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ABSTRACT

Testing, evaluating, and enhancing global ocean models holds paramount significance in
climate and oceanographic research, particularly for projecting climate change impacts.
While the evaluation of physical model components has become increasingly
comprehensive and sophisticated, an evaluation of the biogeochemical (BGC) components
has so far been difficult to accomplish because of a lack of extensive global-scale BGC
observations. In this thesis, North Atlantic (BGC-)Argo profile data of chlorophyll-a,
nitrate, and oxygen from the surface to 2000 m depth are compared to the corresponding
properties simulated by state-of-the-art global ocean models of the CMIP6 ensemble, as
well as Mercator Ocean’s data assimilating models MOI-BIO4 and MOI-GLO12. The
physical variables salinity and temperature are included to investigate relationships
between model physics and BGC. World Ocean Atlas (WOA) climatologies serve as a
secondary dataset for model assessment, as well as to validate the methodology of utilizing
(BGC-)Argo data for model evaluation and further to conduct comparisons with prior

studies that have emphasized on WOA analyses.

To enable a comprehensive assessment of model-data misfits and the description of model
biases, the North Atlantic is divided into BGC-provinces defined by unique environmental
features. Results indicate large misfits between CMIP6 model properties and observations,
specifically nitrate underestimation of up to 10 pmol/kg within the euphotic zone and up
to 20 umol/kg at intermediate depths (500-1200m). Modelled temperatures discrepancies
are found for surface and intermediate waters in the Labrador Sea, Greenland Sea,
Norwegian Sea, and the Gulf Stream separation region, for which biases of up to 5°C are
reported. Data assimilating models are in better agreement with the observations than

CMIP6 models.

This study suggests that neither heightened BGC complexity nor increased model

resolution independently guarantee improved performance.
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1 INTRODUCTION

1.1 North Atlantic Circulation and Biogeochemistry

The North Atlantic's circulation patterns, characterized by a double gyre system influenced
by large-scale winds (Sverdrup, 1947, Stommel, 1948, Munk, 1950), exhibit distinctive
features such as upwelling and deep-water formation sites (Pickart et al., 2002; Dickson et
al., 2002). The currents in the North Atlantic constitute a complex and influential system
of oceanic circulation with the North Atlantic Current (NAC) as a key component.
Originating as a continuation of the Gulf Stream, the NAC extends across the Atlantic
Ocean, following a northward trajectory along the eastern seaboard of North America
before turning eastward towards Europe. As part of the North Atlantic subtropical gyre, the
NAC plays a critical role in redistributing heat from lower to higher latitudes. Its warm and
relatively saline waters impact regional climate patterns, notably contributing to the
temperate conditions experienced by Western Europe. The NAC interacts dynamically with
other currents, such as the Iceland Current and the Labrador Current (Figure 1), creating a
complex system of eddies and meanders that impact oceanic ecosystems by influencing
nutrient availability and determining the distribution patterns of marine species (Krauss et

al., 1987; Rossby, 1996, Carr & Rossby, 2001).

The Gulf Stream, a strong, warm ocean current in the Atlantic Ocean, separates from the
continental shelf of North America. As the Gulf Stream flows northward along the eastern
coast of the United States, it follows the continental shelf until it reaches approximately
35°N, typically around Cape Hatteras, North Carolina. At this point, known as the Gulf
Stream separation point, the Gulf Stream detaches from the continental shelf and enters the
deeper waters of the North Atlantic Ocean. This separation often results in the formation
of meanders and eddies as the current continues its journey across the Atlantic (Schoonover

etal., 2017).

The ocean is known to be the largest active carbon dioxide sink, absorbing around 30% of
anthropogenic carbon dioxide (Gruber et al., 2019, Sabine et al., 2004) through marine
carbon pumps including the solubility and biological carbon pump (BCP) (Volk & Hoffert,

1985). The BCP is a major component of the global carbon cycle: Organic carbon is being



transferred from the sunlit surface waters to the deep ocean, mostly as sinking particles
(Sigman and Boyle, 2000, Boyd and Trull, 2007). Estimates state that without the BCP,
atmospheric carbon dioxide concentrations would be approximately 50% higher (Parekh
et al., 2006). Because of the intricate circulation patterns in the North Atlantic that play a
crucial role in redistributing nutrients and the subduction of organic material, the North
Atlantic BCP has a significant influence on global ocean biogeochemistry (Sanders et al.,
2014). However, it is important to note, that while the BCP can influence atmospheric CO>
concentrations over long timescales, it is not the primary mechanisms responsible for
absorbing anthropogenic CO; emissions. Instead, physical and chemical processes (e.g. air-
sea gas exchange and CO» dissolution) of the solubility pump play a significant role in

short-time anthropogenic atmospheric CO uptake by the ocean (Volk & Hoffert, 1985).

sl Arctic waters
' =) Labrador Sea Water
=l Antarctic waters
——)  Atlantic waters
Mediterranean Outflow Water
——  OvVerflow waters

1\
\~\

deep \ intermediate water
formation area

75 W 60" W 45" W 30°W 15" W 0

Figure 1: North Atlantic circulation including Gulf Stream (GS), Azores Current (AC),
North Atlantic Current (NAC), Iceland Current (IC), Labrador Current (LC), and Deep
Western Boundary Current (DWBC). Different coloured arrows explained in legend.
Regions of deep and intermediate water formation indicated by purple and blue circles.

Figure adapted from Puerta et al. (2020).

The springtime phytoplankton bloom in temperate and subpolar latitudes across the North
Atlantic Ocean ranks among the most productive phenomena in the World Ocean. Like

other productive regions, the North Atlantic's spring bloom marks a key biogeochemical

2



event, notably contributing to the downward transport of organic particles into the deep
ocean which is fundamental to long-term carbon sequestration (Pommier et al., 2009;
Siegel et al., 2012, Honjo et al., 1996). In contrast to the highly productive northern region,
the southern part of the North Atlantic is characterized by the dominance of the central
oligotrophic gyre, enveloping the subtropics and exhibiting a predominantly aseasonal
nature (Laws et al., 2000; Vantrepotte and Mélin, 2009). Productive coastal zones south of
45°N are concentrated along the eastern margins, attributable to the upward transport of

nutrients facilitated by upwelling (Brandt et al., 2023).

1.2 Previous Ocean Model Evaluations

Global ocean models are essential components of the climate models used by the
International Panel of Climate Change (IPCC) to project future climate. Evaluation of
model deviations from reality and description of model biases are needed to quantify model
uncertainty, guide model improvement, and enable critical interpretation of model results.
This is especially important when models are used with influential purposes like policy

making (e.g., CMIP models, Masson-Delmotte et al., 2021 (IPCC6)).

CMIP6, a key international multi-model research initiative (Meehl et al., 2000, 2007;
Taylor et al., 2012) organized by the World Climate Research Programme (WCRP),
underpins climate change assessments and reports. CMIP6 reported findings and peer-
reviewed publications provide the basis of assessments and reports notably contributing to
the IPCC's sixth Assessment Report (AR6) (Eyring et al., 2016). CMIP6 carbon emission
scenarios are based on a matrix that uses shared socioeconomic pathways (SSPs) which
cover different future global societal developments ranging from no consideration of
climate change over adaptation strategies to mitigation of climate change (O’Neill et al.,

2015; Riahi et al., 2017).

Previous studies have focussed on the comparison of CMIP6 performance with respect to
its predecessor CMIP5. As such, Séférian et al. (2020) have found that for observational
assessments, most CMIP6 models generally surpass their CMIPS5 counterparts in numerous

regions and across various marine biogeochemical fields. Fu et al. (2022) agree on

3



improvements in the multi-model mean from CMIP5 to CMIP6 for 10 out of 13 properties,
including oxygen and nitrate, and Richter et al. (2020) report that the CMIP5-persistent

equatorial Atlantic warm SST bias has been eliminated in most CMIP6 models.

The growing availability of ocean biogeochemical data, which has contributed to an
enhanced comprehension of the underlying processes, facilitates advancements in the
marine biogeochemical components of the present generation of Earth System Models
(ESMs) in CMIP6. This has led to marine BGC models employed in CMIP6 exhibiting
greater diversity compared to those in CMIPS5 (Séférian et al., 2020). Nevertheless,
Séférian et al. (2020) also found systematic model-data errors, such as oxygen
concentrations at 150 meters (signature depth for oxygen minimum zones) in the tropical
Atlantic, that persist even in CMIP6 models. The authors state that this error might be a
systematic bias in ocean BGC models which is independent from ocean resolution or

complexity of the BGC model.

An evaluation study of CMIP5 and CMIP6 models by Laurent et al. (2021) reports
persisting biases in CMIP6 such as underestimations of surface nitrate and chlorophyll, and
further reveal differences in surface temperature and salinity indicative of spatial

mismatches in the models’ large-scale current systems.

Global climate models with a horizontal resolution of 1° often display errors in the
representation of western boundary currents by overshooting the separation latitude (Kiehl
& Gent, 2004). This leads to sea surface temperature (SST) biases which further affect a

correct representation of air-sea heat fluxes (Chassignet & Marshall, 2008).

Particularly difficult to model is the Gulf Stream separation, which is a known challenge
for numerical models due to its sensitivity to sub-grid scale parameterization (Bryan et al.,

2007; Schoonover et al., 2017; Schoonover et al., 2016).

Increasing the horizontal resolution to 10km (1/10° at the equator) or less has been reported
to show promising improvements in the numerical representation of western boundary
currents separation (Chassignet & Marshall, 2008). It has been argued that at this scale,
separation can occur correctly because the critical Reynolds number (defines the transition
from laminar to turbulent flow) is exceeded (Dengg, 1993). Baroclinic instability processes

are also well captured due to the first baroclinic Rossby radius of deformation (determines



the scale of motion for geostrophic equilibrium: Coriolis force and the pressure gradient

force are in balance) being resolved for a large part of the domain (Bryan et al., 2007).

Coarse spatial resolution (0.5-2° at the equator) also prohibits an accurate portrayal of the
BGC interactions between shelf and open ocean (Bonan and Doney, 2018; Holt et al., 2017)
which affects the certainty of future projections (Laurent et al., 2021). Ocean margins and
shelves in particular, are important components of the global ocean carbon cycle, as they
host over 40% of carbon burial (Ducklow and McCallister, 2004) and account for over 30%

of primary production (Muller- Karger, 2005).

However, analyses of model mean state performance in relation to model properties,
including resolution and complexity, have indicated that neither increasing resolution nor
complexity guarantees automatic model improvement. Instead, model enhancement is a
nuanced result of improved ocean physical processes and a more accurate representation

of BGC processes (Séférian et al., 2020, Laurent et al., 2021).

A different path to improved model performance is through data-assimilation. Data-
assimilation aims to attain the most accurate representation of past, present, or future
oceanic condition through a technique involving the statistical integration of models and
observational data (Fennel et al., 2022). While many agree that data-assimilation is the
most efficient approach with regards to reliable ocean state representation (Hoteit et al.,
2018; Ghil and Malanotte-Rizzoli, 1991; Wunsch, 1996; Bennett, 2005), disadvantages of
data-assimilation persist including increased associated computational cost and

complexity.

1.3 (BGC-)Argo Floats

Argo floats are autonomous instruments deployed worldwide to collect data on ocean
temperature and salinity profiles, some with additional sensors for dissolved oxygen and
other properties. Since the launch of the international Argo program in 1999, these floats
are an essential component of modern oceanographic research, facilitating the systematic

monitoring of the world's oceans with unprecedented detail and coverage. Operating



autonomously, Argo floats descend to depths of around 2,000 meters, gathering
measurements as they ascend to the surface (Figure 2). Upon reaching the surface, they
transmit the collected data via satellite in real-time, providing researchers with invaluable
insights into oceanographic processes and climate variability. With thousands of floats
deployed across the globe, the Argo program enables continuous monitoring of ocean
conditions, contributing crucial data for climate research, ocean modeling, and marine
resource management (Figure 3). Argo floats represent a significant advancement in our
ability to understand and monitor the dynamic and complex ocean environment, playing a
vital role in addressing pressing environmental challenges and informing policies for
sustainable ocean management (Jayne et al., 2017; Roemmich et al., 2009; Roemmich et

al., 2019).

The BGC-Argo fleet offers a new global data set of 6 essential ocean BGC properties from
the surface to 2000 m depth (Stoer et al., 2023). BGC-Argo observations have previously
been used for management of ocean and global resources, as well as for improving our
understanding of marine BGC processes, with which new perspectives can be employed to

mitigate model limitations (Claustre et al., 2020).

In this thesis, (BGC-)Argo float data are the main observational set used for global ocean
model evaluations. Modelled properties are compared to float observations at the location
of Argo profiles and for the same depth levels (Argo depth are interpolated, see 2.4
Interpolation Methods).
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Figure 2: Schematic description of the cycle of an Argo float. Design by Thomas Haessig
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Figure 3: World map displaying 3908 (March 2024) active Argo float locations
(https://argo.ucsd.edu/about/status/).



1.4 World Ocean Atlas (WOA)

The WOA offers climatologies for marine physical, chemical, and biological properties.
These climatologies are comprised of various datasets collected from multiple sources such
as research cruises, moored buoys, and satellite observations. Data interpolation schemes

yield a horizontal resolution of 1°x1° (Garcia et al., 2019).

WOAI18 is used as a secondary observational data set for evaluation of global ocean models

and for comparisons to the Argo data set introduced in 1.3 (BGC-)Argo Floats.

1.5 Objectives

Given the importance of the accuracy of CMIP6 models, several evaluation studies have
discussed model biases, with particular interest in changes in model performance from
CMIPS5 to CMIP6. Most of these evaluation studies (see 1.2 ) use globally interpolated

observational data sets like WOA data for their analyses.

This study aims to evaluate various global ocean models by comparing them to in situ
biogeochemical- (BGC-) Argo float observations as well as WOA data. While previous
studies have focussed on surface model evaluation (e.g. Laurent et al., 2021) or the
comparison of CMIP5 to CMIP6 models (e.g. Fu et al., 2022), this research will present a
novel in-depth spatial and temporal evaluation of both surface and subsurface model data
including physical and BGC properties, alongside the comparison of data-assimilating

models vs. CMIP6.

The motivation for this thesis stems from the widespread utilization of CMIP6 models in
crucial studies, often overlooking their inherent limitations, in conjunction with the inquiry

into how the performance of data-assimilation models compares to that of CMIP6.

This thesis is guided by the following research objectives: 1) evaluation of whether global
ocean models can accurately reproduce North Atlantic Ocean physical and BGC properties,
2) investigate the interrelation between biases in BGC and physical models, and 3)
assessment of a CMIP6 model ensemble performance with respect to individual models

including data-assimilation models.



This evaluation focusses on the following properties: chlorophyll-a (CHL), nitrate (NO3),
dissolved oxygen (OXY), apparent oxygen utilization (AOU), seawater salinity (SAL), and
seawater temperature (TEMP). These properties were chosen to evaluate how important
marine BGC processes (e.g., phytoplankton spring bloom) are represented by different
global ocean models and whether physical and BGC properties affect each other’s
performance. Modelled ocean physics and BGC properties affect each other, and
information is transferred between the different model components through a coupler
(Table 1). Effects of ocean physics on biogeochemistry are for example the distribution of
nutrients through advection and mixing, or ocean temperature which affects
photosynthesis. BGC properties in turn also affect ocean physics. For example,
phytoplankton growth through photosynthesis affects the absorption of solar radiation and

the distribution of heat within the ocean.

1.6 Analytical Framework

This thesis adopts a structured approach in presenting its findings from multiple different
analyses, with the overall aim to evaluate global ocean models through comparison against
observations from (BGC-)Argo and WOA.

Section 2 Data and Methods provides overview over models and data included, as well as
any processing techniques. Further, methodologies employed for each individual analysis
are introduced, accompanied by definitions of new variables and a detailed explanation of
the terminology used. Research questions act as guiding principles, organizing results and
discussions into coherent subsections for clarity and understanding.

Beginning with the results, Section 3 lists all findings through introduction and description
of the figures. Subsequently, Section 4 discusses and interprets the results cumulatively
within the context of the thesis' objectives.

The different analyses included are as follows:

e Annual cycles in the Eutrophic North Atlantic

e Province-averaged A-profiles (Model-Argo)

e Spatial comparisons of NOs, surface and intermediate depth (500-1200 m) biases

e Bias correlation between BGC and physical properties



Bias splitting into physical and BGC components

Model ranking through misfit calculation
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2 DATA AND METHODS

2.1 Models

Six CMIP6 models were chosen based on previous evaluation studies (e.g. Laurent et al.,
2021; Séférian et al., 2020), data availability, and model data accessibility (https://esgf-
node.lInl.gov/search/cmip6/). They are CanESMS5 from the Canadian Centre for Climate
Modelling and Analysis, CMCC-ESM2 from the Centro Euro-Mediterraneo sui
Cambiamenti Climatici in Italy, GFDL-ESM4 from the National Oceanic and Atmospheric
Administration in the USA, IPSL-CM6A-LR from the Institute Pierre-Simon Laplace in
France, MPI-ESM1.2-HR from the Max Planck Institute in Germany, and NorESM2-LM
from the Norwegian Meteorological Institute. In addition, the data-assimilating Mercator
Ocean International's (MOI) models MOI-BIO4 (for BGC properties) and MOI-GLO12
(for physical properties) are used (Table 1 & Table 2). They utilize observations (e.g., ocean
colour chlorophyll, Copernicus Marine Environment Monitoring Service (CMEMS)
Operational Sea Surface Temperature (SST) and Ice Analysis (OSTIA) SST/Sea Level
Anomaly (SLA)/Sea Ice concentration, World Ocean Atlas (WOA) 13 climatology) for
model correction through a reduced-order Kalman Filter based on a SEEK kernel
formulation (for detailed information on data-assimilation the reader is referred to

Lellouche et al., 2021).

30-year monthly climatological fields (1990-2019) were calculated for CMIP6 models to
reduce model-observation differences due to internal and interannual variability on shorter
time scales. CMIP6 data was chosen with SSP5-8.5 forcing (worst case scenario) from
2015-2019 to include present day atmospheric carbon dioxide concentration and historical
forcing from 1990-2014. The timeframe of 30 years was chosen based on recommendations
by the World Meteorological Organization (WMO) for the definition of a climatology
(https://www.ncei.noaa.gov/news/new-ocean-regional-climatology-added). For Mercator
Ocean International’s (MOI’s) data-assimilating models, 12-year monthly climatologies

will be calculated for data from 2009-2021, as model output before 2009 is unavailable.
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Table 1: Overview of models included in evaluation.

Time Horizontal
¢ e Physical BGC St
rame esolution
hGRE Model Model
climatology | (Equator)
CanESM5 | 1990-2019 | 100km | NEMOv3.4.1 | CMOC CanCPL
CMCC- 1990-2019 100km | NEMOv3.6 BFM5.1 CPL V7
ESM2
GFDL-ESM4 | 1990-2019 50 km MOM6 | COBALTv2 | NEMS
IPSL-CM6A- | 5902019 100km | NEMOvV3.6 | PISCESv2 XIOS
LR
1990-2019 50 km MPIOM | HAMOCCS6
ESM1.2-HR mct
NorESM2- | 16902019 | 100 km MICOM | iHAMOCC | CESM2.1
LM
MOIL-BIO4 | 2009-2021 28 km NEMOv3.1 | MOI-BIO4 =
MOI-GLO12 | 2009-2021 10 km NEMOVv3.1 - -

Table 2: Overview of BGC complexity of BGC models included in evaluation.

Phyto- (P) & ]
Model Nutrients y Bacteria
Zooplankton (Z)
CMOC 1: N 1P, 1Z none
5: NHa, NOs, 4P: diatoms, autotrophic
BFMS5.1 PO, Si, Fe nanoflagellates, pico- & large explicit
phytoplankton
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Phyto- (P) & .
Model Nutrients Bacteria
Zooplankton (Z)

47.: carnivorous & omnivorous
mesozooplankton,

microzooplankton, heterotrophic

nanoflagellates

4P: 3 explicit (small, large,
5: NH4, NO3,

COBALTV2 diazotrophs), 1 implicit (diatoms) explicit
POy, Si, Fe .
3Z: 1 micro- & 2 mesozooplankton
5: NH4, NOs, 2P: diatoms, nanophytoplankton D
PISCESV2 . . implicit
POy, Si, Fe 2Z: micro- & mesozooplankton
4: NOs, POy, Si, 2P: bulk, cyanobacteria e
HAMOCC6 implicit
Fe 17
4: NOs, POy, Si, C
iHAMOCC . 1P, 1Z implicit
e
5: NH4, NOs, 2P: diatoms, nanophytoplankton
MOI-BIO4 . . none
POg4, Si, Fe 2Z: micro- & mesozooplankton

2.2 Observations

The study domain covers the North Atlantic within 0-85°N and 75°W-30°E (see Figure 4).
The Argo program serves as the primary observational dataset, supplemented by World
Ocean Atlas (WOA) climatologies and satellite CHL data (CHL not available from WOA)
for analyses where Argo data are insufficiently dense. WOA and satellite data are
additionally employed to compare and validate the different data sets.

(BGC-)Argo float data include profiles taken between 01-01-1999 and 31-12-2021 with
increasing numbers of BGC profiles after 2014. Float data were downloaded and processed
with the BGC-Argo Matlab Toolbox by Frenzel et al. (2021). Only data with quality flags
1/2/5/8 (very good/good/value changed/estimated value) were used.

13



WOA18 data is available from the surface to 1500 m depth only and a spatial resolution of
1° by 1° (100 km at the equator) for monthly averages. For Seawater salinity (SAL) and
temperature (TEMP) 13-year monthly climatological fields were calculated encompassing
the years 2005-2017. BGC properties nitrate (NO3) and dissolved oxygen (OXY) are
available as 118-year monthly climatologies (1900-2017) due to the scarcity of data. Data
was downloaded from https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/.
Climatologies calculated in this thesis are comprised of different time windows due to data
availability and to reduce processing time and storage space.

Satellite CHL data is used in addition to WOA climatologies, as WOA does not offer CHL
as one of their properties. Satellite data is NASA’s oceandata Aqua Modis L3 mapped data
with a spacial resolution of 4.6 km at the equator

(https://oceandata.sci.gsfc.nasa.gov/directdataaccess/Level-3%20Mapped/Aqua-

MODIS). 18-year monthly climatologies were calculated for data available for the time

frame 2003-2021.

2.3 Variables

Model evaluation includes the following properties: Chlorophyll-a (CHL), nitrate (NO3),
dissolved oxygen (OXY), apparent oxygen utilization (AOU), seawater salinity (SAL), and
seawater temperature (TEMP).

AOU is defined as:
AOU = saturation oxygen (0XY;,;) — observed dissolved oxygen (OXY) (1)

where 0XY,; is calculated from the solubility of nitrogen, oxygen and argon in water and
seawater as by Weiss (1970). The molar volume of oxygen at standard temperature and
pressure is obtained from the NIST website on the thermophysical properties of fluid
systems (http://webbook.nist.gov/chemistry/fluid/) using OXY, SAL, and TEMP. AOU is
calculated for all models and observational data sets with a Matlab function by Edward T.
Peltzer (MBARI, 2007) that requires the inputs OXY, SAL, and TEMP.

AOU can be used to identify how much of the dissolved oxygen is due to biological
activity. Positive AOU is defined as biological consumption/utilization of oxygen, negative

AOU indicates biological production of oxygen. Dissolved oxygen that is not due to

14



biological production, and thereby not captured in AOU, comes from the exchange of the

surface ocean with the atmosphere.

2.4 BGC-Provinces

The study domain is divided into BGC-provinces adapted from Longhurst (1995) (Figure
13). Every province represents a unique set of environmental conditions. Based on the
annual cycle of primary production, eight conceptual models were used to define the BGC-
Provinces: polar irradiance-limited production peak, nutrient-limited spring bloom, winter-
spring production with nutrient limitation, small-amplitude response to trade wind
seasonality, large-amplitude response to monsoon reversal, and various responses to
topography and wind stress on continental shelves, including coastal upwelling
(Reygondeau et al., 2013).

The division of the domain into provinces was motivated by the assumption that properties
within each province share similarity. As a result, the Argo profiles within a given province
are theoretically expected to serve as representative samples for that specific region. This

partitioning facilitates a more focused analysis.

In the North Atlantic, some provinces describe the shelves. Argo floats do not operate on
shelves, which is why these provinces were left out or combined with other provinces. As
such, GFST was combined with NWCS and is now called GFST (Figure 14). Further, a
region of BPLR was combined with ARCT and is now called ARCT. This region includes
waters south of 65°N on the western side of Greenland together with areas to the south and

east of Greenland (Figure 14).

Only provinces with “good Argo coverage” are included in the evaluation, which results in
seven North Atlantic provinces. A threshold of five profiles per month for every property
was set to ensure enough data is available for a province to be labelled “good Argo
coverage” (Figure 11). Three such provinces are located in the northern North Atlantic
(ARCT, SARC, NADR), 3 in the southern North Atlantic (NASW, NATR, WTRA), and
GFST is in the transition zone (Figure 4).
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Each float profile was sorted into BGC provinces as some floats cover more than one
province. There are different numbers of profiles for each property in each province due to

different types of floats and quality control (Table 4).

Longhurst BGC-Provinces

75°N -

60°N

45°N

30°N

15N}

0°725W  54°W  36°W 18°W  0°  18°F

Figure 4: Adjusted BGC-provinces with "good Argo coverage" in the North Atlantic.
ARCT: Arctic, SARC: Southern Arctic, NADR: North Atlantic Drift, GFST: Gulf Stream,
NASW: North Atlantic Subtropical Gyre, NATR: North Atlantic Tropical Gyre, WTRA:

Western tropical Atlantic.

2.4 Interpolation Methods

To reduce processing time and to facilitate comparison amongst models and observations,
all 6 CMIP6 models and WOA data were interpolated onto the same spatial and depth grid
as MOI-BIO4 (1/4° resolution, 40 depth levels from 0-2000m with higher depth resolution
near the surface). MOI-GLO12 was interpolated onto MOI-BIO4’s spatial grid only, as

depth resolution is the same for these models.

All Argo profiles were then interpolated onto the same MOI-BIO4 depth vector. For each
Argo profile, the closest model location was identified. In some provinces, Argo profiles
are spread unevenly throughout the province (Figure 15). To reduce the effects that could

be introduced in a comparison of province-wide averaged observations with model data,
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all analyses in this evaluation compare Argo profile data vs. model data at the same location

only, unless specifically stated otherwise.

For profiles near a coast, model resolution is too coarse to allow for accurate comparison.

These profiles were excluded.

To visualize differences between Argo float observations and models, “average A-profiles”
were calculated: Argo profile data were subtracted from model data at the closest location
to the profile, for each depth, and for the same month. For example, an Argo profile that
was recorded in March is subtracted from the model March climatological field. Then, an

average A-profile per province was calculated.

2.5 Standard Deviation (STD)

STDs are computed for each depth level using Argo data, serving as an estimate of the
natural variability within the observations. In this thesis, natural variability, is used as a
terminology for all variability, including anthropogenic signals such as ocean warming due
to elevated carbon emission, and any variability caused by events and processes on varying
timescales (e.g. the diurnal cycle of zooplankton affects nutrient concentrations on
timescales of hours, while El Nifio (interannual variability) happens on the timescale of 2-
8 years and has effects on ocean temperature and nutrient distribution through changes in
upwelling patterns amongst other effects.). It's important to note that the actual natural
variability may exceed these estimates, particularly due to the sparsity of Argo data and the
spatial clustered distribution of float profiles within a province. However, given the
definition of BGC provinces, properties are estimated to be similar within one province.
For this reason, the standard deviation will be used here as an estimate for the natural

variability and be referred to as such.

The process involved calculating STDs by initially determining the STD from all profiles
within a specific province for the same month at each depth level (e.g., STD for each depth
from all March profiles in NADR). Subsequently, an average STD for each depth level

within a province was computed based on the STDs obtained in the first step.
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For Annual Cycle analyses, an average STD was calculated from all measurements

between 0-100m for each month in each province.

The STD is defined as:

Z?zl(xi_f)z
UArgo -

: o)
With x; representing each individual measurement at a certain depth level, X stands for the
mean of all data points at that depth level, and n is the total number of data points at that

depth level.

2.6 Misfit

Misfit between models and Argo observations were calculated for each property, province,
and depth. Misfit is defined following a method by Rickard et al. (2016) and Laurent et al.
(2021) who used this approach to evaluate CMIP6 predecessors (CMIP5).

misfit = abs(BIAS) + rms(BIAS) 3)

BIAS is defined as the average A (model-Argo) for each property, within each province
and for each depth level at every month of the year (e.g. the average of 30 January NOs
profiles taken in ARCT for each depth level).

Misfits were calculated from averages of abs(BIAS) and rms(BIAS): first annual averages
were calculated for abs(BIAS) and rms(BIAS) (e.g. average over all January averages etc.),
then those were further averaged over a) the euphotic zone (0-110m, 23/40 depth levels)
and over b) below the euphotic zone (130-2000m, 17/40 depth levels).

These misfit calculations are used as a foundation for model performance ranking.

2.7 Bias splitting

A method analogue to the TA* approach (Koeve et al., 2014; Feely et al., 2002; Sabine et
al., 2002; Chung et al., 2003) is used to split NO; biases into two components: A preformed
part (NO3") that is affected by ocean physics (e.g. circulation, freshwater flow) and a

remaining part (NO3%°) due to ocean biogeochemistry (i.e. remineralization).

18



ANO; = ANO?2 + ANOL™ 4)

The preformed part is constructed from the concentration of NOj3 the water parcel had when
it was last in contact with the atmosphere. All water masses are mixtures of various
components for which both the component concentrations and the component ratios are
unknown in the ocean interior. ANO3® can be determined empirically by multilinear

regression of ANO3z with ASAL, ATEMP, and ANO.

NO is a conservative tracer as by definition of Broecker (1974). NO is based on the
assumption that O, and NO3 can be combined in a way that alterations by respiration are
zero. Broecker (1974) suggests that for one mole of O, roughly 1/9 mole of nitrogen is
released. This ratio has since been updated to ro2:nos3 = 10.625 (Anderson and Sarmiento,

1994; Kanamori and Ikegami, 1982).
ANO = AOZ + rOZ:N03 * AN03 (5)

In a first step, multilinear regression of the surface concentrations is used to determine the
regression coefficients (asar, otemp, ano) (Eq. 6). In a second step, the calculated

coefficients are applied to ASAL, ATEMP, and ANO for calculations of the ocean interior
(Eq. 7).

ANOSY (x,y) = @y + asa ASALSYT (x,y) + areupATEMPSS (x,y) +
anoANOSWT (x,y) (6)

ANO(x,y,2) = ag + gy ASAL(x,y,2z) + arpypATEMP(x,y,z) +
anyoANO(x,y,z) (7)

With this method, biases in modelled NO; will be investigated with regards to the

contributions of model physics and model biogeochemistry.
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3 RESULTS

3.1 Introduction

In this section, cumulative findings from the various analyses listed in 1.6 Analytical
Framework will be presented. Each subsection is dedicated to addressing a concrete
inquiry, guided by a subsection-specific research question. Given that each analysis is
conducted individually for every province, figures illustrating noteworthy trends will be
provided only for provinces displaying significant highlights, as many provinces often

exhibit similar patterns. All omitted figures can be referenced in the appendix.

3.2 How do float observations compare to WOA observations?

Due to the spatial distribution of the Argo data set (clustered profiles for some properties,
see Figure 15), it is advisable to validate the Argo dataset by comparing it to another data
set, such as WOA. While WOA has been proven to be a successful tool for model
evaluation (e.g. Séférian et al., 2020), the Argo dataset represents a newer approach and

requires such validation.

Average annual cycles in the productive northern North Atlantic provinces are used to
investigate whether province-wide float coverage is good enough to display expected
annual cycles in the upper 110 m and whether these align with observations from the WOA.
Annual cycles for the southern part of the study domain are expected to be less pronounced
and are therefore left out of the comparison. 1 standard deviation (o) of Argo observations
indicates estimated natural variability of the float observations (visualized by grey shading

in figures).

Annual cycles of WOA data and Argo agree well, but an approximately 10 pmol/kg AOU
offset is identified with Argo AOU concentrations being higher. WOA data lies mostly

within +1 standard deviation of Argo observations (Figure 5).

Average A-profiles (WOA-Argo) are used to validate full depth (0-2000 m) Argo profiles.
For CHL, satellite observations were added to depth profiles to validate Argo data.
Throughout the water column (0-2000 m), WOA data lies within the natural variability of
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float observations (Figure 6) and satellite CHL compares well with Argo data at the surface
in northern provinces. In southern provinces, =1 standard deviation of satellite observations

overlap with +1 standard deviation of Argo data (Figure 6).

Annual Cycle Comparison
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Figure 5: 0-110m averaged annual cycles of northern North Atlantic provinces ARCT (top
panels), SARC (middle panels), and NADR (bottom panels) for properties CHL, NOs,
AOU, SAL & TEMP. Argo data in dashed black, WOA in dashed blue, MOI in light blue
dotted line, and CMIP6 models in remaining solid colours. WOA, MOI, and CMIP6 data
from locations of Argo profiles only. Grey shading displays 1 standard deviation of Argo

data.
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A-Profile Comparison
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Figure 6: Average delta (model-Argo) depth profiles for CHL, NOs, OXY, SAL & TEMP
for provinces NADR (northern North Atlantic) and WTRA (southern North Atlantic).
Black x with +1 standard deviation indicates satellite CHL, Argo data in dashed black,
WOA in dashed blue, MOI in light blue dotted line, CMIP6 models in remaining solid
colours, and the black dotted line is an ensemble of all CMIP6 models (ALL). WOA, MOI,
and CMIP6 data from locations of Argo profiles only. Grey shading displays 1 standard
deviation of Argo data. CHL profiles shown to 250m depth, other properties to 2000m.

3.3 Do global ocean models compare well with observations?

3.3.1 Surface Comparison

Annually averaged surface maps of WOA, CMIP6 and MOI data are shown for comparison
of modelled surface concentrations with observations. Largest differences amongst models
and between models and WOA are found for NO; (Figure 7, Figure 8, Figure 18, Figure
19).
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Annually averaged surface NOs; concentration varies in concentration and spatial
distribution between WOA and CMIP6 models: There is no consensus amongst CMIP6
models in terms of over- or underestimations (e.g. NorESM2 overestimates surface NO3
north of 45°N, while CanESMS5 underestimates surface NO3 in the entire domain). Out of
six CMIP6 models, five models underestimate surface NOs concentrations north of 45°N.
NorESM2, GFDL-ESM4 & CMCC-ESM2 overestimate surface NOs concentrations in the
upwelling region off of the western coast of Mauretania (around 20°N, 36-18°W) (Figure
7).

Data-assimilating MOI compares best with WOA data, but an overall overestimation of

surface NOs of 2-3 pmol/kg in the northern North Atlantic is visible (Figure 7).

Annual average surface concentrations of OXY, SAL and TEMP are overall better captured
by CMIP6 models and MOI models than NOs (Figure 8, Figure 18, Figure 19). Local biases
are found in the Gulf Stream region, where a TEMP overestimation close to the shelf and
coast turns into an underestimation towards the east. SAL is overall overestimated and
OXY underestimated in this area. Additionally, TEMP is strongly underestimated at around
50°N, where the North Atlantic Current (NAC) transports warm salty waters to the North.
SAL is underestimated by all models in this region and OXY is strongly overestimated, but
the spatial extent of OXY biases varies with models. As such, CanESMS5 overestimates
surface OXY in the entire Labrador Sea and south of Greenland, while NorESM2
underestimates surface OXY in the Labrador Sea, but shows a smaller patch of
overestimations south of Greenland at 50°N. In the Greenland and Norwegian Sea,
modelled TEMP and SAL do not agree on a direction of bias. MOI and IPSL-CM6A
overestimate TEMP here, while the remaining models tend to underestimate surface TEMP.
SAL biases are weak in this area, while OXY tends to be overestimates with varying spatial

extend and magnitude of the bias.

MOI surface properties agree best with WOA observations, which is to be expected given

the assimilation of data (WOA13 amongst others).

26



3.3.2 Annual Cycles in the northern North Atlantic

Seasonality is most pronounced in the northern half of the study domain (ARCT, SARC,
NADR). As such, Figure 5 displays average annual cycles are displayed for these provinces

only for different properties.

In northern hemispheric winter (Jan-Mar), water temperatures are lowest throughout the
year in all 3 provinces. Starting in March, CHL concentrations increase together with a
drawdown of nitrate until April/May when CHL peaks. Nitrate is lowest approximately
three months after. Coexistent with the increase in CHL is a decrease in AOU, meaning
that oxygen is being produced. CHL concentrations decline one month after the spring
peak, slightly rise again in August/September (fall bloom) and reach lowest values in
December. AOU increases starting in May/June, about one month after the CHL
drawdown. Oxygen is being utilized during this second half of the year. A second decrease
in AOU representing the fall bloom, is absent in the observations. Nitrate starts to increase
in around September until the end of the year. Highest temperatures are reached in August

and start to decrease thereafter until Dec.

All six CMIP6 models follow above described overall seasonal pattern. Largest differences
are visible for CHL, for which the drawdown after the peak in May is too rapid in most
models. Timing of the spring peak is biased for NorESM2 throughout the northern
provinces and for other models in NADR. Modelled CHL peak magnitudes are biased with
an overall underestimation. A fall CHL peak is visible for GFDL-ESM4, CanESMS5 & MPI-
ESM1.2, but neither magnitude nor timing align well with the observations. CMIP6 NO;
and TEMP annual cycles are overall underestimated and modelled SAL cycles do not agree

on a direction of bias (Figure 5).

Data-assimilating MOI models agree better with Argo observations than CMIP6 models.
However, MOI models underestimate AOU by up to 20pmol/kg. Magnitudes of the CHL
spring bloom are also underestimated, but the timing aligns well with the observations.

NO;3; and TEMP are slightly overestimated by MOI models (Figure 5).
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3.3.3 Physical properties in the North Atlantic

This section describes biases found for the properties TEMP and SAL which are affected
by advection, mixing, and other physical processes. Apart from previously discussed
surface biases found in the Greenland and Norwegian Sea, as well as the Gulf Stream
region, largest physical biases are located at the top 150 m and between 500-1200 m depth
(Figure 6). While mixed layer biases are more common in the northern North Atlantic
provinces where both SAL and TEMP are underestimated by CMIP6, intermediate depth
biases occur as strong overestimations and are pronounced in the southern half of the study
domain. Physical biases at depth are also prominent in the eutrophic North Atlantic, as
consistent overestimations of TEMP and SAL with depth (>300 m), rather than confined
to 500-1200 m.

Although, surface maps (0-6 m) of TEMP and SAL indicate good agreement between
models and observations, average bias maps of intermediate depth (500-1200 m) visualize
those biases found in the depth profiles more clearly (Figure 9). Intermediate depth TEMP
is overestimated by CMIP6 in the Greenland and Norwegian Sea where coldest TEMP are
expected, and in the centre of the North Atlantic Gyre. The Gulf Stream region, which has

the warmest TEMP in the observations, is however underestimated by all CMIP6 models.

SAL biases at intermediate depth are less pronounced than those of TEMP. SAL is
overestimated in the centre of the North Atlantic Gyre where SAL is highest. Gulf Stream
SAL is slightly overestimated by CMIP6. CanESMS5 underestimates intermediate SAL in

the Greenland and Norwegian Sea.

MOI intermediate TEMP and SAL agree significantly better with WOA observations than
CMIP6 does: While most pronounced biases between MOI and WOA range from -1 to 3°C
for TEMP and -1 to 2 for SAL, CMIP6 models display discrepancies as pronounced as -3
to 5°C for NorESM2 TEMP and -3 to 3 for IPSL-CM6A SAL.
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3.4 Are global ocean models in good agreement within the natural variability of the

observations?

Overall, CMIP6 modelled properties lie outside of the estimated natural variability (see 2.5
Standard Deviation (STD)) of Argo observations, while MOI data agree better with such
natural variability (Figure 5, Figure 6).

CMIP6 performance shown in averaged A-profiles (model-Argo) is similar across
properties amongst provinces in the northern part of the domain (ARCT, SARC & NADR),
as are A-profiles amongst provinces in the southern provinces (Figure 17). NADR and
WTRA were chosen as example provinces for the eutrophic northern North Atlantic and

the oligotrophic South (Figure 6).

For all five properties, CMIP6-As lie outside of the natural variability of the observations
at multiple depths: Overall model performance is best for CHL in NADR. CHL is the only
property for which up to three model-As (MPI-ESM1.2, IPSL-CM6A & GFDL-ESM4) lie
within the natural variability of the observations in the entire water column (up to 250 m
for CHL). CHL biases are visible for the remaining CMIP6 models and are strongest in the
upper 50 m. At these depths, CHL is being underestimated (overestimated) by to 0.6 mg/m?

in the northern provinces (oligotrophic provinces).

Large biases for NO3, OXY, SAL & TEMP are found in the upper 150 m and at 500-1500
m. NOj is underestimated by all CMIP6 models but NorESM2 in the upper 500 m in the
eutrophic North Atlantic. Underestimations reach -18 pmol/kg for CanESMS at depths
~1000 m. OXY is overall overestimated by all CMIP6 models in the northern province but
underestimated by three out of six CMIP6 models at depths >300 m in the southern
provinces. Strongest OXY overestimations occur at 50-150 m for OXY (up to 80 umol/kg
for CanESM5). SAL and TEMP biases indicate underestimations in the upper 150 m in the
eutrophic northern provinces and strong overestimations at intermediate depths in the

oligotrophic South.

GFST averaged A-profiles (Figure 17) are similar to those in the northern provinces, but

CMIP6 performance is better at the surface (0-100 m), especially for OXY and TEMP.
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MOI model-As are in significantly better agreement with the natural variability of Argo
observations than CMIP6 models. While SAL A-profiles align perfectly with the natural
variability, NOj3 profiles in the southern provinces are underestimated and OXY & TEMP
profiles are overall overestimated. MOI CHL agrees well with the natural variability of

Argo observations in the northern provinces but is overestimated in the South (Figure 6).

Over 80% of all CMIP6 and around 40% of MOI average model A-profiles lie outside of

the natural variability of the observations (Figure 5, Figure 6).

3.5 Are BGC biases linked to biases in physical properties?

The similarity of bias patterns in A-profiles across properties indicates linkages between
biases of different properties. Especially at depth 500-1200 m, large biases were identified
in southern North Atlantic provinces. Figure 10 is used to investigate possible correlations:
TEMP-As at 500-1200m were plotted against NOs-As at these depths and Pearson’s
correlation coefficients were calculated for each model (shown in legend). Regression lines

were added for visualization purposes.

In the entire southern half of the study domain, both CMIP6 model biases and MOI model
biases for TEMP and NOs are anticorrelated at intermediate depths. Variability around

these anticorrelations varies amongst provinces. In NATR anticorrelations range from -

0.44 (MOI) to -0.93 (GFDL-ESM4, MPI-ESM1.2) (Figure 10).

Biases in northern North Atlantic provinces NADR and ARCT are not anticorrelated,
however in SARC anticorrelations range from -0.54 (MOI) to -0.76 (GFDL-ESM4) (Figure
21).
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Bias Correlation at depths 500-1200m
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Figure 10: TEMP biases vs. NO;3 biases at 500-1200m for provinces NADR, GFST,
NASW & NATR. Coloured lines indicate regression for each model, Pearson's correlation

coefficients r are given in legend. Negative r indicates anticorrelation.

By using an adaptation of the TA* approach (see 2.7 Bias splitting; Eq. 4), NO; biases can
be split into a preformed part affected by model physics and a biogeochemically driven
remaining bias. Figure 11 displays depth profiles for NOs biases, their preformed part and
their BGC bias component. In northern North Atlantic provinces (e.g. ARCT in Figure 11)
the preformed part of the NOs3 bias is strong and follows the same pattern as the overall
NO; bias. BGC biases (NO3"°) are small at the surface and increase at depth >100 m. While
MPI-ESM1.2 NO3° and NOs° bias components add up to a larger overall ANO3;, BGC
driven biases of NorESMS5 balance out part of the preformed NOs3 bias.
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NO3 bias analysis
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A similar effect can be observed in southern North Atlantic province NATR: GFDL-ESM4
displays the pattern of bias addition, while NO3®° biases are reducing the preformed NO3
bias for now both NorESMS5 and MPI-ESM1.2. Additionally, as for northern provinces,
preformed NOs3 bias profiles follow the pattern of overall NO3 biases in ARCT. However,
differently from northern provinces, both bias components are strong in the top 100 m and

of opposite sign (underestimation of preformed NOs and overestimation of BGC NO3).

In WTRA, both bias components are equally large and are overall underestimations. In the

top 100 m, NO3"© biases follow the pattern of ANO3 more closely then preformed biases.
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3.6 Do individual global ocean models outperform a CMIP6 ensemble?

To rank model performance, misfits between modelled data and Argo observations were

calculated for each property in each province (see 2.6 Misfit).

The model with the lowest misfit ranks 1% and the model with the highest misfit has the
highest rank out of 8 (six CMIP6 models, CMIP6 ensemble mean & MOI models as MOI).

Model ranks are variable amongst properties and provinces: For example, model misfit for
NorESM2 (Nor) is high in ARCT and SARC for CHL, but relatively low in these provinces
for NOs (Figure 12, top two panels). While CHL in WTRA is best modelled by IPSL-
CMBO6A, this model’s NO; has largest misfits in WTRA. The ensemble mean performance

is as variable as individual model performance.

AOU model performance can be independent of TEMP, SAL and OXY ranking, as biases
can “cancel each other out”. For example, GFDL-ESM4 modelled OXY and TEMP have
largest misfits in SARC, but GFDL-ESM4 ranks first for AOU in that province.

An overall average rank was calculated, and models were ranked again based on this

average rank (Figure 12, bottom panel).

MOI data-assimilating models have the overall lowest average misfit. However, for some

properties and provinces, individual CMIP6 models can outperform MOI models.

Within the top 110 m, MPI-ESM1.2 ranks second. Below 110 m and over the entire 2000
m profiles, GFDL-ESM4 outperforms other CMIP6 models (Figure 12, bottom panel).
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Model Misfits Overview
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Figure 12: Top: Model misfits for each province (rows) for each property (panels). ALL
denotes CMIP6 ensemble mean. Bottom: Average model rank based on lowest misfit for
Euphotic Zone (EZ) (0-100 m), below Euphotic Zone (BEZ) (130-2000 m), and full profile
(0-2000 m). Lowest misfit/rank indicates best model. ALL is excluded given that

individual models outperform ensemble mean.
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4 DISCUSSION

4.1. Evaluating whether global ocean models can reproduce an accurate state of North

Atlantic properties.

Biases between modelled data and Argo observations were found for all models for all
variables in all provinces (Figure 5 ,Figure 6, Figure 7, Figure 8, Figure 10). While it is
expected that global ocean models may contain some degree of bias, here evaluated CMIP6
models are presumed to be capable of effectively addressing research inquiries regarding
climate change, among other applications. For a model to be deemed suitable for future
climate projections, it must minimize biases to accurately represent the current state of
ocean properties. However, this alone might not be sufficient for accurate climate
projection as the ability to model the response to anthropogenic forcing is different from

the ability to reproduce a realistic background state of properties.

The biases found in this thesis indicate a systematic underrepresentation of nitrate and a
systematic overestimation of euphotic zone OXY (Figure 6, Figure 17), next to multiple
misrepresentations of ocean physics affecting the location of major ocean currents (Figure
8, Figure 9, Figure 10, Figure 19). These findings are similar to Laurent et al. (2021) who
report underestimated CHL, variable NO3 amongst models, and biased circulation patterns
for CMIP5 models (CMIP6 predecessors). Séférian et al. (2020) found a greater diversity
of BGC models used for CMIP6 than CMIPS5 which could explain little consensus amongst
CMIP6 model biases reported in this study (see 4.3 Assessment of a CMIP6 model
ensemble performance with respect to individual models including data-assimilation
models.), and persisting model-data errors as for example biased OXY concentrations at

150 m in the tropical Atlantic, which was also reported here (WTRA in Figure 6).

These results indicate that currently global ocean models have difficulties with the
representation of North Atlantic properties, particular ones being reviewed in the

following.
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4.1.1 Underestimated phytoplankton blooms in the northern North Atlantic

While modelled surface (0-6 m) OXY, TEMP & SAL compare well to WOA data, there are
significant discrepancies between CMIP6 and WOA and large variations amongst CMIP6
models in the representation of surface NOs (Figure 7) and surface CHL (Figure 20).
Annual cycle comparison shows a misrepresentation of spring and fall blooms due to an
overall negative bias in NO3 and CHL. As such, five out of six CMIP6 models
underestimate spring bloom CHL and fall bloom CHL increases are entirely absent in all
CMIP6 models (Figure 5). With phytoplankton blooms in the northern North Atlantic
accounting for up to 500 g C year ' (Mueter et a., 2009), an accurate representation of the
magnitude of such events is of immense importance in climate research. Further,
misrepresentations of surface CHL and nutrients in the euphotic zone in productive regions
can lead to biased carbon export calculations and thereby affect the accuracy of future

climate projections.

Underestimation of NO3 within the euphotic zone is partially caused by underestimation of
NO; at depth (Figure 6) which inhibits enough nutrients being mixed upwards into the
euphotic zone. Despite this, depth profiles in the Northern North Atlantic (Figure 6, top
panels) show that surface CHL is underestimated, but most model-Argo As lie within the
natural variability of the observations. Euphotic Zone NOs, however, is strongly
underestimated and values are far outside the standard deviation which is assumed here to
represent the natural variability. This discrepancy between large NO; biases and smaller
CHL biases, is interesting as one would expect CHL bias patterns to follow those of NO;
in eutrophic environments where CHL concentrations within the euphotic zone are strongly
dependent on nutrient supply from below. A similar example is visible in the ARTC annual
cycle, for which CHL is overestimated by the MPI-ESM1.2, but NOs is constantly
underestimated (Figure 5, top two panels from left). This pattern raises the question how
CHL concentrations can increase without enough NO3 being available and indicates that
the relationship between NO3 and CHL might be biased in the model parameterization or
that CHL concentrations have been tuned to fit observations at the surface. While tuning is
a common procedure in ocean modelling, it can lead to seemingly correct results but for

the wrong reasons. For example, reduced CHL biases at the surface do not imply similarly
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good agreement at depth. Models GFDL-ESM4, MPI-ESM1.2, and NorESMS5 include
tuning for BGC properties (Séférian et al., 2020, supplement, Stock et al., 2020; Paulsen et
al. 2017 and Mauritsen et al., 2019; Tjiputra et al., 2020).

4.1.2 Biases in ocean physics

Surface bias maps were used to visualize TEMP and SAL biases located in the Greenland
and Norwegian Sea, together with a biased representation of Gulf Stream physics. Depth
profiles show that CMIP6 models misrepresent physical properties in the mixed layer (top
150 m) and at intermediate depths (500-1200 m).

In the northern North Atlantic, these biases indicate a possible misrepresentation of the
location and strength of both the NAC and the Iceland Current by all CMIP6 models. This
can lead to biases in modelled deep water formation and can cause a misplacement of
Labrador Sea Water (LSW) which is important for the transport of oxygen to the entire
Atlantic (Koelling et al., 2022). In ARCT, the preformed component of ANO3 depth profiles
is much larger than the remaining part due to BGC (Figure 11, top panels). This indicates
that a bias in the model physics persists and that it explains a large fraction of the NO; bias

in this region.

The southern oligotrophic North Atlantic, physical biases were more pronounced at
intermediate depth. Strong TEMP and SAL overestimations were found, suggesting issues
with intermediate water heat transport and misrepresentations of intermediate water
masses. Similarly, as in ARCT, NOs biases are more strongly affected by model physics
than by BGC processes, as indicated by large underestimations in preformed NO; (Figure

11, horizontal middle and bottom panels).

MOI modelled physics compare significantly better to the observations than CMIP6 does:
Spatial representation for TEMP and SAL at the surface, including a much more accurate
Gulf Stream separation, is superior to those of CMIP6 (Figure 8, Figure 19). Additionally,
model-Argo-As are much lower than those of CMIP6 for most provinces and properties
(Figure 6, Figure 17). Biases between WOA and MOI physics are expected to be minimal,
as MOI-GLO12 assimilates WOA13 data.
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4.1.3 Misplacement of the Gulf Stream

The province surrounding the Gulf Stream, GFST, marks the transition zone between the
eutrophic northern North Atlantic and the oligotrophic southern North Atlantic. WOA data
indicate that surface NO3 concentrations increase starting at 45°N towards the North. This
NO:s transition zone is either absent or misplaced by CMIP6 models (Figure 7). MOI places
the transition zone at 40°N and slightly overestimates the increase in surface NO; with

latitude.

CHL satellite data places the transition zone for CHL further south, at around 32°N (Figure
20). 3/6 CMIP6 models capture the location well, but magnitudes and patterns of surface
CHL still differ significantly from the observations.

GFST average A-depth profile patterns are more similar to those of the southern North
Atlantic, indicating that primary productivity is not the main driver for biases in this
province (Figure 17). In fact, the largest biases are located at 500-1200 m depth, as seen

for southern provinces (Figure 6, bottom panels).

Modelled physical properties in the Gulf Stream region showed large biases for surface
TEMP. This indicates a general misplacement of the Gulf Stream, as well as misrepresented
Gulf Stream properties. Further, the width of the Gulf Stream at the surface is biased, as
seen in Figure 8, by an overestimation on the western side of the Gulf Stream turning into

an underestimation towards the east.

Numerical representation of the Gulf Stream separation is notoriously difficult. While
higher resolution (10 km at the equator) enhances the modeling of the Gulf Stream position,
achieving the accurate pathway remains elusive. Despite 70 years of literature on the Gulf
Stream separation, a definitive understanding of the dynamics governing the current's
trajectory has yet to be attained. Because separation dynamics remain unclear, developing
precise modeling techniques for the Gulf Stream separation at increased resolutions

remains a challenge (Bryan et al., 2007; Schoonover et al., 2017; Schoonover et al., 2016).
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4.1.4 Does a good agreement of CHL in the mixed layer imply a similar agreement

throughout the entire euphotic zone?

CMIP6 modelled mixed layer (0-6 m) CHL lies outside of the natural variability of the
observations for some models in northern provinces and for most models in southern
provinces (Figure 6). However, IPSL-CM6A modelled mixed layer CHL agrees well with
the observations in WTRA and shows strong over- and underestimations at deeper depths
in the euphotic zone (0-110 m). Overall, agreement between modelled CHL and
observations improves throughout the euphotic zone in eutrophic provinces, but large

biases persist within the euphotic zone in oligotrophic regions (Figure 6).

This means that even if modelled surface concentrations appear to fit the observations well,

biases can be found below the mixed layer.

4.1.5 Is euphotic zone CHL affected by the representation of NO3 below the euphotic

zone?

Comparatively to the oligotrophic southern half of the study domain, North of 45°N surface
nitrate is elevated predominantly due to stronger vertical mixing, through which nutrients
are transported to the euphotic zone (Schulz et al., 2022). CHL concentrations are expected
to increase with an increased availability of nitrate (given light and temperature are
favourable for photosynthesis to occur) in these regions (Sigman & Hain, 2012). Because
of this linkage between euphotic zone CHL and deep water NO3, model performance for

these properties is expected to be similar.

However, annual cycles in eutrophic northern provinces showed mismatches during spring
blooms between underestimated NO3; and overestimated CHL for some models (MPI-

ESM1.2, CanESM5) (Figure 5).

Further, largest NO3 biases occur at approximately at 100 m depth and below 500 m (Figure
6). These biases are model underestimations that exceed the estimated natural variability
of Argo observations in most provinces. CHL in contrast is found to be underestimated but
remain within the natural variability (Figure 6). CMIP6 model NorESM2 even
overestimates NOs at 0-500m while still underestimating euphotic zone CHL in northern

North Atlantic provinces (Figure 6, Figure 17).
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Thereby, euphotic zone CHL appears to be independent of both NO; within the euphotic
zone and NOs concentrations below 110 m for most CMIP6 models in eutrophic provinces.
CHL is often diagnosed in models by phytoplankton biomass and thereby a function of
nutrient concentration, light availability, temperature, and others. While biomass is a
common proxy for CHL, it is important to note that the cellular content of phytoplankton
and the ratio with respect to carbon are variable. For this reason, CHL a biased estimator

for biomass (Huot et al., 2007).

4.1.6 Is the representation of ocean properties within the euphotic zone the same as it

is below?

For many properties and in multiple provinces, largest biases are located at intermediate
depth and thereby below the euphotic zone. Nevertheless, surface and euphotic zone
concentrations were shown to vary significantly between models and observations. No
evidence was found that a low misfit of modelled properties within the euphotic zone

guarantees similarly good agreement below 110 m or vice versa.

4.2 Investigate the interrelation between biases in BGC and physical models.
4.2.1 Does a misfit in the model physics affect agreement of BGC variables?

Biases in model physics were found to indicate a misrepresentations of general circulation
patterns and important physical features in the northern North Atlantic. Such biases can
likely affect modelled BGC, as the physical model components of Earth System Models
are coupled to the BGC model component (e.g. Dunne et al., 2020 for GFDL-ESM4), but
further, because BGC process parameterizations are based on physical properties (e.g.

photosynthesis being TEMP-dependent).

Throughout all analyses shown in this paper, intermediate depth (500-1200 m) and surface
waters have been identified as the regions for largest biases amongst models, provinces,

and properties.

NO; biases at intermediate depth are anticorrelated with OXY biases (Figure 22),

indicating a linkage between the variables. Strong NO3-OXY anticorrelations could be an
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indication for a misrepresentation of respiration, however this is not further investigated

here.

Additionally, strong anticorrelations were found for biases of TEMP and NO; in
oligotrophic provinces and SARC. It was further shown that the preformed part of ANO;
depth profiles explains a larger fraction of the overall bias than the BGC driven part in both
ARCT and NATR (Figure 11), which indicates a significant effect of biased model physics

on BGC model performance.

4.2.2 Does a more complex BGC model or increased spatial resolution guarantee

better model performance?

Biased physics and circulation patterns can be the result of coarse model resolution which
affects ocean mixing (Griffies et al., 2009). While this thesis only focusses on the effect of
spatial/horizontal resolution on model performance, due to the method of vertical
interpolation, vertical resolution also significantly contributes to model performance. As
such, vertical resolution determines the model’s ability to capture vertical property
gradients and the representation of vertical processes, including upwelling, mixing, and

stratification.

MOI models resolve ocean BGC with 1/4° resolution while ocean physics even have a
resolution of 1/12°. CMIP6 models included in this study resolve 100 km at the equator
(~1°), except for GFDL-ESM4 which has the highest CMIP6 resolution of 1/2°. As MOI
models overall strongly outcompete CMIP6 models and the GFDL-ESM4 ranks best
amongst CMIP6, model resolution is likely explaining some biases found here. However,
data-assimilation is likely a more significant factor contributing to MOI models’

performance, rather than the high resolution.

These findings could be interpreted as controverse to Laurent et al (2021) who report that
increased model resolution does not guarantee better model performance, however,
amongst the five CMIP6 models with spatial resolutions of 1°, performance varies
significantly with property and location. For this reason, we conclude that resolution alone

does not improve model performance.
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A possible explanation for why resolution alone does not improve model performance, is
that extensive tuning becomes increasingly difficult in a high-resolution model due to an
extensive computational cost. For example, HAMOCC (MPI-ESM1.2, NorESM2) uses
tuning of biological model properties (e.g. plankton decay and grow rates) to accomplish
reasonable biomass estimates for Na>-fixers and their fixation rates. This method requires
additional sensitivity experiments to evaluate how the uncertainties in these parameters
affect model results (Paulsen et al., 2017). With increased resolution these methods become
more computationally expensive. Therefore, a lower resolution model might be thoroughly

tuned and perform better than the higher resolution version (Moreno-Chamarro et al.,
2022).

Another contributing factor to model performance is BGC model complexity. CMIP6
models NorESM2 and CanESMS are the only two CMIP6 models that use fixed Redfield
Ratios for all variables and are set up to only resolve one phytoplankton type. Variations in
Redfield Ratios can be implemented by adjusting the stoichiometric ratios of carbon,
nitrogen, and phosphorus in phytoplankton and other components of the marine ecosystem,

based on environmental conditions.

NorESM2 and CanESMS5 are also the two models that have the overall highest misfits.
Further, CanESMS5 only includes nitrogen as nutrients, while the other CMIP6 models
resolve up to five (GFDL-ESM4) different nutrients (Séférian et al., 2020, supplement).

An average taken over all model ranks classified GFDL-ESM4 as the best CMIP6
performing model in the North Atlantic (Figure 12). This model does not just resolve at
twice the horizontal resolution of most other CMIP6 models, it also uses one of the most

complex BGC models (COBALTV2).

COBALTV2 resolves five nutrients, four phytoplankton types, three zooplankton types and
it is the only BGC model that explicitly models bacteria, while CanESMS5 only includes
nitrate and one phyto-/zooplankton type each. However, the most complex BGC model in
terms of number of nutrients and phytoplankton types, is CMCC-ESM2 (5 nutrients, 4
phytoplankton, 4 zooplankton, bacteria).
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In conclusion, there are indications that, provided the ocean physics are accurately
represented possibly through increased spatial resolution, a more complex BGC model

should perform better than a basic BGC model.

4.3 Assessment of a CMIP6 model ensemble performance with respect to individual

models including data-assimilation models.

For different analyses shown in this thesis different biases were discussed. Some biases
were found to persist amongst all six CMIP6 models (e.g. TEMP underestimation within
euphotic zone and OXY overestimation from 0-2000m in NADR Figure 5, Figure 6), but
also individually different biases have been reported (e.g. surface NO3 concentrations and
OXY concentrations at 0-2000 m in WTRA Figure 7, Figure 6). Depending on the location
and property, model performance varies and not one CMIP6 model is always better than
others (Figure 12). However, MOI models tend to outcompete CMIP6 models in most
instances. An overall average rank identifies MPI-ESM1.2 as the model with the lowest
misfit for data comparison in the euphotic zone, as found by Laurent et al., 2021. GFDL-
ESM4 can be titled the “best performing CMIP6 model” below the euphotic zone and for
the entire water column which agrees with a study by Rickard et al. (2022) who labelled
GFDL-ESM4 as one of the best 3 ESM out of 32 models (16 CMIP5 and 16 CMIP6

models) in an assessment of physical and BGC components for the Ross Sea.

An ensemble mean of all six CMIP6 models used here shows that there is large variability
amongst CMIP6 models. Depending on province and property, the ensemble mean either
outperforms CMIP6 or falls behind individual models. Therefore, a CMIP6 ensemble mean
does not necessarily provide the best result. Further, the ensemble mean falls behind MOI

model performance (Figure 12).

Amongst all models discussed here, CanESMS5 can be identified as the model with the
overall highest misfit both in the upper water column (0-110 m) and below (Figure 12).
CanESMS5 shows strong physical biases in the surface and below (strong TEMP bias in
Labrador Sea and south of Greenland Figure 8; overestimated SAL and TEMP at depth in
WTRA Figure 6), together with a poor representation of BGC variables (e.g. surface NO;3
and BGC properties at 0-2000 m in NADR Figure 7, Figure 6). While such biased model
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physics are likely affecting the representation of BGC properties in CanESMS, some bias
might be the result of a comparatively simpler BGC model, which lacks accurate

representation of marine BGC.

4.4. Uncertainties

Analyses shown in this paper come with uncertainties which need to be assessed and put

in relation to the identified model biases.

First, different time periods are used for comparisons of observational data sets from WOA
and (BGC-)Argo float data. As expected and regardless of the different times, the
comparison of WOA data to Argo data is always better than any CMIP6 model comparison
with Argo. Moreover, WOA data mostly falls within one STD of Argo observations which
indicates that the estimated natural variability of Argo data is large enough to enclose WOA
climatologies. It further illustrates the similarity of Argo and WOA which means that the

Argo program is dense enough to be used for this model evaluation.

Furthermore, Lavoie et al. (2013) found surface NO3 and CHL trends from 1970-2000 to
be negligible which means that the large time period of 1900-2021 used for WOA BGC
properties, might not be affecting observational data comparisons. WOA and Argo AOU
concentrations do differ. 65-70% of this difference is explained by OXY measurements and
around 30-40% by TEMP (Figure 23). Similarly, MOI and Argo AOU do not compare well
(Figure 5), but differences are larger for TEMP than they are for OXY (Figure 6). While
Argo OXY sensor errors due to a slow response time are a known issue (Bittig et al., 2014),
OXY sensors are the most accurate BGC sensors with an Argo fleet-wide accuracy of 1%
or better (Johnson et al. 2017a, Claustre et al., 2020). Nevertheless, compared to CTD
sensors, OXY response times are significantly longer (Bennett & Huaide, 1986). However,
challenges in accuracy arising from these extended response times are predominantly
encountered in gradients (Gordon et al., 2020). This means, that here reported MOI AOU
biases are partially caused by TEMP biases which could possibly be the result of averaging

(discussed below).

Second, CMIP6 data was averaged over a 30-year time span (1990-2009) roughly covering

that of availability of Argo observations. This was done to allow models to capture
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interannual variability on time scales <30 years. Therefore, some bias between CMIP6 and
Argo is to be expected. +/- one standard deviation of Argo floats was used to estimate
natural variability. As discussed in 2.5 Standard Deviation (STD), in this thesis, natural
variability denotes any variability, including anthropogenic signals and variability on
varying timescales. The 30-year averaged CMIP6 data should fall within this range for
good agreement between models and observations. Similarly, MOI model data were
averaged over 12 years (2009-2021) for consistency. MOI models ought to proficiently

replicate natural variability by incorporating data assimilation techniques.

Third, (BGC-)Argo coverage is still sparse in some regions, especially for NO3 and OXY.
While only provinces with relatively good coverage were included, large gaps in the
province-wide coverages still persist. If (BGC-)Argo profile coverage were less clustered

in each province, the average model performance might look different.
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S CONCLUSION

Six CMIP6 models together with data-assimilating MOI models were evaluated against
(BGC-)Argo and WOA observations. Comparisons identified multiple biases amongst
CMIP6 models which are summarized and quantified in Table 3. While it was demonstrated
that MOI models overall performed better than CMIP6, MOI modelled AOU has larger
misfits than any CMIP6 model in SARC (Figure 12) which are in part due to differences
in TEMP between MOI and observations (possibly caused by averaging).

For CMIP6 models, modelled NO3; was found to be inaccurate at 0-2000 m depth
throughout the study domain, while other properties’ biases were more localized at the
surface and at intermediate depths. Additionally, physical property comparison in the
northern North Atlantic showed a misrepresentation of circulation patterns including the
NAC and the Gulf Stream, as well as possible issues with deep water formation in the
Greenland and Norwegian Sea. It was further shown that CMIP6 bias patterns do not
always agree (surface NO3; and OXY depth profiles in WTRA) and that properties can be
linked (TEMP vs. NOs biases) or be unrelated (CHL and NOj biases).

These findings were discussed to be similar to other model evaluations (see 4.1. Evaluating
whether global ocean models can reproduce an accurate state of North Atlantic properties.).
The resemblances observed across various studies suggest that the methods employed in
this context are adequate. Additionally, they indicate that the uncertainties discussed are

relatively smaller in comparison to the reported findings.

As expected, this evaluation demonstrates that a data-assimilating model with a high spatial
resolution outperforms current global ocean models used in CMIP6. It further shows that
CMIP6 models are unable to accurately represent North Atlantic properties, which
demonstrates the urgent need for model improvement to facilitate accurate model

applications.

Additionally, it was shown that the (BGC-)Argo fleet is a useful tool to locate and discuss
model biases. BGC-Argo data can be used to understand and explain BGC processes in
more detail which could improve BGC model parameterization (Wang & Fennel, 2023)
and reduce biases found here. However, enhancements in spatial Argo coverage could

mitigate uncertainties stemming from scant data and the biases introduced by clustered
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profile locations. Improved spatial coverage also strengthens the reliability of the data and

refines the accuracy of assessments.

To augment the precision of my analyses, I prioritize advancing my analytical

methodologies. As such, I would choose an alternative method for separating my study

domain into provinces. Employing machine learning techniques such as clustering

approaches holds promise in this regard, facilitating the automatic identification of distinct

regions based on data patterns rather than predefined boundaries, such as the here used

Longhurst provinces. This would not only streamline the process but also potentially reveal

novel insights by uncovering previously overlooked spatial nuances.

Table 3: Model-Argo bias overview.

CMIP6-Argo Biases | MOI-Argo Biases W0A-Areo
Discrepancies
e -0.7 mg/m?
Northern (CanESM35) e -0.3 mg/m?
North Atlantic | ¢ No second CHL e Underestimated
Spring and Fall increase in fall fall bloom CHL
Bloom e Timing of bloom nCrcase
biased
e Overestimations
T e -10 pmol/kg within Euphotic
North Atlantic (CanESM5) to 8 Zone (<110 m) e +1 umol/kg
NOs umol/kg up to 5 pmol/kg
(NorESM?2) e Below 200 m
+1 pmol/kg
TEMP within | 4 _j°oC (GFDL-
Euphotic Zone ESM2) to -5 °C e ~+1°C o <t]°C
in NADR (CanESMS5)
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CMIP6-Argo Biases

MOI-Argo Biases

WOA-Argo

Discrepancies
e QOverestimations
Euphotic Zone >80 pmol/kg e Overestimations: Overestimations:
OXY (CanESMS5, IPSL- 5-30 pmol/kg 5-20 pmol/kg
CM6A)
DErrEilie e Large variability
Depth e Overestimations:

(500-1500 m)

amongst model

biases: -50 to 85

10-30 umol/kg

-2 to 10 pmol/kg

OXY pmol/kg
e SAL:-03
(CanESMS5) to 1.1
AL <]0.1
Intermediate (NorESM2, O o1 SAL<|0.1]
< .
Depth CMCC-ESM2) | * TEMP
e TEMP overestimations TEMP: -0.5 to
(500-1500 m) | e
overestimations reaching up to -

Physics

reaching up to
4 °C (NorESM2,
CMCC-ESM2)

2 °C in GFST

48




APPENDICES

A.1 Longhurst province processing

Longhurst BGC-Provinces
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Figure 13: Original Longhurst provinces in the North Atlantic.

Original Provinces

Adjusted Provinces
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Figure 14: Left panel shows provinces that were adjusted/combined due to (BGC-)Argo

coverage and shelves. Right panel shows adjusted provinces used in the evaluation.
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Figure 15: Argo profile locations.
Every panel displays profile locations
for a different property. See Table 4

for number of profiles.
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Table 4: Number of profiles used in this evaluation per property and province.

Corresponding profile locations in Figure 15.

CHL NO; 00,44 SAL TEMP

ARCT 5193 1458 12075 16521 16524
SARC 2413 355 2901 4527 4527
NADR 1907 381 4178 6346 6640
GFST 183 241 1178 1459 1459
NASW 416 1154 2445 2859 2939
NATR 2353 976 4850 5831 5831
WTRA 1219 1103 2546 2927 2927

Province-wide Argo Coverage
I I [

ENCHL BENO3 [TAOU IOXY EESAL -TEMPL

Y
N

P W —

- N W A OO N OO O =
7 T I

# of month with >5 profiles

) ! N e O 8 P o iy s el S
S G 8" o @ e (o o @ P o R

Figure 16: Histogram of number of month with more than five good quality-flagged
(1/2/5/8) Argo profiles per property (different colours, see legend) for each province.
Provinces that exceed the threshold are WTRA, NATR, NASW, GFST, NADR, SARC &

ARCT. Provinces marked in red are left out of the evaluation.
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A.2 A-Profile Comparisons

ARCT Profile Comparison
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GFST Profile Comparison
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Figure 17: For all 5 figures above. Average delta (model-Argo) depth profiles for CHL,
NOs, OXY, SAL & TEMP, each figure for a different province. Black x with +1 standard
deviation indicates satellite CHL, Argo data in dashed black, WOA in dashed blue, MOI
in light blue dotted line, CMIP6 models in remaining solid colours, and the black dotted
line is an ensemble of all CMIP6 models (ALL). WOA, MOI, and CMIP6 data from
locations of Argo profiles only. Grey shading displays +1 standard deviation of Argo data.
CHL profiles shown to 250m depth, other properties to 2000m.
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A.3 Annually Averaged Surface Biases and Surface Concentrations
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A.4 Bias Correlation

Bias Correlation at depths 500-1200m
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Figure 21: TEMP biases vs. NOs biases at 500-1200m for provinces ARCT, SARC,

NADR & GFST. Coloured lines indicate regression for each model, Pearson's

correlation coefficients r are given in legend. Negative r indicates anticorrelation.
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Bias Correlation at depths 500-1200m
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Figure 22: OXY biases vs. NO;3 biases at 500-1200m for provinces NADR, GFST, NASW

& NATR. Coloured lines indicate regression for each model, Pearson's correlation

coefficients r are given in legend. Negative r indicates anticorrelation.

59



6.5 AOU Mismatch Test
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Figure 23: Test explaining mismatch between MOI and (BGC-)Argo AOU in provinces
ARCT, SARC & NADR (panels from left to right). AOU was calculated from MOI OXY,
TEMP & SAL and then compared to calculations using (BGC-)Argo data for either OXY,
TEMP or SAL or both TEMP and OXY. Percentages listed indicate how much of the

mismatch is being explained by each property (e.g. MOI AOU calculations using Argo

OXY explain 65-71% of the mismatch between Argo and MOI AOU). Percentages were

calculated form averages over 0-110m depth and were further averaged over time which

leads to some rounding errors.
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