 0.933 0.941 0.962 0.963
Recall 0.939 0.944 0.943 0.944

XGB
F1-Score 0.988 0.994 0.994 0.995
Precision 0.988 0.995 0.995 0.995
Recall 0.988 0.994 0.994 0.995

Table B.7: CSE-CIC-IDS2018 Oversampled results for ICA
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B.2.4 CSE-CIC-IDS2018 GP Oversampled Results

ML Model Metric GP-FS GP-NFS

DT
F1-Score 0.985 0.988
Precision 0.986 0.988
Recall 0.985 0.988

RF
F1-Score 0.987 0.989
Precision 0.989 0.990
Recall 0.986 0.988

Gaussian NB
F1-Score 0.284 0.452
Precision 0.607 0.634
Recall 0.556 0.657

k-NN
F1-Score 0.980 0.982
Precision 0.976 0.980
Recall 0.984 0.985

LR
F1-Score 0.472 0.688
Precision 0.628 0.704
Recall 0.662 0.816

XGB
F1-Score 0.983 0.986
Precision 0.985 0.988
Recall 0.982 0.984

Table B.8: CSE-CIC-IDS2018 Oversampled results for GP-FS and GP-NFS

B.3 CERT r4.2 Week Oversampled

B.3.1 CERT r4.2 Week Original with Oversampling

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.676 0.698 0.658 0.868 1.000 0.792
RF 0.769 0.864 0.714 0.955 1.000 0.917

Gaussian NB 0.501 0.517 0.908 0.493 0.505 0.883
k-NN 0.518 0.514 0.527 0.500 0.500 0.500
LR 0.491 0.515 0.890 0.505 0.508 0.854
XGB 0.895 0.862 0.936 1.000 1.000 1.000

Table B.9: CERT r4.2 Week Original with Oversampling
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B.3.2 CERT r4.2 Week PCA Oversampled

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.592 0.638 0.587 0.612 0.778 0.955 0.955 0.955
Precision 0.600 0.635 0.588 0.626 0.916 1.000 1.000 1.000
Recall 0.586 0.641 0.585 0.602 0.708 0.917 0.917 0.917

RF
F1-Score 0.592 0.719 0.681 0.702 0.900 0.955 0.955 0.955
Precision 0.790 0.972 0.998 0.998 1.000 1.000 1.000 1.000
Recall 0.555 0.643 0.611 0.627 0.833 0.917 0.917 0.917

Gaussian NB
F1-Score 0.490 0.512 0.512 0.510 0.489 0.536 0.527 0.520
Precision 0.504 0.511 0.511 0.510 0.504 0.521 0.517 0.514
Recall 0.570 0.578 0.584 0.596 0.757 0.990 0.988 0.985

k-NN
F1-Score 0.612 0.659 0.662 0.666 0.958 1.000 1.000 1.000
Precision 0.581 0.615 0.618 0.621 0.958 1.000 1.000 1.000
Recall 0.686 0.766 0.758 0.766 0.958 1.000 1.000 1.000

LR
F1-Score 0.489 0.478 0.494 0.493 0.547 0.978 0.978 0.978
Precision 0.514 0.512 0.516 0.516 0.527 1.000 1.000 1.000
Recall 0.858 0.860 0.908 0.907 0.992 0.958 0.958 0.958

XGB
F1-Score 0.598 0.733 0.736 0.729 0.900 0.955 0.955 0.955
Precision 0.581 0.736 0.763 0.809 1.000 1.000 1.000 1.000
Recall 0.624 0.729 0.713 0.682 0.833 0.917 0.917 0.917

Table B.10: CERT r4.2 Week Oversampled results for PCA
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B.3.3 CERT r4.2 Week ICA Oversampled

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.644 0.619 0.664 0.621 0.848 0.955 0.909 0.909
Precision 0.640 0.621 0.671 0.618 0.863 1.000 0.950 0.950
Recall 0.649 0.617 0.657 0.625 0.833 0.917 0.875 0.875

RF
F1-Score 0.666 0.668 0.670 0.668 0.929 0.955 0.929 0.955
Precision 0.776 0.962 0.998 0.962 1.000 1.000 1.000 1.000
Recall 0.619 0.603 0.603 0.603 0.875 0.917 0.875 0.917

Gaussian NB
F1-Score 0.505 0.531 0.519 0.528 0.497 0.552 0.531 0.542
Precision 0.508 0.521 0.514 0.519 0.505 0.530 0.519 0.524
Recall 0.586 0.593 0.588 0.606 0.807 0.993 0.989 0.991

k-NN
F1-Score 0.610 0.663 0.662 0.654 0.958 1.000 1.000 1.000
Precision 0.581 0.617 0.618 0.612 0.958 1.000 1.000 1.000
Recall 0.678 0.774 0.766 0.750 0.958 1.000 1.000 1.000

LR
F1-Score 0.490 0.477 0.493 0.493 0.546 0.978 1.000 1.000
Precision 0.512 0.512 0.516 0.516 0.527 1.000 1.000 1.000
Recall 0.786 0.860 0.907 0.907 0.992 0.958 1.000 1.000

XGB
F1-Score 0.664 0.730 0.690 0.756 0.935 0.955 0.955 0.955
Precision 0.628 0.740 0.722 0.803 0.955 1.000 1.000 1.000
Recall 0.727 0.721 0.666 0.722 0.917 0.917 0.917 0.917

Table B.11: CERT r4.2 Week Oversampled results for ICA
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B.3.4 CERT r4.2 Week GP Oversampled

ML Model Metric
0vsAll 0vs1 3

GP-FS GP-NFS GP-FS GP-NFS

DT
F1-Score 0.565 0.614 0.955 0.955
Precision 0.541 0.612 1.000 1.000
Recall 0.741 0.617 0.917 0.917

RF
F1-Score 0.564 0.614 1.000 0.900
Precision 0.540 0.605 1.000 1.000
Recall 0.741 0.625 1.000 0.833

Gaussian NB
F1-Score 0.568 0.556 0.488 0.382
Precision 0.544 0.536 0.505 0.500
Recall 0.681 0.851 0.876 0.599

k-NN
F1-Score 0.617 0.636 1.000 0.978
Precision 0.601 0.608 1.000 1.000
Recall 0.640 0.687 1.000 0.958

LR
F1-Score 0.539 0.540 1.000 0.978
Precision 0.530 0.530 1.000 1.000
Recall 0.927 0.927 1.000 0.958

XGB
F1-Score 0.562 0.643 0.978 0.978
Precision 0.539 0.596 1.000 1.000
Recall 0.770 0.796 0.958 0.958

Table B.12: CERT r4.2 Week Oversampled results for GP

B.4 CERT r4.2 Day Oversampled

B.4.1 CERT r4.2 Day Original with Oversampling

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.824 0.860 0.795 0.786 0.857 0.738
RF 0.845 0.990 0.767 0.962 1.000 0.929

Gaussian NB 0.485 0.508 0.800 0.492 0.502 0.763
k-NN 0.508 0.507 0.511 0.500 0.500 0.500
LR 0.451 0.505 0.798 0.471 0.501 0.823
XGB 0.978 0.977 0.979 0.975 1.000 0.952

Table B.13: CERT r4.2 Day Original with Oversampling
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B.4.2 CERT r4.2 Day PCA Oversampled

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.586 0.599 0.595 0.584 0.891 0.929 0.961 0.939
Precision 0.589 0.607 0.596 0.587 0.860 0.929 0.999 0.950
Recall 0.584 0.592 0.595 0.582 0.929 0.929 0.929 0.929

RF
F1-Score 0.592 0.598 0.602 0.614 0.947 0.962 0.962 0.962
Precision 0.755 0.786 0.870 0.893 1.000 1.000 1.000 1.000
Recall 0.557 0.559 0.560 0.567 0.905 0.929 0.929 0.929

Gaussian NB
F1-Score 0.496 0.503 0.501 0.499 0.502 0.512 0.507 0.503
Precision 0.502 0.504 0.503 0.504 0.505 0.508 0.506 0.505
Recall 0.534 0.535 0.531 0.542 0.961 0.967 0.977 0.961

k-NN
F1-Score 0.564 0.594 0.605 0.605 0.858 0.888 0.913 0.904
Precision 0.546 0.570 0.578 0.575 0.797 0.839 0.880 0.865
Recall 0.608 0.648 0.661 0.676 0.952 0.952 0.952 0.952

LR
F1-Score 0.466 0.460 0.462 0.465 0.519 0.588 0.532 0.517
Precision 0.505 0.506 0.506 0.506 0.511 0.549 0.518 0.510
Recall 0.736 0.801 0.810 0.819 0.970 0.951 0.948 0.946

XGB
F1-Score 0.538 0.596 0.615 0.632 0.895 0.962 0.962 0.950
Precision 0.525 0.560 0.574 0.591 0.886 1.000 1.000 0.974
Recall 0.750 0.777 0.773 0.746 0.905 0.929 0.929 0.929

Table B.14: CERT r4.2 Day PCA Oversampled results
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B.4.3 CERT r4.2 Day ICA Oversampled

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.599 0.598 0.623 0.588 0.915 0.878 0.936 0.929
Precision 0.597 0.604 0.627 0.599 0.925 0.854 0.972 0.929
Recall 0.600 0.592 0.618 0.579 0.905 0.904 0.905 0.929

RF
F1-Score 0.609 0.640 0.663 0.609 0.936 0.963 0.962 0.974
Precision 0.788 0.892 0.932 0.855 0.972 1.000 1.000 1.000
Recall 0.567 0.585 0.601 0.567 0.905 0.929 0.929 0.952

Gaussian NB
F1-Score 0.499 0.506 0.505 0.502 0.514 0.516 0.515 0.509
Precision 0.503 0.505 0.503 0.504 0.510 0.509 0.510 0.507
Recall 0.528 0.533 0.532 0.533 0.993 0.968 0.992 0.993

k-NN
F1-Score 0.564 0.594 0.598 0.601 0.880 0.888 0.879 0.880
Precision 0.546 0.570 0.575 0.573 0.828 0.840 0.796 0.828
Recall 0.608 0.648 0.645 0.666 0.952 0.952 0.952 0.952

LR
F1-Score 0.463 0.460 0.461 0.465 0.518 0.588 0.536 0.528
Precision 0.504 0.506 0.506 0.506 0.511 0.549 0.518 0.516
Recall 0.736 0.801 0.811 0.820 0.970 0.951 0.948 0.947

XGB
F1-Score 0.561 0.613 0.661 0.662 0.952 0.963 0.963 0.952
Precision 0.537 0.573 0.610 0.621 0.952 1.000 1.000 0.953
Recall 0.750 0.777 0.805 0.749 0.905 0.929 0.929 0.952

Table B.15: CERT r4.2 Day ICA Oversampled results
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B.4.4 CERT r4.2 Day GP Oversampled

ML Model Metric
0vsAll 0vs1 3

GP-FS GP-NFS GP-FS GP-NFS

DT
F1-Score 0.520 0.580 0.536 0.541
Precision 0.515 0.549 0.520 0.522
Recall 0.675 0.742 0.902 0.926

RF
F1-Score 0.520 0.582 0.532 0.541
Precision 0.515 0.550 0.518 0.522
Recall 0.672 0.750 0.854 0.926

Gaussian NB
F1-Score 0.492 0.498 0.401 0.750
Precision 0.509 0.507 0.500 0.673
Recall 0.770 0.660 0.548 0.952

k-NN
F1-Score 0.526 0.682 0.870 0.925
Precision 0.525 0.657 0.840 0.947
Recall 0.527 0.716 0.905 0.905

LR
F1-Score 0.493 0.486 0.510 0.544
Precision 0.509 0.509 0.508 0.524
Recall 0.783 0.829 0.942 0.950

XGB
F1-Score 0.511 0.552 0.513 0.527
Precision 0.514 0.533 0.509 0.515
Recall 0.768 0.920 0.921 0.924

Table B.16: CERT r4.2 Day GP Oversampled results

B.5 CERT r4.2 Session Oversampled

B.5.1 CERT r4.2 Session Original with Oversampling

ML Model
0vsAll 0vs1 3

F1-Score Precision Recall F1-Score Precision Recall
DT 0.848 0.875 0.825 0.910 0.921 0.900
RF 0.831 0.978 0.753 0.912 1.000 0.850

Gaussian NB 0.397 0.502 0.737 0.468 0.501 0.837
k-NN 0.503 0.502 0.506 0.534 0.526 0.550
LR 0.454 0.504 0.764 0.468 0.501 0.837
XGB 0.968 0.950 0.986 0.987 1.000 0.975

Table B.17: CERT r4.2 Session Original with Oversampling
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B.5.2 CERT r4.2 Day PCA Session Oversampled

ML Model Metric
0vsAll 0vs1 3

P-5 P-10 P-15 P-20 P-5 P-10 P-15 P-20

DT
F1-Score 0.584 0.613 0.592 0.642 0.868 0.917 0.878 0.889
Precision 0.587 0.634 0.599 0.658 0.889 0.969 0.912 0.937
Recall 0.582 0.598 0.586 0.629 0.850 0.875 0.850 0.850

RF
F1-Score 0.594 0.608 0.603 0.637 0.929 0.929 0.929 0.912
Precision 0.797 0.782 0.854 0.893 1.000 1.000 1.000 1.000
Recall 0.556 0.567 0.561 0.583 0.875 0.875 0.875 0.850

Gaussian NB
F1-Score 0.501 0.504 0.499 0.496 0.603 0.519 0.522 0.527
Precision 0.502 0.504 0.503 0.503 0.561 0.511 0.512 0.515
Recall 0.512 0.519 0.528 0.558 0.824 0.822 0.822 0.823

k-NN
F1-Score 0.569 0.622 0.607 0.644 0.921 0.910 0.936 0.932
Precision 0.548 0.588 0.575 0.604 0.944 0.921 0.947 0.971
Recall 0.629 0.704 0.691 0.738 0.900 0.900 0.925 0.900

LR
F1-Score 0.451 0.465 0.466 0.472 0.487 0.523 0.551 0.566
Precision 0.504 0.506 0.506 0.506 0.502 0.513 0.528 0.536
Recall 0.744 0.825 0.838 0.853 0.944 0.971 0.973 0.974

XGB
F1-Score 0.540 0.590 0.604 0.645 0.929 0.929 0.959 0.974
Precision 0.525 0.570 0.565 0.599 1.000 0.970 1.000 0.999
Recall 0.798 0.812 0.774 0.782 0.875 0.875 0.925 0.950

Table B.18: CERT r4.2 Day PCA Session Oversampled results
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B.5.3 CERT r4.2 Day ICA Session Oversampled

ML Model Metric
0vsAll 0vs1 3

I-5 I-10 I-15 I-20 I-5 I-10 I-15 I-20

DT
F1-Score 0.572 0.633 0.617 0.644 0.917 0.929 0.894 0.912
Precision 0.576 0.643 0.626 0.674 0.969 1.000 1.000 1.000
Recall 0.569 0.625 0.609 0.623 0.875 0.875 0.825 0.850

RF
F1-Score 0.597 0.646 0.639 0.651 0.929 0.912 0.894 0.912
Precision 0.801 0.832 0.841 0.881 1.000 0.999 1.000 1.000
Recall 0.558 0.594 0.587 0.594 0.875 0.850 0.825 0.850

Gaussian NB
F1-Score 0.505 0.506 0.500 0.497 0.509 0.514 0.524 0.510
Precision 0.504 0.505 0.502 0.502 0.506 0.508 0.514 0.507
Recall 0.521 0.532 0.520 0.524 0.819 0.820 0.822 0.820

k-NN
F1-Score 0.571 0.620 0.603 0.635 0.921 0.932 0.932 0.944
Precision 0.550 0.586 0.572 0.621 0.944 0.970 0.971 1.000
Recall 0.626 0.698 0.688 0.714 0.900 0.900 0.900 0.900

LR
F1-Score 0.471 0.464 0.467 0.472 0.487 0.517 0.561 0.575
Precision 0.505 0.506 0.506 0.507 0.502 0.510 0.519 0.541
Recall 0.737 0.801 0.812 0.821 0.944 0.970 0.974 0.974

XGB
F1-Score 0.548 0.611 0.638 0.734 0.917 0.962 0.974 0.974
Precision 0.529 0.570 0.590 0.678 0.969 1.000 1.000 1.000
Recall 0.819 0.787 0.804 0.842 0.875 0.950 0.950 0.950

Table B.19: CERT r4.2 Day ICA Session Oversampled results
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B.5.4 CERT r4.2 Day GP Session Oversampled

ML Model Metric
0vsAll 0vs1 3

GP-FS GP-NFS GP-FS GP-NFS

DT
F1-Score 0.505 0.506 0.913 0.870
Precision 0.507 0.511 0.865 0.827
Recall 0.591 0.768 0.975 0.925

RF
F1-Score 0.505 0.506 0.913 0.870
Precision 0.507 0.511 0.865 0.827
Recall 0.591 0.768 0.975 0.925

Gaussian NB
F1-Score 0.485 0.506 0.522 0.472
Precision 0.506 0.509 0.512 0.501
Recall 0.751 0.696 0.822 0.919

k-NN
F1-Score 0.525 0.630 0.871 0.833
Precision 0.519 0.616 0.933 0.875
Recall 0.536 0.647 0.825 0.800

LR
F1-Score 0.490 0.453 0.713 0.719
Precision 0.508 0.505 0.638 0.645
Recall 0.813 0.824 0.975 0.950

XGB
F1-Score 0.507 0.498 0.873 0.860
Precision 0.511 0.511 0.806 0.800
Recall 0.748 0.913 0.975 0.950

Table B.20: CERT r4.2 Day GP Session Oversampled results
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