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Abstract

Control Moment Gyroscopes (CMGs) are a unique class of spacecraft momentum

exchange actuators which can deliver relatively high control torques on a spacecraft.

In this thesis, a Control Momentum Gyroscope design known as the Double-Gimbal

Scissored-Pair Control Moment Gyroscope (DGSPCMG) is investigated and applied

to a CubeSat placed on three advanced mission case studies in Low-Earth Orbit

(LEO). In the first of these case studies, a novel extended DGSPCMG steering con-

trol law is introduced which allows the satellite to escape CMG singularities and to

perform desaturation of the CMG gimbals while maintaining attitude pointing. In the

second case study, the DGSPCMG is applied to enable CubeSat active debris removal

missions and a new inertia tensor estimator is presented for tether-assisted inertia es-

timation of space debris objects. Finally, in the third case study, the DGSPCMG

is applied to terrestrial target pointing applications. In addition, this thesis builds

a high-fidelity orbital simulation environment for detailed validation of the proposed

control laws and an attitude determination system is developed to complement the

proposed CMG steering control laws. For the simulation conditions used in this re-

search, the proposed DGSPCMG equipped CubeSat is shown to be highly capable of

performing advanced mission objectives in LEO.
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Chapter 1

Introduction

CubeSats are a specific class of nanosatellites which conform to a geometric standard
where the size of the CubeSat is expressed in a number of Units or “U’s” defined
by 10 cm cubes [2]. Since 1999, the CubeSat platform has grown in popularity with
modern CubeSats now performing important scientific and engineering objectives [3].
At the time of writing the subject thesis, developments in miniaturization of satellite
payloads and sensors has led to a significant number of CubeSats being launched into
Low Earth Orbit (LEO) to carry out primarily science missions [4]. It has been argued
that to enable the rapid growth of these advanced CubeSat objectives there will be a
rise in demand for highly-agile spacecraft which can rapidly reorient and stabilize their
attitude to observe or collect scientific data. This demand could motivate satellite
developers to equip their satellites with Control Moment Gyroscopes (CMGs) which
tend to have higher torque to power-draw ratios than commonly used reaction wheel
(RW) actuators. [5].

While some progress has been made on the miniaturization of CMGs for Cube-
Sat applications in [6][7] and [8], many of these multi-CMG clusters account for a
significant portion of the mass and volume ascribed to the CubeSat. Additionally,
commercial-off-the-shelf (COTS) control moment gyroscopes are fairly limited, with
some designs not conforming to the CubeSat unit standard [6]. It is clear that there
is a need to develop orbit-ready CMG designs and control laws which enable the
modern day objectives of current highly-agile CubeSat missions.

1.1 The Control Moment Gyroscope

A CMG is typically a fixed momentum device which can be gimballed to change the
direction of the stored angular momentum in a spinning flywheel [9]. The gimbal
concept is unlike RWs – where the flywheel accelerates or decelerates to change the
stored angular momentum about a fixed axis. The most basic CMG is the Single-
Gimbal CMG (SGCMG) which grants control about a single axis of a satellite. It
follows that for full 3-axis control of the satellite, a minimum of three SGCMGs would
be required [9]. Many clusters of SGCMGs have been developed, all which strive to
enable 3-axis control while modifying the configuration of the SGCMGs to change
the performance characteristics of the cluster.

Two of these SGCMG cluster designs include the Rooftop Array or Pyramid Array
CMG [10]. For the case of the Pyramid Array CMG, the cluster produces a desirable
feasible angular momentum profile which is spherical [11]. For the case of the Rooftop
array, the feasible angular momentum profile is elliptical [10]. The feasible angular
momentum profile is a surface in 3d angular momentum space for which the CMG

1
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total angular momentum vector cannot extend beyond this surface. Fig. 1.1 shows
the gimbal axes of individual SGCMGs which characterize the Pyramid Array CMGs.
It is typical for the gimbal axes to be skewed in this design by 54.74◦ to achieve a
spherical angular momentum profile [7].

Pyramid Array

Spacecraft Frame

β h1

h2

h3

h4

a1

a2

ai = Gimbal Axis 
hi = Angular Momentum 

Vector 

a3

a4

x

y

z

βi = Gimbal Axis Skew 
Angle 

Key

Figure 1.1: Vector Diagram of Pyramid Array CMG Design with 4 SGCMGs Shown.

These CMG designs employ four SGCMGs (each with a single flywheel); however,
by adding an additional gimbal to a given flywheel, 3-axis control can be maintained
while reducing the number of flywheels. One such example is known as the Variable-
Speed Double-Gimbal CMG (VSDGCMG) where a single variable speed flywheel and
two gimbal axes can achieve 3-axis control [12][13]. Unlike SGCMGs, Double Gimbal
CMGs (DGCMGs) must support some of the torque produced by the CMG in the
outer gimbal [9]. Therefore, there is typically a trade-off to be considered with torque
generation and the reduction of flywheels. A trade-off associated with VSDGCMGs
specifically, is that, although only one flywheel is required, the degree of freedom
enabled by the variable speed flywheel is limited to the relatively low torque output
of the DC motor driving the wheel. With SGCMG clusters, the requirement for a
minimum of three flywheels increases the actuator mass which could complicate their
integration into small satellites.

A recent development in CMG designs known as the Double-Gimbal Scissored-
Pair CMG (DGSPCMG) presented in [14] has shown promise for use in agile small
satellites because it can achieve 3-axis attitude control with only two flywheels and
three gimbal axes. The DGSPCMG and its primary components are represented
pictorially in Fig. 1.2. A nicety of the subject design is that its internal singulari-
ties are only of the hyperbolic type which provides much more flexibility for escape
from these singularities. Singularities are a complication of CMGs where for specific
scenarios, the CMG loses the ability to produce torque about all axes, making it de-
sirable to avoid these singular states. An added nuance of the DGSPCMG is that the
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scissor-pair gimbal acts peripherally like the variable speed aspect of VSDGCMGs
in changing the stored angular momentum of the CMG, but the DGSPCMG is not
limited to the capabilities of the DC motor driving the flywheel like the VSDGCMG.

Figure 1.2: Schematic of the DGSPCMG. The symbols δsp, δi, δo represent the
scissored-pair, inner, and outer gimbal axes, respectively.

While SGCMG clusters and DGCMGs alike have been utilized on current and
previous space missions, The DGSPCMG lacks the technical readiness to be ap-
plied to real space missions. Despite having a desirable angular momentum profile
and relatively manageable singular conditions, more study is required to extend the
DGSPCMG to modern advanced agile CubeSat missions. Accordingly, this thesis
makes significant steps to extended DGSPCMG gimbal steering control laws (SCLs)
and demonstrates the possibility for the use of the DGSPCMG for advanced on-orbit
CubeSat missions.

1.2 Case Studies

To introduce the scenarios where the capabilities of the DGSPCMG were analyzed,
this section outlines the case studies which were conducted in the subject thesis. The
need for technology advancements within these case studies is also addressed.
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1.2.1 Earth Observation & Simultaneous Actuator Desaturation

As of March 20th, 2024, there were 9721 active satellites known in orbit [15] with
a large portion of these satellites being LEO Earth observation CubeSats [16]. A
complication of long-term Earth observation missions is that secular disturbances
lead to a buildup of stored angular momentum in momentum exchange actuators
like CMGs. Such a buildup eventually necessitates for the actuator to offload excess
stored momentum. Without executing momentum dumping, attitude actuators like
CMGs will saturate and attitude control will be lost.

Reaction wheel desaturation is a well-studied concept; however, many methods to
perform desaturation treat it as a separate operation from nominal pointing [17][18].
More modern methods have been attempting to handle both events simultaneously so
that the main objectives of the satellite mission are not disrupted [19]. The desatura-
tion of CMGs is a relatively understudied concept with only a few papers discussing
the effect of orbital disturbances on the CMG singularities [20]. The degeneration of
a DGSPCMG into a singularity through orbital disturbances is further studied in this
thesis and a control methodology is proposed to handle these singularities, actuator
saturation effects, and nominal pointing.

1.2.2 Active Debris Removal

According to the European Space Agency (ESA) 2022 space environment report, at
the end of 2022 there were 19694 space debris objects in LEO. Already, the chance
of collisions among existing space debris is high enough that the number of objects
in LEO is expected to increase even without new launches [21]. The effect of having
continual growth of space debris objects is known as the “Kessler Syndrome”, where
the fragmentation of a body from an orbital collision results in a spread of objects
which can subsequently cause more collisions [22]. These rapid debris growth projec-
tions have lead researchers to develop Active Debris Removal (ADR) missions where
agile spacecraft attempt to remove large debris objects from orbit which have a higher
probability of causing a collision.

These future ADR missions will require a highly-agile and robust Attitude De-
termination and Control System (ADCS) to handle capture of large debris objects.
CMGs could be a necessary technology to enable this agility; however, for missions
where information about the target is lacking, online estimation algorithms will be re-
quired to determine the debris’ properties on-orbit and subsequently update the CMG
control laws. One promising method of debris capture is to attach a long tether cable
to the debris object. While the method allows the chaser spacecraft to maintain safe
distance from the debris, more work is required to be able to estimate the debris’
inertial properties using the tether. The method of estimating space debris inertia
with a space tether is advanced in this thesis while applying the DGSPCMG onboard
the proposed chaser satellite for attitude control.
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1.2.3 Oceanographic Target Tracking

For advanced optical payloads, satellites may be required to slew towards and track
a target on Earth by pointing the boresight of an optical sensor at the ground tar-
get. While CubeSats have been used extensively in this task for observing terres-
trial targets [23][24], it has been argued that CubeSats have been underutilized on
oceanographic missions [25]. With future missions like MANTIS (being developed at
Dalhousie University) and HYPSO-2 (being developed at the Norwegian University of
Science) aiming to perform oceanographic science objectives, there is a need to demon-
strate a CubeSat ADCS for oceanographic target tracking. While researchers have
demonstrated the advanced capabilities of CMGs for rest-to-rest attitude maneuvers,
more work is required to validate the control laws for target tracking campaigns. This
research investigates the use of a DGSPCMG-equipped ADCS on an oceanographic
target tracking campaign to help address the lack of CubeSat oceanographic mis-
sions. The case study was additionally used to further validate the novel extended
DGSPCMG control laws developed within the thesis.

1.3 Thesis Overview & Objectives

To support the development of future agile small satellites in LEO, this thesis aims
to:

1. Develop a highly-robust and agile steering control law that enables of the use of
the DGSPCMG on-orbit. In addition, the steering control law should add the
capability to desaturate the CMG momentum without disrupting the spacecraft
mission objectives.

2. Propose a new inertia estimation algorithm that determines the inertial param-
eters of tethered uncooperative space debris on CubeSat ADR missions.

3. Demonstrate precision oceanographic target tracking through simulations of a
DGSPCMG-equipped CubeSat with attitude determination algorithms in the
loop.

4. Build on the capabilities at Dalhousie University for performing future high-
fidelity spaceflight simulations.

In effect, the thesis develops technological improvements for emerging technologies
in satellite ADCS but ties all advancements under the use of the DGSPCMG on the
discussed mission concepts. By doing so, the advanced capabilities of the DGSPCMG
are shown along with the success of the novel control or estimation algorithms pro-
posed within this thesis. Further, the thesis aims to make significant contributions
to extending the development of spaceflight simulations at Dalhousie University by
building on the work provided in previous theses such as [26]. The present thesis adds,
adapts, or modifies many of the orbit and attitude propagation techniques provided
in [26] to progress towards having high-fidelity future spaceflight simulations being
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performed at Dalhousie University. Efforts made to advance simulation fidelity also
act to increase the confidence in the ADCS tested within the simulator.

In pursuit of achieving these objectives, the thesis is organized as follows: Chap-
ter 2 provides a literature review summarizing current commercial and experimental
CMG designs. In Chapter 3 the orbit and attitude propagators which drive the sim-
ulations are derived. Chapter 3 also includes models for orbital disturbances which
impact spacecraft ADCS. Following, in Chapter 4, the algorithms which estimate
the spacecraft attitude and orbit are provided in lead up to controlling this attitude
in Chapter 5. In relation to attitude control, Chapter 5 presents the DGSPCMG
design and its dynamics are derived. A deep discussion is provided for the specific
singularities encountered by the DGSPCMG and its momentum envelope. Chapter 5
also develops the novel Extended DGSPCMG steering control law and develops the
magnetic torque gimbal compensator. Given that the attitude controller is closely
tied to the steering control law, it is also presented in this chapter. Chapter 6 applies
the novel Extended DGSPCMG control law on an ADR mission where a novel inertia
estimation algorithm is developed. This novel inertia estimator is shown to accu-
rately determine the inertia of tethered debris despite not having an assumption of
the tether connection point. Following, in Chapter 7, the third case study of oceano-
graphic target pointing with a CMG is derived and discussed. Target Tracking error
metrics are provided in this section to evaluate the proposed ADCS performance on
target tracking missions. Finally, Chapter 8 draws conclusions and recommendations
based on the research developments made in the thesis.



Chapter 2

Literature Review

With the CubeSat standard gaining popularity and the clear benefits CMGs provide
for agile satellites, it would be expected for academic and industrial organizations
to pursue the development of micro-sized CMGs. This section investigates the need
for further development of CubeSat CMG technology based on a literature study of
flown, commercially available, and experimental CMG designs.

2.1 Flown CMG Designs on CubeSat Platforms

Table 2.1 compiles a set of data related to CubeSat-sized CMG designs which were
flown on successful space missions. CubeSats which are planned or were canceled were
not included in the list. Notably, there has not been a proliferation of CMG-equipped
CubeSats with only three publicly-listed mission designs including a CMG. While the
CMG used on SCAT++ and SwampSAT acted as the primary attitude actuator, the
CMG used on BILSAT was only used as a technology demonstration for 1-axis CMG
rotational control.

Table 2.1: Flown CubeSat CMG Units as of 2024

Compilation of Flown CMG Designs & Specifications

Satellite
& Ref

Developer Satellite
Size

CMG
Package
Size

Cluster
Design

Steering
Law

SCAT++
[27]

Naval
Postgradu-
ate School

2U 0.5U N/A N/A

SwampSAT
[28]

University
of Florida

1U 0.5U Pyramid Generally
Singularity
Robust
(GSR)

BILSAT-1
[29]

University
of Surrey

60×60×60
cm

2U 2-CMG
Parallel

Inverse
Law

7
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2.2 Commercial and Experimental CMG Designs

Table 2.2 compiles a list of published CMGs where designs provided in literature
and available from retail were considered. Highlighted entries in Table 2.2 are CMG
designs which are purely experimental and not available as an off the shelf component.
The provided list is not a conclusive list of available CMGs, but demonstrates that
CubeSat engineering teams are faced with a limited selection of commercial CMGs.
In some cases, the available CMG is an SGCMG, which forces the CubeSat developer
to further design the cluster and SCL to accommodate the use of the SGCMG. In
many cases, a subject matter expert would be required to enable the development of
a mission specific CMG cluster and SCL.

Table 2.2: Available CMG Designs as of 2024, Experimental CMG Designs High-
lighted

Compilation of Identified CMG Designs & Specifications

Name &
Ref

Manufac-
turer

Volume
(mm)

Mass (kg) Momentum
Storage
(Nms)

Design
Platform

Cluster De-
sign

CMG-10m
[30]

Tensor Tech 100× 100×
75

0.29 10e− 03 3U Spherical

Microsat
CMG [31]

Honeybee
Robotics

230× 125×
82

0.7 224e− 03 >6U Box

Micro-
CMG [32]

Veoware Space 97 × 97 ×
180

2.75 0.7 SmallSat SGCMG

CMG8 [33] Blue Canyon
Technologies

220× 220×
300

10 8 SmallSat Pallet

CMG
Mk.II [34]

University of
Surrey

N/A 0.2 0.23 MicroSat SGCMG

CMG 40s
[35]

Airbus N/A 38 40 Medium SGCMG

M50 [36] Honeywell
Aerospace

195× 447×
714

28 25 Medium SGCMG

Baker
CMG [7]

Lulea Univer-
sity of Tech

95.8 ×
95.8× 95.8

0.85 4.57e− 03 2U-3U Pyramid

Gaude
CMG [6]

Cranfield Uni-
versity

100× 100×
50

0.25 0.629e− 03 2U-3U Pyramid

Steyn
CMG [37]

Stellenbosch
University

47× 49.5×
94

0.26 1.43e− 03 2U VSDGSPCMG

Most notably from Table 2.2, only 2 COTS CMGs were identified for the CubeSat
design platform. The Microsat CMG is most applicable to CubeSats larger than 6U—
a CubeSat bus size which represents only approximately 15% of all launched CubeSats
[16]. A complication of the Tensor Tech CMG-10m unit is that this spherical CMG
only enables 2-axis control of the spacecraft. A possible reason for the lack of avail-
able COTS CMGs is that, as found by Votel and Sinclair (2012), CMGs lack power
efficiency when the satellite has principal moments of inertia smaller than 1 kgm2 [5].
This notion would suggest that CMGs are not viable on a power consumption basis
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when the satellite bus is smaller than 6U. Despite this design constraint, the more re-
cent experimental Steyn (2015) Variable-Speed Double-Gimbal Scissored-Pair CMG
(VSDGSPCMG) demonstrated a power efficiency which was comparatively greater
than similarly-sized reaction wheels systems fitting inside 1U [37]. While power,
mass, and volume efficiencies vary for each CMG or RW cluster design, the torque to
momentum ratio is consistently higher for CMGs [5].

The findings from considering the available CMG designs indicate that the lack
of commercial CMG options would justifiably explain the paucity of CMG usage on
flown CubeSat missions. Experimental CMG designs have shown the viability of
CMGs for common CubeSat buses in the range of 2U-6U, but these designs are not
turnkey solutions, and they would require lengthy development of advanced ADCS
and SCLs to support the usage of a CMG. With regards to the DGSPCMG, it is
reasonable to expect the design to be similarly power efficient to the Steyn design by
nature of the double-gimbal. This power efficiency could be realized all while lacking
some of the constraints identified in Section. 1.1 with variable speed CMGs. Like
other experimental designs, the DGSPCMG requires further SCL development to be
routinely applied on CubeSat missions. This thesis develops these control algorithms
and demonstrates their success in high fidelity simulations.



Chapter 3

Attitude and Orbit Propagator

In this chapter the orbit and attitude equations of motion are presented for the focus
satellite design. Orbit effects such as disturbance torques and lighting conditions are
also established to complete the high-fidelity orbit propagation.

3.1 Mathematical Preliminaries

Prior to developing the attitude and orbit equations of motion which enable the sim-
ulations presented in this thesis, some mathematical preliminaries must be addressed.
Primarily, an inertial coordinate system is defined to be fixed in position and non-
rotating. A non-inertial coordinate system may be rotating or changing in position.
For the case of this thesis, many of these coordinate frames are Earth or satellite
based and are explained thoroughly in Appendix A. When addressing a coordinate
reference frame, vectrix notation is applied from Hughes (2012) [38]. A vectrix, de-
noted by Fx, represents a set of orthonormal and dextral (right-handed) basis vectors
belonging to reference frame “x”. Using vectrix notation, it is typical for dot and
cross products to be written as:

ax · bx = aT
xbx, ax × bx = a×

x bx (3.1)

Here ax = [a1, a2, a3]
T is a 3 component column vector expressed in Fx. The operator

()× represents the skew symmetric matrix which is constructed following:

a×
x ≜

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (3.2)

To transform a vector from its expression in one reference frame to its equivalent
expression in another reference frame, a Direction Cosine Matrix (DCM) is applied
via left-hand multiplication. The principal rotation DCMs about the x, y, and z
bases vectors of a reference frame are represented by C1, C2, and C3, respectively. A
3-2-1 Euler rotation sequence can therefore be defined by:

A2
1 = C1(θ1)C2(θ2)C3(θ3) (3.3)

10
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where the principal rotation functions “C1(θ)”, “C2(θ)”, and “C3(θ)” follow the
convention provided in the following set of equations:

C1(θ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 (3.4)

C2(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (3.5)

C3(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (3.6)

For the applications within this thesis, A2
1 represents the subsequent DCM which

expresses a vector from F1 into its expression in F2. The rotation angles θ1−3 about
the principal rotation axes are enclosed in the round brackets proceeding C1-3.

3.1.1 Quaternions

Quaternions are another parameterization method to express rotation. In this thesis,
quaternions are used to express the spacecraft attitude with respect to the inertial
reference frame. A quaternion q, is a set of four parameters which posses the unit-
norm property qTq = 1 and represent a rotation about the Euler axis e = [e1, e2, e3]
through angle θ. A quaternion is then expressed as:

q = [q̂, q4]
T = [q1, q2, q3, q4]

T =


e1 sin(θ/2)
e2 sin(θ/2)
e3 sin(θ/2)
cos(θ/2)

 (3.7)

Note that in Eq. (3.7) the first three elements of the quaternion q̂ represent the
vector portion, and the fourth component represents the scalar portion following the
convention provided in [39]. It is sometimes useful to convert the attitude quaternion
to a DCM. The quaternion to DCM conversion is accomplished as follows [40]:

A =

q24 + q21 − q22 − q23 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) q24 − q21 + q22 − q23 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) q24 − q21 − q22 + q23

 (3.8)



12

Some quaternion operators and identities are additionally defined here following the
theory presented in [41] for reference in later sections:

Ω(ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (3.9)

Ξ(q) =


q4 −q3 q2
q3 q4 −q1
−q2 −q1 q4
−q1 −q2 −q3

 (3.10)

q⊗ =


q4 q3 −q2 q1
−q3 q4 q1 q2
q2 −q1 q4 q2
−q1 −q2 −q3 q4

 (3.11)

q−1 =
1

|q|2
[−q1:3 q4]

T (3.12)

A(q) = (q24 − q21 + q22 + q23)I3×3 + 2q1:3q
T
1:3 + 2q4

 0 −q3 −q2
−q3 0 q1
q2 −q1 0

 (3.13)

3.2 Perturbed Orbit Dynamics

In this section the translational equations of motion for a satellite orbiting Earth
in LEO are presented. The formulations are derived on the basis of ensuring high
fidelity and so that unmodeled dynamics exist in the Orbit Determination - Extended
Kalman Filter (OD-EKF) presented later in Section. 4.5.

All orbits around Earth are affected by a number of perturbations which change
the orbit over time. For the case of LEO, the largest of these perturbations is caused
by the oblateness of Earth [42]. The oblateness of Earth causes for the gravitational
acceleration experienced by the satellite to vary with position and for the acceleration
to not be purely radial. While unperturbed orbital dynamics models such as the
Cowell model are sufficient in very short time horizons, a more detailed model is
required to account for perturbations which can cause for hundreds of kilometers of
change in the orbit [43]. To this end, a zonal harmonic gravity model is presented in
this section to address orbital perturbations.

The general equation for the orbital acceleration of the spacecraft in FECI is given
as:

aECI = gECI +
f

m
(3.14)
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In Eq. (3.14) gECI is the orbital acceleration around Earth accounting for zonal
harmonics, f is the sum of all other perturbing forces on the orbit, and m is the mass
of the spacecraft. To yield the gECI term, the spherical harmonic representation for
gravity potential can be considered [44][42][45]:

U =
µ

r

∞∑
n=0

(
Re

r

)n n∑
m=0

Pn,m(sinϕ) [Cn,m cosmλ+ Sn,m sinmλ] (3.15)

Considering Eq. (3.15), the accuracy and computational load can be seen to greatly
depend on the selection of the parameters n and m. The coefficients Cn,m and Sn,m

are the spherical harmonic coefficients specific to a heavenly body and degree n,m.
The Pn,m(x) functions are the Legendre Polynomials corresponding to degree n,m.
Further, µ is the gravitational parameter for Earth, r is the orbital radius, ϕ is the
co-latitude defined by ϕ = π

2
− δ, and λ is the celestial longitude. These parameters

are derived in detail as part of Appendix A.1.8. To demonstrate the effect of the
polynomial degree, n and m can be set to 0 so that Eq. (3.15) reduces to a gravity
potential which is constant regardless of ϕ and λ:

U0,0 =
µ

r
(3.16)

It is commonplace in the literature to represent the coefficient Cn,m as Jn where Jn
terms are known as the Jeffery’s Constants [44]. When m = 0, the harmonic coef-
ficients are known as zonals. When m ̸= 0 the harmonic coefficients are known as
tesserals. For the specific case that m = n the coefficients are known as sectorials.
Hereinafter, this thesis only considers a zonal model with m = 0 because the con-
tribution of tesserals and sectorials to the gravity potential is substantially smaller
than the zonals in short-term time horizons [42]. In addition, it is deemed sufficient
to compute a model of order n = 3 because the contribution of the J4 term is three
orders of magnitude smaller than the J2 term [42]. Noting these selected polynomial
degrees, the gravity potential from Eq. (3.15) reduces to:

U =
µ

r

[
1−

∞∑
n=2

(
Re

r

)n

JnPn(cosϕ)

]
(3.17)

The Jeffery’s constants used in this work are provided in Table 3.1 up to the J4
coefficient.

The acceleration due to gravity can be obtained by computing the gradient of the
gravitational potential with respect to a spacecraft position vector r:

g = −
(
∂U

∂r

)T

= −∂U
∂r

ir −
∂U

r∂ϕ
iϕ (3.18)

or equivalently:
g = grir − gϕiϕ (3.19)
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Table 3.1: Jeffery’s’s Constants Obtained from [1]

Jeffery’s Zonal Constants for Oblate Earth

Coefficient Value

J2 0.0010826269

J3 -0.0000025323

J4 -0.0000016204

Here, ir = [1, 0, 0]T is the radial unit vector and iϕ = [0, 0,−1]T is the southward
unit vector expressed in FLH . Noting Eq. (3.18), the radial gr and transverse gϕ
gravitational acceleration components can be derived by computing the partial dif-
ferentiation of U with respect to r and ϕ respectively:

gr =
∂U

∂r
=

∂

∂r

[
µ

r
− µ

r

(
J2

(
Re

r

)2

P2(cosϕ) + J3

(
Re

r

)3

P3(cosϕ)

)]

gr =
∂

∂r

[
µ

r
− µR2

eJ2
r3

P2(cosϕ)−
µR3

eJ3
r4

P3(cosϕ)

]
gr =

[
− µ

r2
+

3µR2
eJ2

r4
P2(cosϕ) +

4µR3
eJ3

r5
P3(cosϕ)

]
gr = − µ

r2

[
1− 3J2

(
Re

r

)2

P2(cosϕ)− 4J3

(
Re

r

)3

P3(cosϕ)

]
(3.20)

Following the same procedure as done for the radial component but with respect
to ϕ, the transverse component can be found as:

gϕ =
3µ

r2

(
Re

r

)2

sinϕ cosϕ

[
J2 +

1

2
J3

(
Re

r

)
secϕ(5 cos2 ϕ− 1)

]
(3.21)

For completeness, the Legendre Polynomials are provided here:

P0(x) = 1 (3.22)

P1(x) = x (3.23)

P2(x) =
1

2
(3x2 − 1) (3.24)

P3(x) =
1

2
(5x3 − 3x) (3.25)

By considering Eq. (3.20) and Eq. (3.21) it can be deduced that changes in
the acceleration due to gravity occur only for changes in the co-latitude ϕ and orbit
radius r. The result is reasonable because the zonal harmonics vary with changes in
latitude and are constant for degrees of longitude. Fig. 3.1 normalizes the magnitude
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of radial gravity to observe the variation in radial gravity with respect to celestial
latitude. The gravitational acceleration vector yielded from Eq. (3.19) is expressed
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Figure 3.1: Normalized Variation in Radial Gravity with Respect to Latitude

in FLH and must be expressed in FECI for orbit propagation. The transformation
to FECI is handled by the following equation in the simulator:

gECI =
(
ALH

ECI

)T
g (3.26)

In addition, it was found in this work that the direction of gECI must be corrected
dependent on the quadrant of where the satellite position vector lies in the x-y plane
of FECI . The direction can be corrected following:{

gECI1 = −gECI1 , if rECI1 < 0

gECI1 , else
(3.27)

While the inclusion of J2−3 gravity harmonics are significant perturbations for
a satellite in LEO, it is shown in [46] and [47] that lunar gravity is the next most
significant orbital perturbative force for a satellite with a roughly 400km altitude.
It is, therefore, important to include the effects of the Moon as a third body in the
orbit dynamics. To accomplish the modeling of this perturbation, lunar ephemeris
data was acquired in the simulator for the Julian day at the current simulation time
from the MATLAB aerospace block set running the National Aeronautics and Space
Administration (NASA) Jet Propulsion Laboratory (JPL) Development Ephemeris
model 432t (DE432t). The ephemeris data yields the position of the Moon denoted
by rl in FECI . The unit direction vector from the satellite COM to the center of the
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Moon is:

ul
s =

rl − rECI

|rl − rECI |
(3.28)

whereml is the mass of the moon, G is the gravitational constant, and rsl = |rl−rECI |
allows for the gravitational force between the moon and the satellite to be calculated
as:

fl =
Gmml

(rls)
2 (3.29)

The resulting force vector applied on the satellite expressed in FECI is:

fl = flu
l
s (3.30)

In this work, f = fl and the effects of other smaller forces are neglected. For long-
term simulations in LEO it would be beneficial to include an atmospheric drag force
to account for orbit decay.

3.3 Spacecraft Attitude Dynamics

The rotational equations of motion which govern the attitude of the satellite are
presented in this section. A rigid-body spacecraft model is considered where the
CMG control torques and environmental disturbance torques are all applied about
the COM of the satellite. Additionally, the CMG is assumed to be located at the
center of mass of the satellite. Per [48], the rigid-body rotational dynamics of a
satellite with a CMG become:

Jω̇ + ω×Jω = ucmg + Td (3.31)

The symbol J is used to represent the 3×3 spacecraft inertia tensor, ω represents the
spacecraft body-fixed frame rotation rates, ucmg is the CMG produced control torque,
and Td is the sum of all disturbance torques applied to the spacecraft. All torques in
Eq. (3.31) are expressed in FBF . The angular momentum vector associated with the
spacecraft spin can be calculated as:

H = Jω (3.32)

From comparing Eq. (3.31) and Eq. (3.32), one can take the ω×Jω component of
Eq. (3.31) to be the gyric torque associated with the spacecraft spin. Knowing these
sets of equations allows for the quaternion kinematics equation to be formed which
describes the spacecraft attitude as:

q̇1
q̇2
q̇3
q̇4

 =
1

2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0



q1
q2
q3
q4

 (3.33)
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The rate quaternion q̇ is, therefore, a function of the satellite body rates ω and the
current attitude quaternion q. For the case of this thesis, q defines the attitude of
FBF relative to FECI . Generalized 2U CubeSat geometry is prescribed to model the
spacecraft according to the physical parameters provided in Table 3.2

Table 3.2: Spacecraft Physical Parameters

Example Rigid-Body Spacecraft

Model Parameter Value

2U Generalized

0.2 m

0.1 m

0.1 m

Dimensions 0.1× 0.1× 0.2 m

Mass 2 kg

Inertia Tensor

0.00833 0 0

0 0.00833 0

0 0 0.00333

 kgm2

Center of Mass [0, 0, 0]T m

Tri-Inertial Debris

0.3 m

0.1 m
0.15 m

Dimensions 0.1× 0.15× 0.3 m

Mass 4 kg

Inertia Tensor

0.0375 0 0

0 0.0333 0

0 0 0.0108

 kgm2

Center of Mass [0, 0, 0]T m

3.3.1 Torque-Free Motion of a Rigid Body

The torque-free motion of a rigid body is an important point of analysis for the
rotational motion of a spacecraft. Particularly for the ADR case study presented later
in Chapter 6, the specific rotational motion associated with torque-free tumbling of
an axisymmetric or tri-inertial spacecraft has profound implications on the ability to
discern inertial properties of a debris object. For this reason, torque-free motion of a
rigid body is considered in this section.

There are three cases describing the inertial properties of a rigid body. Firstly,
when all the principal moments of inertia (diagonal elements) of J are equal such that
J1,1 = J2,2 = J3,3 the body is isoinertial. Secondly, when only two of the principal
moments of inertia are equal, the body is described as being inertially axisymmetric.
Finally, if all principal moments of inertia are unique such that J1,1 ̸= J2,2 ̸= J3,3, then
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the body is described as being tri-inertial [38]. For both cases of a axisymmetric or
tri-inertial body, there exist degenerate spins where precession of the spin axis occurs
when observed in the principal axes. A time history of this procession can typically
be obtained from the solutions provided in the following subsections assuming the
motion is torque free.

Inertially Axisymmetric

The case of Jt ≜ J1,1 = J2,2 and Ja ≜ J3,3 is considered in this subsection as it
pertains to the selected generalized 2U geometry provided in Table 3.2. Should these
equalities be true, the general form of Euler’s rotational equation of motion (i.e. the
torque-free expression of Eq. (3.31)) may be solved as [38]:

Jtω̇1 = (Jt − Ja)ω2ω3

Jtω̇2 = (Ja − Jt)ω3ω1

Jaω̇3 = 0 (3.34)

A solution to the time history of the spin axis ω(t) exists by first noting that from
Eq. (3.34), ω3 = ω30 = υ and that the relative spin rate is:

Ω =

(
Jt − Ja
Jt

)
υ (3.35)

Provided that the spin about the first principal axis is such that υ > 0 then the
remaining two solutions are [38]:

ω1(t) = ω10 cos(Ωt) + ω20 sin(Ωt)

ω2(t) = ω20 cos(Ωt)− ω10 sin(Ωt) (3.36)

At t = 0, ω = [ω10 , ω20 , ω30 ]
T . For an arbitrarily selected initial spin of ω =

[0.25, 0.25, 0.25]Tand inertia properties taken from Table 3.2, the path of the spin
axis over time can be observed geometrically in Fig. 3.2 demonstrating that the spin
axis is precessing when observed in ω-space.

Tri-Inertial

The less trivial case of a Tri-Inertial body is considered in this section. For the
axisymmetric case, the precession path was circular; however, in the tri-inertial case
an elliptic precession path can be expected. The case where J1,1 > J2,2 > J3,3
will be evaluated as it pertains to the physical parameters of a tri-inertial space
debris presented later in Section. 6.6.2. Drawing on the symbol convention from the
previous section, the rotational kinetic energy and angular momentum of the spinning
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Figure 3.2: Spin Axis Precession for Generalized 2U Geometry

tri-inertial body may be expressed respectively as [38]:

2T = J1,1ω
2
10
+ J2,2ω

2
20
+ J3,3ω

2
30

(3.37)

h2 = J2
1,1ω

2
10
+ J2

2,2ω
2
20
+ J2

3,3ω
2
30

(3.38)

A parameter I is also defined which carries the same units as a moment of inertia.
I may be calculated as follows:

I ≜
h2

2T
(3.39)

It is clear from Eq. (3.39) that I is dependent on initial conditions; however, I
is bounded by J1,1 ≥ I ≥ J3,3. The case of J2,2 = I is a branch point separating
the mathematical treatment of J1,1 > I > J2,2 from J2,2 > I > J3,3 (referred to
as a bifurcation point in [38]). In this research, the general algorithmic process for
computing the time history solution of ω was to assume a constant T so that a family
of polhodes could be generated for varying h. A polhode is the path traveled by the
vector ω which is defined by the intersection of the angular energy ellipsoid and
angular momentum ellipsoid. The reader is directed to [38] for more detail on these
ellipsoids.

The analytical solution to ω(t) proceeds by finding all three maximum axial spin
rates given I and h:

ω1m = h

√
I − J3,3

IJ1,1(J1,1 − J3,3)
(3.40)

ω3m = h

√
J1,1 − I

IJ3,3(J1,1 − J3,3)
(3.41)
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ω2m =


h
√

J1,1−I

IJ2,2(J1,1−J2,2)
, (J1,1 ≥ I > J2,2)

h
J2,2

, (I = J2,2)

h
√

I−J3,3
IJ2,2(J2,2−J3,3)

, (J2,2 > I ≥ J3,3)

(3.42)

The resulting analytical solution to ω(t) is completed by first determining the
parameters k and τ using the Jacobian elliptic functions sn, cn, dn in the following
sets of equations:1

(J1,1 ≥ I > J2,2)



τ = h
√

(J1,1−J2,2)(I−J3,3)

IJ1,1J2,2J3,3
(t− t0)

k =
√

(J2,2−J3,3)(J1,1−I)

(J1,1−J2,2)(I−J3,3)

ω1 = s1ω1mdn(τ, k)

ω2 = s2ω2msn(τ, k)

ω3 = s3ω3mcn(τ, k)

(3.43)

(J2,2 > I ≥ J3,3)



τ = h
√

(J2,2−J3,3)(J1,1−I)

IJ1,1J2,2J3,3
(t− t0)

k =
√

(J1,1−J2,2)(I−J3,3)

(J2,2−J3,3)(J1,1−I)

ω1 = s1ω1mcn(τ, k)

ω2 = s2ω2msn(τ, k)

ω3 = s3ω3mdn(τ, k)

(3.44)

(I = J2,2)


τ = h

J2,2

√
(J1,1−J2,2)(J2,2−J3,3)

J1,1J3,3
(t− t0)

ω1 = s1ω1msech(τ)

ω2 = s2ω2mtanh(τ )

ω3 = s3ω3msech(τ)

(3.45)

In all listed sets of equations, s1s2s3 = −1 where all si = ±1. This specific
selection of the si parameters leads to 4 variations of sign within each set of equations.
Finally, the family of polhodes on the angular energy ellipsoid corresponding to an
initial spin of ω0 = [0.25,−0.15, 0.5]T and a tri-inertial body with moments of inertia
given in Table 3.2 can be observed in Fig. 3.3. The figure represents the possible
precession paths of ω given varying h but constant T to demonstrate the instability
of many of the spins.

The following section develops a host of environmental effects which disturb the
satellite from its torque-free rotational motion.

1It should be noted that the symbol definition used in this section for k and τ does not hold
outside the scope of this section. Further symbol definitions for k and τ are provided in their
respective sections.
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Figure 3.3: Family of Polhodes for J1,1 > J2,2 > J3,3

3.4 Space Environment

To validate the control schemes developed in this thesis it was desired to model
a detailed space environment. For small satellites in LEO, there are a number of
perturbing torques which can greatly impact the control of the satellite [49]. In
this section a detailed space environment model is constructed to accommodate the
validation of a CMG-equipped CubeSat ADCS. The work builds off of previous work
at Dalhousie University in [26] and [50] by relaxing some worst-case assumptions to
improve environment fidelity.

3.4.1 Lighting Conditions

Eclipse

Eclipse occurs when the Earth is positioned between the satellite and the Sun, thereby
casting a shadow over the satellite. In this condition, sun-sensors used for attitude
determination will not function and solar radiation torques acting on the satellite will
be nullified. It is, therefore, necessary to include modeling of eclipse cases within the
simulator. There are four eclipse cases which are considered in this thesis, all of which
can be viewed pictorially in Fig. 3.4:

1. Case 1: The satellite can see the entire Sun (Full Sun).

2. Case 2: The satellite can see a fraction of the Sun or is partially illuminated
(Partial Eclipse).

3. Case 3: The Satellite cannot see the Sun. (Total Eclipse)
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4. Case 4: The Satellite can see the full circumference of the Sun but Earth is
transiting in front and can be fully viewed. (Annular Eclipse)

S C

Figure 3.4: Top Down Planar View of Eclipse Cases

By following Fig. 3.4 and adopting the formulations presented in [51], the eclipse
cases can be determined for the spacecraft along with the illumination level. First, the
shadow cone length C and angular radius ρc must be determined. It is convention
to let S be the distance from the center of the Earth to the Sun, Rs to be the
spherical radius of the photosphere of the Sun (visible surface of the Sun), and, for
the formulations in this section, Re ≜ Rp represents the radius of the transiting
spherical Earth. The definitions lead to:

C =
RpS

(Rs −Rp)
(3.46)

ρc = arcsin

(
Rs −Rp

S

)
(3.47)

While the length of the shadow cone corresponding to the mean distance to the Sun
from Earth is 1.385e6 km with ρc = 0.264◦ [51], Solar ephemeris data was applied
at the TLE epoch time to obtain C = 1.3614e6 km with ρc = 0.268◦. The solar
ephemeris data obtained from the NASA Horizons systems is provided in Appendix
B.

Following the two previously-defined quantities, the vector Ds from the spacecraft
COM to the Sun and the vector Dp from the spacecraft COM to the Earth must be
calculated. Let Si be the Earth to Sun vector expressed in FECI such that:

Ds = Si − rECI (3.48)

and
Dp = −rECI (3.49)
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Defining Ds = |Ds|, Dp = |Dp| with D̂s,D̂p being the unit vectors corresponding to
Ds and Dp, respectively, allows for the calculation of three quantities corresponding
to the angular geometry of the Earth transit. The quantity ρs represents the angular
radius of the Sun, ρp represents the angular radius of the Earth, and θs is the angular
separation between the two celestial bodies. The quantities are calculated by:

ρs = arcsin(Rs/Ds) (3.50)

ρp = arcsin(Rp/Dp) (3.51)

θs = arccos
(
D̂T

s D̂p

)
(3.52)

The corresponding necessary conditions for the various eclipse cases are thereby:

1. Partial Eclipse: Ds > S and (ρp + ρs) > θs > |ρp − ρs|

2. Total Eclipse: S < Ds < (S + C) and (ρp − ρs) > θs

3. Annular Eclipse: (S + C) < Ds and (ρp − ρs) > θs

4. Full Sunlight: else

The luminous intensity of the Sun, I0 is functionally constant over the surface
of the Sun. This means that the luminous intensity experienced by the satellite is
proportional to the area of the Sun which is visible to the satellite. The luminous
intensity I0 is provided in Appendix B and the subsequent occluded Sun intensities
I can be garnered from:

(3.53)

I0 − I =
I0

π(1− cos(ρs))

[
π − cos(ρs) arccos

(
cos(ρp)− cos(ρs) cos(θs)

sin(ρs) sin(θs)

)
− cos(ρs) arccos

(
cos(ρs)− cos(ρp) cos(θs)

sin(ρp) sin(θs)

)
− arccos

(
cos(θs)− cos(ρs) cos(ρp)

sin(ρs) sin(ρp)

)]
, Partial Eclipse

I0 − I = I0

(
1− cos(ρp)

1− cos(ρs)

)
, Annular Eclipse (3.54)

For a satellite in LEO, the satellite should never experience an annular eclipse
because Dp is much less than C; however, the formulation is provided here for com-
pleteness. In the focus simulations, knowing the exact value of luminous intensity is
less important than knowing the fraction of light the satellite is experiencing relative
to full Sun illumination. This importance is explained by the fact that the strength
of the solar disturbance torque (presented later in this section) can be scaled by the
unitless intensity fraction, but cannot be scaled by a luminous intensity quantity
which typically has units expressed in J/s. Because of this hierarchy of importance,
a normalized luminous intensity factor (LIF) ℓ is calculated in the simulator such
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that ℓ = 1 defines full Sun, 0 < ℓ < 1 defines partial illumination, and ℓ = 0 is total
eclipse. The LIF factor is simply calculated as ℓ = I/I0.

It was found in this work that the final arccos term of Eq. (3.53) could become
numerically problematic when calculating values of I which are close to 0. To accom-
modate this numerical issue the following correction was made to force a full eclipse
state if I is close to 0:

if

∣∣∣∣cos(θs)− cos(ρs) cos(ρp)

sin(ρs) sin(ρp)

∣∣∣∣ > 1 ⇒ I ≈ 0 (3.55)

Earth Albedo

Albedo refers to the fraction of light which is reflected by a body. This reflected light
can sometimes be observed by Sun sensor photodiodes, causing their measurements
to be corrupted. The average Bond Albedo (a ratio of reflected sunlight on the range
of 0 - 1) is typically accepted to be 0.306 for Earth [52]. The actual albedo, however,
experienced by a given observer is highly dependent on aspects including season,
latitude/longitude, and cloud coverage. Fig. 3.5 demonstrates this fact by plotting
the average observed Earth surface irradiance for a 1 month period from October 2023
- November 2023 from the NASA Earth Observations (NEO) database [53]. Surface
albedo, like the map shown in Fig. 3.5, only accounts for a small portion of the overall
planetary albedo, with the largest portion coming from light diffusion off the upper
atmosphere [54].

Work presented in the literature by Bhanderi (2005) has demonstrated the effects
of very high-fidelity albedo models on sun-vector determination [55]. The depth of
these models, however, is far outside the scope of the simulations presented in this

Figure 3.5: Earth Surface Average Irradiance Observation (Oct - Nov 2023)
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research. It was, therefore, opted to develop a simplified model largely based on
the average observed planetary albedo. Noting the results in [54], the planetary
albedo, when averaged over a yearly time span, varies most with respect to latitude.
By visual inspection for lack of an available data set, points were selected from the
latitude referenced planetary albedo plot in [54] to produce the results shown in Fig.
3.6
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Figure 3.6: Albedo Data Points VS Interpolated Points Representing Planetary
Albedo as a Function of Latitude

The data shown by black circles in Fig. 3.6 was subject to a spline interpolation
so that the data was smooth and so that there was one data point for each degree
of latitude in the model. The data in the latitude reference model was also verified
by computing the average model albedo and comparing this average to the accepted
planetary albedo of 0.306 [52]. To make this comparison, a weighted average was
desired to account for the surface area of Earth for which a corresponding albedo
data point has been produced. That is, it was assumed that percent solar irradiance
varies only in latitude and not in longitude so that surface area on the unit sphere
bounding a latitude of interest may act as weights following Fig. 3.7. The surface
area between two bounding latitude parallels may be calculated as [56]:

SAi = 2π (sin(ϕ1)− sin(ϕ2)) (3.56)

Let ϕ1 be the upper latitude parallel from the latitude of the albedo data point ϕi

defined by ϕ1 = ϕi+0.5◦, and ϕ2 be the lower latitude parallel defined by ϕ2 = ϕi−0.5◦.
If the latitude corresponds to a geometric pole (either 90◦ or−90◦ latitude) the surface
area weight is set to 0. The average planetary albedo may then be appropriately
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Unit SphereSAi

ϕ1
ϕi
ϕ2

Figure 3.7: Surface Area Used as Weight for Latitude Parallel of Interest in Global
Albedo Calculation

calculated as:

a =

∑n
i SAiLai∑n

i SAi

(3.57)

In Eq. (3.57) Lai is the albedo solar irradiance factor for latitude i from the spline
interpolation. The result of these formulations resulted in an average planetary albedo
of 0.317 – slightly higher than the accepted value. Error in the calculated value
was deemed to be a result of minor errors when reading off data points from the
latitude referenced plot in [54]. Therefore, a correction factor of 0.964 was applied
to all interpolation points so that the average planetary albedo from the model was
identical to the accepted value of 0.306. The final planetary albedo model is mapped
in Fig. 3.8.

The map in Fig. 3.8 represents the percentage of incoming sunlight which is
diffused back into space. To complete the model, it is desired to determine how much
of this reflected light is directed towards the spacecraft. To do so, it was assumed that
the surface area of the Earth which can be seen by the spacecraft may be considered
to a flat plane. This approximation is fairly reasonable for a satellite in LEO but does
not hold for satellites in higher altitude orbits. The motivation of this approximation
is two-fold. The first reason is to make the albedo model closer to a worst-case
example as all incident light will be diffused off a plane with a normal vector pointing
directly at the satellite. The second reason is to avoid discretizing the surface of
Earth into many planes all with different normal vectors which differently reflect the
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Figure 3.8: Final Albedo Map Applied in Simulator

incoming sunlight. An example of the flat plane under the spacecraft based on the
satellite Field of View (FOV) is provided in Fig. 3.9.

Figure 3.9: FOV Diffusion Plane

For larger FOVs the underlying plane defined by the red circle in Fig. 3.9 is an
increasingly poor approximation for the surface of Earth because the curvature of
Earth will begin to dominate the actual surface observed by the spacecraft. Provided
the locally-flat-Earth approximation is reasonable, an equation for the normalized
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intensity of sunlight diffused in the direction of the spacecraft is as follows:

Ls
a = La(ϕi)

((
Si

|Si|

)T (
rECI

|rECI |

))
(3.58)

The quantity La(ϕi) is used to represent the lookup table implemented in the thesis’
simulator. The function contains all the spline interpolated albedo data points with
the correction factor in steps of 1◦ latitude. For any satellite positions calculated in
the simulator that are between these points of latitude, the simulator simply linearly
interpolates between the inputted data. By doing so, the simulator always has a
determinable solar irradiance factor regardless of the current spacecraft latitude or
longitude.

As was previously described, the FOV plane has a normal vector in the direction
of the ECI frame satellite position vector. Possessing this direction means that the
intensity of the albedo in the direction of the satellite can be found simply by the
projection of the incoming sunlight vector onto the direction vector for the spacecraft
position when expressed in the ECI frame. It is clear from Eq. (3.58) that the
intensity of the albedo diffused towards the satellite is maximized when the angle of
incidence between the sunlight direction vector and the FOV plane is 0 rad.

3.4.2 Environmental Disturbance Torques

Aerodynamic Torque

A spacecraft in LEO experiences a small aerodynamic torque when the Center of
Pressure (COP) is offset from the spacecraft COM [57]. While it was assumed in
[26] and [57] that the atmospheric density at orbital altitudes was constant, it can
actually vary greatly over one orbit [58][59]. The atmospheric density is also highly
dependent on the solar flux level and geomagnetic activity. At 400km altitude, density
variations of around 1600% can occur over the solar cycle, and variations of around
800% can occur during major geomagnetic storms [60]. It is clear that a higher-fidelity
aerodynamic torque model must consider variable atmospheric density.

By adapting the foundational work provided in [26], the aerodynamic torque vector
can be found by applying:

Ta =
1

2
ρv2BFCdAp(u

×
v scp) (3.59)

where ρ is the atmospheric density, vBF is the magnitude of the orbital velocity vector
in FBF , Cd is the coefficient of drag, Ap is the area of the spacecraft exposed to the
flow perpendicular to uv, the unit direction vector of orbital velocity expressed in
FBF , and scp is the vector from the spacecraft COM to COP expressed in FBF . The
variable atmospheric density ρ was obtained in this work from the NRLMSISE-00
model which is considered accurate for orbital altitudes between 0 - 1000 km [61].

The NRLMSISE-00 model as implemented in the simulator takes the following set
of inputs to compute the atmospheric density for a given satellite position:
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� Geodetic Latitude and Longitude (ϕd, λd).

� Orbital Altitude h.

� Simulation Year.

� Simulation Day of Year.

� Simulation UT time expressed in seconds.

� F10.7a 3-month average solar flux index.

� F10.7 daily solar flux index for the day prior to the simulation epoch day.

� 7× 1 set of ap Magnetic indies.

– 3-hour ap for simulation epoch time.

– 3-hour ap for 3 hours prior to simulation epoch time.

– 3-hour ap for 6 hours prior to simulation epoch time.

– 3-hour ap for 9 hours prior to simulation epoch time.

– ap average for 3-hour ap indices 12-33 hours prior to simulation epoch
time.

– ap average for 3-hour ap indices 36-57 hours prior to simulation epoch
time.

The F10.7 Solar flux indices were obtained from the Government of Canada space
weather database [62]. The Geomagnetic “ap” indices were obtained from the GFZ,
Postdam web service [63]. Full datasets obtained from these sources are provided in
Appendix B.

Another consideration to be made was in regards to a dynamic calculation of
Ap and scp. It was desired in this thesis to dynamically calculate Ap and scp so
that more realistic angular impulses would be observed during a simulation. The
method of dynamically calculating the exposed area involves the discretization of the
spacecraft geometry into a series of planes – all with a defined unit normal vector and
centroid. When the prismatic generalized 2U geometry is applied in the simulation,
the result of discretization is 6 planes with normal vectors along the principle axes
of FBF . A geometric representation of a single spacecraft plane is provided in Fig.
3.10.

For the case of this section, let the subscript “n” define a particular plane from
n = 1 − 6. Af is an n × 1 matrix containing the areas of each plane, Cf is an
n× 3 matrix where row n contains the centroid position of plane n expressed in FBF

and Nf is a n × 3 matrix containing the unit normal vectors of each plane. The
relationship for the effective projection of a plane into the flow is given by:

Rn = NT
fn,1:3

uv (3.60)



30

Nf

Rn
Cfuv

External Face

COM

n

n

Figure 3.10: External Face Exposed to Flow. Plane Normal Vector and Centroid
Location Shown Relative to Spacecraft COM.

where Rn is the nth projection stored in R which is also n× 1. If Rn < 0 the plane
is on the side of the spacecraft facing away from the flow and its value can be set to
0. Subsequently, the dynamic projected area is found as:

Ap = AT
f R (3.61)

The dynamic center of pressure location is less trivial and requires calculation of
a weighted average of centroid locations that are weighted based on the effective pro-
jected area contribution from each plane. These weights can be found by computing
the Hadamard product between the planar areas and effective area projections:

W = Af ⊙R (3.62)

The centroid locations can then be adjusted based on applied weight by scaling a
centroid location by its respective weight:

C ′
f = WnCfn,1:3 (3.63)

Each of the 3 components of scp were then found in this thesis by computing the
weighted average along each column of C ′

f as:

si =

∑n
1 C

′
f1:n,i∑n

1 W
(3.64)

Residual Magnetic Dipole

The Residual Magnetic Dipole Torque Trmd results from the interaction of the space-
craft magnetic dipole D with Earth’s magnetic field vector B at the satellite position
[26]. In this work B is first obtained from IGRF-13 expressed in FNED and then is
transformed to its expression in FBF . The IGRF-13 model was applied in this thesis
as the model is considered accurate up to 2025 [64]. This accuracy range ensures that,
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for a simulation epoch time in early 2023, the simulation is accurate for the typical
lifetime of a LEO satellite. Hereinafter, B will represent the Earth’s magnetic field
expressed in FBF so that the residual magnetic dipole torque may be computed by:

Trmd = D×B (3.65)

Gravity Gradient Torque

The Gravity Gradient Torque represented by Tgg results from an imbalance in the
force of gravity over the mass of the spacecraft [59]. If the gravitational force were
uniform over a body, the Center of Gravity (COG) would be aligned with the COM
and, therefore, the gravity gradient torque would be zero. In general, an aligned COG
and COM is atypical, and the result is a gravity gradient torque about the spacecraft
COM [65] which can be calculated as:

Tgg =
3µ

|rECI |3
u×

e (J · ue) (3.66)

The symbol ue is used to denote the nadir-pointing unit direction vector expressed
in FBF which can be calculated following the relationship:

ue = ABF
ECI

(
−rECI

|rECI |

)
(3.67)

The dot product of the spacecraft inertia tensor with the nadir pointing vector is
also defined as:

(J · ue) =

J1,1 0 0
0 J2,2 0
0 0 J3,3

 · ue =


[
J1,1 0 0

]T · ue[
0 J2,2 0

]T · ue[
0 0 J3,3

]T · ue

 (3.68)

Lorentz Torque

The Lorentz torque Tl is developed when a spacecraft generates an electrostatic charge
on its surfaces and the spacecraft is within Earth’s magnetic field [66]. This elec-
tromagnetic interaction can sometimes be significant enough that researchers have
developed methods to vary the location of the charge center in order to stabilize the
motion of a satellite [67]. The Lorentz torque is dependent on the electrostatically
charged surface traveling with velocity through a magnetic field – the exact case of
a spacecraft in LEO. Defining ql to be the specific charge of the satellite (in coulomb
per kilogram - C/kg) , rcc to be the position of the center of charge in FBF , and vBF

to be the FBF orbital velocity vector, leads to the following equation for the Lorentz
torque:

Tl = r×
cc

(
qlv

×
BFB

)
(3.69)
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At the time of writing, static surface charging of CubeSats in LEO was a relatively
under analyzed problem. Despite the lack of documentation, static discharge severity
levels are characterized in NASA-TP-2361 and NASA-HDBK-4002B. Because space-
craft charging is usually a minor issue for satellites in LEO [68], the upper range of
the minor discharge severity of 0.5 µC was selected for the magnitude of spacecraft
charge from [69]. This selection leads to a specific charge of ql = 2.5e−07 C/kg after
dividing by the spacecraft mass.

Solar Radiation Torque

When a satellite experiences radiation from the Sun which is incident to its external
surfaces, a torque can be generated about the spacecraft COM. In this thesis, emphasis
is placed on the consideration of the direct solar photon radiation torque Tsr. Other
torques from additional radiative sources are neglected as they are typically at least
an order of magnitude smaller than Tsr [70]. The solar radiation torque varies most
with the spacecraft exposed area to sunlight As and the surface reflectance factor q.
In this thesis As was set to 0.02 m2 representing the case where the largest exterior
face of the satellite is exposed to the Sun. With regards to the value of q, [70] lists a
range of 0.4-0.7 for sandblasted aluminum surfaces – a range which is aligned with the
selected q value of 0.6 used in [51] and [26] for analysis of CubeSats. In the present
work, a value of 0.6 was also established for q by drawing on the aforementioned
examples.

The other important factor known as the solar constant Fs has seasonal variations
on the order of ±3.5% from nominal and was, therefore, considered a constant value of
1367 W/m2 in this work [71] as simulation time horizons were well under full seasons.
The constant c denoting the speed of light is the final constant value required in the
formulations and was set to 3.0e+08 m/s in the simulator. The force and momentum
arm specific to the solar radiation torque is a result of the cross product of the center
of solar pressure vector csp and the unit direction vector from the satellite to the
sun urb expressed in FBF . The center of solar pressure was assumed to be a worst
case location of csp = [0, 0, 0.1]Tm in this work following [26]. The expression which
computes the solar radiation torque is:

Tsr = ℓ
Fs

c
As(1 + q)

[
c×spurb

]
(3.70)

The satellite to Sun unit vector may be calculated as:

urb = ABF
ECI

Si − rECI

|Si − rECI |
(3.71)

Noticeably in Eq. (3.70), the solar radiation torque is scaled by the LIF ℓ. The
effect of scaling by ℓ is that the solar radiation torque will be scaled by the intensity
of the sunlight which the satellite is currently experiencing. In eclipse, the solar
radiation torque becomes zero because ℓ = 0 in eclipse.



Chapter 4

Attitude & Orbit Determination

Attitude determination algorithms are critical components in the proposed Guid-
ance, Navigation and Control (GNC) system for the DGSPCMG-equipped CubeSat.
Functionally, the attitude determination algorithms will estimate the current satellite
attitude and orbital states. The estimated state information will be passed, along
with the desired states from the orbit propagator, to the spacecraft attitude feedback
controller which subsequently commands control inputs to be produced by the CMG.

For all actively-stabilized spacecraft, the development of the ADCS presents a
unique challenge of selecting robust algorithms which suit the subject mission. For
the present thesis, attitude determination algorithms were selected to build upon the
work completed for the LORIS CubeSat in [26]. In consequence, the attitude deter-
mination system leverages sun vector and magnetic field readings in the Quaternion
Estimation Algorithm (QUEST) to estimate the spacecraft attitude. This estimate
is refined by a Multiplicative Extended Kalman Filter (MEKF) prior to being sent to
the attitude feedback controller. While in [26] TLEs would have to be propagated as
the only available estimate of the spacecraft orbital state, the present work aims to
use a Global Navigation Satellite System (GNSS) and Orbit Determination-Extended
Kalman Filter to produce a refined estimate of the orbital state. Proceeding sections

Photodiodes Sun-Vector 
Determination

= Sensors

GPS OD-EKF

QUEST

Solar 
Ephemerides

IGRF-13

MEKF

Magnetometer

IMU

Controller & 
SCL

= Reference Model 

= Quaternion Estimation

Legend

Figure 4.1: ADCS System Architecture for Proposed DGSPCMG CubeSat
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within this chapter describe the proposed attitude determination method. The over-
all ADCS architecture is provided in Fig. 4.1. The attitude sensor models for the
system are first provided prior to building the attitude determination algorithms.

4.1 Sensor Models

4.1.1 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is responsible for measuring the angular rates
of the spacecraft. In this thesis the IMU was modeled after the aerospace grade
VN-100 IMU from VectorNav. As shown by experimental tests in [26], noise in the
IMU measurements will behave close to white noise in the short term, however, in
the long term, IMU bias drift will dominate the measurements. Therefore, common
IMU models such as that used in [72] add a “random walk” signal to the noisy IMU
measurement to account for bias drift.

The measurement noise density for the VN-100 was listed asND = 0.0035◦/s/
√
Hz

[73], units that conflict with Simulink blocks which require the noise power as an in-
put. Noise power can be obtained by multiplying the noise variance by the sampling
rate dt (selected as 0.25s in this thesis). The proceeding equation can be leveraged
to convert the noise density to a noise variance with units specified in radians [74]:

σ2
η =

(
ND

π

180

√
1

dt

)2

(4.1)

The desired noise power NP is then calculated as NP = σ2
ηdt. With regards

to the IMU bias drift, the VN-100 datasheet provides a typical in-run IMU bias
stability of 5◦/hr. The in-run bias represents a typical drift for sensor operation at
constant temperature. In both [26] and [72] the random walk signal is produced by
integration of a band-limited white noise signal. The same procedure was conducted
in the present work, where a bias noise power of [(5.0e − 06)dt] rad2/s was selected
empirically for the bias drift by ensuring that the typical bias drift was less than
5◦/hr. Fig. 4.2 displays the resulting bias drift from the noise power selection. The
typical 5◦/hr limits are shown as dashed lines. A bias exceeding these lines within
3600s would exceed the typical values for the IMU. The full IMU model is provided
for completeness as:

ωm = ω + η + b (4.2)

where η is the band-limited white measurement noise and b is the bias drift.

4.1.2 Magnetometer

The magnetometer measures Earth’s magnetic field vector expressed in FBF . Con-
veniently the VN-100 IMU is a 10-axis sensor and includes magnetic field mea-
surements as part of its sensed values [73]. With no sensor bias provided by the



35

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Bias moderatly exceeds

typical rate along shown

arrows.

Figure 4.2: Simulated IMU Bias Drift Shown Over Two Hours

VN-100 datasheet, it was assumed that the sensor was only corrupted by band-
limited white noise. The noise density was listed for the VN-100 magnetometer as
ND = 140 µGauss/

√
Hz. For the subject thesis, the measurements in units of Gauss

must be converted to Teslas by noting that 1 Gauss = 10−4 T. The noise variance
for the magnetometer was calculated in this thesis as:

σ2
η =

(
ND(10−4)

√
1

dt

)2

(4.3)

The resulting magnetometer white noise power was then calculated as NP = σ2
ηdt.

By examining the 3σ bounds in in Fig. 4.3 it can be seen that the simulated noise
profile is comparable to the VN-100 specifications.
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Figure 4.3: Simulated VN-100 Magnetometer Noise With 3σ Comparisons Shown
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The magnetometer measurement model is then the sum of the actual FBF mag-
netic field vector and the white noise process:

Bm = B + η (4.4)

4.1.3 GNSS Receiver

The GNSS receiver takes navigational messages from GNSS satellites in order to
track the position of the spacecraft. While it is typical for velocity measurements
to also be made, it was assumed in this work that only the satellite FECI position
was measured. The GS-2T-Nano GNSS receiver was selected as the modeled GNSS
unit for its extremely small form factor. A 6-15 meter typical positional accuracy was
listed for the device [75]. For lack of a provided variance or 3σ level, it was assumed
in this work that the listed upper range for positional accuracy corresponded to the
3σ level. Fig. 4.4 provides the axial measurement noise profiles for a 200s simulation
of the subject GS-2T-Nano receiver.
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Figure 4.4: Simulated GS-2T-Nano Measurement Noise With 3σ Bounds Shown

The GNSS measurement model can be completed following a similar process to
that used for the magnetometer:

rm = rECI + η (4.5)

4.1.4 Sun Sensors

The sun sensors modeled in this thesis are analog photodiodes which produce a current
based on the intensity of sunlight at the surface of the photodiode [76]. Photodiode
sun sensors are advantageous for CubeSats because of having extremely small mass
and volume footprints. In this work the coarse photodiodes were modeled after the
Advanced Photonix SLCD-61N8 photodiode which has an FOV half angle of 60◦

[77]. Fine photodiodes were modeled after the VISHAY BPW21R which has a steep
drop off in sensitivity for light with an incident angle over 45◦ [78]. A generalized
vector diagram for the light sensitivity of a photodiode based on the incident angle
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of the light with the normal vector of the photodiode surface is provided in Fig. 4.5
where all vectors are expressed in FBF . Further addressing Fig. 4.5, the photodiode
optical plane normal vector is defined by nss and the incoming unit direction vector
of sunlight is defined by us. It is clear from Fig. 4.5 that the level of photodiode
illumination is dependent on the projection of us onto nss.

Photodiode

nss
us

nTssus

FOV 

Figure 4.5: Photodiode Vector Diagram for Light Incident to the Photodiode Optical
Plane

The current output from a photodiode, was modeled by adapting the work pro-
vided in [79], where I0s is the max current output from the photodiodes and ηss is
the band-limited white noise associated with the illumination measurement. I0s was
selected as 50 mA based on the BPW21R forward current listing. In this thesis,
the LIF factor ℓ is added to the current output equation from [79] to account for a
reduction in photodiode current output when the satellite is partially eclipsed. The
resulting equation is formed as:

Ip = I0sℓ
(
nT

ssuss

)
+ ηss (4.6)

The photodiodes could also be illuminated by albedo. The current output caused
by albedo was modeled in the subject thesis as:

Ipa = I0sℓL
s
a

(
nT

ss(−ue)
)

(4.7)

where −ue is the negative of the unit nadir direction vector expressed in FBF defined
in Eq. (3.67). If the current output from the sum of albedo illumination and direct
sun illumination (Ip + Ipa) exceeds I0s then the current output from the photodiode
is saturated to the maximum output of I0s . The saturation current in the focus work
was also set to 50 mA based on the SLCD-61N8 datasheet [77]. Following the work
in [26], a sun sensor measurement is also rejected if the output current is not above
a threshold ϵsc = 25 mA to prevent albedo corruption.

The noise profile of a photodiode must be determined experimentally following
a procedure like that in [26]. In the absence of lab equipment to perform a noise
characterization on the subject photodiodes, the subject thesis specifies band-limited
white noise profiles for the sensors empirically. For the case of the SLCD-61N8 coarse
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photodiode, a noise variance of σ2
η = 2.152e− 04 mA2 was specified, a value approx-

imately double of that used in [26]. A more refined noise profile was specified for
the fine BPW21R with a noise variance of σ2

η = 3.0e − 08 mA2 in order to achieve
sub degree determination accuracy. Future ADCS development should responsibly
address the characterization of the photodiode noise. Proceeding sections will lever-
age the previously defined sensor models to determine computationally the attitude
of the spacecraft relative to FECI .

4.2 Sun Vector Determination

Following the work provided in [79], to produce a three-dimensional sun vector esti-
mation, at least three non-parallel and non-coplanar photodiodes are required to be
observing the Sun at a given time. To enable three photodiodes to observe the sun
simultaneously when not in eclipse, the spacecraft must be equipped with a suite of
photodiodes where multiple photodiodes are placed at offset angles on each face of
the spacecraft. In the subject work the photodiode placements from [26] are adopted
for the coarse sun sensors because the developed placement design enables complete
coverage of the body celestial sphere from 18 coarse photodiodes. The fine sun sen-
sors are placed such that the optical plane of the sensors are aligned with the normal
vectors of the 6 external spacecraft faces. The proposed photodiode placements are
demonstrated in Fig. 4.6. A coverage analysis is provided in Fig. 4.7 where areas
in blue represent the projection of a sun sensor FOV cone onto the surface of the
celestial sphere corresponding to the satellite. Further, Fig. 4.8 shows the optical
plane normal vectors and FOV cones for a cluster of photodiodes placed on the x+
face of the spacecraft to demonstrate the non-coplanarity of the photodiodes.

Legend
Coarse Photodiode

Sunlight Vector

Fine Photodiode

Figure 4.6: Placement of Photodiodes on External Faces of Spacecraft. Photodiodes
may be Shadowed by Spacecraft Solar Panels.

While in Fig. 4.6 many photodiodes may be partially illuminated, the sun vector
must still be within the FOV of the photodiode for the sensor to output a current.
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Figure 4.7: Fine Sun Sensor (left) and Coarse Sun Sensor (right) Coverage on Body
Celestial Sphere. Areas Outside FOV Projections Represent Exclusion Areas not
Viewed by a Sun Sensor.

In addition, the photodiode may also be shaded by a solar panel or appendage which

Figure 4.8: Orientation of All Photodiodes on x+ Face. Orientations are Repeated
Respective to All Six Main External Faces.
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would limit it from producing current. A point plane intersection model was used to
model shading of the photodiodes.

For a satellite equipped with n number of photodiodes, the work from [79] can be
applied to optimally estimate the sun vector in FBF by using a form of batch least
squares. Let H be a n× 3 matrix where the ith row of H corresponds to the optical
plane normal vector of photodiode i as:

Hi,1−3 = nT
ssi

= [n1, n2, n3] (4.8)

A set of photodiode normal vectors and placement locations are provided in Ap-
pendix B. The current output produced by photodiodes observing sunlight is stored
in a n × 1 matrix y. The matrices H and y should only contain rows with pho-
todiodes which can actually observe the Sun. Action should, therefore, be taken to
systematically remove rows from these matrices if nT

ssus yields a quantity which is
outside the satellite FOV, negative (on the shaded side of the spacecraft) or if the
photodiode is shaded by an appendage. The FOV constraint can be modeled by the
following logic statement where α represents the FOV half angle of a photodiode:

if Hi,1−3us < cos(α) (4.9)

Provided that at least 3 non-parallel and non-coplanar photodiodes are viewing the
Sun, the Sun vector estimation is the solution to the following least-squares problem
[79]:

y = Hus + η (4.10)

Consistent with the measurements models, η represents band-limited white noise,
which was added in the simulator to a photodiode measurement in Eq. (4.6). The
solution to the linear least-squares problem for the Sun vector expressed relative to
FBF is given by:

ũs =
(
HTR−1H

)−1
HTR−1y (4.11)

Here R is a positive definite and diagonal measurement covariance matrix where the
noise covariances of individual photodiodes are placed in their respective rows on the
diagonal of R. The estimate covariance matrix is formed as:

Ps =
(
HTR−1H

)−1
(4.12)

In Eq. (4.11) ũs is not constrained to be a normalized unit direction vector. In
this work, brute force normalization was employed on ũs because at worst, the effect
of performing such an operation induces angular errors on the order of 10−1 degrees
depending on the photodiode configuration [79]. In addition, the unconstrained esti-
mate should yield a unit vector on average, particularly in simulation where sensor
calibration is not required. For flight configurations, [79] should be referenced for
constrained and calibrated estimation.

Should the estimate be poorly conditioned, it is important to signal to QUEST
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and the MEKF downstream that no Sun vector estimate is available. A poorly
conditioned estimate can be confirmed in the following equation where the function
rcond() computes the reciprocal condition number of the input matrix:{

ũs = [0, 0, 0]T , if rcond(HTH) < 1.0e− 06

ũs = [0, 0, 0]T , if ℓ = 0
(4.13)

A Sun vector estimate of [0, 0, 0]T signals QUEST and the MEKF that the sun was
undeterminable so that the formulations for the satellite state can be changed accord-
ingly. A determinable Sun vector is passed first to QUEST, presented in the following
section, as one of the measurement vectors required to estimate the satellite attitude.

4.3 Quaternion Estimation Algorithm (QUEST)

To derive the attitude of a spacecraft it is generally required to obtain a minimum of
two vector sets, each set with a vector defined in two different reference frames. The
two vector sets criteria is more commonly addressed as Wahba’s Problem and seeks
to find an optimal solution to an attitude matrix for the spacecraft based on vector
measurements [80]. The first useful method for solving Wahba’s problem was known
as Davenport’s q-Method which employs eigenvalue decomposition to allow for fairly
robust quaternion estimation from vector measurements [41][81]. A problem for early
adoptions of the q-Method was that calculation of the eigenvalue decomposition would
lead to the computation time being higher than the sampling rate on rudimentary
hardware [81]. It is, for the effect of reducing computation time, that more modern
attitude determination systems will employ Shuster’s QUEST algorithm [82]. This
work employs QUEST for preliminary satellite attitude determination following the
formulations provided in [82].

QUEST will make attitude estimations with the FBF measured magnetic field
and Sun vectors along with the FECI reference model vectors from IGRF-13 and
solar ephemeris data. Hereinafter, for the purposes of the QUEST formulations, a
vector set is defined as the combination of the measured and reference vectors defined
in their respective FBF and FECI frames. According to [82], QUEST has a unique
optimal solution when only two vector sets are provided. Symbol convention for the
two vector set case leads to V1 and V2 representing two nonparallel unit reference
vectors expressed in FECI with two corresponding measured unit vectors defined as
B1 and B2 expressed in FBF . For the present work, these vectors are more directly
defined as follows:

� V1 = IGRF-13 Magnetic Field Reference Vector

� B1 = Bm Measured Magnetic Field Vector

� V2 = Solar Ephemeris Sun Direction Vector

� B2 = ũs Sun Vector Estimation
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Noting that ai is a weighting factor applied to vector sets 1 and 2, respectively,
which should be properly selected, the 3× 3 attitude profile matrix is formed as:

B =
2∑

i=1

aiBiV
T
i (4.14)

In this research, the 3× 1 matrix Z is defined as the cross product matrix following:

Z =
2∑

i=1

ai
(
B×

i Vi

)
(4.15)

The symmetric attitude profile matrix can additionally be determined using the fol-
lowing relationship:

S = B +BT (4.16)

For implementations of QUEST with more than 2 observations it is typical for the
Newton-Raphson method to be implemented to compute the maximum eigenvalue
corresponding to the optimal quaternion solution. In the presented case, however,
there exists an exact closed-form expression which greatly reduces the required cal-
culations [82]. Following the derivation in [82], the max eigenvalue can be computed
as:

λmax =
√
a21 + 2a1a2 cos(θV − θB) + a22 (4.17)

where:
cos(θV − θB) = (V1 · V2)(B1 ·B2) + |V ×

1 V2||B×
1 B2| (4.18)

Six additional quantities are introduced in Shulster (1981) to compute the optimal
quaternion. These quantities are introduced in the following equations where “tr()” is
the trace operation on a square matrix, “adj()” is a function which computes adjoint
of a matrix, and “det()” computes the determinant of the input matrix.

σ =
1

2
tr(S) (4.19)

κ = tr(adj(S)) (4.20)

∆ = det(S) (4.21)

The remaining quantities are calculated after computation of Eq. (4.19) - Eq. (4.21)
as they are dependent on solving the prior equations:

α = λ2max − σ2 + κ (4.22)

β = λmax − σ (4.23)

γ = (λmax + σ)α−∆ (4.24)

The optimal attitude quaternion q̄opt is obtained from solving the following prob-
lem for which q̄opt is obtained as the eigenvector of a 4 × 4 matrix K corresponding
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to the maximum eigenvalue λmax:

Kq̄opt = λmaxq̄opt (4.25)

For completeness, K may be formed as:

K =

[
S − σI3×3 Z

ZT σ

]
(4.26)

Since the maximum eigenvalue is already available in a closed-form solution, it is
not necessary to compute the eigendecomposition ofK for the two vector set case and,
therefore, the optimal attitude quaternion calculation proceeds by first computing the
parameter X as:

X =
(
αI3×3 + βS + S2

)
Z (4.27)

The optimal quaternion estimate is then formed in the following relation as:

q̄opt =
1√

γ2 + |X|2

{
X
γ

}
(4.28)

4.3.1 QUEST Covariance Matrix

One of the most important contributions of Shuster’s QUEST method was the ability
to discern the covariance matrix for the optimal quaternion estimate. The formu-
lations required to compute this matrix are provided in this section because the
covariance matrix from QUEST can reasonably be used as an initial measurement
covariance estimate later in the MEKF formulations. The formulations begin with
the variance of a vector set i defined as:

σ2
i = σ2

Vi
+ σ2

Bi
(4.29)

The constant corresponding to the total estimate variance can be calculated for
the two vector set solution as:

1

σ2
tot

=

(
1

σ2
1

+
1

σ2
2

)
(4.30)

which leads to the two vector set covariance matrix being computed as:

PQQ =
1

4
[σ2

totI3×3 + |B×
1 B2|−2[(σ2

2 − σ2
tot)B1B

T
1 + (σ2

1 − σ2
tot)B2B

T
2

+ σ2
tot(B1 ·B2)(B1B

T
2 +B2B

T
1 )]] (4.31)

This covariance matrix from Eq. (4.31) is FBF referenced because of its deriva-
tion from FBF observation vectors. The inertially-referenced covariance matrix may,
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therefore, be computed as:

Pqq = [q̄opt]

[
PQQ 03×1

01×3 0

]
[q̄T

opt] (4.32)

where [q̄] represents the following quaternion operation:

[q̄] =


q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

 (4.33)

In the following section the results of quaternion estimation are fed as attitude
measurements to a mission mode MEKF for further attitude state estimation.

4.4 Multiplicative Extended Kalman Filter (MEKF)

The MEKF is employed predominantly to filter the IMU measurements and remove
IMU bias, but it is also selected as the attitude filter because the multiplicative rep-
resentation in the MEKF formulations does not violate the unitary constraint placed
on all quaternions [83]. In comparison to the quaternion-based Extended Kalman
Filter (EKF) with additive formulations presented in [84], the MEKF formulations
preserve the unitary constraint. The MEKF is subsequently employed in this work
to ensure the validity of the attitude quaternions and filter the IMU sensor.

In this work a “mission mode” MEKF is presented to estimate the key attitude
states relating to spacecraft attitude and body rates. The corresponding global atti-
tude state vector is, therefore, defined as xtrue

k = [q1, q2, q3, q4, ωx, ωy, ωz]
T . Addition-

ally, the proposed MEKF operates in “Dynamic Model Replacement” mode, meaning
that accurate IMU data from the VN-100 is used in lieu of a dynamic model. The
motivation for these mode selections is twofold, from computational efficiency and
determination accuracy standpoints [41]. The foundational concept of these formula-
tions is that, to preserve the unit norm constraint placed on the attitude quaternion,
the MEKF will propagate and update a three-component local attitude state error
δϑ and subsequently shift this information to the global attitude state in a reset
operation. It follows that the true global quaternion can be found in the subject
formulations from a product of the error δq and estimate q̂ quaternions [41]:

qtrue = δqδϑ⊗ q̂ (4.34)

The local state, instead of being 7 × 1 like the global attitude state, is defined
instead as a 6 × 1 vector xk = [δϑ,∆ζ]T where ∆ζ is a change in IMU bias. Func-
tionally, the MEKF has three stages which are shown in Table 4.1. The propagation
stage moves the previous global state MEKF estimate forward to the present sample
time. The update stage updates the local error state vector using sensor measure-
ments and the propagated global state estimate. Finally, in the reset stage, the local
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state is shifted to the global state estimate before resetting the local state to zero. To
define these stages subscripts are used so that the subscript “k − 1|k − 1” represents
a pre propagation value, “k|k − 1” represents a post propagation value, and “k|k” is
a post update value.

Noticeably from Table 4.1, there are adjusted formulations for the MEKF in eclipse
and in sunlight. Because attitude determination is only possible for the satellite in
sunlight, discussion on the MEKF formulations will focus on the sunlight formulations
starting on line 24 of Table 4.1.

Propagation

Referring to Table 4.1 line 30, the first effect of dynamic model replacement is ob-
served. The spacecraft body rates are propagated by subtracting the previous IMU
bias estimate ζk−1|k−1 from the raw IMU measured body rate stored in a measure-

ment vector zk = [q̄1, q̄2, q̄3, q̄4, ωmx , ωmy , ωmz ]
T which contains the QUEST quaternion

and IMU measurement. On line 31, the previous quaternion estimate is propagated
forward using ωk|k−1 in the quaternion kinematic equation from Eq. (3.33). On line
32 the 6× 6 state transition Jacobian matrix Fk is formed by following the provided
relationship in [41] and converting it to discrete time. It should be noted that IMU
bias is not always an observable state [85][86]. In Fk, the IMU bias rows are, there-
fore, the identity matrix. Finally, the covariance matrix Pk|k−1 is propagated on line
33 with the noise Jacobian Gk and process noise covariance matrix Qk. While Fk is
dependent on ωk|k−1, Gk is a constant matrix which may be calculated as:

Gk =

[
−I3×3dt 03×3

03×3 I3×3dt

]
(4.35)

The process noise covariance matrix was assembled by empirically scaling a diag-
onal matrix of IMU noise variances. The symbol σ2

v represents the IMU band-limited
white noise variance and σ2

u represents the variance of the integrated band-limited
white noise used to produce the IMU bias. Qk may, therefore, be assembled as fol-
lows:

Qk = 10−2

[
σ2
vI3×3 03×3

03×3 σ2
uI3×3

]
(4.36)

Update

The first step of the update stage is to develop the local attitude error parameteriza-
tion. The local attitude error is parameterized into Rodrigues parameters on lines 36
to 37 for the practicality of the fact that it makes the observation model insensitive to
the ambiguity of the sign associated with the QUEST quaternion [41]. The local error
vector is shifted into the local measurement vector y, along with the FBF expressed
measured magnetic field vector Bm on line 38. Similar to the QUEST algorithm, a set
of attitude reference vectors are required in the MEKF. These reference vectors are
transformed from their expression in the inertial frame FECI to FBF by applying the
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post propagation quaternion qk|k−1. The reference vectors are stored in the reference
vector h on line 39 and subsequently compared to the local measurement vector by
computing the difference between the two vectors on line 40. This difference, also
known as the innovation term ỹ, is important for the later local state update.

Lines 41 to 45 introduce the measurement matrixHk, the measurement covariance
matrix Rk, the Kalman Gain matrix Kk, and the innovation covariance matrix Sk

for the purpose of updating the local state estimate and covariance matrix on lines 44
and 45. Noticeably, an additive update is performed on line 45, an action permissible
in the local state but not the global state. Because the local state carries the change
in IMU bias denoted by ∆ζ, the true IMU bias must be calculated as an evolution
of the previous IMU bias estimate ζk−1|k−1. The true IMU bias and associated post
update angular rate estimate ωk|k can be computed using lines 46 and 47.

Reset

The final stage of the MEKF seeks to shift the local attitude error state to a global
estimate for the true spacecraft attitude. The reset of the non attitude state (IMU
bias) was simply done implicitly on line 46 by adding the change in IMU bias to the
previous IMU bias estimate. The quaternion, however, must be reset explicitly. The
quaternion reset operation for Rodrigues parameterization of the local attitude error
state is provided on line 49. The brute force normalization of the global quaternion
attitude estimate is performed on line 50. This operation is theoretically enabled by
the use of Rodrigues parameters according to Markley (2014) in [41]. After the reset
both δϑk|k−1 and ∆ζk|k−1 are set to 03×1. This resetting of the local state vector
was accomplished in this thesis simply by preformatting the local state vector to be
xk|k−1 = 06×1 on line 34 prior to beginning the update stage.

Table 4.1: MEKF Algorithm

Line
Action Equation

1 Check Eclipse if zk1:4 = [0, 0, 0, 1]T

2 Propagation:
3 Propagate ω ωk|k−1 = zk5:7 − ζk−1|k−1

4 Propagate q qk|k−1 =
1
2
Ω(ωk|k−1)qk−1|k−1dt+ qk−1|k−1

5 Compute Fk Fk =

[
I3×3 − ω×

k|k−1dt −I3×3dt

03×3 I3×3

]
6 Propagate P Pk|k−1 = FkPk−1|k−1F

T
k +GkQkG

T
k

7 Pre-Format xk|k−1 xk|k−1 = 06×1

8 Update:
9 Define Measurements y = Bm

Continued on next page
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Table 4.1 – continued from previous page
Line Action Equation
10 Define References h = A(qk|k−1)BIGRF−13

11 Innovation ỹ = y − h
12 Eclipse Measurement Co-

variance
Rk = 105Rk4:6,4:6

13 Measurement Matrix Hk = [(A(qk|k−1)BIGRF−13)
× 03×3]

14 Compute Innovation Co-
variance

Sk = HkPk|k−1H
T
k +Rk

15 Kalman Gain Kk = Pk|k−1H
T
k S

−1
k

16 Refine Covariance Pk|k = (I6×6 −KkHk)Pk|k−1

17 Error State Update xk|k = xk|k−1 +Kkỹ
18 Update Bias Estimate ζk|k = ζk−1|k−1 + xk|k4:6
19 Update Angular Rate ωk|k = zk5:7 − ζk|k

20 Reset:
21 Quaternion Reset qk|k = qk|k−1 +

1
2
Ξ(qk|k−1)xk|k1:3

22 Normalize qk|k =
qk|k
|qk|k|

23 Update Clock nk = nk + 1

24 Satellite in Sun else

25 Check Clock if nk > 0
26 Update MEKF Covari-

ance
Pk|k−1 = Psun

27 Update MEKF Global
Attitude State

qk|k−1 = zk1:4

28 Reset Clock nk = 0

29 Propagation:
30 Propagate ω ωk|k−1 = zk5:7 − ζk−1|k−1

31 Propagate q qk|k−1 =
1
2
Ω(ωk|k−1)qk−1|k−1dt+ qk−1|k−1

32 Compute Fk Fk =

[
I3×3 − ω×

k|k−1dt −I3×3dt

03×3 I3×3

]
33 Propagate P Pk|k−1 = FkPk−1|k−1F

T
k +GkQkG

T
k

34 Pre-Format xk|k−1 xk|k−1 = 06×1

35 Update:
36 Error Quaternion δq = zk1:4 ⊗ q−1

k|k−1

37 Error Parameterization δϑ = 2
(

δq1:3
δq4

)
38 Local Measurement Vec-

tor
y = [δϑ Bm]

T

Continued on next page
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Table 4.1 – continued from previous page
Line Action Equation

39 Define References h =

[
03×1

A(qk|k−1)BIGRF−13

]
40 Innovation ỹ = y − h

41 Measurement Matrix Hk =

[
I3×3 03×3

A(qk|k−1)BIGRF−13)
× 03×3

]
42 Compute Innovation Co-

variance
Sk = HkPk|k−1H

T
k +Rk

43 Kalman Gain Kk = Pk|k−1H
T
k S

−1
k

44 Refine Covariance Pk|k = (I6×6 −KkHk)Pk|k−1

45 Error State Update xk|k = xk|k−1 +Kkỹ
46 Update Bias Estimate ζk|k = ζk−1|k−1 + xk|k4:6
47 Update Angular Rate ωk|k = zk5:7 − ζk|k

48 Reset:
49 Quaternion Reset qk|k = qk|k−1 +

1
2
Ξ(qk|k−1)xk|k1:3

50 Normalize qk|k =
qk|k
|qk|k|

51 end

Effect of Eclipse on Attitude Estimation

The formulations outlined in Table 4.1 present a scenario where the MEKF will
converge to two different covariance matrices dependent on the eclipse state. In
eclipse, there is no attitude measurement available to the MEKF, which leads to
a covariance matrix estimate that is different from the covariance matrix produced
when attitude measurements are available. To minimize disturbances to the control
system when the MEKF switches between estimation modes, it was desired to ensure
that the attitude estimate transition from eclipse to Sun remains smooth. Smooth
switching was achieved in this research by storing the in-Sun covariance matrix and
using it for the first estimate the MEKF makes out of eclipse. In addition, the latest
available QUEST quaternion is used as the previously estimated MEKF quaternion
to ensure that the MEKF propagation begins near the actual attitude quaternion for
every transition from eclipse to Sun. This logic is presented on lines 25 - 28 in Table
4.1. If the spacecraft is in eclipse, the MEKF can still make rough estimates of IMU
bias by using modified measurement formulations on lines 9 - 13.

On account of the MEKF collecting a sample count during eclipse, it becomes
relatively simple to detect the first in-Sun estimation. As shown on line 25, if the Sun
is detected and the sample count nk is larger than 0 the satellite must be transitioning
out of eclipse. The stored covariance matrix and QUEST quaternion can, therefore,
be applied to ensure a smooth estimation transition into the Sun estimation mode.
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4.5 Orbit Determination - Extended Kalman Filter (OD-EKF)

To this point the formulations presented in preceding sections have assumed that the
spacecraft position is known in order to produce the vectors from the reference models
such as IGRF-13 or solar ephemerides. For true online implementation, the spacecraft
requires a method to determine and propagate its own position relative to Earth. For
some time, the industry standard for online spacecraft orbit determination has been
to upload TLEs to the spacecraft and have the onboard computer propagate them
using the Simplified General Perturbations 4 model (SGP4) [87]. SGP4, however,
only provides reasonably accurate orbital predictions for up to 12 hours in advance.
Spacecraft autonomy is also limited by SGP4 as reliable up-links are required to
update the onboard TLE. [87][88].

The need for spacecraft autonomy has led modern spacecraft to prefer GPS/GNSS
sensors to actively measure the spacecraft position [89][88]. In works such as [89][90][91]
and [88] orbit determination via GPS is improved by adding a Kalman Filter to refine
the GPS measurements. Adopting the methods presented in the literature, enables
autonomous fine attitude determination by implementing an Orbit Determination -
Extended Kalman Filter (OD-EKF) receiving GPS measurements of satellite posi-
tion. An additional benefit of this method is the ability to leverage the OD-EKF to
estimate spacecraft orbital velocity.

A challenge which is discussed in [89] and [91] is that GPS units draw a significant
amount of power. For a CubeSat power bus, it is typical to duty cycle the GPS to
reduce the power draw. As a result, the OD-EKF must have continuous-discrete
time capabilities. A continuous-discrete time EKF will propagate estimates with a
dynamic model in continuous time until a discrete time GPS measurement is available
to refine the estimates [91] [92]. Fig. 4.9 describes on a sample by sample basis the
synchronization between orbit determination and attitude determination filters. The
overall attitude determination system outputs an attitude state at a rate of 4 Hz
corresponding to the selected sample time for attitude determination of 0.25s.

Furthering the definition of the GPS duty cycle it is necessary to derive the con-
tinuous time model that is propagated within the OD-EKF. For reasonably frequent

MEKF
Attitude

OD-EKF GPS
Update Propagate Propagate Propagate

dt = 0.25s

MEKF
Bias

In-Sun Duty Cycle

MEKF
Attitude

OD-EKF Propagate Propagate Propagate

dt = 0.25s

MEKF
Bias

Eclipse Duty Cycle

GPS
Update

N/A N/A N/A N/A

Figure 4.9: ADS Duty Cycles
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GPS measurements, it is acceptable to reduce the complexity of the model to save
computation resources. To demonstrate the rapid progression of model complexity,
we provide the derivation of a Cowell model unperturbed orbit propagation and com-
pare it to that of a J2 perturbed orbit propagation. The Cowell model ECI frame
orbital acceleration is provided as:

a = − µ

|r|3
r (4.37)

The corresponding partial derivative with respect to r1 where r = [r1, r2, r3]
T is:

∂a

∂r1
= −mu

|r|3
+

3µ

r5
r21 (4.38)

The partial derivatives of the model are important to consider because nine partial
derivatives of the ODE in Eq. (4.37) are required to build the state transition Jacobian
for the OD-EKF. That is, if ẋ = f(x(t)) exists where f() is a nonlinear function, the
state transition Jacobian Fk exists as:

Fk =
∂f

∂x
(4.39)

To make the comparison with the Cowell model, the orbital acceleration in the ECI
frame subject to the J2 perturbation can be expressed by following the derivation in
[93]. The orbital acceleration with J2 effects included now has three terms instead of
one as in Eq. (4.37):

ax = −µr1
|r|3

+
µJ2R

2
e

2

(
15
r1r

2
3

|r|7
− 3

r1
|r|5

)
(4.40)

The derivation of the partial derivative for this acceleration component is provided by
Ottemark (2015), however, the expression is already too lengthy to list here [90]. It
is, therefore, reasonable to limit the OD-EKF dynamic model to the J2 perturbation.
This limitation is further justified by the fact that, with a 25% duty cycle, the OD-
EKF will receive sufficiently frequent GPS measurements to ensure that propagation
errors over 3 samples are quickly corrected.

The OD-EKF derivation starts by defining the state vector as xk = [rECI vECI ]
T .

It follows that the time derivative of the state may be defined as ẋ = [vECI aECI ]
T .

Following Eq. (4.40) the other axial orbital accelerations expressed in the ECI frame
are defined as:

ay = −µr2
|r|3

+
µJ2R

2
e

2

(
15
r2r

2
3

|r|7
− 3

r2
|r|5

)
(4.41)

az = −µr3
|r|3

+
µJ2R

2
e

2

(
15

r33
|r|7

− 9
r3
|r|5

)
(4.42)

The OD-EKF dynamic model is completed by deriving the differential equation
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pertaining to the covariance matrix propagation. In the general EKF equations, the
EKF propagates the covariance matrix as:

Ṗk|k−1 = FkPk−1|k−1F
T
k +GT

kQkGk (4.43)

Noting Eq. (4.39), the state transition Jacobian was derived as:

Fk =

[
03×3 I3×3

Φ3×3 03×3

]
with, Φ =

∂ax
∂r1

∂ax
∂r2

∂ax
∂r3

∂ay
∂r1

∂ay
∂r2

∂ay
∂r3

∂az
∂r1

∂az
∂r2

∂az
∂r3

 (4.44)

The reader is directed to the work in [90] for the partial derivatives completing
the state transition Jacobian as they were implemented in this thesis. Similar to the
MEKF, Gk represents the noise Jacobian, Qk represents the process noise Jacobian,
Hk denotes the measurement matrix, and Rk is the measurement noise covariance
matrix. In the case of this thesis, the matrices Gk, Qk, Hk, and Rk, were all time
independent leading to their assembly in the following set of equations as:

Gk =
[
03×3 I3×3

]
(4.45)

Qk = 10−3I3×3 (4.46)

Hk =
[
I3×3 03×3

]
(4.47)

Rk = σ2
GI3×3 (4.48)

Qk was tuned empirically to place more emphasis on measurements than prop-
agated estimates. Rk was formed using the known measurement variance for the
GNSS receiver σ2

G. The short hand OD-EKF dynamic model is shown in the two
following equations where f(r, t) and f(Pk−1|k−1, t) represent the nonlinear functions
from Eq. (4.40) - Eq. (4.42) and Eq. (4.43) respectively:

ẋ = f(r, t) =


v
ax
ay
az

 (4.49)

Ṗk|k−1 = f(Pk−1|k−1, t) (4.50)

In this paper, the OD-EKF employs RK4 numerical methods to propagate both
Eq. (4.49) and (4.50). The RK4 numerical integrator is detailed in depth in [94] and
[95]. The update stage equations follow that of the regular EKF as seen in Table 4.2
lines 5 - 11, however, they must be adapted so that the OD-EKF update stage syncs
with the GPS and the MEKF. This synchronization was handled by tracking the
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number of completed propagation phases nk and then performing an update phase
when a full duty cycle has been completed. The full OD-EKF algorithm is presented
in Table 4.2 where the main notable change compared to the general EKF is the
conditionality on the update phase shown on Table 4.2 line 6.

Table 4.2: OD-EKF Algorithm

Line
Action Equation

1 Propagation:

2 Compute Fk Fk =

[
03×3 I3×3

Φ3×3 03×3

]
3 Propagate State xk|k−1 = RK4(f(r, t))
4 Propagate Covariance Pk|k−1 = RK4(f(Pk−1|k−1))

5 Update:
6 GPS Check if nk ≥ 4
7 Innovation Error ỹ = y −Hkxk|k−1

8 Compute Innovation Co-
variance

Sk = HkPk|k−1H
T
k +Rk

9 Kalman Gain Kk = Pk|k−1H
T
k S

−1
k

10 Update State xk = xk|k−1 +Kkỹ
11 Update Covariance Pk = (I6×6 −KkHk)Pk|k−1

12 Reset Clock nk = 0
13 GPS Not Available else

14 Pass Through State xk = xk|k−1

15 Pass Through Covariance Pk = Pk|k−1

16 Increment Clock nk = nk + 1
17 end



Chapter 5

DGSPCMG Based Attitude Control

The primary goal of the proposed ADCS is to actively control the spacecraft attitude
with the DGSPCMG. Active control of the spacecraft attitude enables the advanced
mission concepts discussed in this thesis including ADR and oceanographic target
tracking. This chapter discusses the necessary feedback controllers, the novel steering
control law for the DGSPCMG, and the system states which govern the utilization
of the spacecraft actuators. All of these factors can be observed in Fig. 5.1 where
a high-level control architecture for the proposed DGSPCMG-equipped CubeSat is
outlined. General CMG-equipped ADCS spacecraft will follow a control flow where
the attitude controller is used to determine the desired control torques to be applied
to the spacecraft and the steering control law then computes the CMG gimbal rates
which produce the desired control torques. The gimbal rate outputs from the steering
control law are directly used to actuate the CMG gimbals.

5.1 Feedback Controllers

Sliding Mode - Boundary Layer Controller

Three-axis attitude control can be achieved through a quaternion feedback attitude
controller. In this thesis, a Sliding Mode Controller (SMC) was implemented as the
attitude controller for its ability to be robust against unmodeled system dynamics or
disturbances. The SMC controller was derived based on the work in [96] and [97],
but was adapted by adding a boundary layer approximation to remedy the chattering
issue which is common for SMC controllers [98]. This section will address the four
proposed components of the SMC controller including the sliding surface, reaching
law, equivalent control law, and boundary layer approximation. Addressing the slid-
ing surface, let λ be a positive definite and diagonal matrix so that the quaternion

Figure 5.1: High-Level Block Diagram Representing the Control Structure of the
DGSPCMG-Equipped CubeSat

53
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feedback sliding surface may be expressed as:

σ = ωe + λq̂esign(qe4) (5.1)

where ωe is the body rate error term, q̂e is the vector portion of the error quaternion,
and qe4 is the scalar portion of the error quaternion. The signum function in Eq.
(5.1) is represented by “sign()”. λ was selected as λ = diag([0.45, 0.45, 0.45]T ) in
the present thesis by following the parameter specifications in [97]. The error quater-
nion can be calculated in the following expression knowing the estimated spacecraft
attitude from the MEKF q̃ and the desired attitude from the orbit propagator qd:

qe1
qe2
qe3
qe4

 =


qd4 qd3 −qd2 −qd1
−qd3 qd4 qd1 −qd2
qd2 −qd1 qd4 −qd3
qd1 qd2 qd3 qd4



q̃1
q̃2
q̃3
q̃4

 (5.2)

The body rate error term is computed as the difference between the MEKF esti-
mate and the desired value where ωe = ω̃−ωd. A reaching law was selected to push
the system states towards the sliding surface. Selection of a power-rate reaching law
enables relatively fast convergence to the sliding surface while producing low chatter
[99]. The present work, therefore, defines the reaching law as:

un = −k|σ|αsign(σ) (5.3)

In this reaching law, k and α are both tunable parameters which must be properly
selected – where α must be selected within the range of 0 < α < 1. Selection of α
close to 1 leads to slower reaching and an over-damped attitude response. Selection of
α close to 0 leads to faster reaching with a higher level of chatter in the control effort.
In this thesis a balanced controller was achieved by selecting α = 3

7
. k generally

leads to increased control emphasis on pointing error, but should be selected in some
regard based on a Lyapunov stability study. The Lyapunov study for the focus
controller design is provided in Appendix. C. In the oceanographic target tracking
case study, these controller parameters were reevaluated to achieve desirable results
for that particular application; however, the parameters provided here represent a
balanced and conservative control design based on iterative testing conducted in the
present thesis and [100].

The equivalent control signal is engaged once the attitude states reach the sliding
surface to ensure that they stay on the sliding surface [97]. The equivalent control
signal can be formed as:

ueq = J
(
(Jωe)

× Jωe − λsign(qe4)
˙̂qe

)
(5.4)

The complete control signal for the SMC design is a sum of the reaching law and
the equivalent control law where the subscript “cmd” is used to describe the command
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torque signal expressed in FBF :

ucmd = un + ueq (5.5)

Despite some efforts made to reduce chattering to through implementation of an
appropriate reaching law, more effort to remedy the SMC chattering issue should be
considered to prevent non-continuous control signals being sent to the CMG. It is
common for chattering present in the torque command signal to be translated into
the CMG gimbal rates rapidly switching between the upper and lower gimbal rate
limits [100]. For this reason, the present work modifies all aforementioned control
signals in Eqs. 5.1, 5.3 and 5.4 by smoothly approximating listed signum functions
with a Boundary Layer (BL) approximation. As shown in [98], introducing the BL
solves the chattering issue at the expense of the satellite having a small steady-state
pointing error. The BL as implemented in this thesis takes the following form where
x represents the input to the approximation and ∆ is a tunable parameter to adjust
the approximation accuracy (also coupled with steady-state error):

sat(x) =

{
sign(x), if |x|> ∆
1
∆
x, if |x|<= ∆

(5.6)

While the SMC controller can stabilize the satellite from slow spins, it is directly
commanding the CMG, which cannot absorb all of the angular momentum associated
with large spins like those imparted on the spacecraft during orbital injection. There-
fore, the next section introduces a magnetic detumbling strategy to compensate for
this rotation regime.

B-dot Magnetic Control

Magnetic detumbling provides a reliable method of damping initial body rates [101].
Unlike control with a CMG, magnetic control is always locally under-actuated because
torque produced by the interaction of the magnetorquers with Earth’s magnetic field
is constrained to lie in a plane orthogonal to the local magnetic field [102]. For this
reason, the present thesis only applies magnetic control for damping large spacecraft
spins or, as presented later in this chapter, assisting in the CMG escaping from
singularities. Adapting the work in [26], a proportional B-dot control law can be
formed where Ḃ represents the rate of change of the magnetic field in FBF :

Ḃ = B×ω (5.7)

The desired magnetic dipole m to be produced by the magnetic torquers becomes a
proportional feedback of the B-dot term:

m = −KḂ (5.8)

where K is a control gain which must be properly selected for satisfactory perfor-
mance. In this work, since the governing spacecraft physical parameters are the same
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ucmg

δ

h

ωfw
Gimbal Axis

Flywheel

Figure 5.2: Mutual Perpendicularity of Gimbal Rate, Angular Momentum, and
Torque Vectors Shown for SGCMG Example

as that used in [26], the K gain was set to 3.0e4 – a value considered ideal for a
2U CubeSat [103]. Additionally, the magnetic dipole m was saturated within the
limits of ±0.2 Am2 so that the magnetic torquers would not exceed their maximum
operating range specified in [26]. The torque applied on the spacecraft is normal to
both B and m and can be expressed in FBF as:

umag = m×B (5.9)

While the formulations for the feedback controllers have been presented in their
general form, their implementation in the simulator typically involves the controllers
acting on the estimated states or measured states including (from the MEKF) q̃,
ω̃, and (from the magnetometer) Bm. With the feedback controllers well defined,
the CMG dynamics and gimbal steering algorithms can be developed to produce the
control signals discussed in this section.

5.2 DGSPCMG Dynamics

The torque produced by a CMG ucmg is a function of the CMG momentum vector h
and the gimbal rate vector δ̇. A cross product relationship exists which states that
the CMG torque is always normal to both h and δ̇ as shown in Fig. 5.2. Based on
this relationship, a general expression for CMG torque is:

ucmg = δ̇
×
h (5.10)

In the more specific case of the DGSPCMG, h is a function of the CMG gimbal
angles defined by δ = [δsp, δi, δo]

T as shown in Fig. 1.2 where δsp is the scissor-pair
gimbal angle, δi is the inner gimbal angle, and δo is the outer gimbal angle. For a
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CMG onboard a spacecraft, the CMG dynamics are typically expressed as [14][48]:

h = h(δ) (5.11)

ḣ+ ω×h = −ucmg (5.12)

Considering Eq. (5.12), the torque produced by the CMG is a sum of the time rate
of change in angular momentum but also a gyric component caused by the rotation
of the spacecraft while the CMG posses a non-zero angular momentum. The ḣ term
is typically computed through a differential equation based on the gimbal angles δ
and the gimbal rates δ̇, given in [48] as:

ḣ = A(δ)δ̇ (5.13)

where:

A =
∂h

∂δ
(5.14)

The Jacobian matrix A is a 3 × n matrix which describes the state of the CMG. In
many cases, the CMG cluster design may employ n ̸= 3 gimbals, and the Jacobian
matrix would not be square. The DGSPCMG, however, has 3 gimbals which leads to
a square Jacobian matrix.

Referring to Fig. 1.2, the scissor-pair gimbal δsp rotates the two flywheels in
equal but opposite directions to modify the magnitude of the DGSPCMG momentum
vector. The inner and outer gimbal angles δi and δo change the direction of the
CMG angular momentum vector. Since the flywheels in the DGSPCMG rotate with
constant angular velocity, the magnitude of the CMG angular momentum is entirely a
function of the scissor-pair angle and the momentum possessed by the flywheels. Thus,
the current angular momentum of the CMG can be described by H = 2Hw sin δsp,
where Hw = Ifwωfw represents the angular momentum of an individual flywheel. Ifw
denotes the inertia of the flywheel calculated about its respective spin axis, and ωfw

represents the constant angular velocity of the flywheel. Correspondingly, the angular
momentum vector based on the inner and outer gimbals and expressed in FBF is:

h = 2Hw sin δsp

 sin(δi)
cos(δi) sin(δo)
cos(δi) cos(δo)

 (5.15)

By differentiating Eq. (5.15) as shown by Eq. (5.14), the DGSPCMG Jacobian
matrix A is formed where s and c represent sin and cos trigonometric functions:

ḣ = 2Hw sin δsp

 cspsi sspci 0
cspciso −sspsiso sspcico
cspcico −sspsico −sspciso

 = Aδ̇ (5.16)
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5.2.1 DGSPCMG Singularities

CMGs suffer from a complication known as a singularity where the CMG loses the
ability to produce torque about all axes [104][48]. Any CMG cluster design which
has less than 6 gimbals will have singular states which complicate its control [105].
Singularities have a number of classifications. Should the total CMG momentum vec-
tor from all n CMGs lie on the feasible angular momentum envelope, the singularity
is external. If the CMG cluster encounters a singularity and the total momentum
vector lies within the feasible angular momentum envelope the singularity is internal
[48]. Internal singularities have additional sub classifications into both hyperbolic
and elliptic singularities. Typically, hyperbolic singularities are “passable” because
the CMG gimbals can be actuated (through a maneuver known as null motion) out of
the singularity without producing torque on the spacecraft. For elliptic “impassable”
singularities the null motion cannot be applied [48][106]. For a given CMG array of
n CMGs, the singularities it experiences will largely be specific to that CMG config-
uration. Avoiding or escaping from the singular conditions of a CMG has garnered
the attention of many researchers as the singularities have both physical and math-
ematical interpretations which should be considered when designing a CMG gimbal
steering control law (SCL) to cope with these singularities.

As briefly discussed, the DGSPCMG design greatly improves the manageability
of the singular states by the fact that:

1. The feasible angular momentum surface is spherical.

2. The internal singularities are only of the hyperbolic type.

3. The internal singularities only exist along the δo gimbal axis or when δsp = 0.

Fig. 5.3 provides a visual representation of the DGSPCMG feasible angular mo-
mentum surface and internal singularity locations shown inside this surface. A typical
convention for the DGSPCMG design is to have the outer gimbal axis aligned with
the FBF x-axis and the inner gimbal axis aligned with the y-axis. Following this
convention, it is clear that the internal singularity location is along the x-axis and at
the origin.

The internal singularity line shown in Fig. 5.3 arises from the case that if δsp ̸= ±π
2

and δi = ±π
2
, the angular momentum vector h will lie on the δo gimbal axis. In this

case any movement of δo will not result in a torque. More intuitively, for the internal
singularity of δsp = 0, the DGSPCMG possess no angular momentum and movement
of δi or δo will not result in any torque (null motion). Finally, if δsp = ±π

2
then

the magnitude of Eq. (5.15) is maximized and h will lie on the external singularity
surface of Fig. 5.3. The singularities associated with δsp are further depicted in Fig.
5.4 where it is apparent in the leftmost schematic that the angular momentum vector
is 0 and lies at the origin of Fig. 5.3. In the rightmost schematic of Fig. 5.4, h
is maximized and would lie on the spherical surface in Fig. 5.3. Fig. 5.5 shows a
rendering of the entire DGSPCMG in the aforementioned singularity states where the
arrows originating from the flywheels (red) represent the angular momentum vector
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Figure 5.3: DGSPCMG Angular Momentum Envelope with Internal Singularity Case
Shown.

of the individual flywheels. The gimbal stepper motors (black) are shown connected
to the DGSPCMG chassis in Fig. 5.5.

While the singularities have clear physical interpretations, there are also math-
ematical interpretations which should be considered. Referring to Eq. (5.16), the
DGSPCMG system falls into a singularity if rank(A) < 3. rank(A) < 3 implies
that det(A) = 0 and the Jacobian matrix is singular. The analytical solution to the
determinant of A is [14]:

det(A) = 2Hw cos(δsp) sin
2(δsp) cos(δi) = 0 (5.17)

Hw

2Hwsin(δsp)
2Hw

δsp

δsp = π/2 δsp = π/2 

δsp

Hw

Internal δsp = 0 Singularity Nominal External Saturation Singularity 

δsp = 0 δsp = 0 

Figure 5.4: Possible DGSPCMG Configurations Based on δsp Gimbal Angle
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δsp = 0 Singularity
0 Net Angular Momentum

δsp = π/2 Singularity
Maximum Net Angular Momentum

δi = π/2 Singularity
h aligned with δo 

Figure 5.5: Rendering of DGSPCMG Geometry For Discussed Singularity Configu-
rations

A gimbal angle vector δ that contains any of the aforementioned singularity cases
for δsp or δi would satisfy Eq. (5.17) and the DGSPCMG would be experiencing a
singularity. δo does not appear in Eq. (5.17) which implies that there are no singular
conditions related to δo. Numerically, if A is singular its inverse does not exist and, as
shown in the following sections, it becomes impossible to compute further controlling
gimbal rates with the Jacobian matrix. It is, therefore, critically important for the
SCL to autonomously avoid these singular conditions to ensure proper function of the
ADCS.

5.3 The DGSPCMG Steering Control Law

Recently Kojima et al. (2020) presented the DGSPCMG steering control law. The
Kojima SCL was shown to be effective at escaping all singular states under ideal
conditions. In addition, the SCL does not compute optimization problems to deter-
mine the gimbal rates as done in examples such as [107][108][109]. By nature of the
DGSPCMG having 3 gimbals, pseudoinverse calculations of the Jacobian matrix are
also avoided. By avoiding these two somewhat cumbersome calculations, it becomes
more likely that computation of the gimbal rates will not violate the sampling rate
as discussed in [110] when computed on basic flight computers. Computational effi-
ciency is particularly valuable when considering that many CubeSats apply low-power
computers for their missions [111].

While the Kojima SCL was demonstrated to be effective under ideal conditions,
further research was required to avoid singularities effectively when the DGSPCMG
was used in the orbital environment. In particular, further development of the SCL
was required to identify and handle the case where orbital disturbances push the CMG
into a singularity, but the spacecraft is already in the desired attitude. Some authors
have proposed hybrid CMG models which supplement the CMG with an additional
actuator to compensate for disturbances [20][112]. One such proposal involved supple-
menting the CMG with RWs [112]; however, such a design is only practical for large
satellites. A different method using magnetic torquers and a pyramid array CMG
was proposed in [20] where the magnetic torques are applied after each rest-to-rest
attitude maneuver to restore the optimal CMG gimbal angles.

It is clear that a desirable DGSPCMG control law should (1) be computationally
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efficient, (2) enable singularity escape when subjected to long-term orbital distur-
bances, and (3) minimally impact the science objectives of the mission when perform-
ing singularity escape. To accomplish these tasks, a novel extension of the Kojima
DGSPCMG control law was developed in this thesis. The proposed extended control
law commands magnetic torques through CMG momentum state feedback to restore
the CMG momentum state to a desired state. The extended control law manages the
CMG momentum while still maintaining the desired spacecraft attitude to limit im-
pacts on the main mission objectives. In addition, the proposed SCL has the ability
to select between gimbal compensation with magnetic torques or only the use of CMG
steering to escape from singularities. First, the Kojima control law is presented in
the following subsections as the foundation for further work, then the novel extension
is developed to enable the use of the DGSPCMG on orbit.

5.3.1 Basic Gimbal Steering

When the CMG is not in a singularity, the basic inverse steering control law may be
applied. Addressing Fig. 5.1, the attitude controller torque command signal ucmd is
first converted to a momentum rate command τ by applying the relationship:

τ = −ucmd − ω×h (5.18)

This momentum rate command becomes the input for the SCL, which for the no
singularities case, will compute the basic inverse law to yield the commanded gimbal
rates δ̇c as:

δ̇c = A−1τ (5.19)

5.3.2 Internal Singularity Recovery

It was discussed in Section. 5.2.1 that steering the DGSPCMG through null motion
can be used to escape from the δsp = 0 singularity. To steer the CMG through a null
motion, a set of gimbal rates δ̇ must be obtained where the angular momentum state
of the CMG does not change from being net zero. The net zero constraint implies
that the momentum rate command τ satisfies the following equation and ensures that
Eq. (5.13) is valid [14]:

τ = An = 0 (5.20)

The internal singularity related to the case that δi = ±π
2
with |δsp|< π

2
must

also be considered; however, this singularity is justifiably handled by mechanically
limiting the range of δi within ±π

2
[14]. In the simulator, this mechanical constraint

was achieved by saturating the δi gimbal to bounds of ±π
2
. As a result of placing

the δi constraint, the null motion control law must only be developed for the δsp = 0
singularity. An effective condition for the execution of the null motion is to execute the
null motion if |sin δsp|< ϵ1(ϵ1 ≈ 0) where ϵ1 is selected to conform to the resolution of
the encoders monitoring the gimbal angles. The null motion is executed by orienting
the CMG so that subsequent output torques created by gimballing the scissor-pair
are along the Euler axis corresponding to the desired attitude quaternion. That is, if
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δsp is gimballed to move it out of the δsp = 0 singularity, the torque created slews the
satellite towards the desired attitude. The target Euler axis can be extracted from the
definition provided in Eq. (3.7) as ec = [ec1 , ec2 , ec3 ]

T provided the desired quaternion
qd is available. The output torque direction of the scissor-pair may, therefore, be
related to the target Euler axis by:

ec = −sign(δ̇sp)

 sin(δi)
cos(δi) sin(δo)
cos(δi) cos(δo)

 (5.21)

In order to direct the scissor-pair output torque direction to be inline with the
Euler axis, Eq. (5.21) can be solved with respect to δi and δo to obtain a set of target
null motion gimbal angles δ̂i and δ̂o:

δ̂i = sin−1(sign(ec3)ec1) (5.22)

δ̂o = atan2(sign(ec3)ec2 , sign(ec3)ec3) (5.23)

A null motion SCL may then be developed which aims to drive the gimbal angles
towards the target gimbal angles such that the output torque of the scissor-pair is
along the Euler axis as desired. Correspondingly, let kn represent a null motion
control gain which must be properly selected. The resulting gimbal steering control
law for the null motion is expressed as [14]:

δ̇c = kn

 0

δ̂i − δi
δ̂o − δo

 (5.24)

Nominal CMG steering may be resumed when the norm of δ̇c is near zero, a
scenario that indicates that the actual CMG gimbal angles are near the target set of
gimbal angles. A tolerance value ϵ3 can be set so that, if |δ̇c|< ϵ3, then a specific SCL
known as the partial inverse law may be engaged to ensure that the switch from null
motion to basic inverse steering is smooth. The partial inverse steering law commands
a gimbal rate to the scissor-pair specifically as:

δ̇csp = ÂT
spτ (5.25)

where by following [14], Âsp may be defined as:

Âsp =
1

2Hw

 sin(δi)
cos(δi) sin(δo)
cos(δi) cos(δo)

 (5.26)

Steering through the partial inverse steering law completes recovery from the
δsp = 0 singularity and ends the null motion.
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5.3.3 External Singularity Recovery

In the case of recovering from the δsp = ±π
2
external singularity, null motion is no

longer an option because the CMG possesses a net angular momentum. A point
of concern with the δsp = ±π

2
singularity is that moving the scissor-pair through

δsp = π
2
towards δsp = π has the same effect on the momentum state as moving

towards δsp = 0. Both cases reduce the magnitude of angular momentum stored in
the CMG. The latter of the two options, however, is more desirable because it removes
the requirement for slip rings in the design of the DGSPCMG. To accommodate this
design consideration, a constraint on δsp is assumed such that |δsp|≤ π

2
.

Escape from the δsp = ±π
2
singularity requires ceasing gimballing of the scissor-pair

if δsp approaches a threshold value of ϵ2. Should cos(δsp) < ϵ2 where ϵ2 is a positive
threshold value that satisfies ϵ2 ≈ 0, then scissor-pair gimbal motion is stopped to
allow the satellite to inertially slew towards the target attitude. Once the satellite
nears the target attitude, the gimbal motion may resume in a manner where the com-
manded gimbal rate reduces δsp while slowing body rates and stabilizing the satellite
at the target attitude. That is, the saturation singularity recovery SCL involves nom-
inally steering the other two gimbals, while steering the scissor-pair according to the
following control law, where kr is a control gain to be selected properly [14]:

δ̇csp =

{
0 if h · τ ≥ 0
−krsign(δsp) if h · τ < 0

(5.27)

This method of singularity escape is effective for rest-to-rest attitude maneuvers in
isolated tests; however, in a practical long-term orbital application it does not guar-
antee singularity recovery [100]. To guarantee escape from the external singularity in
orbital applications, it is necessary to develop additional control logic. The following
sections introduce the novel extended DGSPCMG control law which robustly escapes
the saturation singularity by applying gimbal compensation with magnetic torquers.

5.4 Novel Extended DGSPCMG Steering Control Law for Gimbal
Compensation

The Novel Extended DGSPCMG Steering Control Law developed in this section al-
lows for selective CMG steering dependent on when singularity escape through gimbal
compensation should be used, or when singularity escape is viable without the use of
gimbal compensation. Through this section, both terms of “gimbal compensation”
and “momentum management” may be used, with both referring to the case where
magnetic torquers produce a torque that allows the CMG gimbals to be actuated
without disturbing the attitude of the spacecraft. “Momentum management” may be
used more frequently when singularity escape is most easily explained by managing
the momentum stored by the CMG. Referring back to Fig. 5.1, this section directly
discusses the umag magnetic torque term which is fed forward from the attitude con-
troller to the satellite dynamics. Within this term is the compensatory torques which
allow singularity escape in the DGSPCMG.
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To justify the use of compensatory magnetic torques, the relevant scenarios where
gimbal compensation could be required on orbit should be considered.

Case 1: Consider an orbital scenario where the spacecraft is tumbling (spin-
ning uncontrolled) such that the CMG scissor-pair enters the external singularity by
attempting to absorb the momentum associated with the spin. Fundamentally, to
reduce the spin the SCL and attitude controller would, in general, be commanding
an increase in the scissor-pair angle, thereby increasing CMG momentum and reduc-
ing momentum associated with the spacecraft spin. In an event where the external
singularity is reached before completely nulling the body rate, the SCL from Section.
5.3.3 will allow inertial slewing until the target attitude is reached. The inertial slew
method, however, is not guaranteed to reach the target attitude in this case because
the spacecraft may not be on an attitude trajectory that ensures the scissor-pair
may be desaturated from the singularity in finite-time [100]. 3-axis control of the
spacecraft would, therefore, be lost.

Case 2: Consider a long term orbital mission where the disturbances presented
in Section. 3.4.2 must be rejected by steering the CMG via the basic inverse steering
law. In an event where the sum of these disturbances creates an angular impulse
which leads to the reduction of δsp towards δsp = 0, then the SCL will attempt a null
motion. An issue may arise in this event because if the spacecraft is already close to
the desired attitude, the execution of a null motion may only moderately increase δsp.
A minor or moderate increase of δsp may lead to repetitive null motions being executed
resulting in a loss of accurate attitude control [100]. Conversely, if the disturbances
push the scissor-pair towards the δsp = ±π

2
singularity then, as discussed in Case 1,
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Figure 5.6: High-Level Overview of How the Extended SCL Handles Various Systems
States
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Figure 5.7: Logic Flow Down Chart of Extended DGSPCMG Steering Control Law

gimbal steering will be stopped and only resumed if the satellite is perturbed into
an attitude where the reduction of δsp leads to the acquisition of the desired attitude
[100].

In both of the aforementioned cases, attitude control complications related to the
CMG being trapped in a singularity can be avoided by managing the DGSPCMG
momentum vector with a supplementary actuator. How and when this momentum
vector is managed, is dependent on the state of both the satellite and the CMG as
shown by the high-level description of the Extended SCL in Fig. 5.6. The details of
the Extended DGSPCMG Steering Control Law are presented in Fig. 5.7 to solve
the attitude control problems by employing magnetic torquers as the supplementary
actuator.
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5.4.1 Magnetic Detumbling

As discussed in Case 1, CMG steering should only be switched on after the spacecraft
has been successfully detumbled. The control complication related to Case 1 can,
therefore, be solved by switching on CMG when the norm of ω is less than a tolerance
threshold ϵdt. The detumbling control laws which govern the magnetic torquers follow
those presented in Section. 5.1 prior to the satellite meeting the tolerance threshold
ϵdt [100].

5.4.2 Momentum Restoration via Momentum Feedback Control

To maintain attitude pointing, the DGSPCMG must hold a net angular momentum
corresponding to a scissor-pair angle of δsp ̸= 0. In an ideal scenario without or-
bital disturbances, the SCL will steer the gimbals in a manner where the net angular
momentum is above zero. Practically, however, it is possible for the DGSPCMG to
approach δsp = 0 or δsp = ±π

2
singularities when exposed to orbital disturbance rejec-

tion. The momentum stored by the DGSPCMG can be maintained to a desirable net
positive state through an angular momentum feedback loop with magnetic torquers
as shown in Fig. 5.1.

Much work has been conducted, particularly on reaction wheel systems, to handle
momentum saturation of the actuator. Early studies such as that in [113] handle
nominal control separate from desaturation. More modern methods attempt to handle
both simultaneously [19]. In the case of highly-agile maneuvering with a DGSPCMG,
the ability to manage the stored momentum while maintaining attitude stability is a
desirable control characteristic for modern missions.

Attitude control with a momentum feedback controller has been recently discussed
in [114]. In the case of [114], the angular momentum feedback controller is used to
control the spin axis of a spin stabilized spacecraft. The controller was adapted in this
thesis to instead restore the momentum state of the DGSPCMG to desirable values.
Fundamentally, the adapted momentum feedback loop will command the magnetic
torquers to produce torques that, through the CMG rejecting these torques, cause the
CMG momentum vector to align with the desired vector. The momentum feedback
loop related to the magnetic field vector is defined by:

m =
kd

||B||2
∆h×B (5.28)

where kd is a momentum dumping control gain and ∆h is the difference between the
current and reference momentum vector expressed by:

∆h = h− href (5.29)

The href vector is, therefore, the desired momentum state of the CMG corre-
sponding to a desired gimbal state which is away from all singularities. The reference
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momentum vector can be obtained in the following relationship:

href = 2Ifwωfw sin(δspref )

 sin(δi)
cos(δi) sin(δo)
cos(δi) cos(δo)

 (5.30)

For the DGSPCMG actuator, the magnitude of the stored momentum vector is
defined by δsp with the direction of the vector defined by δi and δo as shown in
Eq. (5.15). If the reference momentum vector href is selected to be in a direction
defined by the current δi and δo angles, but with a magnitude defined by |δspref |>
|δsp|, the CMG momentum state can be increased by pushing the δsp angle away
from the δsp = 0 singularity. Should |δspref |< |δsp| be chosen instead, the CMG
momentum can be decreased such as to push δsp away from the δsp = ±π

2
singularity.

Steering the DGSPCMG gimbals using the basic inverse steering law from Eq. (5.19)
while the momentum feedback controller commands the magnetic torquers to produce
compensatory torques, leads to the scissor-pair gimbal moving towards δspref and
thereby the desired reference momentum state href . A subtlety of the proposed
momentum feedback controller combined with the DGSPCMG is that through proper
selection of href the CMG only needs to gimbal δsp during momentum management
[100]. As a result of the DGSPCMG still possessing net angular momentum during
momentum management, the other gimbals consisting of δi and δo can still be used
to maintain the target attitude at the same time.

5.4.3 Gimbal Compensation Logic for the δsp = 0 Singularity

To avoid the δsp = 0 singularity a specific set of logic is required to effectively escape
the singular case. To prevent pushing the scissor-pair directly through δsp = 0, href

should be chosen based on if the scissor-pair angle has approached δsp = 0 from
δsp > 0 or δsp < 0. Following Fig. 5.7, the first step of internal singularity escape is
to set the reference scissor-pair angle dependent on the gimbal approach direction as
shown by the present author’s original paper in [100]:

δspref =

{
δspref if δsp > 0
−δspref if δsp < 0

(5.31)

In terms of selecting between gimbal compensation or null motion, a subsequent
set of constraints must be considered. Null motion is most effective for singularity
escape when the spacecraft attitude is relatively far from the desired attitude. The
predominant reason for this particular efficacy is because null motion can be exe-
cuted quickly and followed by large control torques being generated by the CMG. In
comparison, the speed of momentum restoration is constrained by the proportionally
small torques produced by the magnetic torquers and, on top of this constraint, atti-
tude acquisition may still be required after singularity escape [100]. In addition, when
the spacecraft is close to the desired attitude, it is desirable to avoid repetitive null
motions all with minor increases in δsp as discussed in Case 2. For these listed reasons,
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momentum management should only be executed when the satellite is already at the
desired attitude and the scissor-pair is approaching a singularity.

The satellite can be considered to be at the desired attitude when the scalar
portion of the error quaternion qe4 = 1 based on the unit norm constraint placed
on all quaternions. Considering the value of the scalar component of qe4 when the
spacecraft is near the desired attitude, a condition for acquired attitude may be
defined for the case that qe4 is greater than a positive threshold ϵp where ϵp ≈ 1. To
accommodate the quaternion duality issue, where two quaternions can represent the
same attitude, the condition for acquired attitude is more generally represented in
this thesis as:

|qe4 |> ϵp (5.32)

In the event that the condition shown in Eq. (5.32) is satisfied and |sin δsp|<
ϵ1 (the previously-defined condition for the δsp = 0 singularity), then momentum
management may be executed following Fig. 5.7. Momentum management should be
ended when the δsp angle is near δspref . Because, the momentum feedback controller
is a proportional controller, the scissor-pair angle will asymptotically approach the
reference value. To account for the steady state offset, an acceptable δsp angle must
be selected which is larger than the δspref angle so that momentum management is
ended in finite time. The acceptable value may need to be selected through trial and
error because of both the gain kd and saturation limit of the magnetic torquers having
meaningful effects on the asymptotic approach of δsp.

To differentiate between CMG steering methods, flags can be specified which
dictate how the CMG will be steered for the various proposed methods. Defining Bdt

as the flag signaling completion of the detumble phase, if Bdt = 0, then detumbling is
in progress and the CMG is inactive. In addition, let Bm represent the flag signaling
the state of the momentum management. Should Bm ̸= 0 then the steering law
is set to the basic inverse law described in (5.19) and the momentum management
maneuver will be active until |δsp|≈ |δspref | [100]. The produced magnetic dipole will
be dictated by 5.28 as shown in Fig. 5.7.

5.4.4 Gimbal Compensation Logic for the δsp = ±π
2
Saturation

Singularity

Functionally, a similar logic flow as done for δsp = 0 was implemented for executing
gimbal compensation to escape δsp = ±π

2
. Structurally, the same check is completed

for the singularity approach direction as shown in Eq. (5.31) but the condition for
execution is modified. If the CMG is allowed to fully saturate to δsp = ±π

2
be-

fore execution of momentum management, then it becomes possible for the CMG
to encounter a case where a large attitude reorientation is commanded which would
saturate the δsp angle. In this scenario there may not be any momentum head room
(gimbal range from the current δsp angle to the saturation value) to allow a large
attitude reorientation to transpire. Therefore, it is more desirable to execute frequent
shorter momentum management maneuvers to keep δsp ≈ 0 than it is to execute fewer
larger maneuvers where δsp is allowed to fully saturate. By this definition, trial and
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error was used to select a value ϵs = 0.4 rad as the saturation threshold for executing
the momentum management maneuver. Therefore, should the condition shown in
Eq. (5.32) be met and |δsp|> ϵs (the previously-defined condition for the δsp = ±π

2

external singularity), the momentum management maneuver may be executed. In
this scenario we must select a δspref value which is less than ϵs but greater than ϵ1
such that the CMG is not steered directly into the internal singularity after gimbal
compensation. A set of important parameters used to drive the Extended DGSPCMG
control law is provided in Table 5.1. Additionally, the actuator limitations related
to the maximum CMG gimbal rate δ̇max and the maximum magnetic torquer dipole
moment mmax are provided in Table 5.1. These parameters were used to produce the
simulations shown throughout this thesis.

Table 5.1: Key Selected Parameters For Extended DGSPCMG Steering Control Law

Extended SCL Parameters

Parameter Value and Units

ϵ1, ϵ2, ϵ3, ϵs 0.004, 0.004, 0.04, 0.4 rad

ϵp 0.99 (unitless)

ϵdt 0.1 rad/s

kn, kr, kd 10, 1, 0.02 (1/s)

δspref 0.06 rad

δ̇max 1 rad/s

mmax 0.2 Am2

5.5 Operational Modes

While previous sections have dealt with attitude determination, or how the CMG will
be steered for various proposed maneuvers, this section details how the DGSPCMG-
equipped ADCS should be operated as a whole at different mission stages. The
operational modes for the ADCS seek to ensure that only specific components of the
ADCS are operating at specific times. In this thesis, the system state control law
which governs how the ADCS operates is more formally referred to as the actuator
governor. The complete actuator governor is provided in Fig. 5.8. The symbols
Bcmg and Bmag shown in Fig. 5.8 represent the state of the CMG and magnetic
torquers respectively. A state equal to 0 (false) indicates that the actuator is not
being used or cannot actuate. As previously defined, Bdt is a flag used to indicate
the completion of the detumbling phase and Bm indicates if the Extended DGSPCMG
SCL is performing momentum management. For further clarity, the reader is referred
to Section. 3.4.1 where ℓ is defined as a parameter for the intensity of sunlight.
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The following set of on-orbit cases are addressed by the implementation of the
actuator governor:

1. The satellite is tumbling with a rate |ω|> 0.05 rad/s.

� Use magnetic torquers to detumble.

� DGSPCMG is inactive to prevent saturation.

2. The satellite is tumbling with a rate |ω|< 0.05 rad/s.

� Set magnetic torquers to hibernate and wait for momentum management
command.

� DGSPCMG is active and used for fine pointing control.

3. The satellite is entering eclipse or is in eclipse having not completed detumbling.

� All actuators are inactive.

� Bdt is reset to zero so that residual high rates are damped by the magnetic
torquers on exit from eclipse.

4. The satellite has completed detumbling, is entering or in eclipse but was per-
forming momentum management.

� All actuators are inactive.

� Bdt is maintained at 1 so that the satellite prioritizes CMG control upon
exit from eclipse.

The final component relating to operational modes is the feedforward torque re-
lated to momentummanagement. Momentummanagement executed by the Extended
SCL is most efficiently performed when the attitude controller commands the oppo-
site torque from that produced by the magnetic torquers. As a result of the local
magnetic field being known to reasonable levels of accuracy from the magnetometer,
the output torques from the magnetic torquers are also well known. In the case that
momentum management is being performed, Bm ≥ 1 which indicates that the output
torque signal of the attitude controller shall be switched to:

ucmd = un + ueq + uff (5.33)

where the feed forward term uff is defined such that uff = −umag. By implementing
this operational change, the downstream DGSPCMG is commanded to output a
torque which directly compensates for the momentum management magnetic torque.
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Figure 5.8: Flow Chart for Determining Desired Spacecraft Operational Mode
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5.6 DGSPCMG Attitude Control Results

This section presents results used to confirm the intended function of the DGSPCMG
Extended Steering Control Law in a nadir pointing Earth observation mission. Three
simulation sets are shown. In the first simulation, the spacecraft is provided an initial
body rate which requires it to detumble prior to initiating CMG control. The second
simulation commands the DGSPCMG to perform a maneuver which causes δsp to
briefly exceed the saturation threshold ϵs. The second simulation also demonstrates
the ability for the Extended SCL to properly select between gimbal steering and
gimbal compensation for singularity escape dependent on the given spacecraft state.
The third simulation demonstrates the execution of gimbal compensation to restore
the CMG momentum state to a desirable value while still controlling the attitude of
the spacecraft.

5.6.1 Simulation 1 - Detumbling

The results in this section were derived from the following list of initial parameters
shown in Table 5.2: The spacecraft dynamics during detumbling can best be observed

Table 5.2: Key Initial Conditions for Simulation 1

Simulation 1 Initial Conditions

Description Parameter Value and Units

Initial Spin ωt=0 [0.1,−0.2, 0.1]T (rad/s)

Initial Gim-
bal Positions

δt=0 [0.0, 0.0, 0.0]T (rad)

Initial Atti-
tude

qt=0 [0, 0, 0, 1]T (unitless)

Initial Posi-
tion (ECI)

rt=0 [6.1224e+06, 2.9266e+06,−189.3029]T (m)

Initial Veloc-
ity (ECI)

vt=0 [−6.3136e+03, 4.3459e+03, 0.0000]T (m/s)

Epoch Date (yyyy-mm-
dd)

(2023-01-11)

Epoch Time t0 7.1816 (Decimal Hours)

Flywheel Mo-
mentum

Hw 0.022 (kgm2/s)

Obtained TLE:

1 | 55125U 98067US 23011.29923435 .00058776 00000-0 96732-3 0 9995

2 | 55125 51.6426 25.5525 0003280 304.5245 55.5434 15.51770375 2070
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by analyzing the results of the MEKF during the detumbling period. The MEKF,
during this time, is outputting an estimation of the spacecraft body rates, which are
used as the feedback term for the B-dot control law. The MEKF attitude, body rates
and bias estimates are provided in Fig. 5.9 - Fig. 5.11. In Fig. 5.9 all true quaternion
components q1−4 (shown in black) are shown with the QUEST estimated quaternion
components q1−4QUEST

(shown in gray) and the MEKF estimated quaternion compo-
nents q1−4MEKF

(shown in red) as overlays. Similarly in Fig. 5.10 all true body rate
components ω1−3 (shown in black) are shown with the IMU measured components
ω1−3IMU

(shown in gray) and the MEKF estimated components ω1−4MEKF
(shown in

red) as overlays.

Figure 5.9: MEKF Attitude Estimate During Detumbling Compared to Actual Space-
craft Attitude

The MEKF is shown in Fig. 5.9 - Fig. 5.11 to provide a good estimate of the
spacecraft state when not in eclipse (designated by the shaded regions of the plots).
Because the covariance matrix from in-sunlight estimation is saved for the exit of
inevitable eclipses, it can be observed that the MEKF converges quickly to the actual
state on the exit of eclipse. A key detail from the results is best observed in Fig.
5.10. This figure shows that the spacecraft had not yet completed detumbling when
entering eclipse at around 300 seconds of simulation time. Because the MEKF can
only produce a rough bias estimate in eclipse when lacking the QUEST measurements,
detumbling is stopped and only resumed when the spacecraft exits eclipse. It is
relatively clear by the gradual reduction in body rates in Fig. 5.10 that the ADCS
has properly waited for sunlight before continuing to detumble the spacecraft. The
actuation of the magnetic torquers which caused the observed abating body rates is
presented in Fig: 5.12.

As shown in Fig. 5.12, the magnetic torquers operate within their nominal dipole
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Figure 5.10: MEKF Body Rate Estimate Compared to IMU Measured and Actual
Body Rates

Figure 5.11: MEKF Estimated IMU Bias Compared to Actual IMU Bias

output range of 0.2 Am2. Only the x-axis and z-axis torquer hit the saturation limit
during operation. The magnetic torquers were switched off in favor of using the
CMG for fine attitude pointing once the torquers had detumbled the satellite below
the detumbling threshold ϵdt. The spacecraft operational modes which reflect this
switch to CMG control are shown in Fig. 5.13.

While all states are set to 0 (false) in eclipse, the actuator governor recognizes
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Figure 5.12: Magnetic Torquer Actuation During Detumbling Expressed in FBF

Figure 5.13: Operational Modes Output by Actuator Governor

high body rates on the exit of eclipse and allows the magnetic torquers to complete
the detumbling as shown in Fig. 5.13 subplot two. The CMG is briefly switched on
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prior to the second eclipse once the magnetic torquers have completed detumbling.
This handover is also represented in Fig. 5.9 by the fact that the MEKF is shown to
start outputting a stable nadir tracking attitude at around 4500s of simulation time.

Some discussion is necessary to explain how the specific initial condition of δt=0 =
[0, 0, 0]T was contrived. While it seems counter intuitive to deliberately place the
CMG in the δsp = 0 singularity to start the mission, doing so prevents the CMG from
producing unwanted torques during detumbling. Should δsp = 0 not be selected, the
ω×h component of Eq. (5.12) demonstrates that the CMG would be producing an
uncompensated gyric torque during detumbling by the fact that h would be a non-
zero vector. For this reason, it is likely for the DGSPCMG to start an orbital mission
with δsp = 0.

5.6.2 Simulation 2 - Agile Maneuvering

The agile maneuvering results in this section were derived from the following set of
initial conditions in Table 5.3. Any initial conditions not listed in this table were
identical to the first simulation parameters shown in Table 5.2. The results of this
section highlight the ability of the Extended DGSPCMG SCL to effectively select the
most ideal singularity escape method based on the satellite state.

Table 5.3: Key Initial Conditions for Simulation 2

Simulation 2 Initial Conditions

Description Parameter Value and Units

Initial Spin ωt=0 [0.0, 0.0, 0.0]T (rad/s)

Initial Gimbal Positions δt=0 [0.3, 0.0, 0.0]T (rad)

Highlighted in Fig. 5.14 - Fig. 5.15 is the DGSPCMG gimbal angles and gimbal
rates plotted over 5 orbits. In this simulation case the DGSPCMG is initialized so
that δsp is already near the threshold ϵs. By doing so, the reorientation maneuvers
on exit of eclipse have a higher chance of requiring that the CMG scissor-pair angle
exceeds the saturation limit for momentum management during the maneuver.

As shown by Fig. 5.14, the δo gimbal has a larger angular travel distance than
the other two gimbals because its motion is not limited by any singularities. δo is,
therefore, free to rotate. On the contrary, δi can be observed to rotate inside the
provided mechanical limitations of ±π

2
. Movement outside this range would force the

δi gimbal through one of the discussed internal singularities. The gimbals follow a
relatively smooth trajectory as the MEKF has filtered sensor data to moderate how
much noise is present in the system.

Observing the gimbal rates plot in Fig. 5.15 it is apparent that there are 5 peaks in
the gimbal rates for each gimbal. These peaks represent the DGSPCMG executing a
reorientation maneuver to reacquire nadir pointing after each eclipse. It is fairly clear
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Figure 5.14: DGSPCMG Gimbal Angles For 5 Orbit Simulation

Figure 5.15: DGSPCMG Gimbal Rates For 5 Orbit Simulation

when observing the third subplot of Fig. 5.15 that the outer gimbal is commanded,
in general, to perform higher rates than the other two gimbals when performing an
agile attitude reorientation maneuver.

Further discussion is required to explain the results of the 5th attitude re-acquisition
maneuver. Fig. 5.16 highlights the key points of data. It is clear from Fig. 5.16 that
the δsp angle has exceeded the momentum management saturation threshold of ϵs.
The Extended DGSPCMG SCL, however, did not command a momentum manage-
ment maneuver. The lack of action at this moment is an expected and desired result.
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Observing the scalar component of the error quaternion in Fig. 5.16, the value is
not above the threshold for acquired attitude ϵp. For this reason, the Extended
DGSPCMG SCL allows for the δsp angle to exceed ϵs — opting to allow for agile ma-
neuvering to correct the attitude error rather than performing gimbal compensation.
An added reason that justifies such gimbal steering is that the Extended SCL has
the tendency to return the δsp angle to its pre-maneuver position once the maneuver
is completed. Since the pre-maneuver δsp angle was below ϵs, it is reasonable to ex-
pect that the angle will return to this nominal operating position if no exorbitantly
large disturbances are encountered during the attitude maneuver. By assessing the
discussion and results on this gimbal steering methodology, it was concluded that the
Extended SCL was properly steering the DGSPCMG for reorientation maneuvers —
reserving gimbal compensation for when attitude was already acquired.

To ensure that the DGSPCMG did not enter singularities over the 5 orbit simula-
tion, the singularity measure (det(A)) was plotted in Fig. 5.17. While it is clear from
Fig. 5.17 that the DGSPCMG did not enter a singularity, it did approach det(A) = 0
at times where δi approached its mechanical limitations. The singularity measure was
lowest just before the 0.5 orbit mark where δsp was its closest to 0 rad during the
simulation and δi was near the mechanical constraint of π

2
.

5.6.3 Simulation 3 - Gimbal Compensation

The results in this section focus on demonstrating that gimbal compensation can
effectively assist the DGSPCMG in escaping from singularities while maintaining a
desired attitude. The first set of results focuses on the δsp = 0 singularity escape,
while the second set focuses on δsp desaturation from ϵs. Initial conditions leveraged
for both escape cases are provided in Table 5.4.

Figure 5.16: Steering of δsp Corresponding to Value of qe4
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Figure 5.17: Singularity Measure During 5 Orbit Simulation

Table 5.4: Key Initial Conditions for Simulation 3

Simulation 3 Initial Conditions

Description Parameter Value and Units

δsp = 0 Escape:

Initial Spin ωt=0 [0.0, 0.0, 0.0]T (rad/s)

Initial Gimbal Positions δt=0 [0.0, 0.0, 0.0]T (rad)

δsp Desaturation:

Initial Spin ωt=0 [0.0, 0.0, 0.0]T (rad/s)

Initial Gimbal Positions δt=0 [0.0, 0.0, 0.0]T (rad)

Stored Flywheel Momen-
tum

Hw 0.005 kgm2/s

Attitude Determination N/A Taken out of the loop

Luminous Intensity Fac-
tor

ℓ 1 (constant-unitless)

δsp = 0 Gimbal Compensation

A common instance of gimbal compensation for the δsp = 0 singularity is immediately
after the first attitude reorientation maneuver where δsp started the simulation at 0
rad. As discussed in Section 5.6.2, the Extended SCL tends to return δsp to its pre-
maneuver position once the maneuver is completed. In the case the initial position
is δsp = 0, the scissor pair will be returned to δsp = 0. The difference on the return
gimbal trajectory is that this time, the spacecraft is now at the desired attitude and
gimbal compensation must be used to increase δsp to δspref . This gimbal motion is
shown by the simulation results provided in Fig. 5.18a - Fig. 5.18e.

Shown in the enlarged plot Fig. 5.18a and Fig. 5.18b, the DGSPCMG first
performs a null motion using gimbal steering to escape from δsp = 0 and carry out
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Figure 5.18: Simulation 3 δsp = 0 Escape After Initial Attitude Acquisition

an agile attitude maneuver. The null motion is known to have been executed by the
fact that, as shown in the Enlarged plots, the inner and outer gimbals move for about
1.5 seconds prior to gimballing the scissor pair. This outer and inner gimbal motion
produces no torque since the CMG holds no net angular momentum in this position.
Observing Fig. 5.18e, the δsp angle can be seen to be returning to δsp = 0 after the
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maneuver is near complete. This time, as shown by Fig. 5.18d, qe4 is near 1 and
gimbal compensation is started. The produced magnetic torquer dipole moments are
shown in Fig. 5.18c during gimbal compensation. The δsp angle can be seen to be
increasing in Fig. 5.18e towards δspref during gimbal compensation.

During the gimbal compensation process, it is demonstrated by Fig. 5.18d that the
error quaternion is only mildly perturbed by the execution of gimbal compensation.
The results of this figure more conclusively show that the spacecraft is maintaining
nadir pointing while directing δsp towards are desired position. Another noticeable
result of the simulations is that, as presented by Fig. 5.18e, the δsp angle never reaches
δspref = 0.06 rad. Gimbal compensation was, therefore, not technically completed.
The reason for this lack of completion is because the spacecraft entered eclipse and
the actuator governor commanded all actuators to turn off. Completion of gimbal
compensation would, therefore, not be expected in this scenario.

δsp Desaturation Through Gimbal Compensation

Noting the listed values in Table 5.4, the focus simulation in this subsection uses
adjusted parameters to more easily force the Extended SCL to execute desaturation
of the scissor-pair angle. Primarily, the spacecraft is considered to be always in the
Sun over its orbit so that the results will demonstrate an uninterrupted progression
of δsp towards the external singularity. Also, the stored angular momentum in the
flywheels has been lowered so that the δsp angle progresses more quickly to the external
singularity. In nominal operations, the larger stored flywheel momentum allows for
smaller increases of δsp to achieve the same net CMG momentum vector. In these
results, because ℓ was set to a constant value of 1, the satellite will always be nadir
pointing and never lose attitude availability.

Following this set of parameter changes, the scissor-pair angle is plotted with
respect to time in Fig. 5.19. As demonstrated by Fig. 5.19, δsp progresses towards ϵs
as a result from momentum loading into the CMG by angular impulses experienced
over multiple orbits. After the 20th orbit, gimbal compensation is engaged to reset δsp
to δspref . Because the scalar component of the error quaternion qe4 in this hypothetical
scenario is always above ϵs, the spacecraft and DGSPCMG are always in a state where
gimbal compensation is available for singularity escape.

In the focus hypothetical scenario gimbal compensation was active for 3056s –
approximately 55% of the simulated orbital period. The gimbal compensation du-
ration represents an ideal scenario because attitude determination was not in the
loop. The noise injected into the system by attitude determination could lengthen
the gimbal compensation duration. Another factor which could impact the gimbal
compensation duration is the flywheel momentum Hw. In this hypothetical case the
flywheel momentum was set to 0.005 kgm2/s, a value only 23% of the nominal sim-
ulated value. Larger flywheel momentum can lead to longer gimbal compensations
because the magnetic torquers need to offload more stored momentum. When com-
paring the 55% of orbit spent performing gimbal compensation to the 37.4% of orbit
spent in eclipse, there is roughly 7.6% of the orbit remaining for standard gimbal
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Figure 5.19: Demonstration of δsp > ϵs with Acquired Attitude

steering (assuming gimbal compensation is started immediately after eclipse). Since
it is unreasonable to expect that gimbal compensation will always be executed by
the Extended SCL on the exit of eclipse, the analysis promotes the notion that in-
complete gimbal compensations will occur. This result should be expected, as the
Extended SCL considers the range of ϵ1 − ϵs to be the acceptable nominal operating
range for δsp when attitude has been acquired. An incomplete gimbal compensation
leaving δsp within this range on entry of eclipse will not lead to a re-execution of
gimbal compensation on the exit of eclipse.

For the simulation conditions used in this research, the results of this chapter
have demonstrated the capabilities of the proposed novel DGSPCMG SCL to ro-
bustly achieve 3-axis attitude control of a CubeSat in LEO. The SCL has been shown
to execute the most ideal singularity escape method dependent on the state of the
satellite and CMG. Subsequent chapters in this thesis will utilize the DGSPCMG
SCL to help achieve other advanced mission directives in LEO.



Chapter 6

Inertia Estimation of Uncooperative Tethered Debris in LEO

6.1 Introduction

In the case of defunct spacecraft, spent rocket bodies, or other large debris, it is
common for these types of objects to be uncooperative. Uncooperative debris does
not send any information about its state to assist in its removal [115]. In addition,
it is typical for the inertial parameters of these objects to be unknown or uncertain
[116]. To capture uncooperative debris objects, devices including robotic manipulator
arms [117], space harpoons [118][119], tethered space robots (TSR)s [120], or tethered
nets [119][121][122] have all been studied. In many cases, the tether-based options
are preferred because they can be used while maintaining a safe distance from the
target debris [123]. With tethered capture methods being favored, significant research
effort has been placed on understanding and handling the challenging post-capture
dynamics associated with tethered debris.

In research works such as [124][125][126][127], which developed methods to con-
trol uncooperative tethered debris, control performance was greatly improved when
accurate knowledge of inertial parameters were known for the debris object. Parame-
ters including the debris inertia tensor, debris COM location, and tether attachment
point were all generally required in the control formulations. It is, therefore, justi-
fiable to attempt parameter estimation prior to attempting control. Modern inertia
estimation methods have generally involved some method of exciting the rotational
motion of the debris and monitoring its motion with devices like Light Detection and
Ranging (LiDAR) sensors as done in [128][129]. Meng et al. (2019) proposed a soft
touch probe to excite the rotational motion of the debris and estimate its inertia [130];
however, it is expected that tethers could accomplish the same goal and do so while
maintaining distance from the debris.

Other authors have taken a different approach and investigated the relatively un-
derstudied concept of estimating inertia properties with a tether. The work proposed
by Zhang et al. (2015) in [131] can determine 1 principal momentum of inertia and ra-
tios for the other two. More recently, Bourabah et al. (2023) employed an Unscented
Kalman Filter (UKF) to estimate all three principal moments of inertia [132][133].
To accomplish estimation of all three principal moments of inertia, an assumption is
made in [132] that the tether connection point on the debris is known. Efforts to relax
assumptions are undertaken in [133]; however, it was shown that it can be troublesome
to remove the tether connection point assumption while maintaining a determinable
input torque that excites the rotational motion of the debris. Notwithstanding the
promising work in the literature, products of inertia have yet to be estimated with
a tether and, as a result, a full inertia tensor for the debris has yet to have been
formed. The estimator developed in the present work seeks to solve both the tether
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connection point assumption and the challenges of estimating the full inertia tensor
for the debris.

Towards relaxing the tether connection point assumption and estimating all six
inertial parameters, this section develops a two-stage estimator (TSE) consisting of
a Kalman Filter and Quick Response Iterative Inertia Properties Identification Algo-
rithm (QRIIPIA) from [134]. By implementing a LiDAR measurement model and by
approximating the end point of the tether using tether tension force measurements,
the aforementioned goals were achieved for the simulation parameters used within this
thesis. Estimation is also demonstrated for the understudied case that a DGSPCMG-
equipped chaser CubeSat, having only rudimentary station keeping ability, is used to
track the uncooperative debris.

6.2 Tethered System Dynamics

6.2.1 Spacecraft Dynamics

The presented scenario required the development of a separate simulator to propa-
gate the orbital and attitude dynamics of both the chaser and debris satellite. The
equations of motion in this ADR simulator were modified to include the tether. Un-
less the tether is tensioned, the bodies of the chaser and debris act as unique entities
following translational dynamics expressed as:

aX = − µ

|RX |3
RX +

TX

mX

+
FX

mX

(6.1)

In Eq. (6.1) TX is the cable tension expressed in FECI , FX is the resultant
of all forces (other than tension) acting on the body including control thrust, µ is
the gravitational parameter of Earth, mX is the mass of the rigid body, aX is the
translational acceleration of the body, and RX is the ECI orbital position vector. The
subscript X denotes either D or C representing debris or chaser, respectively. For
the space debris, it is assumed that FD = 0 because the affect of orbital disturbances
is negligible in short time horizons (below 20 minutes in the focus ADR simulations).

The rotational dynamics of either the debris or chaser spacecraft with the tether
force included can be expressed as:

ω̇X = J−1
X

(
uX + r×

tp,XTX − ω×
XJXωX

)
(6.2)

where JX is the 3×3 inertia tensor of the rigid body, rtp,X is the position of the tether
connection point expressed in FBF of either the debris or chaser, ωX represents the
angular velocity of the body, TX is the tether tension expressed in the BF frame
experienced by either the chaser or debris, and uX is the sum of all torques acting on
the body (excluding tether produced torque) expressed in FBF . For the space debris
it is assumed that uD = 0.
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6.2.2 Tether Dynamics

The dynamics of a flexible tether connected between the chaser and debris at single
points was modeled in this thesis by following the derivation provided in [132]. It
is shown later that the selection of these points has important implications for esti-
mating the inertia of the debris. For the chaser, the tether connection point must be
specifically selected based on the tracking attitude of the chaser. The debris tether
connection point is slightly more nuanced, but in general, may be selected arbitrarily.

rtp,D

rtp,C

FD

FECI

FC

Debris Chaser

x

y

z

RCRD

e

yC

xC

zC

xD

yD
zD

Figure 6.1: Tethered System Schematic

Observing Fig. 6.1, FC and FD represent the body-fixed frames for the chaser
and debris, respectively. Following the figure, an expression which defines the tether
vector e as the vector expressed inFECI from the chaser tether connection point to the
debris tether connection point may be derived. First, the FD connection point vector
may be expressed in FECI by applying the relationship where rECI

tp,X = AECI
BF rtp,X .

This transformation relationship is listed generally because the DCM AECI
BF will be

specific to the transformation relating to the debris or chaser. Following Fig. 6.1 the
unit direction vector of the tether is obtained by computing:

ê =
RD + rECI

tp,D −RC − rECI
tp,C

|RD + rECI
tp,D −RC − rECI

tp,C |
(6.3)

The tether was modeled in this work by a single linear spring-damper element
and, therefore, the scalar tension developed in the tether follows as:

T = k(l − l0) + cl̇ (6.4)

Here k is the tensile stiffness of the cable, c is the damping coefficient, l is the current
length of the tether , l0 is the nominal unstretched length of the tether, and l̇ is the
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rate of change of the tether length. The current length of the tether can be computed
as l = |RD + rECI

tp,D −RC − rECI
tp,C | by noting the denominator term of Eq. (6.3). The

length rate of change l̇ is obtained by projecting the relative velocity of the debris
tether connection point with respect to the chaser tether connection point along the
tether direction vector. The tether length rate of change is, therefore, defined in Eq.
(6.5) where vD and vC represent the FECI expressed orbital velocity vectors of the
COM of the debris and chaser, respectively [123]:

l̇ =
[
vD +AECI

BF,D(ω
×
Drtp,D)− vC −AECI

BF,C(ω
×
Crtp,C)

]
· ê (6.5)

Because of the tether being modeled as a cable, it does not support compression.
To properly model the cable, the tension in the cable must be set to 0 if the tether is
in the unstretched regime. Such an operation can be achieved by implementing the
following conditions which compute the tension vector:

T =

{
T ê, if (l > l0) ∧ (T > 0)

03×1, else
(6.6)

To complete the tether model, the tension force experienced by the debris must be
equal and opposite to the tether force experienced by the chaser. Since the tether
direction vector has been defined to point from the chaser towards the debris, the
tension force experienced by the debris may be expressed as:

TD = −TC (6.7)

6.3 Control and Measurement Models

6.3.1 LiDAR Model

In this section a LiDAR model is constructed by simulating relevant measurements
which can justifiably be expected to be produced by a LiDAR sensor and point cloud
registration algorithm. Point cloud registration is a mathematical problem in 3D
computer vision which involves finding the transformation which best aligns two point
clouds. Recent works such as [129] or [130] have shown that Point cloud registration
algorithms including Iterative Closest Points (ICP) can yield information including
debris geometric center, attitude quaternion, and angular rates. Fig. 6.2 displays
the reference coordinate frames for a LiDAR sensor on-board the chaser satellite. In
this thesis, it was assumed that the LiDAR sensor can see the debris at all times –
a simplification which is shown to be reasonable later in Fig. 6.3 where the chaser
satellite can be seen to achieve the desired debris tracking attitude well before any
inertia estimation is attempted.

Observing Fig. 6.2 two new reference frames have been introduced to describe the
model. The first of these reference frames, represented by FREL, is a non-rotating
reference frame that is aligned with FECI but is fixed to and translates with the



87

FGEO

FREL

FD

xGEO

xD

xREL

yGEO

yD

zGEO
zD

zREL

rpose
rd

yREL
LiDAR Sensor

Point Cloud

Figure 6.2: Simulated LiDAR Model with Representative Point Cloud for Debris
Spacecraft Shown

chaser satellite COM over its orbit. FREL was used to ease the use of DCMs, but
predominantly to simplify pseudo measurement formulations presented later in Sec-
tion. 6.4.1. FGEO represents the principle geometric frame which is fixed at the
geometric center of the debris point cloud. The vector rpose is expressed in FREL and
locates the position of the geometric center. Fig. 6.2 also shows the vector rd which
is the offset vector between the debris geometric frame and debris body-fixed frame.
rd is expressed conveniently in FD [123]. The offset vector is not initially known to
the inertia estimator, but can reasonably be assumed to be constant unless the debris
is venting mass into space. The LiDAR measurement of rpose was calculated in this
work where a white noise process ηr was assumed to corrupt the data:

rpose = (RD −RC) +AECI
BF,Drd + ηr (6.8)

With FREL sharing alignment with FECI , the DCM AECI
BF,D applies to express rd

in FREL. Without loss in generality, Eq. (6.8) is explicitly derived for the case
that FGEO is not rotated relative to the debris BF frame FD. Should this not be
the case, an additional DCM would be required to handle this rotation. Following
the convention used earlier in this thesis for measured quantities, let the subscript
“m” denote a simulated quantity corrupted by band-limited white noise. The set
of measured quantities from the LiDAR sensor model include the debris attitude
quaternion qDm , the debris body rates ωDm , ω̇Dm , and the translational velocity of the
debris geometric center vDm . Each measured quantity is affected by a band-limited
white noise process defined by ηq, ηω, ηω̇, ηv, respectively. The set of simulated
measurements are, therefore, defined as:

qDm = qD + ηq (6.9)



88

ωDm = ωD + ηω (6.10)

ω̇Dm = ω̇D + ηω̇ (6.11)

Velocity measurements have a more detailed model because the velocity of the
debris geometric center, as observed by the chaser in FREL, includes relative velocity
and rotation components caused by rotation of the geometric center about the debris
COM. Subsequently, the debris geometric center velocity measurement model was
derived as follows:

vDm = vD − vC +AECI
BF,Dr

×
d ωD + ηv (6.12)

Comparatively to Eq. (6.8), if the debris geometric frame FGEO is rotated relative
to the debris BF frame FD, an additional direction cosine matrix would be required
in Eq. (6.12). In the present thesis, it was assumed that FGEO and FD are offset
but not rotated relative to each other, making the additional DCM a 3 × 3 identity
matrix which can, therefore, be omitted from the debris measurement model.

6.3.2 Desired Chaser Attitude

In this section, a desired attitude profile for the chaser satellite is derived which tracks
the debris satellite. To ensure the chaser satellite had highly-agile pointing abilities,
the DGSPCMG and Extended SCL were applied on-board the chaser. Here, it is
worthwhile to discuss in more detail the selection of the tether connection point on
the chaser. To minimize attitude perturbations on the chaser control system by tether
tension, the chaser can be directed to point at the measured geometric center of the
debris. Then, by setting the tether connection point to be along one of the principal
inertial axes of the chaser and pointing this axis towards the debris geometric center,
disturbances caused by rapid tensioning of the tether can be minimized on the chaser.
The selection of this chaser satellite tether connection point is a specific, and critical,
design choice to prevent control instability. In the event the tether connection point
is not selected carefully or the chaser has not directed the connection point towards
the debris, large impulse torques may be imparted on the chaser by nature of the
tether tension force vector not being aligned with the chaser tether connection point
vector [123].

To compute the desired chaser attitude quaternion a rotation between two vectors
must be realized. Observing the vector diagram in Fig. 6.1, the objective of the
desired attitude is to point the z+ axis of FC towards the geometric center of the
debris. By definition, this desired attitude is achieved by aligning the FC z+ basis
vector with the pose vector rpose. This target tracking attitude problem has been
well studied by Wu et al. (2018) in [135]. In [135] it was assumed that rotation
about the observing basis vector (the vector directed at the target) is desired to be
0 in order to make a 3-axis rotation sequence be fully defined. Adopting the work in
[135], the bases vectors of the desired chaser attitude expressed in FECI are obtained
by starting with the desired z+ axis orientation za being functionally equivalent to
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the unit direction vector of the LiDAR pose vector:

za =
rpose
|rpose|

(6.13)

The remaining bases vectors of the desired BF frame orientation for the chaser
may be computed in Eq. (6.14) noting that y = [0, 1, 0]T is the y-axis basis vector
defining FECI : {

xa = z×
a (−y)/|z×

a (−y)|
ya = z×

a xa

(6.14)

Using the set of three desired bases vectors allows for a 3-2-1 rotation sequence
to be constructed that represents the rotation between FECI and the desired chaser
BF frame orientation. The following expressions compute the required Euler angles
(ϕ, θ, ψ) for the 3-2-1 sequence given that z = [0, 0, 1]T is the z-axis basis vector of
FECI : 

ϕ = arctan ((ya · z)/(za · z))
θ = arcsin ((−xa · z))
ψ = 0

(6.15)

The DCM describing the desired orientation of the chaser expressed relative to
FECI may be computed in Eq. (6.16) where C1−3() represent the individual direction
cosine matrices for the 3-2-1 sequence following the convention provided in Section.
3.1:

Aa
ECI = C1(ϕ)C2(θ)C3(ψ) (6.16)

The resulting direction cosine matrix may subsequently be converted to a desired
attitude quaternion qa following the derivations provided in [40].

6.3.3 Station Keeping Control Law

In order to tension the tether, the chaser satellite should have the ability to thrust
away from the debris. In the case of small chaser satellites, in this case a 2U Cube-
Sat, the satellite may only have rudimentary thrusting capabilities defined by thrust
along a single axis. In the present work, it was assumed that the chaser could only
provide a thrust force along the z-axis of FC . To actively control this thrust, a
Bang-Bang thruster control scheme was developed in this thesis to give the proposed
DGSPCMG-equipped chaser rudimentary station keeping ability. Since the z-axis
of FC is nominally tracking the geometric center of the debris, the control law de-
veloped in this section will only enable thrusting once the chaser has acquired the
desired attitude. The discussed Bang-bang controller acts on the station keeping dis-
tance error es, which is the error in the actual distance between the chaser and debris
when compared to the desired distance. es was defined in this work as:

es = ζl − |RD −RC | (6.17)
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ζl = l0+∆ is the selected setpoint distance where ∆ is a small offset distance chosen to
ensure that under realistic amounts of tether stretch the quantity es remains positive.
By making this selection of ∆, the chaser will never attempt to thrust towards the
debris and will only thrust away from the debris – a desirable characteristic which
addresses the rudimentary station keeping constraint. Since the translational control
of the satellite is limited to a single axis, the chaser should only fire its thrusters once
it has achieved pointing towards the debris. Per [100], attitude acquisition can be
confirmed when the scalar component of the error quaternion is above a threshold
value ϵp which is near one. This threshold for attitude acquisition is identical to the
solution implemented in Section. 5.4.3.

Additional considerations must be made to prevent excessively high torques from
being developed in the tether. One method of doing so is to limit the allowable
relative velocity between the tether and the debris so as to reduce the energy stored
in the tether when it is pulled taught. To this end, a relative velocity limit ϵv was
implemented to stop thrust if the relative velocity of the debris away from the chaser
exceeds the limit.

A complication which also effects station keeping in this work is regarding the
convergence time of the Kalman Filter (KF) that estimates the debris COM position
presented later in Section. 6.4.1 after tension is developed in the tether. When
tension is induced in the tether, the motion of the debris changes and the KF is
required to converge to this new motion. This convergence is accomplished most
effectively by allowing a few discrete-time samples to elapse before creating tension
in the cable again. Therefore, a thruster constraint was added based on the number
of discrete-time samples which have elapsed since the previous tension event. If the
number of elapsed samples is less than a maximum value defined by nkmax the station
keeping control law will command no thrust. The KF internally counts these samples,
resetting the sample count to 0 if it reaches nkmax until tension is experienced in the
tether again. The resulting station keeping control law is formed in Eq. (6.18) where
nk is the current KF sample count:

F =


F = −Fmaxsign(es), if (qe4 > ϵp) ∧ (vrel < ϵv)

F = 0, if nk ̸= 0

F = 0, else

(6.18)

In this control law Fmax is the thrust produced by the thruster and vrel is the magni-
tude of the relative velocity of the chaser towards or away from the debris. The vector
quantity of relative velocity can be defined as vrel = vD − vC so that vrel is positive
if the distance between the chaser and debris is increasing. vrel can be computed
using the following relationship which is used specifically to preserve the sign (either
positive or negative) indicating if the distance between the spacecraft is increasing or
decreasing:

vrel = (|vrel1 |vrel1 + |vrel2 |vrel2 + |vrel3 |vrel3)/|vrel| (6.19)
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The thrust force must be projected along zC , where xC ,yC , zC are the BF frame
bases vectors forming FC . Then it can be expressed as an equivalent vector in FECI

to be applied in the transnational equation of motion from Eq. (6.1). Such an
operation is conducted because of the previous selection of having the thrust force
along the z-axis of FC . Therefore, the thrust force applied on the chaser in FECI

can be formed as:
F = AECI

BF,C (FzC) (6.20)

The attitude acquisition and station keeping tasks are illustrated in Fig. 6.3a -
Fig. 6.3f where the spacecraft dynamics are observed in FREL. Green denotes the
chaser body and respective BF frame FC , red denotes the debris body and respective
BF frame FD, the black line represents the tether and the blue line is the path
traced by the debris COM over time. All objects are shown to scale. As shown by
comparing Fig. 6.3c to Fig. 6.3d, there is no translational motion between the bodies
until the chaser acquires a debris pointing attitude. In Fig. 6.3d at 0.4 minutes the
debris can be seen to start moving away from the chaser when expressed in FREL.
The movement is denoted by the small length of blue line. The translational motion
in Fig. 6.3d is caused by the fact that the chaser z+ axis is now pointing at the
debris (roughly along the tether vector) which means that the chaser has acquired
the desired attitude qa and has begun thrusting away from the debris [123]. In FREL

this motion is observed as the debris moving away from the chaser. Referring to the
enlarged window in Fig. 6.3e, there has not been any tension events 1.65 minutes
into the simulation because there are no discontinuities in the path of the blue trace
which would indicate that the chaser pulled the debris using the tether. In Fig. 6.3f,
however, the debris can be seen to remain around 10 meters from the chaser because
the nominal length of the tether was set to 10 meters in this simulation. The more
jagged and discontinuous blue lines in the enlarged plot of Fig. 6.3f indicate that
tension was developed in the tether multiple times.

6.4 Pose Estimation

6.4.1 Center of Mass Estimation

To obtain a determinable input torque that is applied on the debris as a result of
tether tension, additional parameters must be estimated prior to estimating inertia.
In this work, estimating and tracking the COM location of the debris was considered
the “first stage” of the TSE. To achieve estimation of the debris COM location, this
section presents a novel pseudo measurement Kalman Filter which estimates some of
the relevant translational states of the debris’ motion. The derived formulations which
estimate these translational components of the debris pose assume that algorithms
like ICP have already been implemented to extract rotational components of the
debris pose. Rotational pose extraction from visual sensors is a well studied concept
which can be seen in works such as [128] and [136].

The translational dynamics of a spacecraft freely flying in space are linear. Such
dynamics allows for a new KF to be implemented which can produce the optimal state
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Figure 6.3: Chaser Satellite Attitude and Station Keeping Demonstration

estimate for the translating body. For the case of LiDAR-based translational pose
estimation, this section adapts discrete time KF formulations from [137] to improve
the KF responsiveness to rapid changes in the rotation and translation of a tethered
space debris. Improving the responsiveness of the KF was a critically important
research task so that the debris COM location could be estimated accurately despite
frequent and brief tension events in the tether. Improved KF responsiveness was
achieved by introducing a novel pseudo debris velocity measurements into the KF
formulations which are developed in this section. Let dte be the sampling time for
inertia estimation (selected as 0.05s) so that the KF dynamic model may be formed
as:
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xk =


vrel,KF

r
rd


k

=

 I3×3 03×3 03×3

dteI3×3 I3×3 03×3

03×3 03×3 I3×3


vrel,KF

r
rd


k−1

= Fkxk−1 (6.21)

The state vector is 9 × 1, with the estimated relative velocity vector vrel,KF ex-
pressed in FREL, the debris COM position r expressed in FREL, and the COM offset
vector from the geometric center rd expressed in FBF,D all being 3×1 column matri-
ces. The propagation phase is completed by computing the covariance matrix Pk|k−1

as:
Pk|k−1 = FkPk−1|k−1F

T
k +Qk (6.22)

where the process covariance matrix was computed in this thesis as:

Qk = (10e− 6)I9×9 (6.23)

The measurements provided to the KF include the pose vector rpose and a pseudo
measurement of debris COM relative velocity by using the KF rd estimation to remove
rotational components from the LiDAR velocity measurement vDm of Eq. (6.12). It
follows that the pseudo velocity measurement may be formulated as:

vrelm = vDm −AECI
BF,D

(
r×
d|k−1ωDm

)
(6.24)

By comparing Eq. (6.24) to Eq. (6.12) it is clear that if the debris spacecraft is not
shedding mass, rd is constant, meaning that the converged rd|k−1 estimate value is
sufficient to remove rotational components from the relative velocity measurement.
Poor initial estimates of rd|k−1 could, in theory, cause the KF to diverge by the
fact that the relative velocity pseudo measurement would be very poor. To ease
these concerns, a convergence study is provided in Section. 6.4.2 to demonstrate
KF robustness to poor initial pseudo measurements. To perform the update stage,
the measurement vector yk = [vrelm , rpose]

T may be formed as a 6 × 1 vector of
relevant debris pose measurements. Applying the measurement matrix Hk leads to
the proposed pseudo measurement KF innovation error to be formed as:

ỹ = yk −Hkxk|k−1 (6.25)

where Hk was derived as follows to accommodate the pseudo measurement:

Hk =

[
I3×3 03×3 03×3

03×3 I3×3 AECI
BF,D

]
(6.26)

BecauseFREL has been defined to be aligned withFECI the AECI
BF,D component of Hk

is functionally equivalent to using AREL
BF,D [123]. The measurement covariance matrix

Rk was constructed by applying the measurement variances σ2
v , σ

2
r for the velocity
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and pose quantities, respectively, as follows:

Rk =

[
σ2
vI3×3 03×3

03×3 σ2
rI3×3

]
(6.27)

The remainder of the pseudo measurement KF formulations follow that of the
standard KF for the update stage.

6.4.2 Pseudo Measurement Kalman Filter Convergence Study

The convergence of the KF is largely dictated by the spin of the space debris. Not
all spins guarantee convergence of the filter. For example, for debris in a flat spin (a
spin which is not precessing), the KF will not receive sufficiently rich data to converge
to the COM offset vector. The KF converges most efficiently when the spin axis of
the debris is precessing. Shown in [137], the original KF formulations receiving only
pose vector measurements, converges quickest when the nutation angle of the spin is
between 20◦ - 60◦. Spin axis precession is only guaranteed by the spinning body being
tri-inertial or inertially asymmetrical. Whilst real debris objects are unlikely to be
perfectly isoinertial, it is reasonable to expect some debris objects to experience spin
axis precession that is relatively slow. Both these conditions negatively impact the
ability of the KF to converge and they should be considered prior to attempting esti-
mation. For the tri-inertial space debris object presented later in Section. 6.6.2, Fig.
6.4 presents an example of a desired degenerate spin where the spin axis experiences
are relatively large nutation angle. In such a spin, good estimation performance can
be expected.

Figure 6.4: Example Degenerate Spin of Tri-Inertial Space Debris Shown as a Polhode
on the Energy Ellipsoid
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Additional scrutiny should also be placed on the quality of the initial estimate
provided to the KF for the COM offset vector rd. For poor initial estimates, the
pseudo measurement vrelm is an increasingly poor representation of the actual debris
relative velocity. A convergence study is shown in Fig. 6.5 which displays the amount
of time required for the KF velocity estimates to converge when varying levels of error
are provided on the initial offset value. The study shows that, even for unreasonable
initial estimations where the offset distance is larger than the tether length, the KF
is robust to poor initial pseudo measurements.
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Figure 6.5: Convergence Time of Pseudo Measurement KF with Varying Levels of
Error in Initial Offset Estimation

6.5 Inertia Estimation

In this section the Quick-Response Iterative Inertia Properties Identification Algo-
rithm (QRIIPEA) estimator presented in [134] is adapted for estimating the space
debris inertia and the dynamics formulations which enable the estimator to be applied
on a tethered chaser-debris system are developed. The result of these developments,
in combination with the pseudo measurement KF represent the proposed novel Two-
Stage Estimator (TSE) which is capable of estimating the complete inertia tensor of
tethered space debris. QRIIPEA has previously been shown to be effective for iner-
tia estimation of combined satellite systems because it responds quickly to changes
in input or changes in inertia; however, the estimator has yet to be applied to esti-
mating the inertia of space debris using a tether. For the case of the present thesis,
QRIIPEA was selected as the secondary filter because it was found in the present
author’s original work in [123] to allow for relatively fast estimation response to the
brief tether tension events. In many cases, these tension events are on the order of
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Figure 6.6: Proposed TSE Architecture Showing Interconnection of Filters, Sensors
and Control

tens of samples or less. The data flow from sensors to the QRIIPEA algorithm can
be seen in Fig. 6.6. Observing Fig. 6.6, the term “Filtered Pose” is used to describe
the dataset including qDm , ωDm and ω̇Dm .

While the proposed architecture in Fig. 6.6 is capable of complete inertia tensor
estimation, it is also capable of removing the debris tether connection point assump-
tion while maintaining a determinable input torque. This feature fulfills the secondary
motivation of this work: to relax some of the assumptions required to perform iner-
tia estimation through a tether. The determinable input torque is achieved by (1)
the KF estimate of the debris COM in FREL and by (2) approximating the tether
connection point location using tether force measurements. By reasonably estimating
or approximating both the aforementioned points, there is sufficient information to
determine the torque vector applied to the debris through the tether by the tether
being connected offset from the debris’ COM. This torque, is fed to QRIIPEA so that
all 6 inertial parameters can be estimated for the debris.

The QRIIPEA formulations are provided in Eq. (6.28) by adapting the work pre-
sented in [134]. For the present thesis, translational motion components of QRIIPEA
were withdrawn to improve calculation efficiency for the subject application. The
subscript “j + 1” represents new estimates or measurements and the “j” terms rep-
resent previous estimates or measurements. The forgetting factor ρ must be properly
selected within the bounds 0 < ρ < 1 so that the estimates converge to the actual
inertia parameters without being overly sensitive to new measurements. A ρ value
close to 0 means that old estimates are quickly suppressed in favor of emphasizing
estimation using new estimates. A ρ value near 1 will cause the estimator to value
older estimations more highly. Two quantities are estimated including the inertia
parameters Ij and a gain matrix Kj through the following iterative relationship:{

Ij+1 = Ij +Kj+1W
T
j+1(Tj+1 −Wj+1Ij)

Kj+1 =
1
ρ2

[
Kj −KjW

T
j+1(ρ

2E3 +Wj+1KjW
T
j+1)

−1Wj+1Kj

] (6.28)
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In Eq. (6.28) Wj+1 is the 3 × 6 output matrix, Tj+1 represents the 3 × 1 input
torque matrix,E3 is a 3× 3 identity matrix, and Kj is a 6× 6 gain matrix specific to
an estimate of inertia parameters defined by Ij = [Ixx, Iyy, Izz, Ixy, Ixz, Iyz]

T . Repre-
senting the identity matrix with E3 was done to avoid confusion here with the inertia
parameters matrix. The output matrix is calculated as:

Wj+1 = w1 +w2 (6.29)

Eachwn component ofWj+1 is a 3×6 matrix obtained by linearizing the rotational
dynamics differential equation shown in Eq. (6.2). w1−2 are provided as follows:

w1 =

ω̇x 0 0 ω̇y ω̇z 0
0 ω̇y 0 ω̇x 0 ω̇z

0 0 ω̇z 0 ω̇x ω̇y

 (6.30)

w2 =

 0 −ωyωz ωyωz −ωxωz ωxωy ω2
y − ω2

z

ωxωz 0 −ωxωz ωyωz ω2
z − ω2

x −ωxωy

−ωxωy ωxωy 0 ω2
x − ω2

y −ωyωz ωxωz

 (6.31)

6.5.1 Input Torque Approximation

The input torque which excites the rotational motion of the debris results from the
applied tension developed in the tether being offset from the COM of the debris. The
proposed chaser satellite has the ability to measure the tension force vector of the
tether by employing a force sensor. In order to develop Tj+1 as an input to QRIIPEA,
the tether connection point on the debris must be approximated by leveraging the
tether tension measurement made by the chaser. In practical applications the debris
connection point is difficult to know exactly, but it is demonstrated in this work that
an approximation of its location is sufficient for inertia estimation.

To determine the tether connection point in FD, the tether end point must first
be located with respect to the FREL coordinate system. To do so, first let Fm be the
3 × 1 tether force vector measurement made by the chaser and expressed in FREL

such that the measurement model simulating Fm may be expressed as:

Fm = TC + ηT (6.32)

where ηT is band-limited white noise corrupting the tension measurement. Assuming
that the stretched length of the tether is reasonably close to the nominal length, (an
assumption which holds for relatively stiff tethers) then the location of the tether
endpoint in FREL may be approximated by computing the unit direction vector of
the tether tension measurement and scaling this value by the nominal length of the
tether. In an ideal case where no noise is present in the tether tension measurement,
the tether tension measurement vector would lie along the true tether vector. As
a consequence of these dynamics, the approximate location of the tether connection
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point on the debris expressed in FREL may be described by:

rtether = l0
Fm

|Fm|
(6.33)

Then by leveraging the KF estimate of the debris COM location r expressed
in FREL, the tether-COM offset vector (also expressed in FREL) can be computed
following:

r̃REL
tc,D =

(
AECI

BF rtp,C + rtether
)
− r (6.34)

In Eq. (6.34), rtp,C is ground truth knowledge of the specifically selected chaser
satellite tether connection point and the remaining quantities of Eq. (6.34) are based
only on measurements or KF estimates. The assumption that the tether connection
point is known in the BF frame of the debris FD can, therefore, be removed in the
proposed TSE by noting that the tether-COM offset vector in FREL may be expressed
as an equivalent vector in the debris BF frame if the debris’ attitude quaternion qDm

is available from point cloud registration. The transformation of the tether-COM
offset vector to its expression in FD is performed by:

r̃tc,D = ABF
RELr̃

REL
tc,D (6.35)

In both Eq. (6.34) and Eq. (6.35), the tilde is used to represent that the solution
is approximate. In addition to the tether connection point vector, the tether force
vector which acts on the debris must also be expressed in FD following:

FD,m = ABF
REL(−Fm) (6.36)

With both the moment arm and force known in FD, the input-output mapping
performed by QRIIPEA can be completed. Therefore, the input torque fed to the
QRIIPEA estimator is calculated using the following relationship:

Tj+1 = (r̃tc,D)
×FD,m (6.37)

6.5.2 Handling Frequent Tether Slackness

The proposed station keeping control law has been developed to excite the rotational
motion of the debris and then allow visual sensors to observe the motion. For the
TSE to handle these dynamics an adaptation must be made to the QRIIPEA formu-
lations to prevent the estimator from diverging when no tension is being measured
in the tether and the force measurements are dominated by noise. The adaptation
involves allowing the estimator to pass through previous estimates of Ij and Kj when
no tension is being measured in the tether. Should tension be measured in the cable,
then the QRIIPEA formulations can proceed with applying Eq. (6.28) to make new
estimates. For the operation to be carried out successfully, the force sensor noise
characteristics must be quantified so that a minimum tension threshold ϵF can be se-
lected for which the measured tension must be above this threshold for new estimates
to be made. The current thesis selected ϵF to be above the 99% prediction interval
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bound of the band-limited white noise applied in the Fm measurement. If |Fm|≤ ϵF
the previous estimates are propagated through as:{

Ij+1 = Ij

Kj+1 = Kj

(6.38)

Since the estimator operates only when tension is measured in very brief time
intervals and is otherwise on stand-by, the effects of environmental external distur-
bance torques are conveniently minimized. In the case of Scenario 1, presented as
part of the ADR case study results, the tension events have a typical duration of 0.3
seconds – a duration which makes it reasonable to neglect environmental disturbance
torques in the formulations of the estimator. Moreover, neglecting disturbances is
also justified by the fact that the disturbance torques are orders of magnitude smaller
than the tether induced torque. With a sample time dte of 0.05 seconds, 6 estimations
can be produced for a 0.3 second tension event. Also in Scenario 1, the average time
spent between tension events was 18.5 seconds. During this time, Eq. (6.38) passes
through estimates from the previous tension event, preventing divergence of the TSE
and external disturbance torques from affecting the results.

6.6 Active Debris Removal Results

The results presented in this section are used to quantify the performance of the TSE
proposed in this chapter. Three simulations are presented with the first simulation
demonstrating inertia estimation when the tether connection point is assumed to
be known. The following simulation removes this assuming to quantify the inertia
estimation quality when the tether connection point assumption is removed. The final
simulation updates the DGSPCMG SCL and attitude controller with the estimated
debris inertia tensor to demonstrate the post capture attitude control improvement
obtained by first estimating debris inertia during an ADR mission.

6.6.1 Simulation 1 - Ideal Conditions & Known Tether Connection
Point

The results presented in this section were produced from the set of simulation param-
eters shown in Table 6.1 governing the two spacecraft, the tether, and the estimators.
The debris spacecraft in Simulation 1 was modeled to be an inertially axisymmetric
body with overall dimensions of 0.1 × 0.1 × 0.3 (m). These dimensions would clas-
sify the debris as a 3U CubeSat which is one U larger than the 2U chaser satellite.
The goal of the TSE is to identify the true debris inertia tensor which is defined by
products of inertia (off diagonal elements) and principal moments of inertia (diagonal
elements) as shown by:

JD =

0.0333 0 0
0 0.0333 0
0 0 0.0067

 kgm2
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Table 6.1: Key Initial Conditions for Ideal ADR Simulation

Ideal ADR Simulation Parameters

Description Parameter Value and Units

Debris:

Mass mD 4 (kg)

Initial Spin ωD0 [0.25,−0.15, 0.1]T (rad/s)

Initial Quaternion qD0

√
2
2
[0, 1, 0, 1]T (unitless)

Tether Connection Point rtp,D [0.05, 0.05, 0.05]T (m)

Offset Vector rd [0.02, 0.01,−0.02]T (m)

Initial Position RD0 [6.12244, 2.92665,−0.00019]T · 103 (m)

Initial Velocity vD [−2049.4, 4292.6, 6010.1]T (m/s)

Chaser:

Mass mD 2 (kg)

Initial Spin ωC0 [0.00, 0.00, 0.00]T (rad/s)

Initial Quaternion qC0 [0, 0, 0, 1]T (unitless)

Tether Connection Point rtp,C [0.00, 0.00, 0.10]T (m)

Initial Position RC0 [6.12243, 2.92665,−0.00019]T ·103 (km)

Initial Velocity vC [−2049.4, 4292.6, 6010.1]T (m/s)

Max Thrust Fmax 0.5 (N)

Tether:

Stiffness k 80 (N/m)

Damping c 0.5 (Ns/m)

Length l0 10 (m)

Control & Estimators:

KF Parameters Q0, x0, P0 E9×9 · 10−6, 09×1, E9×9 · 10−6

QRIIPEA Parameters I0, K0, ρ [0.0015, 0.0015, 0.0015, 0, 0, 0]T , 0.1 ·
E6×6, 0.98

Thrust Constraints ϵv, ϵp, nk 0.025 (m/s), 0.9995, 200 (samples)

Station-Keeping Set-
point

ζl 10.05 (m)

Noise Variances σ2
r , σ

2
v , σ

2
ω,

σ2
ω̇, σ

2
q , σ

2
T

10−9, 10−8, 10−8, 10−8, 10−7, 10−8
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Figure 6.7: Kalman Filter and Tether Results For Inertially Axisymmetric Debris

The first series of results presented in Fig. 6.7a - Fig. 6.7f demonstrates the pseudo
measurement KF performance, shows details of the state of the tether, and shows how
the thruster was actuated during the simulation. Referring to Fig. 6.7a - Fig. 6.7c
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Figure 6.8: Axisymmetric Debris Inertia Estimation

the pseudo measurement KF can be observed to be relatively slowly converging to
the actual values of r, rd, and vrel,KF while the chaser is backing away from the
debris to the station keeping setpoint distance of ζl. Around 120s of simulation
time, the tether becomes taught and the motion of the debris is perturbed. The
KF quickly converges to the true values shortly after this tension event, and remains
very responsive to subsequent tension events hereinafter. Having the KF produce an
accurate estimation of the debris COM position in Fig. 6.7a is particularly important
as this value directly impacts the accuracy of the torque input provided downstream
to QRIIPEA. For the simulation conditions used to produce the Simulation 1 results,
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Figure 6.9: Estimation Error

the KF performs well, estimating the COM position r accurately largely because
the pseudo velocity measurement has also converged to the true velocity. The KF
robustness to the sequence of tension events can be attributed to the proper function of
the KF sample thruster constraint shown in Fig. 6.7d. The counter in this simulation
can be concluded to be a sufficient constraint to ensure KF convergence after a tension
event.

Referring to Fig. 6.7e, the tether can be observed to experience a peak tension
of 0.4675 N for the parameters used in this simulation. Also, after the first tension
event, the closest distance between both tether connection points was 9.486 m. This
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Figure 6.10: Estimation Error Distribution by Estimate Weight with Weighted Av-
erage Estimation Error

distance indicates that the thruster actuation, shown in Fig. 6.7f, is adequate to
maintain station keeping. The result also suggests that, despite the comparatively
larger size of the debris, the chaser and debris are only moderately pulled together
by tether tension. Such dynamics are desirable because the chaser is only required to
make brief thrusts to correct the station keeping distance as shown by Fig. 6.7f.

The results of the TSE estimating debris inertia with known debris tether con-
nection point are plotted in Fig. 6.8. Having assumed the tether connection point
on the debris to be known leads to the proposed TSE producing confident estimates
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Figure 6.11: Estimation Error Distributions and Mean of Error Distributions Ob-
served Without Considering ρ Factor

for all principal and products of inertia. The TSE is most confident in its estimation
of the Izz inertia parameter in Fig. 6.8. This confidence is largely because Izz is the
smallest principal moment of inertia, making rotation about this principal axis easily
excitable by the tether. Noticeably in Fig. 6.8, the estimates for the products of
inertia initially diverge prior to converging back to the true parameters. The reason
for this divergence is twofold: the initial selection of the QRIIPEA gain matrix Kj

was poor; and the initial estimates provided to QRIIPEA for the principal moments
of inertia were far from the true value.
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The estimate error progressions over simulation time are provided in Fig. 6.9
to demonstrate the convergence of the estimates. These estimate errors were also
plotted as a function of the weight applied to that specific estimate in Fig. 6.10.
Referring to Fig. 6.10, it can be observed that QRIIPEA has assigned larger weights
to newer, more accurate estimates. The initial estimates which have relatively high
errors have been suppressed by QRIIPEA by assigning weights which are orders of
magnitude smaller than that applied to the new estimates. The action of estimate
weight assignment is performed by the forgetting factor ρ which is repetitively applied
for each new estimate, thereby suppressing the effect of older estimates on future
estimates. The importance of proper ρ selection can be demonstrated by comparing
the results in Fig. 6.10 to the results shown for the equally-weighted error distribution
in Fig. 6.11. Referring to Fig. 6.11, the right most axis provides the relative likelihood
of an estimate error corresponding to the normally distributed probability density
function bell curve in each subplot.

Consider first the principal moment of inertia estimations (Ixx, Iyy, Izz) which have
been estimated to be 0.0332 ± 0.0048, 0.0332 ± 0.0051, 0.0067 ± 2.094e − 04 kgm2,
respectively. For these estimates shown with the 3σ confidence level, the average
absolute equally-weighted error was 0.0085, 0.0086 and 0.544e−04 kgm2, respectively.
The average of estimate errors significantly reduces when accounting for the forgetting
factor to 3.305e − 04, 3.291e − 04, 1.636e − 05 kgm2, respectively, as shown by the
dashed lines in Fig. 6.10. The lower average errors are only possible by QRIIPEA
having suppressed the poor estimates in favour of more recent accurate estimates.
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6.6.2 Simulation 2 - Tri-Inertial Debris & Non Ideal Estimation
Conditions

The results presented in this section were produced using parameters largely detailed
in Table 6.1. In this simulation the estimator was not provided with knowledge of
the tether connection point and, therefore, the tether connection point has to be
approximated by the estimator. Parametric changes made for Simulation 2, however,
are presented in Table 6.2. The debris spacecraft in Simulation 2 was modeled after
an arbitrary tri-inertial body with overall dimensions of 0.2×0.25×0.3 (m). The goal
of the TSE was to identify the true debris inertia tensor which also contains non-zero
products of inertia and is defined by:

JD =

0.1271 0 −0.025
0 0.1083 0

−0.025 0 0.0854

 kgm2

Table 6.2: Key Initial Conditions for Tri-Inertial ADR Simulation

Updated ADR Simulation Parameters From Table 6.1

Description Parameter Value and Units

Debris:

Mass mD 10 (kg)

Tether Connection Point rtp,D [0.20, 0.15, 0.00]T (m)

A key parameter which makes inertia estimation more challenging in this simula-
tion is the selection of the debris tether connection point to lie in the x-y plane of the
debris body frame. By making this selection, it becomes relatively difficult to excite
rotational motion about all axes. In fact, if the tether connection point is selected
to be along any one principal inertial axis, it becomes difficult to excite rotational
motion about that axis because the tether has not been modeled to carry or transmit
a moment about its connection point. The results of this section aim to demonstrate
that the proposed TSE can still estimate all principal and products of inertia even
when the tether connection point assumption has been removed and when the tether
connection point lies in x-y plane of the debris body frame.

The results presented in Fig. 6.12 demonstrate that the principal and products
of inertia can still be estimated despite less ideal conditions being provided for esti-
mation. Despite the combination of the tether connection point being approximated
using only the tether tension measurements and a relatively poor position for the
tether to be attached to the debris, the novel TSE still converges to around the ac-
tual inertia parameters as shown in Fig. 6.12. Importantly, as demonstrated by Fig.
6.12d, a non-zero product of inertia is accurately estimated in this simulation. As
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Figure 6.12: Tri-Inertial Debris Inertia Estimation

expected, the Izz parameter converges quickly and accurately when compared to the
other inertia parameters because of the tether connection point lying in the x-y plane
of the debris body frame.

Further to the inertia estimations, the estimation errors with respect to time are
plotted in Fig. 6.13. It is clear in Fig. 6.13, particularly for the the case of the
Ixx parameter, that the less ideal estimation conditions have negatively impacted the
estimator performance. Despite the detriments to the estimations, the selection of ρ
near 1 has prevented the TSE from diverging when relatively poor estimations are
made. With respect to the principal moments of inertia of Ixx, Iyy, Izz, the initial



109

Figure 6.13: Tri-Inertial Debris Estimation Errors

estimation I0 provided to QRIIPEA leads to an initial percent error on estimation
of 98.8%, 98.6% and 98.2%, respectively. At the end of the simulation, the final esti-
mation of principal moments of inertia leads to a percent error of 6.09%, 1.63% and
1.18%, respectively. These results indicate that the TSE has made major improve-
ments to the initial estimation despite the poor estimation conditions. With regards
to the non-zero product of inertia Ixz, this parameter was estimated to a percent
error of 8.93%. The confidence in the estimations should also be considered at the
simulation end. For the case of Ixx, Iyy, and Izz the final estimations with the 3σ
bound were 0.1349± 0.0309, 0.1101± 0.0129 and, 0.0864± 0.0022 kgm2, respectively.
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Figure 6.14: Tri-Inertial Debris Estimation Error Distribution by Estimate Weight

The 3σ bound was about an order of magnitude smaller than the estimated quantity,
indicating that the TSE is relatively confident in its estimation for the conditions
used in this simulation.

The weighted and equally-weighted estimation error distributions are additionally
provided in Fig. 6.14 and Fig. 6.15. Observing Fig. 6.14, there are a number
relatively large estimation errors having an applied weight of 10−1 or greater. This
observation is particularly true for both Ixx and Ixy. A weight of 10−1 or larger would
have a non-negligible impact on future estimations. The downstream effect of these
few poor estimations is that the TSE may need to be operated longer to increase the
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Figure 6.15: Tri-Inertial Debris Estimation Error Distribution and Mean for Equally
Weighted Estimations

confidence in its estimations by further suppressing the previous poor estimations.
Referring to Fig. 6.15, it can be discerned that, with the exception of the Ixx error
distribution, the error distributions are quite heavily skewed to a desirable 0 kgm2.
The outlying peak in the Ixx distribution can be explained, however, by comparing
to the weighted error distribution for Ixx in Fig. 6.14. Fig. 6.14 shows a large
cluster of estimation errors just larger in magnitude than -0.1 kgm2 for Ixx. These
estimations, however, were provided weights on the order of 10−4 - 10−3 and were
computed before the TSE had converged to around the actual values. Such a case
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Figure 6.16: Tether Connection Point Approximation

makes these estimates have minimal impacts on the final estimated quantity despite
appearing significant in the equally-weighted error plot.

A final consideration regarding the aforementioned results is to verify the accuracy
of the tether connection point approximation. Fig. 6.16 compares the actual tether
connection point to the approximated tether connection point. Noticeably from Fig.
6.16 is that when no tension is being measured in the cable, there is not sufficient
information to approximate the tether location and, therefore, the tether connection
point on the debris is only approximated when the tether is under tension and the
TSE is estimating the inertia. The z-axis component of the tether connection point
approximation expressed in FD experiences errors as large as 0.02m after the TSE
has converged. The result of these errors would have the largest effect on Ixx and Iyy
estimations. In general, the approximation of the tether connection point is sufficient
for inertia estimation subject to the tested simulation parameters.

Comparative Study on Approximated VS Known Tether Connection
Point Estimations

It is worthwhile to consider and quantify the expected degradation in estimation
performance when the debris’ tether connection point is approximated. In this sub-
section, estimation was performed by the proposed TSE subject to the Simulation
2 scenario for both the case of an approximated tether connection point and an as-
sumed to be known tether connection point. The results of these two simulations are
compiled in Table 6.3 for all 6 inertia parameters.
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Table 6.3: Comparison of TSE Performance With Known and Approximated Debris Tether Connection Point Subject to
Simulation 2 Parameters

Known VS Approximated Debris Connection Point Results

Actual Debris Parameters Known Connection Point Approximated Connection Point

Parameter Actual Value
(kgm2)

Estimated
Value (kgm2)

3σ Bound
(kgm2)

Percent
Error

Estimated
Value
(kgm2)

3σ Bound
(kgm2)

Percent
Error

Ixx 0.1271 0.1226 0.0069 0.52% 0.1349 0.0309 6.09%

Iyy 0.1083 0.1081 0.0030 0.21% 0.1101 0.0129 1.63%

Izz 0.0854 0.0853 5.63e− 04 0.04% 0.0686 0.0022 1.18%

Ixz -0.025 0.0249 0.0014 0.55% -0.0272 0.0020 8.93%

Ixy 0.000 −4.47e− 04 0.0043 N/A 0.0047 0.0065 N/A

Iyz 0.000 7.62e− 05 8.37e− 04 N/A -0.0018 0.0013 N/A
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The results compiled in Table 6.3 demonstrate that by implementing the tether
connection point approximation there is a moderate impact to the estimation quality
for inertia parameters already known to be relatively easy to estimate. With the tether
connection point on the debris largely along the x-axis, it is shown in Table 6.3 that
estimation of components not related to the x-axis only experience a small increase
in error by implementing the approximation. The approximation more significantly
impacts the parameters known to be difficult to estimate including Ixx and Ixz. For
Ixx the percent error on the estimations jumped from 0.52% for the known connection
point case to 6.09% for the approximated case. A larger jump in error from 0.55%
to 8.93% was experienced in the Ixz parameter estimation. The results indicate that
for poor tether connection point selections on the debris, the approximation accuracy
may need to be improved to maintain the highest quality estimations.

6.6.3 Simulation 3 - Post Estimation Control

This subsection of results analyzes the composite inertia tensor of the chaser-debris
system. To compute the inertia tensor of the combined system, it is assumed that the
chaser has used the tether to safely reel in the debris and both objects have effectively
become fused together into one composite system. Then, the estimated debris inertia
tensor can be used to update the DGSPCMG control scheme.

To begin the derivation of the composite inertia tensor the following set of general
equations are required to develop the individual principle moments of inertia:

Jxx =
1

12
m(z2 + y2)

Jyy =
1

12
m(z2 + x2)

Jzz =
1

12
m(z2 + x2)

(6.39)

where the complete inertia tensor J may be developed in the general case using:

J =

 Jxx −Jxy −Jxz
−Jyx Jyy −Jyz
−Jzx −Jzy Jzz

 (6.40)

To develop the composite inertia tensor, the orientation of the debris after fusing
must be expressed in FC . Such a detail is important because the chaser control
system is derived on knowledge of the FC bases vectors and their alignment. Fig.
6.17 shows a hypothetical composite system configuration.

Noting the configuration in Fig. 6.17 it is apparent that the debris is aligned in
such a way that the location of the COM in the x-y plane of FC does not change.
Along the z-axis of FC , the COM location is highly affected by the addition of the
debris and, therefore, it must be recomputed such that the composite inertia tensor
may be derived about this new COM location. The new COM location expressed
relative to a centroid location selected to be at the base of the debris may be calculated
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Figure 6.17: Composite Chaser-Debris Rigid Body

using the following relationship where z̄ is positive towards the z-axis direction of the
chaser:

z̄ =

∑n
i mixi∑n
i mi

=
(4)(5) + 2(10 + 10)

(4 + 2)
= 10cm (6.41)

The COM location of the composite system is subsequently located 10 cm from
the based of the debris in the positive z direction. The offset vector ro describing the
positional change of the COM with respect to the original chaser and debris COMmay
be expressed as rC = [0, 0,−10]T cm and rD = [0, 0, 5]T cm, respectively, for both the
chaser and debris. To develop the composite inertia tensor, the inertia tensors of each
body must be expressed about a common point, which may be reasonably selected as
the new COM location. By applying the parallel axis theorem the inertia tensor of
each body may be expressed about the new COM location using the following general
equation:

J = J0 +m
[
(ro · ro)I3×3 − ror

T
o

]
(6.42)

The composite inertia tensor may be computed by summing inertia tensor of each
body expressed about the new COM location JC

COM and JD
COM , respectively, as:

Jcomp = JC
COM + JD

COM (6.43)

An important note should be made regarding the debris inertia tensor. As defined
by Fig. 6.17, the BF frame of the debris is not aligned with the chaser BF frame.
The principle inertia components of the debris would be expressed differently when
following the axes convention provided by the chaser. It is, therefore, necessary to
swap the Jxx and Jzz principle moments of inertia in the debris inertia tensor so
that it follows the same convention as that used for the chaser inertia tensor. The
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convention of Jd(1,1) replaced with Jd(3,3) and vice versa, may be expressed as:

Jd

[
Jd(1,1) := Jd(3,3)

]
(6.44)

Jd

[
Jd(3,3) := Jd(1,1)

]
(6.45)

The resulting true combined inertia tensor for the inertially-asymmetric debris
from Simulation 1 and fused-body convention in Fig. 6.17 was calculated as:

Jcomp =

0.0450 0 0
0 0.0717 0
0 0 0.0367

 kgm2

The resulting inertia tensor derived from the TSE estimated debris inertia was cal-
culated as:

Jcomp =

 0.0449 0 −0.0001
0 0.0727 0

−0.0001 0 0.0364

 kgm2

The following two sets of results compare the control performance over a large
attitude reorientation of the DGSPCMG-equipped chaser satellite. The first set in
Fig. 6.18 shows control results when the control system does not have knowledge
of the debris inertia and Fig. 6.19 shows results when the control system has been
updated with knowledge of the estimated debris inertia. There are two key takeaways
from the results. The first is that, by comparing Fig. 6.18c to Fig. 6.19c, updating
the control scheme with the estimated debris inertia tensor reduces the amount of
overshoot in the attitude response. The update also reduces some of the transience
seen in Fig. 6.18c. The second takeaway is found by comparing Figs. 6.18d - 6.18f to
Figs. 6.19d - 6.19f. In these figures it can be observed that, by updating the controller
with the estimated inertia, the DGSPCMG is actuated more efficiently to achieve the
attitude reorientation. The effect is most notable by comparing Fig. 6.18d to Fig.
6.19d where the δi and δo gimbals in the updated case remain closer to their starting
position. The gimbal phase plot of Fig. 6.18d for the simulation with uncertain
inertia, however, shows the gimbals making large motions with the δi gimbal moving
towards the singularity position. As a general summary of the comparative results,
the DGSPCMG control scheme, when updated with the estimated debris inertia
tensor, expends less energy to perform the attitude reorientation maneuver than it
would having an uncertain inertia tensor. The results emphasize the importance of
the proposed TSE for ADR missions so that the chaser attitude control system can
perform the mission objectives most effectively.
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Figure 6.18: Control with Uncertain Inertia Tensor Provided to Attitude Controller
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Figure 6.19: Control with Updated Combined Inertia Tensor



Chapter 7

Advancements in Oceanographic Target Tracking with
DGSPCMG-Equipped ADCS

7.1 Introduction

The continual development of CubeSats since their introduction in 1999 has drasti-
cally extended their ability to perform meaningful scientific objectives [4]. Launches of
CubeSats since 2016, like the Planet Labs Dove class of satellites, have demonstrated
the merit of CubeSats for performing important Earth observation missions [138].
Even with the advancement of nanosatellites for Earth observation missions, Guerra
et al. (2016) have argued that CubeSats have made little ingress in the oceanography
sector.

Oceanographic satellites are commonly responsible for monitoring changes in the
ocean climate, algae bloom or anoxic zone events, major storms, and ever increasing
shipping traffic [25]. Some of these oceanographic targets of interest are shown from
spacecraft-derived data in Fig. 7.1. While the data compiled in Fig. 7.1 was collected
by large satellites, this data could, in theory, be collected by specifically engineered
CubeSats that have comparatively small upfront costs compared to mid to large
sized satellites. In fact, missions such as MANTIS (being developed at Dalhousie
University) or HYPSO-2 (being developed at the Norwegian University of Science
and Technology) propose the use of CubeSats for monitoring ocean targets. The goal
of both of these missions is to monitor ocean algae blooms.

To enable the success of these aforementioned missions, it is generally required
for the CubeSat to have a robust and agile ADCS. A target tracking mission sce-
nario also presents a possible challenge for a DGSPCMG-equipped ADCS because
the DGSPCMG will be tasked with autonomously escaping from singularities while
actively tracking targets during relatively short orbital passes. The benefits of the
proposed Extended DGSPCMG SCL could be fully realized in this mission concept
because, as a consequence of its intended design, it prevents singularities of any kind
from impacting the intended scientific objectives of the CubeSat. Additionally, liter-
ature examples such as [14][107][12][139] have yet to demonstrate agile maneuvering
and singularity escape when attitude determination is in the control loop.

The motivation of this section is, therefore, to demonstrate the ability for a com-
plete DGSPCMG-equipped ADCS to perform agile pointing and tracking of sequential
oceanographic targets of opportunity. By doing so, the developments and results of
the subject case study will also help to address the research gap identified in CubeSat
oceanographic capabilities. In this section, target pointing geometry and performance
metrics are adopted from [140][23][24] and [58] in order to build a detailed spacecraft
target pointing simulation.

119
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Figure 7.1: Examples of Satellite Derived Oceanographic Data. (left) 2022 Category
3 Hurricane Fiona From Sentinel-2 Data. (right) GOES-16 Sea Surface Temperature
on June 10th 2024. (bottom) Modeled Alexandrium catenella (a Group of Marine
Plankton) Concentrations in the Gulf of Maine and Nova Scotia Coast on June 5th

2024. Imagery obtained under public distribution from NOAA National Weather
Service & ESA Sentinel Copernicus Service [2024].

7.2 Target Viewing Geometry

Proceeding the definition of the target position and its local reference frame in Ap-
pendix A, the viewing angles which dictate how the spacecraft is observing the target
may be formulated. These viewing angles are important for quantifying the “value”
of a particular observation made by the spacecraft. For example, it is inherently more
efficacious to observe a target at the peak elevation angle over the target than it is to
observe it at a low elevation angle [141]. The schematic describing the target viewing
angles is provided in Fig. 7.2 where the angles are shown in a perspective looking
south from the North Pole.

Referring to Fig. 7.2, the Earth angular radius as observed by the satellite is given
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Figure 7.2: Target Viewing Angles Observed from North Pole Looking South.

by:

sin(ρ) =
Re

Re + h
(7.1)

where h is the orbital altitude above the surface of Earth. Provided with a priori
knowledge of the target position vector rt expressed in FECI , the Earth central angle
can be computed as:

cos(ζ) =
rT
ECIrt

|rECI ||rt|
(7.2)

Continuing with derivations following Fig. 7.2, the nadir angle γ is defined as the
angle between the nadir vector (−rECI) and the spacecraft-to-target vector defined
by κ = rt − rECI . Following these definitions, γ may be computed as:

tan(γ) =
sin(ρ) sin(ζ)

1− sin(ρ) cos(ζ)
(7.3)

The final angle describing the target observation is the elevation angle, which is
the angle between the satellite position and the local horizon of the target. The
elevation angle ϵ can be calculated as follows:

ϵ =
π

2
− ζ − γ (7.4)

With the angles describing the target pass well defined, the next section develops
the desired attitude the spacecraft must follow to observe oceanographic targets.
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7.3 Target Tracking Attitude

For satellites carrying optical payloads, it is generally desirable for the spacecraft
to observe a target using an attitude that is consistent from one orbit to the next.
A method to enable these observations is to apply alignment-constrained desired
attitude formulations. In an alignment-constrained attitude, the satellite aligns its
observing boresight vector with κ and then rotates about the boresight vector to
minimize the angle between a secondary FBF basis vector and a specified constraint
vector [23][142][135]. The general procedure for this spacecraft guidance method is to
compute an intermediate alignment frame defined by Fi and then rotate about the
aligned basis vector ofFi to yield the constrained desired attitude reference frameFa.
This procedure is demonstrated pictorially in Fig. 7.3 where the rotation from FECI

to Fi is first shown and followed by the final rotation to the desired Fa constrained
target tracking frame. Following the generally accepted convention used previously
in this thesis, the optical sensor boresight was selected in this thesis to lie on the z+
axis of FBF . Such a selection leads to forming the z-axis basis vector of Fi, expressed
in FECI , as:

zi =
κ

|κ|
(7.5)

zi also represents the desired boresight orientation expressed in FECI . Noting that
y = [0, 1, 0]T is the y-axis basis vector of FECI , allows for the x-axis basis vector of
Fi expressed in FECI to be computed as follows:

xi =
z×
i (−y)

|z×
i (−y)|

(7.6)

The triad represented by Fi is completed by the y-axis basis vector which is

FECI

Fi

zECI

zi

κ

xECI

yECI
xi

yi

To Target Direction

Align For Target Tracking Rotate to Constrain

vECI
Fi

Fa

zi

κ

xi

xa

ϕc

yi

Rotation about 
Boresight axis

ya

Figure 7.3: Demonstration of Alignment-Constrained Attitude Process
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normal to xi and zi, calculated as follows:

yi = z×
i xi (7.7)

Allowing the vectors x = [1, 0, 0]T and z = [1, 0, 0]T to be the remaining basis
vectors of FECI when expressed in FECI , enables a DCM to be formed which trans-
forms a vector from its expression in FECI to its expression in Fi. The DCM can be
computed as:

Ai
ECI =

xT
i x xT

i y xT
i z

yT
i x yT

i y yT
i z

zT
i x zT

i y zT
i z

 (7.8)

The intermediate target pointing frame is, therefore, fully defined by the described
equations in this subsection; however, the desired attitude must still be conveniently
constrained by an additional reference direction in the following subsection.

7.3.1 Constrained Attitude

It has been shown in Section. 4.5 that the OD-EKF provides an estimate of the
spacecraft orbital velocity vector expressed in FECI . This estimate is defined here as
v̂ECI . The estimated velocity vector can be conveniently used as the constraint vector
with the secondary alignment vector being the x-axis basis vector of Fi. Because the
desired boresight vector zi is already aligned to κ, the secondary alignment vector
can typically only be rotated such to minimize the angle made with the constraint
vector as shown in Fig. 7.3. After this rotation, the attitude is considered to be
constrained. The reason for selecting v̂ECI as the constraint vector is so that, when
the spacecraft is observing a target from a 90 degree elevation, the aligned-constrained
attitude will be identical to the nadir attitude (assuming a spherical Earth). For a 90
degree elevation, the target is directly below the satellite and κ will be aligned with
−rECI . Because of this alignment, rotation about κ can directly align a desired x-axis
direction with vECI . By definition in Appendix A, such an attitude is identical to the
nadir attitude. Therefore, for all elevation angles other than 90 degrees, the aligned-
constrained attitude will be close to the nadir attitude (or as close as possible to it).
By being closer to the nadir attitude the spacecraft, which nominally points nadir,
needs to expend less energy to achieve a target tracking attitude when approaching
the target.

The goal of the constrained attitude is to minimize the angular distance between
the constraint vector and the secondary alignment vector by rotating about the de-
sired boresight direction zi as demonstrated by Fig. 7.3. The rotation which mini-
mizes the angle between v̂ECI and xi can be found by computing the angle between
both vectors when they are projected into the plane normal to zi (the plane normal
to the desired boresight orientation) as demonstrated by Fig. 7.4. These projections
are most easily manipulated by expressing both the constraint vector and secondary
alignment vector in FECI as it is desired to compute an attitude referenced to this in-
ertial coordinate frame. Let cB represent the projected xi secondary alignment vector
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Figure 7.4: Constraint Vector cD and its Projection Into the Boresight Normal Plane.

and cD be the projected v̂ECI constraint vector expressed in FECI . The minimization
angle ϕc can be computed using the following sequence of equations:

vi =
v̂ECI

|v̂ECI |
(7.9)

cD = vi −
(
vT
i pD

pT
DpD

)
pD (7.10)

cos(ϕc) =
cTBcD

|cB||cD|
(7.11)

In the case of the present thesis, pD is theFi projection plane normal vector expressed
in FECI . Based on the selection of the desired boresight vector being functionally
equivalent to the z-axis basis vector of FBF when the spacecraft has achieved the
desired attitude, pD may be calculated as follows:

pD =
(
AECI

i

)T
[0, 0, 1]T (7.12)

Eq. (7.12) is effectively transforming the observing basis vector of Fi to its expression
in FECI . Following a very similar procedure, the remaining quantity cB can be
computed by expressing the x-axis basis vector of Fi in FECI by using the following
relationship:

cB =
(
AECI

i

)T
[1, 0, 0]T (7.13)

Because the secondary alignment vector when expressed in Fi is the x-axis basis
vector, it already lies in the projection plane and, therefore, does not need to go
through the same mathematical process as was done in Eq. (7.10).

Using the results of Eq. (7.11) allows the aligned-constrained attitude to be
represented by the DCM which performs the transformation from FECI to Fa. The
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DCM can be computed in the following relationship:

Aa
ECI = C3(ϕc)Ai

ECI (7.14)

Before being sent to the attitude controller as the target tracking attitude, it is
necessary to convert the result from Eq. (7.14) to a desired attitude quaternion qd.

Rotation Direction

A caveat of Eq. (7.11) is that, for the conditions used in this research, it lacked the
desired rotation direction about zi. More specifically, Eq. (7.11) yields a positive
solution to ϕc for all constraint projection vectors cD which lie in the 1st or 4th

quadrant of the projection plane. Fig. 7.5 supports this notion demonstrating that
these results may not be desirable.

vECIvECI

cDcD

-ϕc

ϕc

zi
To Target Direction
& Desired Boresight
Direction

Boresight Normal Plane

1st Quadrant4th Quadrant

xi

yi

i

cB

Case 1: +ive ϕc 

Case 2: -ive ϕc 

Figure 7.5: Constraint Vector cD and the Desired ϕc Rotation Direction Based on
Normal Plane Quadrant

As visualized by Fig. 7.5 and the right-handedness of Fi, it is desired to have
a negative ϕc minimization angle if the constraint vector projection lies in the 4th

quadrant of the projection plane. A negative angle respects the right-handedness
of Fi and, therefore, a rotation about zi through −ϕc rotates cB counter clockwise
towards cD. Should cD lie in the 1st quadrant, a rotation about zi through ϕc is
desired and cB will be rotated clockwise towards cD. The solution to Eq. (7.11) can
be modified subject to the following set of conditions:{

ϕc, if Ai
ECIcD|2≥ 0

−ϕc, if Ai
ECIcD|2< 0

(7.15)
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Most notable from Eq. (7.15) is that cD is transformed to its expression in Fi to
most easily express the conditions for checking the quadrant within the normal plane.
The quadrant of interest corresponding to the desired rotation direction about the
boresight axis is then determined by inspecting if the y-component of cD is above or
below zero.

Desired Angular Velocity

The desired angular velocity setpoint is required by the attitude controller for all
time over the target tracking maneuver. Following the work in [135] the desired
angular velocity of the spacecraft over the target tracking maneuver was computed
by applying Eq. (7.16):

ωd = 2
(
q4I3×3 + q̂×)−1 ˙̂q (7.16)

where the components of q and q̇ are the simulator propagated actual spacecraft atti-
tude quaternion and rate quaternion. The relationship provided in Eq. (7.16) has the
effect of setting the angular velocity error state to be zero during the target tracking
campaign when there is no noise present in the angular velocity state. Some studies
such as [23] and [24] propagate forward in time the desired attitude and angular ve-
locity states to tk+1 with only knowledge of the states at tk so that a determinable
angular velocity setpoint is feasible to compute in online implementation, however,
this work was outside the scope of the present thesis. Target tracking performance
benefits can likely be achieved by integrating the work from these previous studies
into the current thesis’ simulator.

7.3.2 Validation of Alignment-Constrained Attitude

To validate the functionality of the proposed attitude, a dot product can be taken be-
tween the constraint v̂ECI and the secondary alignment vector xi. Also, an additional
dot product can be obtained for both projection vectors cD and cB, respectively. Two
results are expected to be observed. First, if the rotation about the boresight axis
through ϕc is applied consistently during orbit propagation, the dot product between
the projection vectors cD and cB should always be unity. In the case of the constraint
and secondary alignment vectors v̂ECI and xi, these vectors should only have a dot
product of 1 if the satellite reaches an elevation angle of ϵ = 90◦. As previously
discussed, this particular case allows the xi vector to align closely with the estimated
satellite velocity vector v̂ECI . The results of the validation technique are provided in
Fig. 7.6 where a satellite target pass was propagated for a target located at 0.65178◦

S, 24.34995◦ W.
Observing Fig. 7.6 it is clear that the expected results are obtained. The projec-

tion vectors experience a unitary dot product regardless of simulation time indicating
that the intermediate frame has been rotated to the desired constrained attitude frame
about the boresight axis. Additionally, the constraint vectors themselves experience
a dot product of 1 at the 90 degree elevation point as expected. From these results
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i

Figure 7.6: Dot Products of Alignment Vectors Used to Validate Constrained Atti-
tude.

the alignment-constrained attitude formulations were considered to be validated.

7.4 Target Tracking Error Metrics

Particularly for optical payloads which may observe ocean targets, it is crucial to
quantify errors which express how well the satellite has enabled observation of a
target on the surface of Earth. These error metrics can be broken down to pointing
errors δθ and mapping errors δs. Mapping errors express the distance between the
target location and where the observing boresight maps onto the surface of Earth.
Pointing errors are related to angular errors between the desired boresight orientation
and the actual boresight orientation. In this thesis, a spherical Earth approximation
is applied for computing these error metrics which can induce up to 0.12◦ of error in
the computations [23].

Generally, errors arising from attitude determination and control are lumped into
target azimuth errors δϑ1 and nadir errors δγ. δϑ describes angular rotation error
of the observing boresight about the nadir vector −rECI and δγ describes angular
error between κ and −rECI [23]. The azimuth angle ϑ is the angle between the
subsatellite-target vector rt

ss and the spacecraft ground track. This geometry and the
subsatellite point are depicted in Fig. 7.7. Instantaneously, the spacecraft velocity
vector lies along the ground track which allows the azimuth angle to be calculated as
[23]:

cos(ϑ) =
rt
ss · vECI

|rt
ss||vECI |

(7.17)

1δϑ is not to be confused with δϑ defined for the MEKF local error parameterization
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Azimuthal pointing and mapping errors are a function of the nadir angle γ as shown
by:

δθ = δϑ sin(γ) (7.18)

δs = δϑ|κ|sin(γ) (7.19)

where the azimuth angle error can be computed by first determining the angle about
−rECI between the actual spacecraft z-axis basis vector b̂z when expressed in FNP

and the x-axis of FNP denoted by xNP . Let b̂NPz represent the expression of the
vector b̂z in FNP and zNP represent the z-axis basis vector of FNP expressed in
FNP so that the azimuth angle error δϑ can be computed by the following sequence
of equations:

cz = b̂NPz −

(
b̂TNPz

zNP

zT
NPzNP

)
zNP (7.20)

ĉz =
cz
|cz|

(7.21)

ϑa =

∣∣∣∣cos−1(ĉz
TxNP )

|ĉz||xNP |

∣∣∣∣ (7.22)

δϑ = |ϑ− ϑa| (7.23)

The sequence of equations from Eq. (7.17) - Eq. (7.19) are functionally preforming
a projection of the actual spacecraft boresight vector into the x-y plane of FNP which
is defined to have its x-axis in the direction of vECI . The actual azimuth angle of
the spacecraft ϑa is, therefore, the angle between the aforementioned actual boresight
projection vector ĉz and the x-axis of FNP .

rt rECI

vECI

rsst
ϑ

κ
γ Spacecraft

SubSatellite
Point

Ground Track

Orbit Path

yECEF

xECEF

zECEF

Figure 7.7: Azimuth Geometry and SubSatellite Point Depicted for a Target Located
Off the Spacecraft Ground Track.
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The nadir angle error is calculated by comparing the actual nadir angle formed
by the spacecraft boresight and −rECI to the desired nadir angle γ. The actual
nadir angle γa can be obtained through Eq. (7.24) where the actual spacecraft z-axis
basis vector expressed in FECI is denoted by b̂z and the unit nadir direction vector
expressed in FECI is denoted by uECI

e :

cos(γa) =
b̂Tz u

ECI
e

|b̂z||uECI
e |

(7.24)

which leads to the nadir angle error being succinctly calculated as δγ = |γ − γa|.
Nadir mapping errors generally worsen at lower elevation angles ϵ and are related

to the distance between the target and the satellite. The nadir errors are calculated
as:

δθ = δγ (7.25)

δs = δγ
|κ|

sin(ϵ)
(7.26)

Error in the OD-EKF state estimate also leads to a a series of errors worth ac-
counting. The error between the estimated satellite position and true satellite position
is calculated as follows:

δr = r̂ECI − rECI (7.27)

where δr = [δr1, δr2, δr3]
T . The positional error should be expressed relative to the

In-Cross-Range frame FICR to derive the in-track, cross-track and radial errors. This
reference coordinate frame along with the track directions are detailed in Appendix
A. The in-track pointing and mapping errors may be determined from the following
equations:

δθ = δr1 sin (arccos (cos(ϑ) sin(γ)))
1

|κ|
(7.28)

δs = δr1 cos (arcsin (sin(ζ) sin(ϑ)))
|rtarg|
|κ|

(7.29)

The cross-track error metrics are computed following a similar set of equations:

δθ = δr2 sin (arccos (cos(ϑ) sin(γ)))
1

|κ|
(7.30)

δs = δr2 cos (arcsin (sin(ζ) sin(ϑ)))
|rtarg|
|κ|

(7.31)

Errors along the radial direction of FICR can be calculated as follows:

δθ = δr3 sin(γ)
1

|κ|
(7.32)

δs = δr3
sin(γ)

sin(ϵ)
(7.33)
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While additional sources of error such as sensor mounting errors are likely to exist
in a real system, this thesis limited error accounting to the aforementioned sources
for lack of a mechanical system to derive other errors.

7.5 Attitude Controller Modifications

Oceanographic target tracking generally requires the spacecraft to follow an attitude
trajectory which more rapidly changes when compared to strictly nadir pointing. In
addition, pointing accuracy becomes significantly more important to limit the amount
of mapping error experienced by the optical payload. To achieve these more stringent
pointing requirements, the attitude controller applied in Chapter. 5 and Chapter. 6
was modified in this section to reduce offset errors that were induced by the SMC
boundary layer approximation when the spacecraft was roughly pointing along the
desired attitude trajectory. The control signal from Section. 5.1 was updated through
the addition of an integral component uI leading to the new control signal to be
formed as:

ucmd = un + ueq + uff + uI (7.34)

where the integral portion of the control signal may be calculated as:

uI = −ϱKIsign(qe4)

∫
q̂e (7.35)

In Eq. (7.35) KI = kIJ where kI is the tunable integral gain. ϱ is a scaling function
which smoothly merges the integral control signal into the attitude controller. In this
work ϱ was calculated as:

ϱ = sat

(
ϵ

φ

)
(7.36)

where ϵ is the propagated target pass elevation angle in degrees, and φ is the elevation
angle for which at this elevation angle, the complete magnitude of the integral con-
troller is merged into Eq. (7.34). In this work φ was selected as 45◦. The saturation
function in Eq. (7.36) is used to saturate ϵ

φ
on the bounds of 0 - 1. To prevent integral

windup, the integral state of Eq. (7.35) was reset to 0 for all ϵ below 0◦. The result
is a control signal which smoothly merges into the SMC controller while the satellite
is performing a target tracking maneuver. For all other time the integral controller
does not produce a command signal to avoid undesirable transience being induced
into the system when performing large attitude reorientation maneuvers.

7.6 Oceanographic Target Tracking Results

Two sets of simulation results are presented in this section. The first commands the
spacecraft to track a single target in a high elevation pass. Results are compared in
this section for the same target pass when albedo is considered and not considered in
the simulation. The results presented for this comparison are a mixture of attitude
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Table 7.1: Key Initial Conditions & Tuned Control Parameters for Target Tracking
Simulation 1

Target Tracking Simulation 1 Parameters

Description Parameter Value and Units

Controller Modifications:

SMC Reaching Law Pa-
rameter

α 2
7

SMC Control Gain k 0.0004

SMC Boundary Layer ∆ 0.065

Integral Control Gain kI 0.005

Integral Control Merging
Value

φ 45◦

Initial Conditions:

Initial Spin ωt=0 [0.0, 0.0, 0.0]T (rad/s)

Initial Gimbal Positions δt=0 [0.1, 0.0, 0.0]T (rad)

Geodetic Target Position
(lat, long)

(ϕd, λd) 12.004373◦ S, 135.016657◦ E
(Arafura Sea near Milingimbi Is-
land)

determination and target tracking performance in order to properly convey the po-
tential effects of albedo on target tracking spacecraft. The second simulation aims to
demonstrate the advanced capabilities of the DGSPCMG by commanding the satel-
lite to track two sequential oceanographic targets. Attitude guidance formulations
are provided for this simulation to develop a smooth desired attitude trajectory which
directs the CMG to maneuver the spacecraft from the first target to the second.

7.6.1 Simulation 1 - Single Oceanographic Target Tracking with a
DGSPCMG-Equipped ADCS

The key simulation parameters used to derive the results presented in this section
are compiled in Table 7.1. The control parameter modifications in Table 7.1 were
selected on the basis of reducing the target tracking nadir angle error metric to be
below 1 degree for elevations angles above 45◦ on a target pass. The 1 degree lumped
determination and control tracking error was selected corresponding to the planned
pointing requirement for the Dalhousie University MANTIS mission.

The results in Fig. 7.8a - Fig. 7.8c are shown for the Arafura Sea target tracking
campaign when albedo affects were considered in the simulation. The Time of Closest
Approach (TCA), occurs when the elevation angle reaches its maximum value at 5319s
simulation time. At this point, by observing Fig. 7.8a subplot 3, the nadir mapping
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(a)

Target Tracking

(b) (c)

Figure 7.8: Target Tracking Simulation 1 With Albedo Effects Considered. Spacecraft
Tracking Static Oceanographic Target in Arafura Sea.

error was a modest 0.4 km. Despite desirable pointing performance at TCA, there
are pointing perturbations as large as 2.5◦ observable in Fig. 7.8a occurring while
the satellite is passing the target with an elevation angle over 45◦. This pointing
perturbation translated to a nadir angle mapping error of 24.86 km. Pointing errors
of this magnitude violate the intended sub 1 degree accuracy requirement by roughly
150%. The observed large pointing error was directly related to sun sensor corruption
as shown by Fig. 7.8b and Fig. 7.8c. In Fig. 7.8b it is demonstrated that the
estimated Sun direction vector was not always parallel to the actual Sun ephemeris
direction vector by the fact that the dot product between the two vectors was not
always unitary during the target tracking campaign.

The corruption of the estimated sun vector was directly related to a few of the
coarse Sun sensors measuring the Sun and albedo at the same time. That is, if a
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Figure 7.9: Target Tracking Simulation 1 Without Albedo Effects. Spacecraft Track-
ing Static Oceanographic Target in Arafura Sea.

photodiode output current is to exceed the 25 mA threshold of ϵsc while measuring
both sun and albedo at the same time its measurement will be erroneous. The attitude
required for target tracking was shown to be susceptible to albedo corruption in Fig.
7.8b and Fig. 7.8c for the conditions used in this research. Notably by observing
Fig. 7.8c, only 1 photodiode was corrupted by albedo at any given simulation time;
however, the impacts of this corruption were substantial. The work presented in
this thesis emphasizes that future research work should responsibly investigate the
estimation of albedo effects to prevent corruption of the proposed ADCS. Work by
Cilden-Guler et al. (2021) has already made progress in this research field by removing
albedo corruption from coarse Sun sensor clusters in [143]. The results presented in
this section indicate that a threshold output for preventing albedo corruption may
only be viable for strictly nadir pointing missions and may not be sufficient for target
tracking missions. While albedo estimation was out of the scope of the present thesis,
results presented hereinafter will assume that albedo can be reliably estimated and
removed from the sensor outputs.

Results were re-simulated under the assumption that albedo was removed from the
Sun sensor measurements. The target tracking error metrics under this assumption
are plotted in Fig. 7.9. With albedo effects not considered the the simulation, the
proposed ADCS now comfortably tracks the target with nadir angles not exceeding 1
degree when above an elevation angle of 45◦ over the target. The nadir angle mapping
error at TCA for this instance of the simulation was ≈ 0.1 km. A notable observation
from Fig. 7.9 is that for elevation angles under 45◦ the spacecraft experiences a
fairly large azimuth error. The predominant reason for this error is that, for these
low elevation angles, the merging function ϱ is < 1 and the integral portion of the
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Spacecraft

Boresight Vector

Figure 7.10: Spacecraft Boresight Mapped to the Surface of Earth During Target
Tracking.

control signal is, therefore, small compared to the output from the SMC controller.
Another intriguing result is that, despite the integral control effect fading out post
maneuver, the SMC controller was achieving one of its lowest continuous nadir angle
errors over the entire maneuver. In fact, at ∼ 11◦ elevation post TCA the nadir angle
error is only 0.02◦. This angular error translates to only 2.5km of mapping error
despite the increased distance to the target. It was found that, by performing an
earlier reorientation to the target tracking attitude, the pre TCA nadir angle error
could be reduced to levels around 0.1◦ with the peak nadir angle error being 0.6◦.
It was believed at the time of simulation that performing earlier maneuvers allowed
any residual transience from the maneuver to be damped prior to the target tracking
campaign leading to improved target tracking accuracy.

The location on the surface of Earth where the spacecraft boresight was mapped
during the target tracking maneuver above 45◦ elevation is provided in Fig. 7.10.
Circles centered about the target position were provided with radii corresponding
to the peak and average nadir angle mapping errors to help visually interperate the
spacecraft target tracking accuracy. The spacecraft ground-track is also plotted in
Fig. 7.10. The radius of the post TCA peak mapping error circle (red) was 7.7km.
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The radius of the average mapping error circle (cyan) specified at the 1σ level was
2.5± 2.1 km.

7.6.2 Simulation 2 - Sequential Oceanographic Target Tracking

Simulation 2 presents a new target tracking scenario where the DGSPCMG-equipped
ADCS must track two sequential targets and ensure that the spacecraft is observing
each target at its respective TCA. All simulation conditions are identical to Simu-
lation 1; however, a second target is added in Indonesia, west of Jendidori, with a
location specified by 1.128829◦ S 135.90◦ E. To perform sequential target tracking it
is necessary to schedule when the spacecraft will observe each target. In this thesis,
the target tracking schedule was planned by first propagating the spacecraft orbit
and the target positions to obtain the elevation angles with respect to time for each
target pass. Then, to allow the satellite to follow a smooth attitude trajectory from
1 target to the next, weights were calculated for each target where, 20 seconds prior
to the elevation crossover point from Target 1 to Target 2 the weight for Target 1 was
w1 = 1 and w2 = 0 for Target 2. 20 seconds after the elevation crossover point, the
weights were set to w1 = 0 and w2 = 1. The elevation crossover point describes the
point where the Target 1 pass elevation and Target 2 pass elevation are equal. The
propagated target elevations and weights are shown in Fig. 7.11.

With the weights pre-computed, the spacecraft can follow a smooth trajectory be-
tween the two targets by finding the weighted average of quaternions which represent
the desired tracking attitudes, respectively, for each target. An exact closed form
solution exists from Markley (2007) which computes the weighted average between

4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

0

20

40

60

80

100

Target Horizon

4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
0

0.2

0.4

0.6

0.8

1

Elevation Crossover Point

Figure 7.11: Weights Applied to the Observation of Two Sequential Targets. Pre-
Propagated Elevation Angles and Weights
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two quaternions and is calculated by applying [144]:

qavg =

[√
w1(w1 − w2 + z)

z(w1 + w2 + z)
q1 + sign(qT

1 q2)

√
w2(w2 − w1 + z)

z(w1 + w2 + z)
q2

]
(7.37)

where z =
√
(w1 − w2)2 + 4w1w2(qT

1 q2)2. The average quaternion will direct the
satellite boresight in between the two targets at the crossover point because the
weights will be equal. More importantly, the average quaternion ensures a smooth
desired attitude trajectory from Target 1 to Target 2. The planned maneuver provides
the spacecraft with a 28 second period where it will be commanded to track Target
2 prior to reaching the TCA for Target 2.

Figure 7.12: Target 1 Tracking Error Metrics in Sequential Target Tracking Mission

The results for the target tracking error metrics are provided in Fig. 7.12 for Target
1 and Fig. 7.13 for Target 2. It is apparent in both Fig. 7.12 and Fig. 7.13 that,
during the 40 second target tracking transition maneuver starting at the red dashed
line in Fig. 7.12 and ending at the red dashed line in Fig. 7.13, the mapping error is
large. A large error should be an expected result as the satellite is being commanded
to point its boresight somewhere in between the two targets during this time. The
Target 2 tracking campaign tracks a quantitatively worse target pass when compared
to the Target 1 pass because the elevation angle peaks at only 30.28◦ for the Target
2 pass. A low elevation pass indicates that the satellite will be far from the target
at TCA and that it will be more difficult to reduce the nadir and azimuth mapping
errors. An enlarged plot of Target 2 mapping errors is provided in Fig. 7.14 where
the mapping errors are plotted for the tracking duration after the target transition
maneuver is completed. The nadir and azimuth mapping errors were 26.1 km and
18.6 km, respectively, at TCA. These errors reduced to the sub 5 km level post TCA,
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Figure 7.13: Target 2 Tracking Error Metrics in Sequential Target Tracking Mission

despite theory from Eq. (7.26) stating that the errors should increase with lowered
elevation angle. Such a result could indicate that there is some undamped transience
in the attitude response that improved during the target tracking campaign. As
expected, however, the right most trend of the plot in Fig. 7.14 shows increasing
mapping error as the spacecraft nears the target local horizon.

Figure 7.14: Target 2 Mapping Error Post TCA

The target tracking campaign is visualized in Fig. 7.15a - Fig. 7.15f where the
spacecraft body frame is shown in orbit relative to Earth. The visualization offers
some additional validation of the desired attitude formulations by demonstrating that
the spacecraft z+ axis is directed towards the targets during the mission as intended.
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Noticeably in Fig. 7.15f, while the spacecraft is in the midst of transitioning its atti-
tude from Target 1 to Target 2, the boresight is directed towards the ocean. While
expectedly not directed towards a target at this time, it is desirable to observe the
boresight directed towards the ocean, as erroneous attitudes directed away from Earth
and towards the Sun could damage optical payloads on board the spacecraft. An ad-
ditional validation can be obtained from Fig. 7.15e where, by close observation, the
x-axis basis vector of FBF is roughly aligned with the x-axis of the nadir pointing
frame FNP . The observed vector alignment re-enforces the validations made in Sec-
tion. 7.3.2 that the alignment-constrained attitude is correctly respecting the v̂ECI

constraint vector.
The results presented in Section. 7.6 have leveraged the proposed DGSPCMG-

equipped ADCS to enable high-agility target tracking of oceanographic targets. The
technology considered in this chapter could be extended to future oceanographic
CubeSat missions where agile and precise pointing is desirable. Results presented
in this chapter demonstrated that the Extended DGSPCMG SCL successfully per-
formed target tracking objectives and, therefore, avoided complicating singularities
while doing so. Pointing and mapping results were somewhat complicated by albedo
corruption during off nadir spacecraft attitudes. The observed albedo effects build a
motivation for future work to investigate systematically estimating and moderating
albedo corruption for target tracking ADCS designs that employ Sun sensors as a
primary component of attitude determination.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.15: Sequential Target Tracking Campaign Visualization for Targets Located
in or around the Arafura Sea



Chapter 8

Conclusions and Recommendations

This thesis details the development and verification of a CubeSat attitude control
system which leverages the Double-Gimbal Scissor-Pair Control Moment Gyroscope
as the primary attitude actuator. Robust on-orbit attitude control was achieved
in the focus thesis through the advancement of a novel gimbal steering control law
which enables DGSPCMG singularity escape from a variety of complicating singular
states identified in the thesis. To quantify the performance of the proposed steering
control law, a spacecraft simulator was constructed which models environmental per-
turbations, realistic attitude sensors, lighting conditions, and spacecraft dynamics.
The simulator was extended to multiple case studies in Low-Earth Orbit where the
novel steering control law was expected to provide performance benefits because of
its ability to provide the spacecraft with agile maneuvering capabilities.

The first of these case studies investigated the use of the proposed SCL for mo-
mentum desaturation while maintaining attitude pointing. It was found that the
proposed SCL in a nadir pointing mission could maintain pointing while desaturat-
ing the DGSPCMG. Additionally, the developments in this case study addressed the
understudied case of escaping CMG singularities caused by angular impulses exerted
by the environment on the satellite and CMG. The hybrid CMG-magnetorquer con-
figuration was shown, for the simulation conditions used in the research, to enable
singularity escape from environmentally induced singularities.

The second case study applied the proposed DGSPCMG SCL on an active debris
removal mission where the DGSPCMG-equipped CubeSat was connected to a debris
satellite via a flexible tether. With attitude control provided by the DGSPCMG,
a novel Two-Stage Estimator was developed which, to the author’s best knowledge,
is the first published method for estimating all principal and products of inertia
for a debris body without assuming the location of the tether connection point on
the debris to be known a priori. The removal of the tether connection point was
achieved by proposing pseudo measurement Kalman Filter formulations which, for the
simulation conditions and sensors modeled, accurately estimated the debris center of
mass position to be used as a key component of inertia estimation. For the simulation
conditions used in this research, under the worst-case scenario, the principal inertia
parameters of the debris were estimated to percent errors at or less than 6.1 %.

The final case study demonstrated the use of the DGSPCMG SCL on oceano-
graphic target-tracking missions. The agile maneuvering characteristics made pos-
sible by the DGSPCMG were leveraged to perform accurate tracking of sequential
oceanographic targets. For target pass elevation angles above 45◦ the proposed atti-
tude determination and control system achieved an average mapping error of 2.5±2.1
km at the 1σ level for a single target pass. It was found in the results of this section
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that Earth albedo effects could have a profound impact on target-tracking accuracy,
leading to the recommendation that future ADCS developments investigate the sys-
tematic estimation and moderation of albedo effects.

Considering the three evaluated case studies, the contributions of this thesis may
be summarized as follows:

1. Development of a robust DGSPCMG steering control law which escapes from
singularities expected to be experienced during missions in LEO.

2. A proposed two-stage inertia estimation algorithm which estimates all principal
and products of inertia for a tethered debris.

3. Relaxation of the tether connection point assumption typically used for estima-
tion of tethered debris inertia

4. Assessment of expected target tracking error metrics for a DGSPCMG-equipped
ADCS.

5. Simulation fidelity additions for future spaceflight simulations performed at Dal-
housie University.

Following the advancements made in this thesis, future work should investigate
the development of multi-body formulations to model the DGSPCMG. The current
thesis has assumed that actuation of the CMG does not affect the spacecraft iner-
tia — a multibody model would relax this assumption allowing for higher fidelity
simulations to be studied. Following a similar goal of fidelity improvement, it is rec-
ommended that future work consider remodeling the LiDAR sensor used to drive the
proposed TSE. Software packages including BlenSor are open source and enable de-
tailed LiDAR sensor simulations. Current algorithms such as Iterative Closest Points
could additionally be implemented at this point so that measurements fed to the
TSE more closely resemble real-world implementations. A recommendation which
further refines the proposed ADCS would be to integrate the GPS models and orbit
determination methods presented in [88]. This previous work presents modern orbit
determination methods which may enhance the OD-EKF presented in the current
thesis. Discussed as part of the target tracking results, the proposed ADCS would
also benefit from moderating albedo corruption. One method to avoid albedo corrup-
tion may be to implement a star tracker on the spacecraft; however, this sensor still
experiences other interfering effects. A detailed study may be required to evaluate
methods for avoiding attitude sensor corruption. Notwithstanding potential sensor
corruption, the ability to maintain attitude in eclipse by employing a star tracker
provides indisputable benefits to the ADCS proposed in this thesis.
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Appendix A

Reference Frame Definitions

This appendix provides a summary of reference frames used primarily by the orbit
propagator and space environment simulator. The reference frames derived in the
appendix are typically applied to describe orbit geometry, spacecraft attitude, or are
used to drive reference models used in the simulation.

A.1 Coordinate Frames

A.1.1 J2000 Earth-Centered Inertial Frame

The J2000 Earth-Centered Inertial (ECI) frame is used to represent a quasi-inertial
reference system. For this reference frame defined by FECI , the x-axis points to-
wards the mean equinox at January 1st 2000 at 12:00 terrestrial time. The z-axis
points towards celestial north and the y-axis completes the triad [145][146]. The
mean equinox point is defined as the ascending node point where the orbital plane
of the Earth around the Sun (more commonly known as the ecliptic) intersects with
the celestial equator of Earth. The ECI frame is shown in Fig. A.1. FECI holds
importance in the simulator developed in this thesis because all ephemeris data for
other celestial bodies is expressed in this reference frame.

FECI

xECI

yECI

zECI

Ecliptic

ϒ-J200
Mean Equinox

Celestial North

Figure A.1: J2000 Earth-Centered Inertial Frame With Mean Equinox Point
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A.1.2 Earth-Centered Earth-Fixed Frame

The Earth-Centered Earth-Fixed (ECEF) frame defined by FECEF is fixed at the
center of Earth and rotates with Earth as shown in Fig. A.2. The ECEF frame shares
a common z-axis with FECI and is rotated about this axis through the Greenwich
angle θG. The x-axis points towards the Greenwich prime meridian lying in the mean
equatorial plane and the y-axis is directed 90◦ east of the x-axis [23][26]. The ECEF
frame is shown rotated relative to the ECI frame in Fig. A.2.

θG

FECI

FECEF

xECI

xECEF

yECI

yECEF

zECI

Prime Meridian

zECEF

Figure A.2: ECEF Frame with Greenwich Prime Meridian Line

To realize the rotation from FECI towards FECEF it is critical to define the simu-
lation start time. For the case of this thesis, a Two-Line Element (TLE) was obtained
on Jan 11th 2023 via the Celestrack.com database for the Low-Orbit Reconnaissance
Imagery Satellite (LORIS) which provided the simulation epoch Universal Time (UT)
and fractional day [15]Update Citation with proper page reference. The UT time of
the simulation in decimal hours ts for all simulation time t expressed in seconds is
given as:

ts = t0 +
t

3600
(A.1)

where t0 is the UT time in decimal hours for the TLE epoch time. Following cal-
culation of Eq. (A.1), the Julian Day must then be resolved. The Julian day is a
continuous count of days elapsed since the beginning of the Julian period [147]. The
Julian day number J0 for the epoch start date at 0 UT is found in the following equa-
tion noting that Y , M , D represent year, month, and day respectively. The function
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“fix” rounds the input number towards zero [145]:

J0 = 367Y − fix

(
7
(
Y − fix

(
M+9
12

))
4

)
+ fix

(
275M

9

)
+D + 1721013.5 (A.2)

The Julian day at the current simulation UT time is then:

JD = J0 +
ts
24

(A.3)

With the J2000 convention being used for the inertial reference frame, the Julian
centuries elapsed since the J2000 epoch is determined as [41]:

T0 =
JD − 2451545

36525
(A.4)

The Julian centuries value enables the calculation of the Greenwich sidereal angle at
0 UT for the simulation epoch day θG0 . The θG0 term can then be updated for any
simulation time to yield θG by applying the following two equations in sequence:

θG0 = 100.4606184 + 36000.77004T0 + 0.000387933T 2
0 − 2.583e10−8T 3

0 (A.5)

θG = θG0 + 360.98564724
ts
24

(A.6)

Finally, the DCM which expresses a vector from FECI to its equivalent representation
in FECI is given as:

AECEF
ECI = C3(θG) (A.7)

A.1.3 Topocentric Reference Frame (East-North-Zenith)

The reference frame most applicable to target tracking applications is a Topocentric
Reference Frame. In this work the East-North-Zenith (ENZ) frame defined by FENZ

is centered at a target position on the surface of Earth as shown in Fig. A.3. A
terrestrial target location at a given geodetic latitude ϕd and longitude λd is defined
in the World Geodetic System of 1984 (WGS84) to account for the flattening of Earth.
The z-axis of FENZ points in the direction of the geodetic zenith (normal and away
from the surface of Earth), the x-axis points towards the local north of the target
along the local line of latitude, and the y-axis completes the triad by pointing towards
the local north direction from the target position [23]. The frame rotates with Earth
which leads to the target position being time invariant when expressed in FECEF .
The ENZ frame is shown at an arbitrary target position with geodetic latitude and
longitude expressed based on the position of the ECEF frame in Fig. A.3. Owing to
the fact that the ENZ frame rotates with the ECEF frame, the transformation from
ECEF to ENZ is also time-invariant and can be calculated as [23]:

AENZ
ECEF = C1

(π
2
− ϕd

)
C3
(π
2
+ λd

)
(A.8)
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λd

ϕd

θG

FENZ

FECI

FECEF

xECI

xECEF

yECI

yECEF

zECI zECEF

zENZ

xENZ

yENZ

Surface Tangent

Figure A.3: ENZ Frame with Geodetic Latitude and Longitude Shown Relative to
ECEF Frame Position

The time-invariant position of the target in FECEF accounting for the WGS84 real-
ization can be obtained by first calculating the geocentric latitude at mean sea level
ϕs and the radius at a surface point defined by rs [148]:

ϕs = atan((1− f)2 tan(ϕd)) (A.9)

rs =

√
R2

e

1 + (1/(1− f)2 − 1) sin2(ϕs)
(A.10)

The parameter Re is the radius of Earth at the equator and is equal to 6378137 m.
f is the WGS84 Earth flattening parameter which is equal to 1/298.257223563 [148].
Correspondingly, the FECEF target position can be calculated as:

rt =

rs cos(ϕs) cos(λd) + h cos(ϕd) cos(λd)
rs cos(ϕs) sin(λd) + h cos(ϕd) sin(λd)

rs sin(ϕs) + h sin(ϕd)

 (A.11)

A.1.4 Perifocal Frame

The Perifocal frame defined by FP is a intermediate frame used to develop the Nadir
Pointing frame. FP is obtained by a 3-1-3 principal rotation sequence from FECI

through the classical orbital elements consisting of the Right Angle of the Ascending
Node (RAAN) Ω, inclination i and, the argument of perigee ω as demonstrated by
Fig. A.4. The x-axis of FP lies in the orbital plane and points in the direction of the
perigee point. The y-axis lies in the orbital plane 90◦ from the x-axis while respecting
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the dextral properties of reference frames defined in this work. Finally, the z-axis is
directed normal to x and y.

FECI

FP

xECI

xP

zECI

zP

i

ωΩ

Line of NodesOrbital Plane

Figure A.4: Perifocal Frame in Relation to the ECI Frame (y-axes omitted)

The DCM used to transform a vector expressed in FECI to its representation in
FP is accomplished through the following sequence of rotations. First, a C3 principal
rotation by Ω aligns the x-axis to the line of nodes. An intermediate C1 principal
rotation about this new x-axis through i aligns the intermediate z-axis to be normal
to the orbital plane. Finally, a C3 principal rotation about the z-axis through ω aligns
the x-axis in its final position towards the perigee point. The subsequent DCM may
be calculated as [26]:

AP
ECI = C3(ω)C1(i)C3(Ω) (A.12)

A.1.5 Nadir Pointing Frame

The Nadir Pointing frame defined by FNP is centered at the current satellite position
on its orbit as shown by Fig. A.5. The satellite position in FECI is represented
by rECI which leads to the Nadir direction from the satellite position to be in the
direction of −rECI . Therefore, the z-axis of FNP is directed along −rECI , the x-axis
is directed along the orbital velocity vector vECI , and the y-axis completes the triad.
Fig. A.5 displays the orientation of FNP with respect to FECI . Addressing Fig. A.5,
the most convenient method for developing the Nadir Pointing frame is to perform a
rotation sequence from the Perifocal frame. The DCM which performs this rotation
can be formed by a 3-2-3 principal rotation sequence through the true anomaly angle
ν, −π

2
and, π

2
respectively [26]:

ANP
P = C3

(π
2

)
C2
(
−π
2

)
C3(ν) (A.13)

The true anomaly angle can be taken from the TLE which drives the simulation.
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FECI

FNP

xNP

yNP

yECI

xECI

zECI

Orbit Path

zNP
rECI

rP

ν

Satellite

Figure A.5: Nadir Pointing Frame Defined for General Inclined Orbit

A.1.6 Body-Fixed Frame

The Body-Fixed frame defined by FBF is fixed at the Center of Mass (COM) of the
satellite as shown by Fig. A.6. In this work, it is assumed that the z-axis of FBF

is the observing basis vector for the satellite. That is, it is the axis which is desired
to be pointed towards either the ground or at other targets of interest. The inertial
properties of the satellite are also calculated correspondingly to the defined Body-
Fixed frame. Fig. A.6 displays a general configuration of the spacecraft Body-Fixed
frame. With respect to the attitude control formulations presented in this work, it

xBF

yBF

zBF

FBF

Figure A.6: Body Frame Fixed to Generalized Spacecraft Geometry

is typically desired to align FBF with another coordinate frame which exhibits the
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desired attitude with respect to FECI .

A.1.7 In-Cross-Range Orbit Frame

The In-Cross-Range Orbit (ICR) frame FICR is defined for convenience in assessing
pointing and mapping errors for the target tracking campaigns presented in this
work. For the case of this work, FICR is not required for orbit propagation, but
it is justifiably presented here as context for later error analyses. FICR is centered
at the spacecraft COM and the z-axis basis vector points in the radial direction of
the orbit along rECI as demonstrated by Fig. A.7. The x-axis basis vector points
along the orbital velocity vector vECI and the y-axis points in the direction of the
cross product between rECI and vECI . The direction of motion of the spacecraft is
considered the “In-Track” direction, and the final remaining direction along y is the
“Cross-Track” direction [58]. The subject reference frame and track directions are
shown in detail in Fig. A.7. The DCM which transforms a vector expressed in FECI

FICR

Ground
Track

rECI

Satellite
In-Track

Cross-Track

Radial

Figure A.7: In-Cross-Range Frame Shown for Inclined Orbit

to an equivalent representation in FICR can be developed from the bases vectors
defined for each respective frame. Let xECI , yECI and, zECI be equal to [1, 0, 0]T ,
[0, 1, 0]T , [0, 0, 1]T respectively when the bases vectors of FECI are defined in FECI .
Then, the following set of equations may be applied to compute the bases vectors of
FICR expressed in FECI :

zICR =
rECI

|rECI |
, xICR =

vECI

|vECI |
, yICR = z×

ICRxICR (A.14)

With both sets of bases vectors defined, the DCM for rotation from FECI toFICR

can be obtained from:
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AICR
ECI =

xT
ICRxECI xT

ICRyECI xT
ICRzECI

yT
ICRxECI yT

ICRyECI yT
ICRzECI

zT
ICRxECI zT

ICRyECI zT
ICRzECI

 (A.15)

The resulting DCM is valid provided that, for each set of bases vectors, the vectors
are orthonormal and dextral.

A.1.8 Local Horizon Frame

The Local Horizon (LH) frame defined by FLH is used in this thesis to enable the
use of gravity harmonics in the subject work. FLH is centered at the spacecraft
COM and moves with the spacecraft about its orbit as presented in Fig. A.8. FLH

can be defined by a set of spherical coordinates r, δ, λ which define the position
of the spacecraft measured from FECI . The parameter r is the radial distance to
the satellite from the center of Earth, δ is the declination angle which is the angle
between rECI and the equatorial plane, and λ is the celestial longitude, which is the
angle (measured in the equatorial plane) from the FECI x-axis basis vector towards
the projection of rECI in the equatorial plane. Each parameter can be visualized in
Fig. A.8. Adopting the methods in [44], the Local Horizon frame can be obtained

FECI

FLH

xECI

Orbit

Up

East

rECI

yECI

zECI

xLH

yLHzLH
North

λ

δ

Figure A.8: Local Horizon Frame with Local Directions Labeled

following a 2-2-3 principal rotation from the ECI frame. Firstly, the declination angle
δ and the celestial longitude λ can be found by using the position of the spacecraft
rECI in:

δ = sin−1

(
rECI3

|rECI |

)
(A.16)

and:

λ = sin−1

(
rECI2

|rECI |cos(δ)

)
(A.17)
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It follows the DCM which transforms a vector from its expression in FECI to its
expression in FLH can be obtained by [44]:

ALH
ECI = C2

(
−π
2

)
C2
(π
2
− δ
)
C3(λ) (A.18)

A.1.9 North-East-Down Frame

The North-East-Down Frame (NED) defined by FNED is used in this thesis to pro-
vide coordinate transformations for geomagnetic field vectors derived from the Inter-
national Geomagnetic Reference Field Generation 13 (IGRF-13). The NED frame
cab be obtained through a sequential rotation from the ECEF frame as shown in Fig.
A.9. As demonstrated by the geometry in Fig. A.9, the three basis vectors of FNED

are oriented such that the z-axis points along the flattened Earth surface normal vec-
tor, the x-axis points in the local north direction, and the y-axis completes the triad
[149].

FECEF

FNED

xECEF

yECEF

yNED

zECEF

Prime 
Meridian

Non-Spherical
Earth

Surface Tangent

Surface
Normal

xNED

zNED
ϕd

λd

Figure A.9: NED Frame Show Relative to ECEF Frame For WGS84 Flattened Earth

Following Fig. A.9, a 3-2-2 principal rotation sequence can be applied to transform
a vector expressed in FECEF to its equivalent expression in FNED [150]. The DCM
performing this transformation can be constructed using the following relationship:

ANED
ECEF = C2(−90◦)C2(−ϕd)C3(λd) (A.19)

where the position of the spacecraft, expressed in geodetic latitude ϕd and longitude
λd, was obtained in the simulator by feeding the spacecraft position vector expressed
in FECEF to the MATLAB “ECEF Position to LLA” aerospace block.



Appendix B

Supplementary Simulator Data

GeomagneticData.txt

Format: IAGA-2002

Source of Data: GFZ, Helmholtz-Zentrum Postdam, Germany

Station Name: Kp index

IAGA CODE : Kp

Geodetic Latitude

Geodetic Longitude

Elevation Reported : Kp, ap, Ap, Cp, C9 and related values

Data Interval Type 3-hours

Data Type Definitive

# Converted to IAGA2002 format by the International Service of

# Geomagnetic indices ISGI, https://isgi.unistra.fr.

# The values in the raw of 00:00:00.000 are the mean values

# between 00:00UT and 03:00UT, etc.

# Kp: Planetary three-hour-range index

# Expressed in a scale of thirds, it ranges from Oo to 9o

# ap: represents a Kp-value converted back to a linear scale in nT

# It ranges from 0 to 400 nT

# Ap: arithmetic mean of the day’s eight ap values, unit 1 nT

# Cp: Planetary daily character figure

# It ranges from 0quiet to 2.5 disturbed in steps of 0.1

# C9: Conversion of the 0 to 2.5 range of Cp index to one digit

# between 0 and 9

# BSRN: Bartels solar rotation number - a sequence of 27-day

# intervals counted continuously from February 8, 1832

# NdB: Number of day within the Bartels 27-day cycle

#

# License: CC BY

# https://creativecommons.org/licenses/by/4.0/

#

# For more information on Kp and related indices, please visit

# GFZ "Indices of Global Geomagnetic Activity" service website:

# https://www.gfz-potsdam.de/Kp-index/

DATE TIME DOY Kp ap Ap Cp C9 BSRN NdB

2023-01-07 00:00:00.000 007 1o 4 6 0.2 1 2583 17

2023-01-07 03:00:00.000 007 2+ 9 6 0.2 1 2583 17

2023-01-07 06:00:00.000 007 1o 4 6 0.2 1 2583 17

2023-01-07 09:00:00.000 007 0+ 2 6 0.2 1 2583 17

2023-01-07 12:00:00.000 007 0+ 2 6 0.2 1 2583 17

2023-01-07 15:00:00.000 007 3- 12 6 0.2 1 2583 17

2023-01-07 18:00:00.000 007 2+ 9 6 0.2 1 2583 17

2023-01-07 21:00:00.000 007 0+ 2 6 0.2 1 2583 17

2023-01-08 00:00:00.000 008 2o 7 7 0.4 2 2583 18
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2023-01-08 03:00:00.000 008 2+ 9 7 0.4 2 2583 18

2023-01-08 06:00:00.000 008 2o 7 7 0.4 2 2583 18

2023-01-08 09:00:00.000 008 2- 6 7 0.4 2 2583 18

2023-01-08 12:00:00.000 008 3o 15 7 0.4 2 2583 18

2023-01-08 15:00:00.000 008 1+ 5 7 0.4 2 2583 18

2023-01-08 18:00:00.000 008 1o 4 7 0.4 2 2583 18

2023-01-08 21:00:00.000 008 1- 3 7 0.4 2 2583 18

2023-01-09 00:00:00.000 009 2- 6 4 0.2 1 2583 19

2023-01-09 03:00:00.000 009 0+ 2 4 0.2 1 2583 19

2023-01-09 06:00:00.000 009 0+ 2 4 0.2 1 2583 19

2023-01-09 09:00:00.000 009 1o 4 4 0.2 1 2583 19

2023-01-09 12:00:00.000 009 1- 3 4 0.2 1 2583 19

2023-01-09 15:00:00.000 009 2- 6 4 0.2 1 2583 19

2023-01-09 18:00:00.000 009 2o 7 4 0.2 1 2583 19

2023-01-09 21:00:00.000 009 1+ 5 4 0.2 1 2583 19

2023-01-10 00:00:00.000 010 1- 3 6 0.3 1 2583 20

2023-01-10 03:00:00.000 010 1- 3 6 0.3 1 2583 20

2023-01-10 06:00:00.000 010 1- 3 6 0.3 1 2583 20

2023-01-10 09:00:00.000 010 1- 3 6 0.3 1 2583 20

2023-01-10 12:00:00.000 010 2o 7 6 0.3 1 2583 20

2023-01-10 15:00:00.000 010 3o 15 6 0.3 1 2583 20

2023-01-10 18:00:00.000 010 2- 6 6 0.3 1 2583 20

2023-01-10 21:00:00.000 010 2o 7 6 0.3 1 2583 20

2023-01-11 00:00:00.000 011 2- 6 7 0.4 2 2583 21

2023-01-11 03:00:00.000 011 3- 12 7 0.4 2 2583 21

2023-01-11 06:00:00.000 011 2- 6 7 0.4 2 2583 21

2023-01-11 09:00:00.000 011 2- 6 7 0.4 2 2583 21

2023-01-11 12:00:00.000 011 1o 4 7 0.4 2 2583 21

2023-01-11 15:00:00.000 011 2o 7 7 0.4 2 2583 21

2023-01-11 18:00:00.000 011 2+ 9 7 0.4 2 2583 21

2023-01-11 21:00:00.000 011 2+ 9 7 0.4 2 2583 21

SunSensorData.txt

Sun-Sensor Vectors File.

Created by: Cameron Creaser

Date: 2024-05-30

--------------------------------------------------------------------

Optical Plane Normal Vectors

--------------------------------------------------------------------

Reference Coordinate System: F_BF

Data Format: [Row 1-6 - Fine Sensors ]

[Row 7-24 - Coarse Sensors]

---------------------------------------------------------------------

1.0000 0 0

-1.0000 0 0

0 1.0000 0

0 -1.0000 0

0 0 1.0000

0 0 -1.0000

0.4330 -0.2500 -0.8660
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-0.4330 -0.2500 -0.8660

0.0000 0.5000 -0.8660

0.4330 0.2500 0.8660

-0.4330 0.2500 0.8660

0.0000 -0.5000 0.8660

-0.4330 -0.8660 -0.2500

0.4330 -0.8660 -0.2500

0.0000 -0.8660 0.5000

-0.8660 0.4330 -0.2500

-0.8660 -0.4330 -0.2500

-0.8660 0 0.5000

0.4330 0.8660 -0.2500

-0.4330 0.8660 -0.2500

0.0000 0.8660 0.5000

0.8660 -0.4330 -0.2500

0.8660 0.4330 -0.2500

0.8660 -0.0000 0.5000

--------------------------------------------------------------------

Position Vectors

--------------------------------------------------------------------

Reference Coordinate System: Expressed from bottom dead center to SS

position. Reference frame aligned with

F_BF.

Data Format: [Row 1-6 - Fine Sensors ]

[Row 7-24 - Coarse Sensors]

---------------------------------------------------------------------

0.0500 0 -0.0100

-0.0500 0 -0.0100

0 0.0500 -0.0100

0 -0.0500 -0.0100

0 0 -0.0200

0 0 0

0 0 0

0 0 0

0 0 0

0 0 -0.0200

0 0 -0.0200

0 0 -0.0200

0 -0.0500 -0.0100

0 -0.0500 -0.0100

0 -0.0500 -0.0100

-0.0500 0 -0.0100

-0.0500 0 -0.0100

-0.0500 0 -0.0100

0 0.0500 -0.0100

0 0.0500 -0.0100

0 0.0500 -0.0100

0.0500 0 -0.0100

0.0500 0 -0.0100

0.0500 0 -0.0100
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SolarFluxData.txt

Solar Weather Data File

Obtained: spaceweather.gc.ca

License: Reproduced for non-commerical applications

Monthly Average Flux:

YEAR MONTH Observed Flux Adjusted Flux Absolute Flux

2022 12 148.46 143.83 129.46

2023 01 182.47 176.63 158.97

2023 02 172.09 167.91 151.11

Daily Flux:

DATE TIME Observed Adjusted Absolute

2023-01-10 18:00:00 199.0 192.5 173.2

2023-01-10 20:00:00 193.0 186.6 168.0

2023-01-10 22:00:00 190.1 183.8 165.5

2023-01-11 18:00:00 196.7 190.2 171.2

2023-01-11 20:00:00 195.1 188.7 169.8

2023-01-11 22:00:00 200.8 194.2 174.8



Appendix C

Attitude Controller Lyapunov Stability Analysis

The proposed DGSPCMG-equipped ADCS employs a Sliding Model Controller for
commanding attitude control torques. When exposed to a bounded disturbance, the
stability of the controller can be confirmed through a Lyapunov test. The Lyapunov
stability derivation is provided in this section for the focus sliding mode attitude
controller.

C.1 Lyapunov Criteria

For the proposed controller to be Globally Asymptotically Stable (GAS) a Lyapunov
function must be defined which satisfies a set of criteria:

1. A Lyapunov function V (z) must be defined to be positive definite. (V (z) > 0)

2. The selected Lyapunov function shall satisfy V̇ (z) < 0, ∀ z ̸= 0

If the set of criteria is met the energy in the system is dissipated at all time t as
t→ ∞ and ẋ = f(x) converges to zero, thereby making it GAS.

C.1.1 Derivation

Following the work provided in [97] a Lyapunov function candidate may be defined
as:

V =
1

2
σTσ (C.1)

The Lyapunov function leads to solving the partial derivative with respect to time
as:

∂V

∂t
=

1

2
(2σT σ̇)

∂V

∂t
= σT σ̇

(C.2)

From the attitude controller definition in Section. 5.1 the sliding variable was
expressed as:

σ = ωe + λqe1:3sign(qe4) (C.3)

For quaternion attitude parameterization it is possible for limt→∞qe4 = 1 and
limt→∞qe4 = −1 to both represent attitude convergence and, therefore, the signum
function must be introduced into the sliding variable σ so that the attitude converges
along the shortest attitude trajectory [96]. The goal of the controller is to drive
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the sliding variable through sliding mode to zero, in which case Eq. (??) can be
rearranged as:

ωe = −λqe1:3sign(qe4) (C.4)

The time derivative of the sliding variable can also be expressed as:

σ̇ = ω̇e + λq̇e1:3sign(qe4) (C.5)

In the general case for the satellite achieving attitude pointing for a simple rest-
to-rest maneuver, the error in the body rates of the spacecraft ωe may be defined as
ωe = ω. This definition leads to a convenient expression for the rotational dynamics
of the rigid-body satellite as:

Jω̇ + ω×Jω = ucmg + Td (C.6)

Assuming the general case where the CMG produces exactly the commanded
torque from the controller we may state u = ucmg so that the rotational dynamics
may be rearranged as:

ω̇ = −J−1ω×Jω + J−1u+ J−1Td (C.7)

Defining the commanded torque from the controller u by the sum of the equivalent
torque and the reaching law as u = ueq + un as described by the following equation:

u = J((J−1ω)×Jω − λsign(qe4)q̇e1:3)− k|σ|αsign(σ) (C.8)

The commanded control signal of Eq. (C.8) can be substituted into Eq. (C.7) as:

ω̇ = −J−1ω×Jω + J−1
(
J((J−1ω)×Jω − λsign(qe4)q̇e1:3)− k|σ|αsign(σ)

)
+ J−1Td (C.9)

Knowing that J is a square matrix and J−1J = I3×3 allows the above equation to
be reduced to:

ω̇ = −λsign(qe4)q̇e1:3 − J−1k|σ|αsign(σ) + J−1Td (C.10)

The analytical solution for rotational acceleration of the spacecraft subjected to
the commanded torque signal from the attitude controller has, therefore, been solved.
The result of Eq. (C.10) may be substituted into Eq. (C.2) as:

V̇ = σT σ̇

V̇ = σT [ω̇ + λq̇e1:3sign(qe4)]

V̇ =
σT [✭✭✭✭✭✭✭✭✭−λsign(qe4)q̇e1:3 − J−1k|σ|αsign(σ)

+J−1Td +✭✭✭✭✭✭✭✭
λq̇e1:3sign(qe4)]

V̇ = σT
[
−J−1k|σ|αsign(σ) + J−1Td

]
(C.11)
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The final result of Eq. (C.11) may be set equal to 0 to solve the minimum required
k to ensure stability for case of the smallest principal moment of inertia exposed to
the largest expected axial torque Td. The Lyapunov equation is then considered in
terms of worst-case axial scalar components as:

0 = σ
[
−J−1

3,3k|σ|αsign(σ) + J−1
3,3Td

]
0 = −σJ−1

3,3k|σ|αsign(σ) + σJ−1
3,3Td

0 = J−1
3,3

(
−k|σ|α+1+σTd

)
−σTd = −k|σ|α+1

k =
Td
|σ|α

(C.12)

The result obtained in Eq. (C.12) corresponds directly to that obtained in [97],
however, for the case that a bounded disturbance affects the system. Clearly from
Eq. (C.12), the solution to k has a functional dependence on both α and σ. Because
σ̇ has been solved for its dependence on σ, α, and J in the final line of Eq. (C.11),
σ̇ may be computed for a range of σ to demonstrate expected performance during
sliding mode [151]. It is shown in Fig. C.1 that α ≈ 0 leads to a larger σ̇ when σ is
small, however, faster reaching performance may be achieved with α ≈ 1 when σ is
very large.
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Figure C.1: Variation in σ̇ Dependent on α and σ.

In this study, α was selected as 3/7 to achieve balanced reaching law performance
by considering the results in Fig. C.1. Based on the α selection, the minimum
required k for asymptotic stability can be solved using the result of Eq. (C.12) for
the range of σ as shown in Fig. C.2. The maximum expected axial disturbance torque
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Td required for the computation of k was found to be 1.12e− 05 N during a 150 orbit
simulation by accounting for the sum of all environmental torques and the magnetic
torquer gimbal compensation torque. As demonstrated by Fig. C.2, the solution
to k is not defined for σ = 0. This result, however, is not problematic because the
equivalent control law will dominate the control signal when σ is near 0 to ensure the
system states stay on the sliding surface with σ ≈ 0. Considering Fig. C.1, the rate
of change of the sliding variable σ̇ begins to reduce rapidly for most tested values of
α when σ ≈ 0.01. For a power rate reaching law, this observation would imply that
the system states are near the desired values and the equivalent control signal will
begin to dominate the control effort. Therefore, the minimum required k parameter
was solved more conservatively at α = 3

7
and σ = 0.002 to yield 0.00016. To ensure

a large margin of safety for stability, k was selected as 0.0025. Such a selection of k
is magnitudes larger than that required for asymptotic stability, which implies that
the controller will be robustly stable over the range of σ.
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Figure C.2: Minimum Required k for Asymptotic Stability Dependent on α and σ.

The expected σmin and σmax points in both Fig. C.1 and Fig. C.2 were calculated
using Eq. (C.3) for an expected worst-case attitude state error where the spacecraft
had a yaw and roll error of π rad and a 2-norm body rate error of 0.6 rad/s.



Appendix D

DGSPCMG Flywheel Sizing

D.1 Total Angular Impulse Sizing Method

This thesis applied a total angular impulse sizing method to select an appropriate
size for the DGSPCMG flywheels. Angular impulse describes the change in angular
momentum over time. For a sum of torques M acting on a rigid body, the angular
impulse can be computed in the following relationship:

∆H =

∫ t

0

Mdt (D.1)

The DGSPCMG was sized in this thesis to only require desaturation after approxi-
mately 70 orbits of continuous nadir pointing when subject to the orbital environment
developed in Section. 3.4.2. To form the sum of all torques M acting on the space-
craft the rotational equation of motion and CMG momentum rate command should
be considered. Both these equations are repeated here for convenience:

Jω̇ + ω×Jω = ucmg + Td (D.2)

τ = −ucmd − ω×h (D.3)

Neglecting the commanded control torque ucmd, the torques which produce angu-
lar impulses to be absorbed by the CMG include the environmental torques Td, the
spacecraft gyric torque ω × Jω, and the CMG gyric torque ω × h leading to the
expression of M as:

M = Td − ω × Jω − ω × h (D.4)

The maximum 2-norm angular impulse over 70 orbits may be obtained by running
the simulator for a strictly nadir-pointing spacecraft and storing |∆H | from Eq. (D.1)
over the course of the simulation. It was found for the simulation conditions used in
this research that the maximum angular impulse was:

∆H =

 0.0010
−0.0119
−0.0124

 kgm2/s (D.5)

where this ∆H vector corresponds to a maximum 2-norm angular momentum mag-
nitude of 0.0171 kgm2/s. For a spacecraft starting with the desired attitude and the
DGSPCMG configured so that the gimbal angles were set to δ = [0.1, 0, 0]T at the
beginning of the simulation, then at the time of maximum angular impulse the case
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of ha = ∆Hmax should be valid. ha is the angular momentum absorbed by the CMG
and can be calculated as the difference between the current CMG momentum h − t
and the starting CMG momentum ht=0:

ha = ht − ht=0 (D.6)

To confirm that the ha angular momentum vector does not correspond to a sin-
gular direction of the DGSPCMG, let uH be the unit direction vector corresponding
to ∆Hmax. Because δt=0 = [0.1, 0, 0]T , ha should be in the same direction as ht. If
δit=0 or δot=0 ̸= 0, then the previous definition for ha may not be true. Provided the
definition holds, uH may be solved as:

uH =
∆Hmax

|∆Hmax|
=

 0.0587
−0.6906
−0.7208

 =

 sin(δi)
cos(δi) sin(δo)
cos(δi) cos(δo)

 (D.7)

The right side of Eq. (D.7) equates uH to the general equation for the direction
of the DGSPCMG momentum vector as a function of its gimbal angles δ. Using Eq.
(D.7) to solve for the δi angle leads to:

δi = sin−1(0.0587) ≈ 0.0 rad (D.8)

Because δi only experiences a singularity at ±π
2
and δo is free to rotate, the max-

imum angular impulse vector can be achieved by the DGSPCMG provided the fol-
lowing relationship does not lead to computing |δsp|= π

2
:

2Hw sin(δsp) = |∆Hmax| (D.9)

The present flywheel sizing problem aims to select the flywheel momentum Hw

such that when ∆Hmax is experienced by the CMG during a 70 orbit period, δsp is
not required to be larger than the threshold for momentum management of ϵs = 0.4
rad. Therefore, Eq. (D.9) may be solved for Hw as follows:

Hw =
|∆Hmax|
2 sin(ϵs)

= 0.022kgm2/s (D.10)

The result of Eq. (D.10), for the simulation conditions used in this research, sizes
the required stored angular momentum of the individual flywheels in the DGSPCMG
to allow the DGSPCMG to operate for about 70 orbits without requiring momentum
management from magnetic torquers. Some deviations from the 70 orbit duration
should be expected because of possible variations in solar activity which could impact
the rate of momentum loading into the CMG.

D.2 Preliminary Flywheel Design

Each flywheel must be designed to possess the required Hw angular momentum as
calculated in the previous section. The angular momentum of a flywheel may be
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Spin Axis
rdisk

hdisk

rfw

hring

Section View: Cup Flywheel

Figure D.1: Design Parameters for Cup Flywheel Design Used in DGSPCMG

calculated as:
Hw = Ifwωfw (D.11)

where Ifw is the inertia of the flywheel about its spin axis, and ωfw is the angular
rate of the spinning flywheel. To produce a more optimal flywheel design, a “cup
flywheel” is generally desired so that the mass of the flywheel is pushed to the outer
radius, increasing the flywheel inertia for a given mass. A schematic of a cup flywheel
with the relevant design parameters is provided in Fig. D.1.

The MIT Space Systems Product Development Manual provides an equation for
the calculation of a cup flywheel inertia as [152]:

Ifw =
ρπ

2

[
hring

(
r4fw − r4disk

)
+ hdiskr

4
disk

]
(D.12)

where ρ is the density of the flywheel material. In the present thesis the flywheel
material was selected as brass for its relatively high density of 8750 kg/m3. The
remaining parameters outlined in Fig. D.1 were selected to ensure conformance with
the CubeSat standard for a 2U satellite as rfw = 2 cm, hring = 3 cm, rdisk = 1.25
cm, and hdisk = 0.5 cm. These parameters substituted in Eq. (D.12) yield a flywheel
inertia of Ifw = 2.0068e − 04 kgm2. Substituting the design value of Ifw and the
required flywheel angular momentum Hw into Eq. (D.11) leads to solving the required
flywheel angular velocity ωfw as 109.63 rad/s. This flywheel speed can be converted
to a rotational speed of 1046.9 rpm which is easily achievable with motors such as
the MAXON Brushless DC EC14 Flat. Because this motor is rated to higher speeds,
it may be desirable for future designs to reduce the size of the flywheel and increase
the operational speed of the DC motor to achieve the same flywheel momentum.



Appendix E

Simulator Verification

In this section efforts made to validate high-fidelity effects developed for the simula-
tor are addressed. Validation strategies used in this section are mostly summarized
by simulator comparisons to analytical equations or external sources of data which
provide a means of ensuring the simulator output is aligned with well established
quantitative values.

E.1 Propagator & Environmental Validations

E.1.1 Validation of Perturbed Orbit Dynamics

The most significant result from the implementation of a zonal harmonic gravity
model is nodal precession. Nodal precession describes an effect where the orbital
plane of the satellite rotates around the rotational axis of Earth because of variations
in gravity. The effect is easily observable by comparing the orbital path over 75 orbits
from J3 propagation to a spherical Earth propagation in Fig. E.1.

The precession rate is most easily observable quantitatively by examining the
change in the RAAN angle with respect to time. The rate of change of the RAAN

(a) (b)

Figure E.1: J3 Orbital Path (left) Compared to Spherical Earth Orbital Path (right)
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angle Ω̇ from the simulator was compared to an approximate solution for J2 precession
in the following analytical equation:

Ω̇ = −3

2

R2
e

(a(1− e2))2
J2ω cos(i) (E.1)

Eq. (E.1) produced a precession rate of −4.98◦/day. By computing the slope of
the line provided in Fig. E.2 a precession rate of −4.99◦/day was produced by the
simulator. It is clear that the simulator implementation agrees closely with the ap-
proximate analytical solution. As an additional degree of verification, the simulation
data was compared to the RAAN precession of the ISS which orbits very similarly
to the satellite orbit discussed in this thesis. For RAAN angles of 320.47 and 324.99
degrees obtained with epoch times of April 4, 2024 1:18pm and April 3, 2024 3:24pm
respectively, the RAAN angle precession of the ISS was −4.95◦/day. With good con-
formance between analytical and real world data, the implementation of the harmonic
gravity model was considered valid.
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Figure E.2: Precession of RAAN Angle Over 75 Orbit Simulation

E.1.2 Validation of Rotational Equations of Motion

The rotational dynamics of the subject CubeSat are modeled after a rigid-body gen-
eralized CubeSat. The implementation of the rotational equations of motion can
subsequently be validated by comparing the torque-free motion of the axisymmetric
body to the analytical result provided in Section. 3.3.1. That is, the path traced by
the body angular velocity vector should roughly trace a circle in ω-space provided
an initial condition where the rate of rotation about each axis is equal. In addition,
the simulation output data should demonstrate that a spin about the minor principal
inertial axis is a stable spin. These torque-free rotational motion characteristics are
demonstrated in Fig. E.3a and Fig. E.3b.
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Figure E.3: Demonstration of Torque-Free Axisymmetric Body Rotational Motion
from Simulator Output

In Fig. E.3a it is shown that the spin about the minor principal axis ω3 is stable
because it was constant for all time. The plot in Fig. E.3b clearly reflects the expected
result from Section. 3.3.1 by observing the circular trace of the angular momentum
vector in ω-space. The simulator, was therefore, considered to be validated in regards
to rotational motion of a rigid-body spacecraft.

E.1.3 Validation of High Fidelity Aerodynamic Model

NRLMSISE-00 Validation

The reader is directed to [153] for the original citable work addressing the development
of NRLMSISE-00 which is discussed in this section. Validating the implementation
of a MATLAB-based NRLMSISE-00 can be conveniently achieved by comparing it to
the NASA Community Coordinated Modeling Center (CCMC) Instant Run system
for NRLMSISE-00 by providing the NASA instance with the same inputs for solar
and geomagnetic activity as the MATLAB Model.

By simulating the MATLAB model a solution for atmospheric density is obtained
based on varying altitude, latitude and longitude, however, the CCMC model can
only output a solution with respect to longitude at constant latitude and altitude.
On account of this limitation, it cannot be expected for the output data from each
instance of the model to agree perfectly when an inclined eccentric orbit is analyzed.
To compensate for the CCMC limitation, the models were both run for an equatorial
orbit with no eccentricity. In this scenario, the only variation in the independent
variables is longitude. To visualize this scenario, the MATLAB model was plotted
globally at a 414km altitude (apogee altitude for the simulated TLE) in Fig. E.4.
The orbit line is superimposed in the figure to emphasize that there is no change in
latitude in the equatorial orbit.

By obtaining data along the equatorial orbit line, the MATLAB model can be



181

compared to the CCMC model to ensure agreement when the input parameters are
matching. This comparison is shown in Fig. E.5.

As shown in Fig. E.5, the models agree closely. The peak density can be ob-
served to show good agreement between both models. In general, both models follow
the same profile and reach the same peak values. At the minimum observed den-
sity, occurring around 325 degrees of travel in longitude, the CCMC model predicts
a slightly lower density than MATLAB. One explanation for this difference could
be attributed to the MATLAB model using the exact TLE epoch time, where the
CCMC model can only take epoch times in steps of 15 minutes, leading to a roughly

Figure E.4: Global Contour Plot of Atmospheric Density (MATLAB)
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Figure E.5: MATLAB Simulation vs CCMC Data (Equatorial Orbit)



182

6 minute difference between the MATLAB data set and the CCMC data set. De-
spite the minor differences, the MATLAB model can be considered validated by the
CCMC model. Moreover, the accuracy improvement achieved by implementing the
NRLMSISE-00 model over a constant density model would justify its use even in the
case the MATLAB NRLMSISE-00 has subtle inaccuracies.

Another consideration which could be made related to the atmospheric density
models is where the peak density occurs. In the case of the CCMC model, the
longitude axis begins at 0 degrees. In the MATLAB convention, longitude ranges
from −180 degrees (west) to 180 degrees (east). While not explicitly stated by each
model, the assumption that the models share an identical prime meridian (0 degrees
longitude) would indicate that both models reasonably agree in terms of density
distribution. Fig. E.4 and Fig. E.6 can be compared noting that the shared prime
meridian is at 0 degrees longitude. It is clear that both models share a region of peak
density which occurs in the southern hemisphere around 100◦ longitude.

Verification of Projected Area Calculation

To verify the proposed dynamic projected area model, the projected area may be
computed at various satellite attitudes relative to the flow direction and compared
to the projected area computed by SolidWorks for the same satellite attitude and
geometry. In Fig. E.7 projected areas are compared for the case that only 1 or 2
faces are exposed to the flow by incrementally rotating the satellite about its Z+ axis
in the flow. In Fig. E.8 the case that 3 faces are exposed to the flow is compared.

As shown in the Fig. E.7 and Fig. E.8 the proposed dynamic calculation method
agrees very closely with the SolidWorks solutions. The method is accurate for any
case that 1 to 3 faces are exposed to the flow in an arbitrary orientation. As a result

Figure E.6: Global Contour Plot of Atmospheric Density From CCMC Instant Run
Service (Obtained and Used with Permission from ccmc.gsfc.nasa.gov)
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Figure E.7: Projected Areas (Rotation about Z-axis in Flow)

of the agreement between both methods, the dynamic projected area calculation was
considered validated.

Verification of Dynamic Center of Pressure

The verification of the dynamic center of pressure is a less trivial task than that con-
sidered for the dynamic area calculation. It was discussed in [57] that the flow regime
in LEO is far from continuous, and is largely characterized by particles randomly im-
pacting and smoothly sliding off the orbiting body. Like [57], the present work only
considers normal pressures exerted at the centroid of the external faces of the body.
In addition, only the pressures exerted on the faces in the flow are considered, and
pressures exerted on the faces out of the flow are neglected. The result of this pres-
sure treatment leads to a model which is bias towards a worst-case model. Including
atmospheric pressures on the out of flow faces would have the effect of moving the
COP closer to the COM – thereby reducing the aerodynamic torque.

In this thesis, the continuum assumption from [57] was adopted so that the dy-
namic center of pressure could be validated with analytical equations provided from
[154]. While the present model is a dynamic example, the assumptions in place make
the calculation of scp functionally similar to a hydrostatic example. Therefore, the
force exerted on one external face from a uniform pressure field is:

F =

∫
p dA = pA (E.2)

where p is the pressure and A is the area of the face. Additionally, by drawing on the
theory presented in [154] the center of pressure offset (in the y axial direction) from
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Figure E.8: 3 Faces Exposed to Flow Projected Area

the centroid may be calculated as:

Fycp =

∫
yp dA = 0 (E.3)

Clearly the hydrostatic theory supports the alignment of the COP and the ge-
ometric centroid of the face when a uniform pressure is applied to the face. While
the theory agrees with the proposed model, an additional verification is provided in
Fig. E.9 - Fig. E.10. As shown in the subject figures, when the satellite acquires a

Figure E.9: Projected Area in Flow for A Spacecraft Reorientation to Nadir Pointing
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Figure E.10: Dynamic COP Position for A Spacecraft Reorientation to Nadir Pointing

nadir pointing attitude and aligns the FBF x-axis with the flow direction, the x face
becomes the most exposed to the flow. Correspondingly, the exposed area to flow
becomes roughly the area of the x face, and the COP aligns with the centroid of the
x face. Based on the provided analysis and theory, the center of pressure calculation
was considered validated within the scope of the thesis.

Figure E.11: Key Eclipse Model Parameters Over 5 Simulated Orbits
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E.1.4 Validation of Eclipse Model

Physical and mathematical validation efforts were employed to validate the eclipse
model. One such physical validation factor was ensuring that the duration of the
eclipse derived from the model was reasonably close to the real world eclipse duration.
According to [155], the average percent of time spent in eclipse per orbit for a satellite
with an orbital altitude around 400 km is approximately 37.5%. Over the course of
5 orbits, the average eclipse duration for the simulated satellite was 37.4% which
agrees closely with the real world physical data. From a mathematical standpoint,
the identified angles ρs and ρp representing the angular radii of the Sun and Earth,
respectively, must remain roughly constant for all time to be considered valid. While
ρs and ρp are dependent on the variable Earth to Sun distance S, short-term variations
in this distance are sufficiently small that the angles are effectively constant in the
short-term. It is shown in Fig. E.11 that these angles were calculated to be constant
by the simulator which further validates the output of the eclipse model.

E.1.5 Validation of Ephemeris Data

To ensure that the ephemeris data employed in the simulator was valid, the MATLAB-
produced ephemeris data was compared with data derived from the NASA JPL Hori-
zons System running DE432t. At the TLE epoch time, the simulation outputs a
lunar position vector expressed in FECI of [−3.7165e05, 1.2805e05, 8.9679e04] km.
The JPL Horizons System yields a lunar position vector from the center of Earth
equal to [−3.7163e05, 1.2809e05, 8.9700e04] km. The percent difference between the
MATLAB ephemeris data compared to the JPL data was 0.0054, 0.0312, 0.0234%,
respectively, for all three components. Through this analysis it is clear that the
MATLAB model closely matches the JPL system. The lunar ephemeris model may,
therefore, be considered to be verified.

Solar ephemeris data was also utilized in the simulations and was, therefore, val-
idated following an identical process to what was undertaken for Lunar ephemeris
validation. At the TLE epoch time, the simulation outputs a solar position vec-
tor in FECI of [5.1434e07,−1.2646e08,−5.4821e07] km. The JPL Horizons System
yields a solar position vector of [5.1433e07,−1.2647e08,−5.4821e07] km. The per-
cent difference between the MATLAB ephemeris data compared to the JPL data
was 0.0030, 0.0004, 0.0004%, respectively. Through this analysis it is clear again that
the MATLAB model closely matches the JPL system. The solar ephemeris data,
therefore, may be considered to be validated.
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