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Abstract

This thesis focuses on statistical inferences for reliability models based on various types of

lifetime data. We begin by introducing the progressively hybrid censoring scheme (PHC),

which combines Type-I and progressively Type-II censoring schemes. The aim of this method

is to save time and cost in data collection. Maximum likelihood and Bayesian estimations are

employed using the Sarhan-Tadj-Hamilton (STH) distribution. Real data sets are analyzed

to compare parameter estimations between complete and PHC samples. Simulation studies

assess the performance of the PHC method with the STH distribution. Additionally, we

investigate the expected experimentation time using progressively Type-II censoring under

the STH distribution. Overall, this research explores statistical inferences, censoring meth-

ods, and estimation techniques to enhance reliability modeling using lifetime data. Next, we

examine step stress partially accelerated life testing (SSPALT), a methodology that acceler-

ates time to failure by subjecting experimental units to progressively harsher conditions. We

apply maximum likelihood and Bayesian estimations for SSPALT using the Sarhan-Tadj-

Hamilton (STH) distribution. Additionally, we explore the optimal change time for SSPALT

under the STH distribution across various model parameter values. A real data set is ana-

lyzed using the STH distribution and compared to the Power Lindley and Weibull distribu-

tions. To assess the method’s performance, we conduct simulation studies. Through these

investigations, we contribute to the understanding and application of SSPALT and provide

insights into the suitability of the STH distribution compared to alternative distributions.

In life testing, a competing risks model (CRM) is applicable when multiple causes contribute

to failure. This model allows estimation of specific cause risks among other factors. The

third problem of this thesis focuses on independent (ICRM) and dependent competing risks

(DCRM) within CRM. Multivariate lifetime data commonly occur in practical scenarios,

necessitating consideration of appropriate distributional models. We explore the Bivariate

Modified Weibull Extension (BMWE) distribution and its properties. DCRM is discussed,

and maximum likelihood estimation is applied to bivariate and DCR data using the BMWE

distribution. Data generation and simulations evaluate the method’s performance. Two real

data sets are analyzed using the BMWE distribution and compared with other approaches.
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Chapter 1

Introduction

1.1 Introduction

Product reliability, and more broadly, quality assurance, are of fundamental importance

to the manufacturing sector, and one of the primary aspects of reliability analysis is the

estimation of product lifetime. Balakrishnan et al. (2000) provide a good review of statistical

methods for the design and analysis of experiments to assess reliability. Lifetime data often

exhibit censoring, and in the industrial setting, this is most often right censoring. Censoring

may be out of the experimenter’s control, for example due to accidental breakage of an

experimental unit, or, in the medical context, due to subject drop out or loss to followup

Aggarwala (2001). In the industrial setting, experimental units may be removed from study

prior to failure in order to expedite completion of an experiment and/or, to free testing units

for further experimentation. In this case, the experimenter might apply a censoring scheme

using preassigned removals. One such censoring scheme is progressively hybrid censoring

(PHC), in which censoring times are preassigned to the experimental units. The use of PHC

will typically allow for inferences on the underlying survival time distribution while reducing

the overall time to complete the experiment, although one must be careful to assess the

properties of the associated estimators, particularly when the proportion of censored units

is high. Kundu and Joarder (2006), discuss PHC with an underlying exponential failure

time distribution, and Kundu (2007) extend this to PHC with a two parameter Weibull

distribution.

Sarhan et al. (2014b) proposed two new distributions, named Sarhan-Tadj-Hamilton

(STH), the first a one-parameter distribution similar to the Lindley distribution Lindley

(1958), and the second, a power transformation of the first, referred to as the STH (↵, �)

distribution. In chapter 2 we explore the use of PHC with an underlying STH (↵, �) distri-

bution.

In addition to PHC, a number of design methods have been proposed to reduce the time

required to carry out an experiment where the outcome is time to event. Chapter 2 focused
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on one such method - progressive hybrid censoring. In Chapter 3, we consider two other

methods - accelerated life testing (ALT) and partially accelerated life testing (PALT) - each

method designed to reduce time to failure by testing experimental units under increasingly

severe conditions, for example, increased temperature, voltage, or humidity. One type of

accelerated life testing is step stress accelerated life testing (SSALT), in which the stress

on each experimental unit is increased at some point during an experiment. In the step

stress partially accelerated design (SSPALT), all experimental items are put on test under

a fixed stress, and units not failing by a pre-assigned time ⌧ are subject to an increased

stress. The goal of the SSPALT experiment is to quickly acquire reliable information on the

failure time distribution Ismail and Aly (2014). An extensive coverage of accelerated testing

with constant stress with a variety of parametric failure time distributions is provided by

Nelson (2009). DeGroot and Goel (1979) introduced Bayesian estimation and optimal design

in SSPALT with an underlying exponential distribution, and Bhattacharyya and Soejoeti

(1989) described a tampered failure rate for SSPALT using Weibull distribution. Ismail and

Aly (2014) proposed an optimal plan for SSPLAT under Type-II censoring. In chapter 3 we

will investigate the SSPALT method with more applications.

Another statistical method which concerns the type of failure of an item is investigated in

this dissertation. In life testing, when the failure time has many reasons or causes, we could

assign a competing risks model CRM. Typical examples for a CRM include time to death

associated with any cause or time to cause-specific death. Using this model, we can estimate

a specific cause risk in the presence of other causes risk factors. Here we assume T is the

time of failure and C is the specific cause of failure. A competing risks model generalizes

standard survival analysis of a single endpoint as failure to investigate multiple first event

types Beyersmann et al. (2011). Moreover, competing risks refer to the study of the time to

an event with more than one type of failure event. Competing risks arise in many fields such

as medical, criminological, financial, engineering, and many other contexts when the death

or failure of an individual or unit is classified into one of a variety of types or causes Maller

and Zhou (2002). Crowder (2001) stated, “For example, in Medicine, C might be the cause

of death and T the age at death. In Reliability, C might identify the faulty component in

a system and T the running time from start-up to breakdown. In Engineering, our subject

is more likely to be referred to as non-repairable series systems’ reliability. In Economics, T

might be the time spent on the unemployment register and C the reason for de-registering.
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In Manufacturing, T might be the usage (e.g., mileage) and C the cause of the breakdown of

a machine (e.g., vehicle). Therefore, CRM can be applied to vast fields of science. Studying

the risks of many outcomes could be valuable information for the following step procedure.

For example, in a medical trial, not only can it inform the patients what risks they are

facing, but also it helps to select the appropriate treatment for a particular patient. Larson

and Dinse (1985) authored a book focused on analyzing competing risks using regression

structure. Crowder (2001) wrote a book about the classical model of competing risks, their

studies based on the likelihood function. Lin (1997) proposed a non-parametric inference

for cumulative incidence functions in competing risk studies. Sarhan (2007) studied the

censored data analysis with competing risks using the generalized exponential distribution.

In this dissertation, we will address independent competing risks, and dependent competing

risks; we will give more information in chapter 4.

1.2 Background

Survival Analysis is used to estimate the lifetime of a certain population under study. It is

also called time to failure analysis, as the goal is to estimate the time for an individual or a

group of individuals to experience a failure of interest. Time to failure experiment has gained

more importance in recent years in many fields, such as medicine, economy, and engineering.

Studying the lifetime of persons, individuals, units, and components significantly develops

their lifetimes. For instance, in medicine, exploring the lifetime of patients with cancer under

specific treatments can provide valuable insights into the e↵ectiveness and potential com-

plications of those treatments. By studying the outcomes of di↵erent treatment approaches

in a large sample of patients, researchers can identify patterns and factors that contribute

to improved patient outcomes. In the vehicle industry, analyzing the lifetime of spare parts

will enhance the mean lifetime. Medical researchers were the first to use survival analysis to

estimate the lifetimes of a certain population. Survival analysis has many examples when we

record the birth and the death events of a person, individual, or unit. The birth event can be

thought of as when a customer starts their membership with a company, and the death event

can be considered the customer leaving the company. The assumption must be made that

the population has the same failure time distribution for all units. Assuming n independent

identical distributed units (will give more information about order statistics in a further

section), inferences about the population can be made using the joint probability density
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function. However, some experiments need to be ceased to save time and cost. Since time

and cost are important, censoring schemes can be used to limit them. Censoring is defined

when the exact failure time of units is known for some units but not all units. There is an

interval, left and right censoring, but the most widely used censoring is the right censoring.

In right censoring, for example, Y is a random variable for the time to failure, and C is a

random variable for the time to a censoring event. What we observe is X = min {Y, C} and

a censoring indicator � = I[Y < C] Moore (2016). That is, � is 0 or 1 according to whether

X is a censored or observed failure time. A right-censored example is when patients enter a

cancer study, and some patients were still alive at the end of the study; these patients will

be right-censored observations. Through all the dissertation, we will use the right censoring.

In addition, some known accelerated life testing censoring schemes can be addressed here as

Type-I censoring and progressively type-II censoring. We will give some details in further

sections. Combing Type-I censoring, and progressively Type-II censoring, will give us pro-

gressively hybrid censoring (PHC). Given these conditions, the challenging question is, what

is the best scheme to make an inference? Sometimes the lifetime experiment takes a very

long time to end. Due to the high technology and quality of products, their lifetimes get

longer and longer. Therefore, another way to accelerate the life test experiment is to increase

the stress level to a higher one to obtain information quickly. It might take a long time for

a lifetime unit, such as several years, to fail, making it di�cult or even impossible to obtain

the failure information under normal use conditions for such a highly reliable unit. While

running at a higher stress level shortens the products’ life, the accelerated life testing (ALT)

induces more failures and then derives the survival information under normal use conditions.

This method accelerates the failure when the occurrence of failure time is infrequent. Many

factories worldwide apply ALT to quickly obtain information on the lifetimes’ distribution or

product performance under normal use stress. For instance, satellite equipment that could

serve for many years must be tested at higher stress quickly to spot its weaknesses. Cell

phones are always tested at higher stress (voltage, temperature, or solidity) to improve per-

formance. Step stress ALT (SSALT) is one type of ALT where we increase the stress on all

lifetime units. Another type of ALT partially steps stress accelerated life testing (SSPALT),

where we increase stress on the part of lifetime units. Such testing could save much time and

cost. In a partially step-stress accelerated life test (SSPALT), the stress for survival units

is changed to a higher stress level at a pre-determined time ⌧ . Determination of the stress
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change times is one of the most important design problems in SSPALT. The method applies

normal use condition stress on each unit; if the unit didn’t fail at pre-specified time ⌧ , the

method apples higher than usual stress using the acceleration factor � > 1. We will give

more information about the method in chapter 3. Li (2009) discussed the optimal change

time ⌧ for SSALT when the unit has Weibull distribution because of its broad application

in industry.

Another method will be addressed here, which is the CRM. When the failure time has

many causes in survival analysis, we could assign a CRM. The observation here is a pair of

the time and the cause of the failure. Using this model, we can estimate a specific risk in

the presence of other risk factors. Competing risks arise in many fields, such as medical,

engineering, and many other contexts, when the death or failure of an individual or unit is

classified into one of a variety of types or causes Maller and Zhou (2002). This model will

be addressed in Chapter 4.

1.3 Basic Definitions

1.3.1 Order Statistics

Consider observing n independent identical distributed as x1, x2, . . . , xn. As ascending order,

the observations became, x1:n  x2:n  . . .  xn:n, where xi:n is the i-th order statistics.

All these observations have a continuous and non negative distribution as a failure time

distribution, with probability density function f (x), and cumulative distribution function

F (x). The joint density of the order statistics of an iid sample of size n is:

f (x1, . . . , xn) = n!
nY

i=1

f (xi) . (1.1)

In the case of usual order statistics from continuous populations, the marginal probability

density function of the i
th order statistic takes the simple form:

fXi:n (xi) =
n!

(i� 1)! (n� i)!
{F (xi)}i�1 {1� F (xi)}n�i

f (xi) .

The joint probability density function of the i
th and j

th order statistics takes the form:

fXi:n,Xj:n (xi, xj) = C ⇥ F (xi)
i�1 [F (xj)� F (xi)]

j�i�1 [1� F (xj)]
n�j

f (xi) f (xj) (1.2)

where,

C =
n!

(i� 1)! (j � i� 1)! (n� j)!
, xi < xj.
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Equations from 1.1 to 1.2 apply when the cumulative distribution is continuous. For

more information about order statistics we refer to Balakrishnan et al. (2000), Arnold et al.

(1992), and David and Nagaraja (2004).

1.3.2 The Hazard and Survival Functions

Survival analysis methods relies on studying the survival distribution by obtaining the sur-

vival and the hazard functions. The survival function defines the probability of surviving up

to a point x:

S (x) = P (X > x), 0 < x < 1.

The range of survival function will have a value of 1 at time 0 or at the beginning of the

study. Then, the survival function will be decreasing over time. We can define the hazard

function as:

h(x) = lim
�!0

P (x < X < x+ �|X > x)

�
.

This function is also known as the force of mortality. In addition to the survival and haz-

ard functions, there are several other ways to define a survival distribution. The cumulative

distribution function (CDF ), which is commonly used outside of survival analysis, is given

by:

F (x) = P (X  x), 0 < x < 1.

This function is the complement of the survival function, and both functions are continuous

only when the survival time is a continuous r.v. The probability density function:

f (x) =
d

dx
F (x) = � d

dx
S(x).

The probability density functions is the rate of change of the cumulative distribution

function, or minus the rate of change of the survival function. The hazard function is related

to the probability density and survival functions by:

h(x) =
f(x)

S(x)
.

The hazard at time x is the probability that an event occurs in the neighborhood of time

x divided by the probability that the subject is alive at time x. The cumulative hazard

function is defined as the area under the hazard function up to time x:

H(x) =

Z
x

0

h(u)du.
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The survival function could be defined in terms of the hazard and the cumulative hazard

functions by:

S(x) = exp(�
Z

x

0

h(u)du) = exp(�H(x)).

1.4 Types of Censoring and Acceleration Methods

Censoring of data can arise naturally due to the nature of the sampling or experimental

model; however, sometimes censoring can be an e�cient method of obtaining information

with regards to cost and time Volterman (2011). Several censoring methods available to

experimenters will describe the most well-known two schemes, type-I and type-II censoring

schemes. Next sections, we will give information on the left, right, and interval censoring

schemes.

1.4.1 Interval, left, and right censoring

In life testing, we could face analyzing data that involved censored duration of time called

interval censoring. The interval censoring is combining the right and the left censoring

schemes. For more illustration, consider a sample where we observe failures only in a pre-

determined interval (L,U), where L < U . Therefore, the exact failure time will be known

only if an item fails in the given interval. However, if the item fails in the interval (�1, L]

we call this as left-censored observation, and if the item fails in the interval, [U,1) we call

this as a right-censored observation. In interval-censored observation, we only know the

interval that it fails in. The most used among these censoring schemes in the field is the

right censoring as it is a special case of interval censoring. Besides, because the interval

censoring has a more complex structure, it provides less relevant information than the right-

censored data Klein et al. (2016). The interval censoring is applied when an event occurs

in an interval of time, but the exact time is unknown. The left censoring is used when the

censoring time occurred before the failure time.

The likelihood function for the interval censoring is:

nY

i=1

[S (li)� S (ri))] .

Here, we observe the interval in which the ith failure occurs, say Ii = (li, ri), i = 1, 2, · · · , n.
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The likelihood function for left censoring is:

nY

i=1

[f (xi)]
�i [1� S (xi)]

1��i
.

On the other hand, the right censoring applied when the event of interest occurred after the

failure time.

The likelihood function for right censoring is:

nY

i=1

[f (xi)]
�i [S (xi)]

1��i
.

Let �i = 1 if the failure time occurred, and �i = 0 if the observation is right or left cen-

sored. Therefore, in left censoring xi = max {Censoring T ime, Failure T ime}, on the other

hand, in right censoring xi = min {Censoring T ime, Failure T ime}. In all the following

schemes, we will use the right censoring data for all chapters of this dissertation.

1.4.2 Type I Censoring

The Type-I censoring was first introduced by Epstein (1954). In Type-I, consider n indepen-

dent units placed on a life-test at time 0 with identically distributed failure times X1, . . . , Xn

with cumulative distribution function F (x) and probability density function f (x). A time

T which is independent of the failure times is pre-assigned. Beyond this time, no failures

will be observed; therefore, the test terminates at time T . Thus, the number of the complete

lifetimes observed is a random variable. The likelihood function for Type – I is:

L (✓; x, r) =

(
JY

i=1

f (xi)

)
[S (T )]n�J

. (1.3)

1.4.3 Type II Censoring

Consider n independent and identical units are placed on a life-test at time 0. An integer

m < n is pre-assigned as the number of the observed failures. The test will be terminated

at the mth failure at which all remaining n � m surviving units will be removed from the

test. The likelihood function for Type – II is:

L (✓; x, r) = c

"
mY

i=1

f (xi)

#
[S (xm)]

n�m
, (1.4)

where c = n(n� 1) · · · (n�m+ 1).
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1.4.4 Progressively Type II Censoring

In Type – II censoring, n independent units are placed on a life-test with identically dis-

tributed failure times X1, . . . , Xn with cumulative distribution function F (x) and probability

density function f (x). In addition, the preassigned number of failures to be observed is m,

and hence, only m are completely observed until failure. In such cases, the progressively

Type-II right censoring scheme with random removals (R1, . . . , Rm) is taking place. For

more illustration, this censoring scheme works as follows; at the first failure (so the total

number of unit now is n � 1), R1 units are withdrawn from the test. At the second failure

(so the total number of unit now is n� 2�R1) R2 units are withdrawn from the life-testing

experiment or censored (i.e. no more information about it), and so on. At the time of mth

failure, all the Rm = n � m � R1 � . . . � Rm�1 surviving units are censored. Therefore,

the i
th observed data for the Type-II Right Censoring with random removals is a pair of

the failure time and the fixed removals units (Xi, Ri). Where X1, X2, . . . Xn is a random

sample of size n independent and identically distributed variables from a population with

cumulative distribution function F (x) Balakrishnan et al. (2000), the likelihood function for

the Progressively Type – II is:

L (✓; x, r) = c

mY

i=1

f (xi) [S (xi)]
Ri
, (1.5)

where c = n(n�R1 � 1) · · · (n�R1 �R2 � · · ·�Rm�1 �m+ 1).

Note, we can see that Type-II censoring is a special case of progressively Type-II censoring

where Ri = 0, for i = 1, . . .m� 1, and Rm = n�m.

Algorithm - Generating PT-II Data

Balakrishnan et al. (2000, p. 32) e�ciently generate a progressively Type-II right censored

sample from any continuous distribution using the following simple algorithm:

1. Generate m independent Uniform (0, 1) observations W1,W2, . . . .,Wm.

2. Set Vi = W

1
i+

Pm
j=m�i+1 Rj

i
for i = 1, 2, . . . ,m.

3. Set Ui:m:n = 1� VmVm�1 . . . Vm�i+1 for i = 1, 2, . . . ,m..

4. Set Xi:m:n = F
�1 (Ui:m:n) for i = 1, 2, . . . ,m. where F

�1 is the inverse cumulative

distribution function of the lifetime distribution under consideration.
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Binomial Removal Units

The number of removed items at each failure time are considered to follow a binomial dis-

tribution such that:

P (R, p) =
(n�m)!

(n�m�
P

m

i=1 ri)!
Q

m�1
i=1 ri!

p

Pm�1
i=1 ri (1� p)(m�1)(n�m)�

Pm�1
i=1 (m�i)ri

. (1.6)

We will generate random removals R and then apply them to the generated failure times

from STH (↵, �) distribution. For more information about the removals we refer to Sarhan

et al. (2008)

1.4.5 Accelerated Life Testing

In the traditional life data analysis, times-to-failure data of a product obtained under usage

conditions are analyzed to identify the life characteristics of the product, and to make predic-

tions about the product’s performance. In many situations, and for many reasons, obtaining

such life data may be di�cult or even impossible. The longer lifetimes of today’s products,

the shorter period between product design and release, and the more challenges in test-

ing products that are used continuously under usage conditions are among the di�culties.

Therefore, ALTs are developed to observe product failures to analyze their failure modes

and understand their life characteristics in a short time. Nelson (2009) provides accelerated

life tests (ALTs) or partially accelerated life tests (PALTs) resulting in shorter lives than

would be observed under normal operating conditions. In ALTs, the items are run only at

accelerated conditions (stress), whereas in PALTs they are run at both use and accelerated

conditions. Stress can be applied in various ways; commonly used methods are step-stress

and constant-stress. Under step-stress PALTs, a test item is first run at use condition and, if

it does not fail for a specified time, then it is run at accelerated condition until failure occurs.

But the constant-stress PALTs run each item at either use condition or accelerated condition

only; that is, each unit is run at a constant-stress level until the test is terminated. Acceler-

ated test stresses involve higher than usual temperature, voltage, pressure, load, humidity,

etc., or some combination of these. The objective of PALTs is to collect more failure data

in a limited time without necessarily using high stresses to all test units. ALTs are often

used for reliability analysis. According to step-stress ALTs scheme, a test unit is subjected

to successively higher levels of stress. ALTs can be applied only if the relation that relates
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between the life and stress is known or can be assumed; if not, ALTs cannot be applied and

PALTs are a good alternative method to use in reliability analysis via a tampered random

variable model proposed by DeGroot and Goel (1979). This model is described as Y = T , if

T  ⌧ ; and ⌧ + �
�1 (T � ⌧), if T > ⌧ ; where T is the lifetime of an item at use condition, Y

is its total lifetime, ⌧ is the stress change time, and � is the acceleration factor. The intent of

such experiments is to collect more failure data in a limited time without necessarily using a

high stress to all test units. Bhattacharyya and Soejoeti (1989) indicated, step-stress PALTs

are practical for many problems of life testing where the test process requires a long time if

the test is simply carried out under the normal condition.

1.5 Competing Risks Models

1.5.1 Independent Competing Risks

Two competing risks are considered independent if information about a subject’s risk of ex-

periencing one type of event provides no information about the subject’s risk of experiencing

the other type of event. One cannot formally test whether competing events are indepen-

dent of one another. In medical/epidemiological applications, biology often suggests at least

some dependence between competing risks. Hence, we might assume the dependence between

causes through a bivariate distribution to study their dependency. Independent competing

risks data is performed under the assumption that the causes of failure are independent.

The sample n in this model consisted of a failure time xi and an indicator �i for the cause

of failure, where i = 1, . . . , n and hence, our data will be a pair of (xi, �i). Hence, all that

we considered is a time and a cause for each i observation, i = 1, . . . , n. The failure time x

is taken to be a continuous variable, and the indicator �i can take one of a fixed number of

values labelled 1, . . . j as a discrete variable, where j is the specific cause of failure Crowder

(2001). This dissertation will focus on two causes with our proposed failure time distribution.

1.5.2 Dependent Competing Risks

For independent competing risks, the failure times are often restricted to follow a univariate

known distribution. However, the independence assumption among the causes of failure may

be inappropriate. For example, the breakdown of one airplane engine will cause additional

pressure on other remaining engines and thus increase the risk of the airplane itself. Another
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example is if a patient su↵ering from severe eye disease goes blind in one eye, the other eye

may face a higher risk of blindness. These two examples imply that dependence between risks

may exist. Hence, it is more reasonable to assume the dependence among the causes of failure

Shen and Xu (2018). Also, we can see from these two examples that the cause of failure

could be any cause or both causes, and hence, we need to study their dependency. Bivariate

lifetime distributions play an essential role in modelling dependent competing risks when

there are two dependent causes of failure. The data here will be the same in the independent

case, and also, we will assume a known bivariate multivariate distribution to study their

e↵ects on each other. In further sections, we will give more information about the bivariate

multivariate distribution and how to apply it to the dependent competing risks model.

1.6 Useful lifetime distributions

1.6.1 STH distribution

Sarhan et al. (2014b) proposed the STH distribution. LetX be a random variable which have

failure times from the STH(2) with the parameters ↵,�. The probability density function,

and the survival function, take the following forms:

f (x) =
↵�x

↵�1

1 + �
[� + (1 + 2�x↵) exp {��x↵}] exp {��x↵}; x � 0;↵, � > 0, (1.7)

S (x) =
1

1 + �
[� + (1 + �x

↵) exp {��x↵}] exp {��x↵}; x � 0;↵, � > 0. (1.8)

The probability density function of the STH distribution is a mixture density of two

mixture components. The first follows Weibull(↵, �) and the second is also a two independent

component series system with Weibull(↵) and Power Gamma (↵, 2, �), with mixture weights:

a1 =
�

(1 + �)
, a2 =

1

(1 + �)
. (1.9)

Therefore, STH (↵, �) can be expressed in term of Weibull(↵) and Power Gamma (↵, 2, �),

however we could also generate by using the previous algorithm for STH (�) Sarhan et al.

(2014b), and then, we use the transformation:

Y = X
1
↵ . (1.10)

12



1.6.2 Chen Distribution

Let X be a random variable, which have Chen (⌘,�) distribution. The density function, the

survival function, and the cumulative distribution function takes the following forms: (⌘,�)

are all shape parameters.

f (x) = ⌘�x
��1 exp

n
⌘

⇣
1� e

x
�
⌘
+ x

�

o
; x � 0, ⌘,� > 0, (1.11)

S (x) = exp
n
⌘

⇣
1� e

x
�
⌘o

; x � 0, ⌘,� > 0, (1.12)

F (x) = 1� exp
n
⌘

⇣
1� e

x
�
⌘o

; x � 0, ⌘,� > 0. (1.13)

To generate failure times X from the cumulative distribution function F (.), we can

generate U from Uniform(0, 1), then set X = F
�1 (U) to be a random variate from F (.). In

Chen distribution, we set:

u = 1� exp
n
⌘

⇣
1� e

x
�
⌘o

! exp
n
⌘

⇣
1� e

x
�
⌘o

= 1� u,

! x = �

s

log

⇢
1� log u

⌘

�
! x =

✓
log

⇢
1� log u

⌘

�◆ 1
�

.

1.6.3 Weibull Distribution – Two parameters

Let X be a random variable which have a two parameters Weibull distribution with param-

eters � the shape parameter, ↵ the scale parameter, and µ = 0. The density function, the

survival function, and the cumulative distribution function takes the following forms:

f (x) =
�

↵

⇣
x

↵

⌘��1

exp
n
�
⇣
x

↵

⌘�o
; x � 0,↵, � > 0, (1.14)

S (x) = exp
n
�
⇣
x

↵

⌘�o
; x � 0, �,↵ > 0, (1.15)

F (x) = 1� exp
n
�
⇣
x

↵

⌘�o
; x � 0, �,↵ > 0. (1.16)
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To generate failure times X from the cumulative distribution function F (.), we can

generate U from Uniform(0, 1), then set X = F
�1 (U) to be a random variate from F (.). In

the two parameters Weibull distribution, we set:

u = 1� exp
n
�
⇣
x

↵

⌘�o
! exp

n
�
⇣
x

↵

⌘�o
= 1� u

! x = (�↵� log u)
1
� .

1.6.4 Gamma Distribution

Let X be a random variable which have the general formula for the three parameters gamma

distribution ↵, µ, � (shape, location, and scale parameters respectively). The density function

takes the following form:

f (x) =

⇣
x�µ

�

⌘↵�1

exp
n
�x�µ

�

o

�� (↵)
x � µ,↵, � > 0. (1.17)

When µ = 0, and the scale parameter � = 1, we reduced the previous density to the stan-

dard gamma distribution. The density function, the survival function, and the cumulative

distribution function takes the following forms:

f (x) =
x
↵�1 exp {�x}

� (↵)
; x � 0,↵ > 0, (1.18)

F (x) =
�x (↵)

� (↵)
; x � 0,↵ > 0, (1.19)

S (x) = 1� �x (↵)

� (↵)
; x � 0,↵ > 0, (1.20)

where

� (↵) =

Z 1

0

y
↵�1 exp {�y}dy, and

�x (↵) =

Z
x

0

y
↵�1 exp {�y}dy.
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1.6.5 Modified Weibull Distribution

LetX be a random variable which have the general formula for the three parameters modified

Weibull distribution ↵, �, �, where ↵ is scale parameter, � and � are shape parameters. The

density function, the survival function, and the cumulative distribution function takes the

following forms:

f (x) = (↵ + ��x
��1) exp {�↵x� �x

�}; x � 0,↵, �, � > 0, (1.21)

S (x) = exp {�↵x� �x
�}; x � 0,↵, �, � > 0, (1.22)

F (x) = 1� exp {�↵x� �x
�}; x � 0,↵, �, � > 0, (1.23)

where ↵ > 0, ↵, � � 0 such as ↵ + � > 0.

1.6.6 Modified Weibull Extension Distribution

Let X is a random variable which have MWE (�,↵, �) distribution. Here ↵ and � are scale

parameters while � is a shape parameter. The density function, the survival function, and

the cumulative distribution function takes the following forms:

f (x) = ��

⇣
x

↵

⌘��1

exp
n
↵�

⇣
1� exp

n⇣
x

↵

⌘�o⌘
+
⇣
x

↵

⌘�o
x � 0,↵, �,� > 0, (1.24)

S (x) = exp
n
�↵

h
1� e

( x
↵)

�io
; x � 0,↵, �,� > 0, (1.25)

F (x) = 1� exp
n
�↵

h
1� e

( x
↵)

�io
; x � 0,↵, �,� > 0. (1.26)

To generate failure times X from the cumulative distribution function F (.), we can

generate U from Uniform(0, 1), then set X = F
�1 (U) to be a random variate from F (.). In

MWE distribution, we set:

u = 1� exp
n
�↵

h
1� e

( x
↵)

�io
! exp

n
�↵

h
1� e

( x
↵)

�io
= 1� u,

!
✓
log

⇢
1� log (u)

�↵

�◆ 1
�

=
x

↵
! x = ↵

✓
log

⇢
1� log (u)

�↵

�◆ 1
�

.
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1.7 Structure of the Dissertation

This dissertation will investigate various inferential aspects for single and multiple samples

through simulations under PHC, SSPALT and competing risks. Throughout most of this

dissertation, it will be assumed that the underlying distribution is STH. Some methods for

point estimation and confidence intervals are discussed in the following chapters.

Chapter 2 will give a detailed introduction to the progressively hybrid censoring PHC

method. We describe how to construct a point estimate using a numerical technique for

the maximum likelihood and Bayesian estimations since there is no closed form of STH

distribution. Then, we have considered the problem of estimation the model parameter of two

parameters STH distribution. The maximum likelihood estimation and Bayesian estimation

briefly discuss the likelihood for all possible cases. Then, we analyze actual data using PHC

with STH distribution and other distributions for illustrative purposes. Simulations have

been done to test the method’s performance with di↵erent parameter values. The expected

experimentation time was discussed and performed under the STH distribution. We provide

some algorithms regarding the simulation to estimate the parameters and to calculate the

expected experimentation time under di↵erent censoring schemes.

Chapter 3 will describe step stress partially accelerated life testing (SSPALT) with STH

distribution. A general design for SSPALT is first presented, followed by a summary of

the literature related to this dissertation. Maximum likelihood and Bayesian estimations

were obtained for SSPALT using STH distribution. Next, we determined the optimal change

stress time ⌧ , using di↵erent parameters’ values. In addition, we have combined the SSPALT

with the PHC in a simulation after determining the optimal change time ⌧ . A further study

for the optimal change time ⌧ was conducted. For illustration, to precisely estimate the

product survival at increased stress, we have to use a criterion to minimize the generalized

asymptotic variance (GAV) of the maximum likelihood estimates of the model parameters

and the acceleration factor. This criterion will lead to the test’s optimal design, yielding the

most accurate estimates of a lifetime at the increased stress. Algorithms on how to perform

SSPALT simulation or SSPALT – PHC simulation were presented. A separate algorithm

for the optimal change time ⌧ is concluded. Real data is investigated using three di↵erent

distributions. We estimate the parameters and the acceleration factor for each distribution.

In Chapter 4, we will address competing risks model CRM. A complete introduction to

the CRM and the Modified Weibull Extension distribution is introduced. We discuss the
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Bivariate Modified Weibull Extension BMWE distribution and some of its basic properties.

The dependent competing risks model is presented. The maximum likelihood method us-

ing bivariate data and dependent competing risks data is discussed. Data generation and

simulation results are obtained to assess the method’s performance. Two real data sets are

investigated using the new proposed distribution and compared with the bivariate Chen

distribution BCD.
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Chapter 2

Progressively Hybrid Censoring

2.1 Introduction

Product reliability, and more broadly, quality assurance, are of fundamental importance

to the manufacturing sector, and one of the primary aspects of reliability analysis is the

estimation of product lifetime. Balakrishnan et al. (2000) provide a good review of statistical

methods for the design and analysis of experiments to assess reliability. Balakrishnan et al.

(2023) gave on the topic of hybrid censoring, with a focus on recent advancements.

Lifetime data often exhibit censoring, and in the industrial setting, this is most often right

censoring. Censoring may be out of the experimenter’s control, for example due to accidental

breakage of an experimental unit, or, in the medical context, due to subject drop out or loss

to followup Aggarwala (2001). In the industrial setting, experimental units may be removed

from study prior to failure in order to expedite completion of an experiment and/or, to

free testing units for further experimentation. In this case, the experimenter might apply

a censoring scheme using preassigned removals. One such censoring scheme is progressively

hybrid censoring (PHC), in which censoring times are preassigned to the experimental units.

The use of PHC will typically allow for inferences on the underlying survival time distribution

while reducing the overall time to complete the experiment, although one must be careful to

assess the properties of the associated estimators, particularly when proportion of censored

units is high. Kundu and Joarder (2006), discuss PHC with an underlying exponential

failure time distribution, and Kundu (2007) extends this to PHC with a two parameter

Weibull distribution.

Statistical distributions are used to model lifetime data. Exponential and Weibull distri-

butions are the commonly used distributions in the literature. They are flexible to model sur-

vival/reliability data. However, they have limitations since the hazard rate function (HRF)

for exponential can only be constant, and the HRF for Weibull can be constant or decreasing

or increasing. Therefore they can not be suitable for data sets that show non monotonic haz-

ard shape such as unimodal or bathtub or increasing-decreasing-increasing hazard shapes.
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Thus, numerous researchers developed new distributions that utilize non-monotonic hazard

function. Among those distribution, for example, the exponentiated Weibull distribution

Mudholkar and Srivastava (1993b), the generalized linear failure rate distribution Sarhan

and Kundu (2009), the generalized quadratic hazard rate distribution Sarhan (2009b), new

generalized Weibull distribution Zaindin and Sarhan (2011), the exponentiated generalized

linear exponential distribution Sarhan et al. (2013b), the exponentiated modified Weibull ex-

tension distribution Sarhan and Apaloo (2013a), Power Lindley distribution Ghitany et al.

(2013), Sarhan-Tadj-Hamilton distribution Sarhan et al. (2014b), and the odd generalized

exponential two-parameter bathtub shaped distribution Sarhan and Mustafa (2022b).

The main aim of this chapter is to use progressively hybrid censored samples under the

assumption that the lifetime of tested units follow Weibull, power Lindley (PL), and Sarhan-

Tadj-Hamilton (STH). The reasons of using these distributions are, they are flexible in

analyzing di↵erent types of lifetime data that display non-monotonic and monotonic hazard

rate shapes and also they have some similarities in their properties. Similarly we can extend

the results to any other lifetime distribution.

The rest of the chapter is organized as follows. In Section 2.2, we present the model

description and assumptions. Section 2.3 discusses how to generate random samples. Es-

timation methods are discussed in Section 2.4. Applications on three real data sets are

discussed in Section 2.5. Simulation study is given in Section 2.6. Section 2.7 discusses

the expected experimentation time. The chapter is concluded in Section 2.8. Finally, some

derivatives are given in the Appendix.

2.2 Assumptions

The following assumptions are adopted throughout this study. Suppose that n independent

and identical items are put on the life test at time 0. The test is terminated either at the

mth failure (m  n, where m is predetermined) or at a prefixed termination time T > 0,

whichever comes first. At the 1st failure, say X1:m:n, we randomly remove R1 � 0 of the n�1

remaining items on the test, at the 2nd failure, say X2:m:n, we randomly remove R2 � 0 of

the n� 2�R1 remaining items on the test. We keep doing the same until the experiment is

terminated. If the mth failure Xm:m:n occurs before the termination time T , the experiment

terminates at Xm:m:n, and all remaining Rm = n�R1� · · ·�Rm�1�m units will be removed

from the test. However, if themth failure does not occur before T and only at most J failures
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have occurred before T , J < m, in this case all the remaining R
⇤
J
= n� (R1 + . . .+RJ)� J

items will be removed from the test, and the experiment is terminated at T .

This experiment produces two cases of data sets, Case-I and Case-II, respectively. Figure

2.1 displays a chart that summarizes this lifetime experiment. The available observations

obtained in the two cases are summarized below.

Case-I:

{(X1:m:n, R1), . . . , (Xm:m:n, Rm)} and Xm:m:n < T. (2.1)

Case II:

{(X1:m:n, R1), . . . , (XJ :m:n, RJ)} and XJ :m:n < T < XJ+1:m:n. (2.2)

The number of removals, Rj, j = 1, 2, · · · ,m(Case-I) or J(Case-II), is assumed to be random

from binomial distribution with number of trials nj = n � j �
P

j�1
i=1 Ri and probability of

success p.

Figure 2.1: Case-I and Case-II Progressively Hybrid Censoring scheme.

Finally, let f(x; ✓) and S(x; ✓) be the probability density function (PDF) and the survival

function (SF) of the underlying item. Table 2.1 shows the PDF and SF for the list of

distributions used in this research.
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Model S(x; ✓) f(x; ✓)

Weibull(W) e
�↵x�

↵�x
��1

e
�↵x�

PL
1 + �(1 + x

↵)

� + 1
e
��x↵ ↵�

2

� + 1
(1 + x

↵)x↵�1
e
��x↵

STH
� + (1 + �x

↵) e��x
↵

1 + �
e
��x↵ ↵�x

↵�1
⇥
� + (1 + 2�x↵) e��x

↵⇤

1 + �
e
��x↵

Table 2.1: List of the lifetime distributions implemented here.

The main reasons of using these distributions are: (1) each of them has two parameters;

(2) their hazard rate function takes di↵erent shapes. The hazard rate function of Weibull

distribution can be monotonic (increasing or decreasing) or constant. The hazard rate func-

tion of each of the PL and STH can be monotonic or bathtub shape of upside down bathtub

shape and other non-monotonic shapes, which make these two distributions more flexible to

fit di↵erent types of lifetime data sets.

2.3 Random Sample generation

In this section we explain how to generate progressively hybrid censored random samples.

We start with an algorithm that uses a complete sample to generates a progressively Type-

II censored sample with random removals. Then we present an alternative algorithm that

generate a progressively Type-II censoring sample without having the original complete

version. Then we discuss another algorithm to use the generated progressively Type-II

censoring sample to generate a progressively hybrid censored sample.

Algorithm 1:

1. Given a complete sample Y1, Y2, · · · , Yn, with size n.

2. Specify m, pre-determined number of failures, and the probability of removal of any

item from the test, p.

3. Generate the random removals as follows:

(a) Generate R1 from binomial distribution with number of trials equals n �m and

probability of success equals p. That is, R1 ⇠ Binom(n�m, p),

(b) For i = 2, 3, · · · ,m� 1, generate Ri ⇠ Binom
⇣
n�m�

P
i�1
j=1 Rj, p

⌘
,
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(c) Set Rm = n�m�
P

m�1
j=1 Rj.

4. For i = 1, 2, · · · ,m:

(a) Set Xi = min{Y } and update Y by removing Xi form it.

(b) If Ri > 0 do the following:

i. Randomly generate Ri locations from 1 to the size of Y ,

ii. Remove those values of Y that are located in the generated locations from to

get an update Y .

This algorithm will produce a progressively Type II censored sample (X1, R1), (X2, R2), · · · ,
(Xm, Rm) of the complete sample Y1, Y2, · · · , Yn.

The following Algorithm can be used to generate a progressively Type-II censoring sample

(X1, R1), (X2, R2), · · · , (Xm, Rm) from a specific continuous distribution, with a cdf F (.),

directly without have a complete sample, Balakrishnan et al. (2000).

Algorithm 1.A:

1. Specify the values of n,m, and p.

2. Generate the random removals R1, R2, · · · , Rm as we did in Step 3 of Algorithm 1.

3. Generate the m time to failures, X1, X2, · · · , Xm, as follows:

(a) Generate m independent values W1,W2, . . . .,Wm from Uniform(0, 1) distribution.

(b) Set Vi = W

1

i+
P

m

j=m�i+1 Rj

i
for i = 1, 2, . . . ,m.

(c) Set Ui:m:n = 1� VmVm�1 . . . Vm�i+1 for i = 1, 2, . . . ,m.

(d) Set Xi:m:n = F
�1 (Ui:m:n) for i = 1, 2, . . . ,m, where F

�1 is the inverse function of

F (.).

Algorithm 2:

1. Given a progressively Type II censored sample: (X1, R1), (X2, R2), · · · , (Xm, Rm). Set

n = m+
P

m

i=1 Ri.

2. Specify the termination time T .
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3. Set D = 0; for i = 1, 2, · · · ,m, do

(a) If Xi < T ,

i. set: D = D + 1;

ii. Keep (Xi, Ri),

else stop.

4. If D = m, then we have Case I, else set J = D and R
⇤
J
= n � J �

P
J

j=1 Rj and we

have Case II.

For simplicity, from now on, we will use either Xi or X(i) instead of Xi:m:n, and (xi, Ri) as a

realization of (Xi, Ri).

2.4 Estimation Methods

In this section, we discuss how to implement the maximum likelihood and Bayesian methods

to estimate the model parameters based on progressive hybrid censoring (PHC) samples.

2.4.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is one of the most commonly used methods for

estimating the parameters in statistical literature.

Based on the given data from progressively hybrid censoring samples of Case I, (Xi:m:n, Ri) =

(xi, Ri), i = 1, 2, · · · ,m, the likelihood function is:

LI (✓; data) = c

mY

i=1

f (xi; ✓)S (xi; ✓)
Ri

, (2.3)

where c = n (n�R1 � 1) . . . (n�R1 �R2 � . . .�Rm�1 �m+ 1).

Based on the given data from progressively hybrid censoring samples of Case II, T , R⇤
J
,

(Xi:m:n, Ri) = (xi, Ri), i = 1, 2, · · · , J < m, the likelihood function is:

LII (✓; data) = k

JY

i=1

f (xi; ✓)S (xi; ✓)
Ri
S (T ; ✓)R

⇤
J , (2.4)

where k = n (n�R1 � 1) . . . (n�R1 �R2 � . . .�RJ�1 � J + 1)R⇤
J
/(n� J).

In the following, we will present the log-likelihood functions when the lifetime of tested

units follow STH distribution as a main model. Similarly, we can derive the log-likelihood

23



functions under the assumption that the lifetime of the test units follow either Weibull or

PL distribution.

Substituting the pdf and sf of STH(↵, �) distribution, given in Table 2.1, into equation

2.3, we get the log-likelihood function for progressively hybrid censoring data, Case I, as:

LI (✓; data) / m log (↵) +m log (�)�
"
m+

mX

i=1

Ri

#
log (1 + �) + (↵� 1)

mX

i=1

log (xi) +

��
mX

i=1

(1 +Ri)x
↵

i
+

mX

i=1

logAi (↵, �) +
mX

i=1

Ri logCi (↵, �) , (2.5)

where Ai (↵, �) = � + (1 + 2�x↵
i
) e��x

↵
i and Ci (↵, �) = � + (1 + �x

↵

i
) e��x

↵
i .

Substituting the pdf and sf of STH(↵, �) distribution into equation 2.4, we get the log-

likelihood function for progressively hybrid censoring data, Case II, as

LII (✓; data) / J log (↵) + J log (�)�
"
J +R

⇤
J
+

JX

i=1

Ri

#
log (1 + �) +

(↵� 1)
JX

i=1

log (xi)� �

"
JX

i=1

(1 +Ri)x
↵

i
+R

⇤
J
T
↵

#
+

JX

i=1

logAi (↵, �) +

JX

i=1

Ri logCi (↵, �) +R
⇤
J
logD(↵, �) , (2.6)

where D (↵, �) = � + (1 + �T
↵) e��T

↵
.

As it is well known, to get the maximum likelihood point estimates (MLE) for the pa-

rameters ↵ and �, we should maximize the log-likelihood function with respect to ↵ and �.

This can be done by solving the likelihood equations that can be obtained by setting the

first partial derivatives of the log-likelihood function with respect to the unknown param-

eters equal to zero. The MLE’s are the solution of the likelihood equations at which the

Fisher information matrix is positive definite. The Fisher information matrix consists of the

second partial derivatives of the log-likelihood function with respect ↵ and �. This system

of likelihood equations has no analytic solution, so numerical methods using R code shall

be used here. We will present the first and second partial derivatives of the log-likelihood

functions LI and LII in the Appendix.
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2.4.2 Bayesian Estimation

In this section, we will use the Bayesian method to infer the unknown parameters ↵ and

� of the STH distribution under progressively hybrid censored samples. It is assumed here

that ↵ and � are independent random variables that follow gamma prior distributions with

hyperparameters (a1, a2) and (b1, b2), respectively. The joint posterior density function of

✓ = (↵, �), up to a normalized constant, using PHC data of case I and case II can be

expressed as

g(✓|data) / exp {L(✓; data) + (a1 � 1) log↵ + (b1 � 1) log � � a2↵� b2�} , (2.7)

where L is replaced with LI and LII , for the PHC cases I and II, respectively.

Under the squared error loss function, the Bayes estimate of ↵ and � are the posterior

expected values, given respectively by

↵̃ =

1RR
0

exp {L(✓; data) + a1 log↵ + (b1 � 1) log � � a2↵� b2�} d↵ d�

1RR
0

exp {L(✓; data) + (a1 � 1) log↵ + (b1 � 1) log � � a2↵� b2�} d↵ d�

, (2.8)

and

�̃ =

1RR
0

exp {L(✓; data) + (a1 � 1) log↵ + b1 log � � a2↵� b2�} d↵ d�

1RR
0

exp {L(✓; data) + (a1 � 1) log↵ + (b1 � 1) log � � a2↵� b2�} d↵ d�

. (2.9)

The integrals in equations 2.8 and 2.9 do not have analytic solutions. Therefore, numerical

approximation methods should be applied to obtain the Bayes point and interval estimations

of the model parameters. Markov chain Monte Carlo (MCMC) is one of the most power-

ful techniques that can be used to approximate the joint posterior distributions without

computing such integrals. The following subsection discusses the MCMC.

Markov Chain Monte Carlo

Instead of approximating the integrals stated above, we can use Markov chain Monte Carlo

(MCMC) method to simulate random draws from the joint posterior distribution of ✓ =

(↵, �), without computing the normalizing constant in equation 2.7. The main idea of

MCMC is to draw random samples from a proposal distribution that mimics the posterior
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distribution. The simulated draws from the proposal function can be accepted under certain

acceptance criteria to be simulated draws from the posterior distribution. For more infor-

mation on the MCMC, we refer to Albert (2009). There are di↵erent versions of algorithms

that can be used to implement the MCMC. In this chapter, we apply Metropolis-Hastings

algorithm that is summarized in the following subsection.

Metropolis- Hastings algorithm

This algorithm can be described as follows:

1. Chose a candidate function to simulate from.

2. Set an initial starting point ✓0 = (↵(0)
, �

(0)) and an integer number N .

3. For t = 1, 2, . . . , N :

(a) Simulate a candidate value ✓⇤ = (↵⇤
, �

⇤) from the proposal function p (✓⇤|✓t�1).

(b) Compute the ratio:

R =
g (✓⇤|data) p (✓t�1|✓⇤)
g (✓t�1|data) p (✓⇤|✓t�1)

.

(c) Compute the acceptance probability P = min {1, R}.

(d) Set ✓t equals ✓⇤ with probability P , and ✓t�1 with probability 1� P .

Under some regularity conditions on the proposal function p (✓⇤|✓t�1), this algorithm pro-

duces a sequence of non-independent random draws ✓1, ✓2, · · · , ✓N from the posterior distri-

bution in equation 2.7. Ignoring the early N �M burn-in elements in the sequence {✓t}Nt=1

will produce a sequence of M draws {✓t}Nt=N�M+1 from the posterior distribution. This se-

quence can be used to draw Bayesian inference of any function of the model parameters

✓ = (↵, �), say v(✓). Under the squared error loss function, the Bayes estimate of v(✓) is the

posterior mean of v(✓), that can be approximated as

ṽ(✓) = E[v(✓)|data] =
P

N

i=N�M+1 v(✓i)

M
.

The two-sided (1�#)100% probability intervals for v(✓) can be approximated as the #

2 100
th

and (1 � #

2 ) 100
th percentiles of v(✓N�M+1), v(✓N�M+2), · · · , v(✓N). Note, to estimate the

parameters ↵ and �, we use v(✓) = ↵ and v(✓) = �, respectively.
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Choosing the proposal distribution in MCMC is one of the challenges. Such distribution

should satisfy basic conditions. Among them: (1) it should mimic the posterior distribution;

and (2) it is easy to simulate from. Since the posterior distribution is not of a well known

form, then we can approximate condition (1) by looking for a candidate that has the same

support as the model parameters. For the problem discussed in this chapter, ↵, � > 0 can

be mapped to the real line by using their log-transformation. That is, log↵ and log � 2
(�1,1). Therefore, we can us the bivariate normal distribution of ✓ = (log↵, log �) as the

proposal distribution which satisfies the above two conditions. We will use the MLE and

the corresponding Fisher information matrix of ✓ = (log↵, log �) as the mean and variance

matrix of the bivariate normal proposal distribution.

2.5 Data Analysis

This section, we analyze three real-life data sets. We begin the analysis of every data set

by checking the shape of its hazard rate. This can be done by using the total time on test

transform plot, as a non-parametric test. In the context of a lifetime distribution charac-

terized by a survival function denoted as S(x) = 1 � F (x), the computation of the scaled

TTT-transform involves the formula �(u) = H
�1(u)
µ

, where H�1(u) =
R
F

�1(u)

0 S(x)dx is valid

for 0 < u < 1, and µ = H
�1(1). When considering empirical scenarios, the approximation

of the scaled TTT-transform takes the form

�̂n(i/n) =
H

�1
n

(i/n)

H�1
n

(1)
=

" 
iX

j=1

xj:n

!
+ (n� i)xi:n

#
/

 
nX

j=1

xj:n

!

where i varies from 1 to n, and xi:n, i = 1, . . . , n represents the i-th order statistics of

the sample. A seminal contribution by Aarset (1987) demonstrates that the scaled TTT-

transform displays convexity (concavity) in the case of a declining (increasing) hazard rate.

Moreover, for distributions with bathtub (unimodal) hazard rates, the scaled TTT-transform

exhibits an initial convex (concave) pattern followed by a concave (convex) shape. For more

information on the TTT-Transform plot we refer to Bergman (1977). Figure 2.2 shows the

TTT-Transform plots for the three data sets.
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Figure 2.2: The TTT-transform plots for the three data sets I, II and III.

We use three proposed distributions Weibull(W), Power Lindley (PL) and Sarhan-Tadj-

Hamilton (STH) to fit these three data sets under di↵erent scenarios (complete and progres-

sively hybrid censored versions). The three underlying distributions do not belong to the

same family of distributions, therefore to compare their performance, we can use the Akaike

information criterion (AIC) Akaike (1974) and/or the Bayesian Information Criterion (BIC)

Schwarz (1978) defined, respectively, as

AIC = �2L+ 2k ,

BIC = �2L+ k log (n) ,

where L is the log likelihood function, k is the number of model parameters, and n is the

sample size. The best model in the list of distributions compared is the one that minimizes

the values of these criteria, in both cases. We used maximum likelihood method to compute

the point estimates of each model’s parameters. We will see in the results for all three data

sets that STH distribution is the best fit among the three candidate distributions. Because of
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this, we only explored the behaviour of the Bayes method to estimate the STH distribution

parameters.

Table 2.2 displays the MLE of the three models parameters, the corresponding L, AIC
and BIC using the three data sets.

Model MLE L AIC BIC

Data - I

Weibull ↵̂ = 0.02701, �̂ = 0.9492 -241.002 486.004 489.828

PL ↵̂ = 0.664, �̂ = 0.161 -242.087 488.175 491.999

STH ↵̂ = 0.892, �̂ = 0.026 -239.838 483.676 487.500
Data - II

Weibull ↵̂ = 0.00028, �̂ = 1.0312 -321.159 646.3187 649.4858

PL ↵̂ = 0.6639, �̂ = 0.0113 -322.508 649.0153 652.1823

STH ↵̂ = 0.9352, �̂ = 0.00046 -320.595 645.1907 648.3577
Data - III

Weibull ↵̂ = 0.01819282, �̂ = 1.793059 -167.153 338.3054 342.3915

PL ↵̂ = 1.2523, �̂ = 0.1256 -168.056 340.1116 344.1977

STH ↵̂ = 1.638032, �̂ = 0.019898 -166.638 337.2753 341.3615

Table 2.2: Values of MLE’s, L, AIC and BIC for the models used based on the the complete
samples.

Data set I: This data set, was originally given by Aarset (1987), contains the lifetimes (in

weeks) of 50 devices, and is given below:

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50,

55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

The TTT-Transform plot for this data set is shown in Figure 2.2, which shows that the

data have a bathtub hazard shape. Therefore, we expect that PL and STH distributions

can fit this data set better than Weibull distribution. Then we used the three models (W,

PL, and STH) to fit this complete data set and two generated samples of PHC that are

given in Table 2.3. The two PHC samples of the data set are obtained from the complete

sample when: (1) m = 25, p = 0.3 and T = 86; and (2) m = 25, p = 0.3, T = 80, J = 20

and R
⇤
J
= 5. Note, sample 1 is of case I, and sample 2 is of case II of progressive hybrid

censoring. The results of the maximum likelihood method for these samples (complete and

progressively hybrid) are shown in Tables 2.2 and 2.4. Based on the AIC and BIC test

statistic values, we can see that STH is the best fit among the above mentioned models for
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all versions of this sample.

Progressive hybrid sample 1: m = 25, T = 86 (Case-I)
(0.1, 10) (0.2, 2) (1, 3) (1, 2) (1, 1) (1, 3) (11, 0) (12, 0) ( 18 , 0 )
(18, 2) (18, 0) (18, 0) (32, 0) (36, 2) (40, 0) (47, 0) (60, 0) (63, 0)
(67, 0) (67, 0) (67, 0) (82, 0) (84, 0) (84, 0) (85, 0)

Progressive hybrid sample 2: m = 25, T = 80, J = 20, R⇤
J
= 5 (Case-II)

(0.1, 7) (0.2, 5) (1, 5) (1, 1) (1, 0) (3, 4) (6, 2) (7, 0) (12, 0)
(18, 0) (18, 1) (18, 0) (21, 0) (36, 0) (40, 0) (45, 0) (46, 0) (47, 0)
(67, 0) (79, 0)

Table 2.3: The progressively hybrid samples (Xi:m:n, Ri), i = 1, 2, · · · ,m(J), of data I.

Model MLE L AIC BIC

Progressively hybrid sample 1

Weibull ↵̂ = 0.043, �̂ = 0.849 �117.453 238.907 242.731

PL ↵̂ = 0.619, �̂ = 0.199 �117.811 239.623 243.447

STH ↵̂ = 0.798, �̂ = 0.041 �116.913 237.826 241.65
Progressively hybrid sample 2

Weibull ↵̂ = 0.084, �̂ = 0.646 �96.213 196.422 200.244

PL ↵̂ = 0.498, �̂ = 0.284 �96.361 196.721 200.544

STH ↵̂ = 0.598, �̂ = 0.081 �96.141 196.294 200.118

Table 2.4: Values of MLE’s, L, AIC and BIC for the models used based on the PHC versions
of data I.

We also used the PHC samples for this data set, to compute the Bayes estimates of the

STH distribution parameters using the Bayes method when the hyperparameters are all equal

and equal to 0.001 (that reflects non-informative prior distribution of the two parameters).

We applied MCMC with N = 10000 and the proposal as a bivariate normal distribution of

✓ = (✓1, ✓2) = (log↵, log �) with mean equals the MLE of (✓1, ✓2) and variance equals the

variance-covariance matrix of the MLE of (✓1, ✓2). For PHC sample 1 of data I, the proposal

distribution is bivariate normal with mean (log(0.798), log(0.0405)) = (�0.225,�3.204) and

variance-covariance

F =

 
0.02624706 �0.08181659

�0.0818165 0.28649884

!

We discarded the early 2000 draws and we used the remaining 8000 draws to compute

the Bayes point estimates and the 95% Bayes probability intervals of ↵ = e
✓1 and � = e

✓2 as
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shown in Table 2.5. We followed the same procedure of Bayes method for PHC sample 2 of

data I and all PHC samples of data II and data III.

Parameters Bayes PE 95% PI Bayes PE 95% PI

Sample 1 Sample 2
↵ 0.7805 (0.55618, 1.06849) 0.5862 (0.40544, 0.81602)

� 0.0407 (0.01261, 0.11122) 0.0789 (0.03144, 0.16445)

Table 2.5: Bayes results for STH parameters using the two generated progressive hybrid
samples of data I.

As diagnostic tests for the MCMC applied here, we provide the autocorrelation and the

scatter plots for the random draws of (✓1, ✓2) as shown in figures 2.3 and 2.4. Also in Figure

2.4, we provide the the marginal posterior density functions of the original parameters ↵ and

�.

Figure 2.3: The autocorrelation plots for the random draws from the joint posterior distri-
bution of (✓1, ✓2) = (log↵, log �) using the PHC sample 1 shown in Table 2.3.

From Figure 2.3, we can see that the autocorrelation of the drawn samples goes to zero at

lag of 22, this indicates that the random draws become more independent very quickly. From

trace plots in Figure 2.4, we can see that the draws do not show any pattern that indicate that

the accepted draws are randomly generated from the posterior distribution. The marginal

posterior density functions of ↵ and � are also approximated in Figure 2.4, from which we

can see that the marginal posterior distribution of ↵ is approximately symmetric while that

of � is positively skewed.
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Figure 2.4: The trace plots for the random draws from the joint posterior distribution of
(✓1, ✓2) using the PHC sample 1 shown in Table 2.3, and the approximated marginal posterior
density functions of ↵ and �.

Data set II: This data set consists of times to failure (in days) for 36 appliances subjected

to an automatic life test. The data are given below Lawless (2011):

11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451,

2471, 2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329,

6367, 6976, 7846, 13403.

From Figure 2.2, we can see that the hazard rate shape of this data set is decreasing-

increasing-decreasing. Therefore, we expect that the STH distribution can be a good fit for

this data set. Using this data set as is (complete sample), we applied the three underling

distributions and computed the MLE of each model parameter, the log-likelihood value, AIC

and BIC as shown in Table 2.2. Based on the values of AIC and BIC scores, we can see that

STH distribution fits this data set better than Weibull and PL distributions.

We generated two progressively hybrid samples by setting m = 18, p = 0.3 and (1)

T = 10000; and (2) T = 5000, J = 16 and R
⇤
J
= 2. Table 2.6 shows the two generated

samples. We used these two generated samples to compute the MLE, log-likelihood function
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value, AIC and BIC scores for the three proposed models as shown in Table 2.7. Based on

the AIC and BIC, shown in Table 2.7, we can conclude that STH distribution fits the two

generated progressively hybrid samples better than Weibull and PL distributions.

Progressively hybrid sample 1: m = 18, T = 10000 (Case-I)
(11, 2) (35, 4) (49, 1) (329, 5) (381, 2) (958, 0) (1062, 1)
(1594, 0) (1990, 1) (2223, 0) (2471, 0) (2565, 0) (2694, 1) (2761, 1)
(2831, 0) (3112, 0) (6367, 0) (6976, 0)
Progressively hybrid sample 2: m = 18, T = 5000, J = 16, R⇤

J
= 2 (Case-II)

(11, 5) (49, 2) (329, 3) (381, 1) (708, 0) (958, 0) (1167, 2)
(1594, 2) (1925, 2) (1990, 0) (2327, 0) (2451, 0) (2551, 0) (2702, 0)
(2761,1) (3112, 0)

Table 2.6: The hybrid progressively samples (Xi:m:n, Ri), i = 1, 2, · · · ,m(J), of data II

Model MLE L AIC BIC

Progressively hybrid sample 1

Weibull ↵̂ = 0.00044, �̂ = 0.97567 �160.551 325.103 328.27

PL ↵̂ = 0.59468, �̂ = 0.01912 �161.515 327.03 330.197

STH ↵̂ = 0.90541, �̂ = 0.000602 �160.111 324.222 327.389
Progressively hybrid sample 2

Weibull ↵̂ = 0.00088, �̂ = 0.87903 �152.105 308.211 311.378

PL ↵̂ = 0.535179, �̂ = 0.028607 �152.753 309.506 312.673
STH ↵̂ = 0.824089, �̂ = 0.001098 �151.719 307.439 310.606

Table 2.7: Values of MLE’s, L, AIC and BIC for the models parameters using the two
generated progressively hybrid samples of data II.

We used the progressively hybrid samples to compute Bayes point and interval estimations

of the STH parameters under the assumption that the parameters are independent and follow

gamma prior distributions with hyperparameters a = b = 0.001. The results are shown in

Table 2.8.

Parameters Bayes PE 95% PI Bayes PE 95% PI

Sample 1 Sample 2
↵ 0.882610 (0.58010, 1.27188) 0.805884 (0.54394, 1.18467)

� 0.000604 (0.00003, 0.00711) 0.001089 (0.00006, 0.00968)

Table 2.8: Bayes results for STH parameters using the two generated progressively hybrid
samples of data II.
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Data III: This data set consists of 57 times (in thousands of operating hours) of unscheduled

maintenance actions for the number 4 diesel engine of the U.S. Grampus, up to 16 thousand

hours of operation Meeker and Escobar (1998). Below are the observations:

0.860, 1.258, 1.317, 1.442, 1.897, 2.011, 2.122, 2.439, 3.203, 3.298, 3.902, 3.910, 4.000,

4.247, 4.411, 4.456, 4.517, 4.899, 4.910, 5.676, 5.755, 6.137, 6.221, 6.311, 6.613, 6.975, 7.335,

8.158, 8.498, 8.690, 9.042, 9.330, 9.394, 9.426, 9.872, 10.191, 11.511, 11.575, 12.100, 12.126,

12.368, 12.681, 12.795, 13.399, 13.668, 13.780, 13.877, 14.007, 14.028, 14.035, 14.173, 14.173,

14.449, 14.587, 14.610, 15.070, 16.000

Based on the total time on test transform plot for this data set, shown in Figure 2.2, we

can see that it has an increasing failure rate, therefore anyone of the three models (Weibull,

PL, and STH) can be a good fit for this data set.

We used the three models (PL, STH, and Weibull) to fit this data set. We generated

two progressively hybrid samples by setting m = 28, p = 0.3 and (1) T = 15.5; and (2)

T = 14, J = 25 and R
⇤
J
= 3. Table 2.9 shows the two generated samples. We used these

two generated samples to compute the MLE, log-likelihood function value, AIC and BIC

scores for the three proposed models as shown in Table 2.10. Tables 2.2 and 2.10 display

the MLEs of the models parameters, the values of AIC and BIC for each model using the

original complete sample and for the two of its progressively hybrid samples. Based on these

values, we can see that STH distribution provides a better fit than the Weibull distribution

for this data set.

Similar to what we have done for data sets I and II, we used Bayes method to estimate

the parameters of STH distribution using the generated progressively hybrid samples, see

Table 2.11. The Bayesian results are similar to the MLE results.

Progressively hybrid sample 1: m = 28, T = 15.5 (Case-I)
(0.86, 9) (1.258, 6) (1.317, 1) (1.897, 2) (2.011, 2) (2.122, 0) (2.439, 3)
(3.91, 1) (4, 2) (4.456, 1) (4.91, 2) (5.755, 0) (6.137, 0) (6.221, 0)
(6.975, 0) (7.335, 0) (8.158, 0) (8.498, 0) (8.69, 0) (9.33, 0) (11.511, 0)
(12.1, 0) (12.126, 0) (13.399, 0) (13.668, 0) (13.78, 0) (14.173, 0) (15.07, 0)

Progressively hybrid sample 2: m = 28, T = 14, J = 25, R⇤
J
= 3 (Case-II)

(0.86, 5) (1.258, 5) (1.442, 3) (1.897, 4) (2.011, 5) (3.203, 2) (3.298, 1)
(3.902, 1) (3.91, 1) (4.456, 0) (5.676, 0) (6.137, 1) (6.975, 0) (7.335, 0)
(8.498, 1) (8.69, 0) (9.042, 0) (9.394, 0) (9.426, 0) (9.872, 0) (10.191, 0)
(11.575, 0) (12.126, 0) (12.795, 0) (13.877, 0)

Table 2.9: The progressively hybrid samples (Xi:m:n, Ri) of data III.
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Model MLE L AIC BIC

Progressively hybrid sample 1

Weibull ↵̂ = 0.019132, �̂ = 1.823568 �82.616 169.231 173.318

PL ↵̂ = 1.27671, �̂ = 0.12921 �83.183 170.366 174.452

STH ↵̂ = 1.665687, �̂ = 0.02088 �82.548 169.097 173.183
Progressively hybrid sample 2

Weibull ↵̂ = 0.024172, �̂ = 1.658276 �82.365 168.731 172.816

PL ↵̂ = 1.172351, �̂ = 0.145955 �82.724 169.448 173.534

STH ↵̂ = 1.522226, �̂ = 0.025755 �82.304 168.608 172.694

Table 2.10: Values of MLE’s, L, AIC and BIC for the models used using the progressively
hybrid censored versions of data III.

Parameters Bayes PE 95% PI Bayes PE 95% PI

Sample 1 Sample 2
↵ 1.637536 (1.23407, 2.13292) 1.493579 (1.10639, 1.96969)

� 0.021073 (0.00639, 0.05768) 0.025727 (0.00874, 0.06569)

Table 2.11: Bayes results for STH parameters using the two generated progressively hybrid
samples of data III.

2.6 Simulation Studies

To investigate the performance of the estimation methods applied in this chapter, we devote

this section to carry out a simulation study using progressively hybrid censored samples from

STH distribution. The following algorithm is used in this study:

1. Specify the values of the model parameters ↵ and �.

2. Specify the sample information n, m, T , and p.

3. Apply Algorithm 1.A, to generate a progressively Type-II censoring sample from STH(↵, �).

4. Use the sample in step 3, to compute the point estimations and a 95% confidence/probability

intervals of the parameters ↵ and � using both maximum likelihood and Bayes meth-

ods.
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5. Repeat steps 3 - 4, K times. Then, for each parameter and using each method (max-

imum likelihood and Bayes), compute the average of the point estimates, the mean

squared error, and the coverage probability.

We run the above algorithm when p = 0.4 and K = 1000, assuming di↵erent values of n,

m with six sets of values of ↵, � and T . Tables 2.12 - 2.17 summarize the results. In these

tables, we used the following abbreviations:

APEMLE, APEBE to denote the average of point estimates using maximum likelihood

and Bayes methods, respectively.

MSEMLE, MSEBE to denote the mean squared errors associated with the point esti-

mates using maximum likelihood and Bayes methods, respectively.

CPMLE, CPBE to denote the coverage probability of the 95% CI for the parameter

using maximum likelihood and Bayes methods, respectively.

Furthermore, to see the e↵ect of the percentage of removals on the accuracy of the

estimation process using maximum likelihood and Bayes method, we provide plots for the

MSE against the percentage of the original sample which are observed failures as shown in

figures 2.5 to 2.8.
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Figure 2.5: The MSE associated with MLE (solid lines) and Bayes estimate (dashed lines)
versus m (m = n� k%n, k = 10, 20, · · · , 50) when n = 50, 100, 150; and (1) ↵ = 2, � = 0.5
and T = 2.18 (top row); (2) ↵ = 2, � = 0.5 and T = 2.72 (2nd top row) ; (3) ↵ = 2,
� = 1 and T = 1.59 (bottom row). The hyper parameters for the Bayesian Estimations are
a1 = a2 = b1 = b2 = 0.001.
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Figure 2.6: The MSE associated with MLE (solid lines) and Bayes estimate (dashed lines)
versus m (m = n � k%n, k = 10, 20, · · · , 50) when n = 50, 100, 150; and (1) ↵ = 2, � = 1
and T = 1.99 (top row); (2) ↵ = 2, � = 1.5 and T = 1.32 (2nd top row) ; (3) ↵ = 2,
� = 1.5 and T = 1.66 (bottom row). The hyper parameters for the Bayesian Estimations
are a1 = a2 = b1 = b2 = 0.001.
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Figure 2.7: The MSE associated with MLE (solid lines) and Bayes estimate (dashed lines)
versus m (m = n� k%n, k = 10, 20, · · · , 50) when n = 50, 100, 150; and (1) ↵ = 2, � = 0.5
and T = 2.18 (top row); (2) ↵ = 2, � = 0.5 and T = 2.72 (2nd top row) ; (3) ↵ = 2,
� = 1 and T = 1.59 (bottom row). The hyper parameters for the Bayesian Estimations are
a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Figure 2.8: The MSE associated with MLE (solid lines) and Bayes estimate (dashed lines)
versus m (m = n � k%n, k = 10, 20, · · · , 50) when n = 50, 100, 150; and (1) ↵ = 2, � = 1
and T = 1.99 (top row); (2) ↵ = 2, � = 1.5 and T = 1.32 (2nd top row) ; (3) ↵ = 2,
� = 1.5 and T = 1.66 (bottom row). The hyper parameters for the Bayesian Estimations
are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0543 2.0512 0.0680 0.0674 0.951 0.947

� 0.5048 0.5083 0.0088 0.0087 0.947 0.953
↵

40
2.0403 2.0375 0.0748 0.0742 0.942 0.937

� 0.5034 0.5066 0.0092 0.0091 0.941 0.945
↵

35
2.0605 2.0585 0.0876 0.0869 0.944 0.941

� 0.5068 0.5099 0.0117 0.0116 0.931 0.938
↵

30
2.0741 2.0734 0.0920 0.0917 0.957 0.949

� 0.5066 0.5094 0.0115 0.0114 0.952 0.948
↵

25
2.0789 2.0799 0.1073 0.1076 0.948 0.943

� 0.5111 0.5127 0.0164 0.0161 0.931 0.932
↵

100

90
2.0236 2.0220 0.0302 0.0301 0.953 0.954

� 0.5049 0.5067 0.0042 0.0042 0.959 0.954
↵

80
2.0215 2.0204 0.0327 0.0326 0.958 0.955

� 0.4997 0.5016 0.0045 0.0045 0.940 0.953
↵

70
2.0265 2.0258 0.0391 0.0390 0.947 0.946

� 0.5062 0.5080 0.0055 0.0055 0.940 0.941
↵

60
2.0307 2.0305 0.0444 0.0443 0.940 0.943

� 0.5041 0.5057 0.0063 0.0062 0.944 0.943
↵

50
2.0311 2.0324 0.0508 0.0509 0.957 0.951

� 0.5056 0.5069 0.0068 0.0068 0.955 0.955
↵

150

135
2.0188 2.0178 0.0215 0.0215 0.948 0.945

� 0.5007 0.5020 0.0028 0.0027 0.951 0.954
↵

120
2.0205 2.0196 0.0249 0.0249 0.944 0.943

� 0.5031 0.5044 0.0031 0.0031 0.962 0.958
↵

105
2.0221 2.0216 0.0274 0.0273 0.947 0.946

� 0.5006 0.5018 0.0035 0.0035 0.945 0.952
↵

90
2.0278 2.0278 0.0314 0.0314 0.945 0.944

� 0.5005 0.5017 0.0043 0.0043 0.937 0.944
↵

75
2.0323 2.0330 0.0350 0.0350 0.953 0.949

� 0.5033 0.5044 0.0047 0.0047 0.952 0.953

Table 2.12: Simulation results when ↵ = 2, � = 0.5, and T = 2.18. The hyper parameters
for the Bayesian Estimations are a1 = a2 = b1 = b2 = 0.001.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0472 2.0439 0.0619 0.0613 0.947 0.947

� 0.5000 0.5038 0.0080 0.0079 0.949 0.957
↵

40
2.0565 2.0537 0.0702 0.0696 0.959 0.956

� 0.5022 0.5060 0.0098 0.0098 0.940 0.943
↵

35
2.0708 2.0686 0.0794 0.0789 0.953 0.952

� 0.5084 0.5119 0.0123 0.0122 0.929 0.940
↵

30
2.0684 2.0675 0.0979 0.0976 0.947 0.950

� 0.5137 0.5170 0.0126 0.0124 0.956 0.953
↵

25
2.0894 2.0898 0.1045 0.1045 0.950 0.947

� 0.5162 0.5186 0.0161 0.0159 0.945 0.941
↵

100

90
2.0345 2.0328 0.0321 0.0319 0.937 0.942

� 0.4987 0.5006 0.0045 0.0045 0.937 0.941
↵

80
2.0264 2.0249 0.0325 0.0323 0.957 0.951

� 0.5018 0.5039 0.0044 0.0044 0.958 0.962
↵

70
2.0331 2.0322 0.0384 0.0382 0.950 0.950

� 0.5011 0.5032 0.0051 0.0051 0.952 0.957
↵

60
2.0377 2.0373 0.0394 0.0393 0.952 0.950

� 0.5040 0.5059 0.0062 0.0062 0.943 0.947
↵

50
2.0333 2.0339 0.0448 0.0448 0.951 0.943

� 0.5083 0.5099 0.0076 0.0076 0.952 0.950
↵

150

135
2.0161 2.0150 0.0185 0.0184 0.958 0.957

� 0.5013 0.5026 0.0027 0.0027 0.951 0.953
↵

120
2.0186 2.0176 0.0216 0.0215 0.951 0.948

� 0.5007 0.5021 0.0030 0.0029 0.954 0.960
↵

105
2.0178 2.0171 0.0247 0.0247 0.944 0.939

� 0.5006 0.5019 0.0037 0.0036 0.941 0.947
↵

90
2.0269 2.0267 0.0263 0.0263 0.961 0.960

� 0.5043 0.5057 0.0039 0.0039 0.950 0.958
↵

75
2.0304 2.0307 0.0328 0.0328 0.949 0.947

� 0.5034 0.5047 0.0051 0.0051 0.946 0.951

Table 2.13: Simulation results when ↵ = 2, � = 0.5,and T = 2.72. The hyper parameters
for the Bayesian Estimations are a1 = a2 = b1 = b2 = 0.001.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0353 2.0326 0.0678 0.0674 0.952 0.954

� 1.0277 1.0282 0.0304 0.0301 0.937 0.941
↵

40
2.0644 2.0620 0.0853 0.0846 0.944 0.942

� 1.0275 1.0274 0.0361 0.0357 0.930 0.931
↵

35
2.0595 2.0578 0.0837 0.0831 0.948 0.947

� 1.0253 1.0248 0.0368 0.0363 0.947 0.950
↵

30
2.0863 2.0850 0.1027 0.1021 0.945 0.942

� 1.0506 1.0488 0.0591 0.0581 0.937 0.926
↵

25
2.0786 2.0785 0.1216 0.1208 0.944 0.937

� 1.0490 1.0460 0.0676 0.0664 0.939 0.931
↵

100

90
2.0207 2.0193 0.0319 0.0318 0.955 0.952

� 1.0107 1.0110 0.0146 0.0145 0.945 0.941
↵

80
2.0248 2.0239 0.0403 0.0402 0.933 0.933

� 1.0200 1.0203 0.0167 0.0166 0.945 0.941
↵

70
2.0177 2.0174 0.0384 0.0383 0.948 0.946

� 1.0165 1.0164 0.0170 0.0169 0.963 0.960
↵

60
2.0351 2.0355 0.0477 0.0476 0.941 0.935

� 1.0231 1.0228 0.0233 0.0232 0.949 0.939
↵

50
2.0403 2.0417 0.0544 0.0544 0.948 0.944

� 1.0175 1.0170 0.0250 0.0249 0.953 0.953
↵

150

135
2.0114 2.0105 0.0213 0.0212 0.948 0.948

� 1.0078 1.0081 0.0088 0.0088 0.945 0.951
↵

120
2.0188 2.0182 0.0255 0.0254 0.943 0.936

� 1.0151 1.0153 0.0102 0.0101 0.952 0.949
↵

105
2.0249 2.0247 0.0285 0.0285 0.930 0.932

� 1.0083 1.0084 0.0123 0.0123 0.941 0.940
↵

90
2.0209 2.0211 0.0322 0.0322 0.942 0.940

� 1.0104 1.0104 0.0133 0.0132 0.955 0.956
↵

75
2.0245 2.0255 0.0328 0.0329 0.961 0.959

� 1.0083 1.0080 0.0150 0.0149 0.956 0.956

Table 2.14: Simulation results when ↵ = 2, � = 1, and T = 1.59. The hyper parameters for
the Bayesian Estimations are a1 = a2 = b1 = b2 = 0.001.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0616 2.0576 0.0732 0.0723 0.945 0.947

� 1.0261 1.0264 0.0294 0.0290 0.951 0.952
↵

40
2.0521 2.0485 0.0729 0.0721 0.948 0.941

� 1.0230 1.0228 0.0323 0.0318 0.949 0.944
↵

35
2.0700 2.0672 0.0857 0.0849 0.955 0.944

� 1.0336 1.0329 0.0373 0.0367 0.955 0.953
↵

30
2.0568 2.0550 0.0866 0.0862 0.946 0.947

� 1.0354 1.0337 0.0440 0.0431 0.955 0.951
↵

25
2.0839 2.0837 0.1062 0.1059 0.946 0.941

� 1.0361 1.0332 0.0615 0.0604 0.939 0.934
↵

100

90
2.0278 2.0259 0.0318 0.0316 0.949 0.944

� 1.0074 1.0077 0.0130 0.0129 0.949 0.949
↵

80
2.0201 2.0183 0.0375 0.0374 0.928 0.931

� 1.0152 1.0152 0.0158 0.0156 0.951 0.945
↵

70
2.0315 2.0302 0.0374 0.0372 0.956 0.954

� 1.0123 1.0121 0.0176 0.0175 0.942 0.944
↵

60
2.0457 2.0450 0.0472 0.0470 0.943 0.942

� 1.0079 1.0075 0.0203 0.0202 0.938 0.944
↵

50
2.0359 2.0361 0.0498 0.0497 0.954 0.953

� 1.0242 1.0232 0.0253 0.0250 0.949 0.954
↵

150

135
2.0214 2.0201 0.0224 0.0223 0.941 0.944

� 1.0036 1.0038 0.0085 0.0084 0.946 0.943
↵

120
2.0157 2.0145 0.0223 0.0222 0.950 0.948

� 1.0094 1.0095 0.0101 0.0101 0.942 0.944
↵

105
2.0193 2.0183 0.0224 0.0223 0.966 0.965

� 1.0046 1.0047 0.0109 0.0108 0.944 0.944
↵

90
2.0229 2.0224 0.0286 0.0286 0.948 0.942

� 1.0148 1.0147 0.0127 0.0126 0.954 0.949
↵

75
2.0291 2.0291 0.0322 0.0321 0.959 0.957

� 1.0140 1.0135 0.0161 0.0160 0.948 0.945

Table 2.15: Simulation results when ↵ = 2, � = 1, and T = 1.99. The hyper parameters for
the Bayesian Estimations are a1 = a2 = b1 = b2 = 0.001.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0592 2.0555 0.0706 0.0696 0.948 0.951

� 1.5389 1.5374 0.0697 0.0689 0.951 0.945
↵

40
2.0521 2.0492 0.0785 0.0776 0.951 0.949

� 1.5639 1.5620 0.0989 0.0977 0.943 0.941
↵

35
2.0714 2.0688 0.0910 0.0898 0.944 0.939

� 1.5678 1.5651 0.1218 0.1203 0.937 0.939
↵

30
2.0800 2.0782 0.1076 0.1065 0.946 0.942

� 1.5919 1.5886 0.1405 0.1389 0.954 0.939
↵

25
2.0857 2.0851 0.1148 0.1140 0.957 0.953

� 1.6088 1.6047 0.1962 0.1947 0.959 0.951
↵

100

90
2.0274 2.0258 0.0364 0.0362 0.946 0.944

� 1.5286 1.5282 0.0371 0.0369 0.947 0.944
↵

80
2.0217 2.0203 0.0374 0.0372 0.951 0.947

� 1.5232 1.5226 0.0353 0.0351 0.950 0.954
↵

70
2.0352 2.0340 0.0444 0.0441 0.951 0.950

� 1.5248 1.5240 0.0464 0.0460 0.941 0.941
↵

60
2.0325 2.0323 0.0458 0.0457 0.948 0.946

� 1.5351 1.5340 0.0531 0.0527 0.958 0.953
↵

50
2.0325 2.0331 0.0564 0.0563 0.945 0.944

� 1.5450 1.5435 0.0692 0.0688 0.951 0.952
↵

150

135
2.0181 2.0170 0.0224 0.0223 0.951 0.948

� 1.5176 1.5173 0.0199 0.0198 0.966 0.963
↵

120
2.0213 2.0203 0.0246 0.0245 0.952 0.949

� 1.5223 1.5220 0.0272 0.0271 0.937 0.937
↵

105
2.0239 2.0233 0.0248 0.0246 0.960 0.959

� 1.5220 1.5214 0.0276 0.0274 0.955 0.959
↵

90
2.0208 2.0207 0.0306 0.0305 0.944 0.939

� 1.5362 1.5356 0.0348 0.0347 0.956 0.950
↵

75
2.0320 2.0325 0.0352 0.0351 0.951 0.947

� 1.5291 1.5282 0.0466 0.0464 0.938 0.938

Table 2.16: Simulation results when ↵ = 2, � = 1.5, and T = 1.32. The hyper parameters
for the Bayesian Estimations are a1 = a2 = b1 = b2 = 0.001.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0502 2.0451 0.0610 0.0601 0.955 0.955

� 1.5500 1.5472 0.0829 0.0817 0.942 0.933
↵

40
2.0723 2.0675 0.0768 0.0757 0.950 0.945

� 1.5558 1.5523 0.0992 0.0978 0.938 0.932
↵

35
2.0557 2.0519 0.0798 0.0789 0.954 0.950

� 1.5632 1.5594 0.1052 0.1038 0.948 0.943
↵

30
2.0850 2.0818 0.0995 0.0984 0.949 0.944

� 1.5836 1.5786 0.1365 0.1344 0.945 0.937
↵

25
2.0904 2.0876 0.1056 0.1042 0.950 0.948

� 1.6001 1.5936 0.1663 0.1646 0.964 0.953
↵

100

90
2.0361 2.0335 0.0315 0.0312 0.961 0.962

� 1.5251 1.5236 0.0332 0.0329 0.955 0.954
↵

80
2.0266 2.0243 0.0345 0.0342 0.951 0.951

� 1.5270 1.5254 0.0389 0.0386 0.939 0.933
↵

70
2.0304 2.0283 0.0375 0.0372 0.954 0.953

� 1.5430 1.5410 0.0470 0.0466 0.953 0.945
↵

60
2.0347 2.0332 0.0432 0.0430 0.956 0.958

� 1.5476 1.5451 0.0506 0.0500 0.954 0.951
↵

50
2.0481 2.0476 0.0499 0.0496 0.952 0.952

� 1.5546 1.5517 0.0655 0.0647 0.952 0.951
↵

150

135
2.0155 2.0138 0.0199 0.0198 0.950 0.951

� 1.5126 1.5117 0.0188 0.0187 0.957 0.955
↵

120
2.0170 2.0155 0.0230 0.0229 0.953 0.949

� 1.5132 1.5123 0.0249 0.0248 0.942 0.940
↵

105
2.0183 2.0167 0.0250 0.0249 0.942 0.940

� 1.5159 1.5148 0.0265 0.0264 0.946 0.945
↵

90
2.0200 2.0190 0.0271 0.0269 0.954 0.951

� 1.5337 1.5322 0.0353 0.0350 0.941 0.937
↵

75
2.0245 2.0240 0.0326 0.0325 0.958 0.960

� 1.5214 1.5196 0.0380 0.0376 0.961 0.956

Table 2.17: Simulation results when ↵ = 2, � = 1.5, and T = 1.66. The hyper parameters
for the Bayesian Estimations are a1 = a2 = b1 = b2 = 0.001.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0434 2.0321 0.0699 0.0657 0.943 0.945

� 0.5041 0.5126 0.0097 0.0097 0.933 0.938
↵

40
2.0514 2.0396 0.0801 0.0751 0.946 0.945

� 0.5024 0.5114 0.0099 0.0098 0.936 0.945
↵

35
2.0568 2.0456 0.0827 0.0774 0.949 0.952

� 0.5079 0.5169 0.0116 0.0116 0.942 0.950
↵

30
2.0743 2.0626 0.1022 0.0950 0.943 0.944

� 0.5093 0.5191 0.0127 0.0127 0.948 0.949
↵

25
2.0779 2.0664 0.1049 0.0972 0.951 0.956

� 0.5126 0.5223 0.0153 0.0153 0.938 0.947
↵

100

90
2.0204 2.0150 0.0294 0.0285 0.958 0.961

� 0.5044 0.5087 0.0042 0.0043 0.951 0.949
↵

80
2.0368 2.0311 0.0364 0.0351 0.953 0.950

� 0.4977 0.5024 0.0048 0.0048 0.942 0.949
↵

70
2.0386 2.0328 0.0420 0.0405 0.941 0.946

� 0.5019 0.5069 0.0054 0.0054 0.945 0.949
↵

60
2.0246 2.0196 0.0406 0.0392 0.960 0.961

� 0.5030 0.5081 0.0057 0.0057 0.962 0.962
↵

50
2.0455 2.0406 0.0559 0.0538 0.955 0.951

� 0.5046 0.5101 0.0072 0.0072 0.946 0.951
↵

150

135
2.0179 2.0143 0.0239 0.0234 0.938 0.938

� 0.5029 0.5059 0.0031 0.0031 0.941 0.940
↵

120
2.0175 2.0139 0.0246 0.0241 0.945 0.942

� 0.4996 0.5027 0.0034 0.0034 0.940 0.943
↵

105
2.0279 2.0242 0.0270 0.0263 0.950 0.947

� 0.4999 0.5033 0.0036 0.0036 0.950 0.953
↵

90
2.0207 2.0169 0.0298 0.0291 0.945 0.947

� 0.5019 0.5056 0.0041 0.0041 0.945 0.948
↵

75
2.0200 2.0169 0.0348 0.0339 0.949 0.947

� 0.5034 0.5072 0.0049 0.0049 0.949 0.949

Table 2.18: Simulation results when ↵ = 2, � = 0.5, and T = 2.18. The hyper parameters
for the Bayesian Estimations are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0562 2.0445 0.0656 0.0618 0.952 0.950

� 0.5051 0.5139 0.0087 0.0087 0.941 0.951
↵

40
2.0534 2.0419 0.0697 0.0654 0.949 0.953

� 0.5128 0.5219 0.0103 0.0104 0.939 0.952
↵

35
2.0726 2.0603 0.0792 0.0738 0.949 0.949

� 0.5018 0.5117 0.0109 0.0107 0.940 0.952
↵

30
2.0731 2.0611 0.0913 0.0849 0.957 0.957

� 0.5086 0.5190 0.0132 0.0132 0.943 0.946
↵

25
2.1023 2.0907 0.1072 0.0995 0.951 0.950

� 0.5078 0.5181 0.0139 0.0138 0.948 0.965
↵

100

90
2.0284 2.0227 0.0295 0.0285 0.955 0.953

� 0.5002 0.5047 0.0043 0.0043 0.944 0.950
↵

80
2.0298 2.0240 0.0339 0.0328 0.948 0.954

� 0.5017 0.5065 0.0050 0.0049 0.937 0.945
↵

70
2.0243 2.0187 0.0356 0.0344 0.951 0.946

� 0.5037 0.5087 0.0057 0.0057 0.950 0.945
↵

60
2.0436 2.0377 0.0446 0.0429 0.941 0.941

� 0.5007 0.5062 0.0065 0.0065 0.930 0.943
↵

50
2.0407 2.0355 0.0480 0.0462 0.951 0.948

� 0.5072 0.5128 0.0078 0.0078 0.947 0.944
↵

150

135
2.0252 2.0215 0.0194 0.0190 0.957 0.957

� 0.5015 0.5045 0.0030 0.0030 0.939 0.944
↵

120
2.0228 2.0189 0.0217 0.0212 0.956 0.957

� 0.4984 0.5017 0.0030 0.0030 0.954 0.959
↵

105
2.0281 2.0242 0.0256 0.0249 0.947 0.947

� 0.4987 0.5022 0.0035 0.0034 0.937 0.954
↵

90
2.0301 2.0262 0.0311 0.0304 0.943 0.939

� 0.5004 0.5042 0.0042 0.0041 0.945 0.946
↵

75
2.0358 2.0321 0.0362 0.0351 0.931 0.927

� 0.5026 0.5067 0.0051 0.0051 0.945 0.948

Table 2.19: Simulation results when ↵ = 2, � = 0.5, and T = 2.72. The hyper parameters
for the Bayesian Estimations are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0538 2.0494 0.0790 0.0759 0.942 0.937

� 1.0221 1.0262 0.0312 0.0308 0.929 0.937
↵

40
2.0622 2.0584 0.0798 0.0765 0.956 0.952

� 1.0153 1.0194 0.0318 0.0312 0.948 0.950
↵

35
2.0578 2.0545 0.0824 0.0790 0.955 0.952

� 1.0237 1.0278 0.0385 0.0377 0.945 0.940
↵

30
2.0566 2.0541 0.0862 0.0824 0.959 0.962

� 1.0322 1.0359 0.0444 0.0432 0.945 0.949
↵

25
2.0875 2.0844 0.1120 0.1068 0.955 0.946

� 1.0535 1.0559 0.0615 0.0595 0.951 0.938
↵

100

90
2.0298 2.0280 0.0330 0.0324 0.959 0.957

� 1.0108 1.0130 0.0131 0.0131 0.957 0.957
↵

80
2.0368 2.0351 0.0426 0.0418 0.928 0.926

� 1.0138 1.0161 0.0181 0.0179 0.929 0.934
↵

70
2.0415 2.0404 0.0419 0.0410 0.951 0.954

� 1.0157 1.0180 0.0179 0.0178 0.956 0.956
↵

60
2.0277 2.0273 0.0430 0.0421 0.955 0.953

� 1.0093 1.0118 0.0204 0.0202 0.945 0.943
↵

50
2.0450 2.0454 0.0548 0.0536 0.961 0.960

� 1.0292 1.0317 0.0262 0.0259 0.960 0.952
↵

150

135
2.0103 2.0093 0.0215 0.0213 0.954 0.952

� 1.0097 1.0112 0.0085 0.0084 0.953 0.959
↵

120
2.0180 2.0171 0.0234 0.0231 0.959 0.961

� 1.0115 1.0132 0.0103 0.0103 0.947 0.953
↵

105
2.0223 2.0216 0.0266 0.0263 0.953 0.955

� 1.0052 1.0069 0.0107 0.0106 0.951 0.952
↵

90
2.0230 2.0229 0.0305 0.0301 0.948 0.950

� 1.0059 1.0078 0.0127 0.0127 0.949 0.952
↵

75
2.0170 2.0177 0.0333 0.0328 0.951 0.956

� 1.0143 1.0161 0.0177 0.0176 0.942 0.939

Table 2.20: Simulation results when ↵ = 2, � = 1, and T = 1.59. The hyper parameters for
the Bayesian Estimations are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0630 2.0572 0.0691 0.0662 0.950 0.950

� 1.0135 1.0175 0.0278 0.0272 0.953 0.957
↵

40
2.0507 2.0458 0.0728 0.0699 0.950 0.955

� 1.0249 1.0286 0.0322 0.0316 0.959 0.955
↵

35
2.0716 2.0670 0.0854 0.0820 0.954 0.950

� 1.0454 1.0486 0.0394 0.0386 0.950 0.952
↵

30
2.0788 2.0746 0.1036 0.0989 0.943 0.943

� 1.0399 1.0432 0.0441 0.0430 0.950 0.947
↵

25
2.0852 2.0822 0.1101 0.1052 0.938 0.937

� 1.0586 1.0610 0.0604 0.0582 0.963 0.956
↵

100

90
2.0351 2.0324 0.0304 0.0298 0.949 0.945

� 1.0069 1.0089 0.0134 0.0133 0.948 0.950
↵

80
2.0212 2.0190 0.0318 0.0312 0.963 0.958

� 1.0148 1.0169 0.0158 0.0157 0.957 0.950
↵

70
2.0318 2.0296 0.0380 0.0372 0.952 0.952

� 1.0155 1.0179 0.0169 0.0167 0.960 0.960
↵

60
2.0398 2.0381 0.0453 0.0443 0.952 0.948

� 1.0192 1.0214 0.0226 0.0223 0.940 0.942
↵

50
2.0449 2.0440 0.0504 0.0493 0.955 0.952

� 1.0295 1.0315 0.0253 0.0249 0.951 0.952
↵

150

135
2.0229 2.0212 0.0212 0.0209 0.941 0.936

� 1.0083 1.0096 0.0090 0.0089 0.950 0.952
↵

120
2.0196 2.0180 0.0231 0.0228 0.954 0.954

� 1.0098 1.0113 0.0101 0.0101 0.955 0.954
↵

105
2.0205 2.0191 0.0267 0.0263 0.938 0.940

� 1.0152 1.0168 0.0112 0.0112 0.955 0.955
↵

90
2.0209 2.0198 0.0280 0.0276 0.952 0.950

� 1.0142 1.0157 0.0137 0.0136 0.952 0.954
↵

75
2.0302 2.0296 0.0321 0.0316 0.947 0.945

� 1.0152 1.0168 0.0157 0.0156 0.952 0.953

Table 2.21: Simulation results when ↵ = 2, � = 1, and T = 1.99. The hyper parameters for
the Bayesian Estimations are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0578 2.0527 0.0735 0.0703 0.945 0.944

� 1.5497 1.5467 0.0770 0.0736 0.949 0.948
↵

40
2.0647 2.0599 0.0808 0.0772 0.944 0.943

� 1.5558 1.5519 0.0955 0.0903 0.945 0.943
↵

35
2.0730 2.0680 0.0947 0.0900 0.939 0.942

� 1.5666 1.5614 0.1115 0.1044 0.958 0.954
↵

30
2.0537 2.0498 0.0979 0.0926 0.940 0.941

� 1.5810 1.5736 0.1354 0.1246 0.955 0.951
↵

25
2.0497 2.0463 0.0993 0.0930 0.965 0.964

� 1.5995 1.5891 0.1681 0.1515 0.954 0.955
↵

100

90
2.0313 2.0292 0.0332 0.0325 0.951 0.950

� 1.5271 1.5261 0.0359 0.0351 0.943 0.938
↵

80
2.0351 2.0332 0.0367 0.0358 0.956 0.953

� 1.5253 1.5240 0.0407 0.0397 0.941 0.942
↵

70
2.0283 2.0269 0.0416 0.0407 0.954 0.952

� 1.5330 1.5315 0.0461 0.0448 0.949 0.953
↵

60
2.0397 2.0386 0.0469 0.0457 0.944 0.944

� 1.5536 1.5513 0.0635 0.0614 0.942 0.938
↵

50
2.0249 2.0249 0.0496 0.0483 0.953 0.957

� 1.5376 1.5352 0.0627 0.0604 0.961 0.957
↵

150

135
2.0185 2.0172 0.0233 0.0230 0.942 0.940

� 1.5120 1.5115 0.0224 0.0222 0.942 0.944
↵

120
2.0233 2.0222 0.0259 0.0256 0.937 0.939

� 1.5151 1.5146 0.0241 0.0237 0.958 0.951
↵

105
2.0144 2.0136 0.0277 0.0273 0.943 0.944

� 1.5079 1.5073 0.0265 0.0260 0.950 0.947
↵

90
2.0092 2.0089 0.0321 0.0315 0.935 0.938

� 1.5162 1.5154 0.0338 0.0331 0.949 0.947
↵

75
2.0222 2.0224 0.0346 0.0340 0.959 0.954

� 1.5227 1.5214 0.0391 0.0382 0.953 0.959

Table 2.22: Simulation results when ↵ = 2, � = 1.5, and T = 1.32. The hyper parameters
for the Bayesian Estimations are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.
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Parameter n m APEMLE APEBE MSEMLE MSEBE CPMLE CPBE

↵

50

45
2.0557 2.0494 0.0686 0.0657 0.944 0.942

� 1.5636 1.5590 0.0813 0.0772 0.953 0.947
↵

40
2.0743 2.0679 0.0832 0.0793 0.944 0.939

� 1.5682 1.5627 0.0913 0.0861 0.953 0.943
↵

35
2.0523 2.0467 0.0757 0.0723 0.962 0.954

� 1.5822 1.5753 0.1028 0.0963 0.961 0.948
↵

30
2.0621 2.0562 0.0875 0.0827 0.957 0.956

� 1.5727 1.5636 0.1406 0.1297 0.944 0.935
↵

25
2.0862 2.0798 0.1129 0.1056 0.939 0.947

� 1.6140 1.6009 0.1776 0.1590 0.961 0.956
↵

100

90
2.0291 2.0263 0.0326 0.0319 0.952 0.954

� 1.5206 1.5189 0.0284 0.0278 0.958 0.957
↵

80
2.0319 2.0292 0.0333 0.0325 0.966 0.963

� 1.5236 1.5217 0.0353 0.0344 0.956 0.957
↵

70
2.0476 2.0450 0.0408 0.0397 0.950 0.951

� 1.5283 1.5257 0.0468 0.0455 0.929 0.933
↵

60
2.0521 2.0497 0.0453 0.0441 0.951 0.949

� 1.5388 1.5357 0.0543 0.0525 0.942 0.935
↵

50
2.0269 2.0250 0.0481 0.0468 0.955 0.956

� 1.5528 1.5485 0.0663 0.0636 0.957 0.953
↵

150

135
2.0258 2.0239 0.0209 0.0206 0.952 0.953

� 1.5164 1.5153 0.0223 0.0219 0.944 0.936
↵

120
2.0217 2.0198 0.0236 0.0233 0.939 0.939

� 1.5257 1.5244 0.0252 0.0248 0.945 0.943
↵

105
2.0299 2.0283 0.0255 0.0250 0.961 0.957

� 1.5295 1.5281 0.0275 0.0270 0.952 0.955
↵

90
2.0247 2.0234 0.0311 0.0305 0.939 0.938

� 1.5272 1.5254 0.0327 0.0320 0.950 0.947
↵

75
2.0251 2.0242 0.0338 0.0332 0.953 0.947

� 1.5343 1.5320 0.0433 0.0421 0.946 0.939

Table 2.23: Simulation results when ↵ = 2, � = 1.5, and T = 1.66. The hyper parameters
for the Bayesian Estimations are a1 = 0.8, a2 = 0.4, b1 = 0.45, b2 = 0.3.

Based on the results in tables 2.12 - 2.23 and figures 2.5 to 2.8, we can observe that: (1)

for fixed n, as m increases, the MSE decreases using either maximum likelihood or Bayes

method; (2) for fixed m, as n increases, the MSE decreases using either maximum likelihood

or Bayes method; (3) better selections of hyperparameter values result in improved Bayesian

estimates; (4) for all cases, the coverage probability is very close to the confidence level used

to compute the confidence/probability intervals. This indicates that we could have only

used the maximum likelihood method to save time and e↵ort that we spent on applying the
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Bayesian method.

2.7 Expected Experimentation Time

The experiment’s termination time plays an important rule in lifetime experiments. The

shorter the time the less the cost of the experiment. In this section, we discuss the expected

experimentation time, which may help to make better choices. Such information can be

important for the experimenter to choose an appropriate sampling plan because it helps

to know the time required to complete the test which is highly related to the cost. For a

progressively Type-II censoring sample (X1, R1), (X2, R2), · · · , (Xm, Rm) with fixed proba-

bility of removals, from a distribution with a probability density function f(x) and survival

function S(x), the expected experimentation time is given as, Balakrishnan et al. (2000),

E (Xm:m:n) =

Z 1

0

xfXm:m:n (x) dx , (2.10)

where fXm:m:n (x) is the probability density function at the m
th failure Xm:m:n, is given by

fXm:m:n (x) = cm�1f (x)
mX

j=1

aj,mS (x)wj�1
, m = 1, 2, · · · , n, (2.11)

cm�1 =
Q

m

i=1 �i, aj,m =
Q

m

i=1,i 6=j

1
wi�wj

, and wi =
P

m

j=i
(Rj + 1) , i, j =, 1, 2, · · · ,m.

The expected experimentation time of the complete sample with size n is the expected

value of the n
th order statistic, that can be obtained from 2.10 by setting m = n.

The ratio of the expected experiment time, REET, under progressively Type-II censoring

is defined as

REET =
E (Xm:m:n)

E (Xn)
2 (0, 1) . (2.12)

REET can be used to test time e�ciency of the experiment. The smaller the value of REET,

the more the e�cient the experimental time.

Under the assumption that the tested item lifetime follows STH distribution, REET

cannot be obtained in closed form solution. Therefore, to compute it, we should use numeral

integration methods. We will use R software to compute REET under some values of the

model parameters and di↵erent scenarios of progressively Type-II censoring. To perform this

computation, we used the following simulation algorithm:

1. Specify the values of the parameters ↵ and � for STH distribution.

53



2. Specify the values of n,m, p, where n is the sample size, m is the number of observed

failures, and p is the probability of removal.

3. Generate a progressively Type II censored sample from STH distribution.

4. Calculate: E(Xm:m:n), E(X(n)), and REET =
E(Xm:m:n)

E(X(n))
.

5. Replicate the steps 3-4, N times.

6. Compute the average of the N values of E(Xm:m:n) and REET.

We carried out the above algorithm at di↵erenet values of n.m, p and two sets of parameters

values: (1) set 1: (↵, �) = (5, 1), and (2) set 2: (↵, �) = (3, 2), when N = 1000. With the

purpose of analyzing how parameters ↵,�, the probability of removal p, sample size n, and

the observed failures m a↵ect the ratio of expected experiment time REET, we take n = 10

with m = 3, 5, 7, n = 30 with m = 9, 15, 21, and n = 50 with m = 15, 25, 35 as the sample

sizes and observed failures with the probability of removal p = 0.1, 0.5, 0.9 for each case to

perform the REET simulations. Table 2.24 summarizes the results. For fixed n and m, as p

increases, the value of REET increases. Also, for fixed n, as m increases, the value of REET

increases. As expected, for fixed n, as m increases, we’ll have more information about the

sample size n, and hence, the value of REET increases too. However, the results show that

the removal probability p has a significant influence on the ratio of expected experiment time

REET as p increases in all cases. Both sets of the parameter values show similar responses

to n,m, and p.
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n m p
(↵, �) = (5, 1) (↵, �) = (3, 2)

E (Xn) E (Xm:m:n) REET E (Xn) E (Xm:m:n) REET

10

3
0.1

1.1863

0.7799 0.6574

1.0794

0.5236 0.4851
0.5 0.8808 0.7424 0.5496 0.5092
0.9 1.0295 0.8678 0.7218 0.6686

5
0.1 0.9571 0.8067 0.7131 0.6606
0.5 1.0710 0.9028 0.9033 0.8368
0.9 1.1094 0.9351 0.9582 0.8877

7
0.1 1.0522 0.8870 0.8878 0.8225
0.5 1.1497 0.9691 0.8905 0.8249
0.9 1.1497 0.9691 1.0215 0.9463

30

9
0.1

1.2714

0.8601 0.6764

1.2101

0.6394 0.5284
0.5 1.1492 0.9038 1.0411 0.8604
0.9 1.1684 0.9189 1.0486 0.8666

15
0.1 1.0231 0.8046 0.8168 0.6751
0.5 1.2148 0.9554 1.1143 0.9209
0.9 1.2152 0.9557 1.1261 0.9307

21
0.1 1.1422 0.8983 0.9958 0.8229
0.5 1.2430 0.9776 1.1651 0.9629
0.9 1.2445 0.9787 1.1681 0.9653

50

15
0.1

1.3081

0.9531 0.7285

1.2631

0.7357 0.5821
0.5 1.2009 0.9179 1.0917 0.8638
0.9 1.2153 0.9289 1.1188 0.8852

25
0.1 1.1565 0.8841 1.0346 0.8185
0.5 1.2547 0.9591 1.1834 0.9362
0.9 1.2564 0.9603 1.1872 0.9393

35
0.1 1.1437 0.8742 1.1001 0.8704
0.5 1.2811 0.9791 1.2245 0.9688
0.9 1.2814 0.9794 1.2256 0.9696

Table 2.24: The expected time for the complete experiment, the average of the expected
time of the progressively Type II censoring experiment and the average of REET.

2.8 Conclusion

In this chapter, we discussed how to use progressively hybrid censoring (PHC) samples to

estimated the unknown parameters of Sarhan-Tadj-Hamilton (STH) distribution. We used

the maximum likelihood and Bayes methods to estimate those unknown parameters. For the

Bayes method, we assumed that the model parameters are independent and gamma prior

distributions with hyperparameters all equal to 0.001. This choice of the hyperparameters’

values reflect the lack of prior information on the model parameters.
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There is no closed-form solution for either the maximum likelihood estimate or Bayes

estimate for the parameters. Hence, numerical methods are applied. We used R software to

apply such numerical methods. For the MLE, we used the R optim function to maximize the

log-likelihood function. For Bayes method, we used MCMC to approximate the Bayesian

analysis.

We applied the theoretical methods discussed in this chapter on three real data sets

and we compared the STH distribution with Weibull and power Lindely distributions. For

each of these real data sets, we generated two PHC samples then we used them to estimate

the model parameters for the three mentioned distributions using maximum likelihood and

Bayes methods. Based on the log-likelihood, AIC and BIC values, we concluded that STH

distribution fits those three real data sets better than the other two distributions for the

original samples and the PHC samples.

To investigate the performance of the estimation methods and compare them, a large

simulation study was performed using STH distribution at di↵erent values of the model

parameters and at di↵erent values of the sampling scheme (n,m, p and T ).

Also, we discussed the expected experimentation time, through the relative expected

experimentation time (REET), for the progressively Type-II censoring samples using the

STH distribution. We performed a simulation study to investigate how REET is a↵ected by

the values of the model parameters and progressively censoring values (n,m , p).

Further investigations for this method as future work. We could also consider the PHC

samples with unknown probability of removal. Also, Bayesian methods with informative

prior information on the unknown model parameters can be investigated. This chapter was

published in Sarhan et al. (2023).
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Chapter 3

Step Stress Partially Accelerated Life Testing

3.1 Introduction

A number of design methods have been proposed to reduce the time required to carry out an

experiment where the outcome is time to event. Chapter two focused on one such method -

progressive hybrid censoring. In this chapter, we consider two other methods - accelerated

life testing (ALT) and partially accelerated life testing (PALT) - each method designed to

reduce time to failure by testing experimental units under increasingly severe conditions, for

example, increased temperature, voltage, or humidity.

One type of accelerated life testing is step stress accelerated life testing (SSALT), in

which the stress on each experimental unit is increased at some point during an experiment.

In the partially accelerated step stress design (SSPALT), all experimental items are put on

test under a fixed stress, and units not failing by a pre-assigned time ⌧ are subject to an

increased stress. The goal of the SSPALT experiment is to quicly acquire reliable information

on the failure time distribution Ismail and Aly (2014).

An extensive coverage of accelerated testing with constant stress with a variety of para-

metric failure time distributions is provided by Nelson (2009). DeGroot and Goel (1979)

introduced Bayesian estimation and optimal design in SSPALT with an underlying exponen-

tial distribution, and Bhattacharyya and Soejoeti (1989) described a tampered failure rate

for SSPALT using Weibull distribution. Ismail and Aly (2014) proposed an optimal plan for

SSPLAT under Type-II censoring.

The rest of the chapter is organized as follows. Section 3.2 introduces the assumptions of

the SSPALT, and section 3.3 introduces likelihood based and Bayesian estimation methods

for unknown parameters. Section 3.4 addresses the important issue of choosing ⌧ in an

optimal fashion, in order to minimize the variability of estimated model parameters. The

behavior of the methods is addressed with a simulation study in Section 3.5. Some real data

sets were investigated in section 3.6.
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3.2 Assumptions and Testing Schemes

The following assumptions are adopted throughout this chapter:

A) Step stress partially accelerated life testing (SSPALT):

In SSPALT we assume that:

1. The experimenter can switch the test item from the normal (standard) use (stress)

condition to higher stress condition.

2. The experiment starts the test under a normal use condition, and then if the test unit

does not fail by a pre-specified time ⌧ > 0, they put the test unit under a higher stress

use condition.

3. Let T be the lifetime of the unit that runs under the normal use condition, with a pdf

fT (t) and a survival function ST (t).

4. Let X be the life time of the testing unit under the SSPALT, with a pdf f(x) and

survival function S(x). X is related to T according to the following relationship:

X =

8
<

:
T if T  ⌧ ,

⌧ +
1

�
(T � ⌧) if T > ⌧ ,

(3.1)

where � > 1 is the acceleration factor of the stress. Using equation 3.1, we get

f(x) =

(
fT (x) if x  ⌧ ,

� fT (⌧ + �(x� ⌧)) if x > ⌧ ,

(3.2)

and

S(x) =

(
ST (x) if x  ⌧ ,

ST (⌧ + �(x� ⌧)) if x > ⌧ .

(3.3)

B) Type-II progressively hybrid censoring scheme with SSPALT:

In this scheme, we assume that:

1. n independent and identical units are put on an SSPALT.
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2. An integer m is fixed before the experiment starts, such that 1  m  n. Also, m

fixed integers, r1, r2, · · · , rm are pre-determined such that n = m+
P

m

i=1 ri. Moreover,

a time point ⌘ > ⌧ is determined before the experiment starts.

3. The Type-II progressively hybrid censoring scheme is described as follows:

(a) At the time of first failure X1, r1 of the surviving (n � 1) units are randomly

removed from the test.

(b) At the time of second failure X2, r2 of the surviving (n�2�r1) units are randomly

removed from the test, and so on.

(c) If the time of m
th failure Xm occurs before the time point ⌘, the experiment

terminates at the m
th failure time Xm. This case is referred to as Case-I of

Type-II progressively hybrid censoring scheme.

(d) While, if the time of mth failure Xm does not occur before time point ⌘ and only

J failures occur before ⌘, where 0  J < m, then the experiment terminates at

the time ⌘ and all the remaining r
⇤
J
= n � J �

P
J

i=1 ri units are removed. This

case is referred to as Case-II of Type-II progressively hybrid censoring scheme.

As a result of Type-II progressively hybrid censoring scheme with SSPALT, we will have

one of the following cases of data sets:

Case-I: (X1, r1, �1), (X2, r2, �2), · · · , (Xm, rm, �m) if Xm < ⌘, (3.4)

Case-II: (X1, r1, �1), (X2, r2, �2), · · · , (XJ , rJ , �J) if XJ < ⌘ < XJ+1, (3.5)

where

�i =

(
1 if Xi  ⌧ ,

2 if Xi > ⌧ .

Note that: (1) in both two cases, X1 < X2 < · · · < Xm; (2) in Case-II, the test terminates

at the time point ⌘, where there are J failures and therefore XJ+1, XJ+2, · · · , Xm are not

observed; (3) when m = n, then r1 = r2 = · · · , rm = 0, therefore the Type-II progressively

censoring samples turns to a complete SSPALT sample.

We will mainly assume that the life time of the testing unit, under the normal use

condition follows Sarhan-Tadj-Hamilton (STH) distribution with the following pdf and sf
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Sarhan et al. (2014b)

fT (t) =
↵ � t

↵�1

1 + �

⇥
� + (1 + 2 � t↵) e��t

↵⇤
e
��t↵ ; t � 0; ↵, � > 0, (3.6)

ST (t) =
1

1 + �

⇥
� + (1 + � t

↵) e��t
↵⇤

e
��t↵ ; t � 0; ↵, � > 0. (3.7)

3.3 Estimation Methods

We will use the maximum likelihood and Bayesian methods to estimate the model parameters

using the available SSPALT samples (complete and Type-II progressively hybrid censoring

with SSPALT). Also, we will discuss how to determine the optimal change time ⌧ .

3.3.1 Maximum Likelihood Estimation

Given the random sample obtained from Case-I, the log-likelihood function can be written

as

LI(✓) =
mX

i=1

n
I(�i = 1)

h
log(fT (xi)) + ri log(ST (xi))

i
+ (3.8)

I(�i = 2)
h
log(�) + log(fT (⌧ + �(xi � ⌧))) + ri log(ST (⌧ + �(xi � ⌧)))

io
,

where I(A) = 1, if A is true, and 0 otherwise.

Setting m = n, and r1 = r2 = · · · , rm = 0, we can derive the log-likelihood function

using a complete SSPALT sample, from (3.8), as

L(✓) =
nX

i=1

n
I(�i = 1) log(fT (xi)) + I(�i = 2)

h
log(�) + log(fT (⌧ + �(xi � ⌧)))

io
. (3.9)

Using the random sample obtained from Case-II, the log-likelihood function can be writ-

ten as

LII(✓) = r
⇤
J
log(ST (⌧ + �(⌘ � ⌧))) + (3.10)

JX

i=1

n
I(�i = 1)

h
log(fT (xi)) + ri log(ST (xi))

i
+

I(�i = 2)
h
log(�) + log(fT (⌧ + �(xi � ⌧))) + ri log(ST (⌧ + �(xi � ⌧)))

io
.
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Substituting equations (3.6) and (3.7) into (3.8), (3.9), and (3.10), we can derive the

log-likelihood functions of the three underlying cases stated above as follows.

For Case-I, the log-likelihood function can be expressed as

LI(✓) / m (log↵ + log �)�
 
m+

mX

i=1

ri

!
log(1 + �) + n2 log � + (3.11)

+(↵� 1)
mX

i=1

log
⇣
x
I(�i=1)
i

�
⌧ + �(xi � ⌧)

�I(�i=2)
⌘
+

��
mX

i=1

h
I(�i = 1) x↵

i
+ I(�i = 2)

�
⌧ + �(xi � ⌧)

�↵i
+

+
mX

i=1

ri


I (�i = 1) log


1

1 + �

�
� + (1 + �x

↵

i
) e��x

↵
i
�
e
��x↵

i

�

+I (�i = 2) log


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Here n1 =
P

m

i=1 I(�i = 1) is the number of failures under the normal use condition, and

n2 =
P

m

i=1 I(�i = 2) is the number of failures at the higher stress use condition, m = n1+n2,

and ✓ = (↵, �, �) is the vector of the unknown parameters.

For the complete SSPALT sample, the log-likelihood function becomes:

L (✓) = n log (↵) + n log (�)� n log (1 + �) + n2 log � + (↵� 1)
n1X

i=1

log (xi) +

��
n1X
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nX
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[⌧ + � (xi � ⌧)]↵
)!

,

where n1 =
P

n

i=1 I(�i = 1), n2 =
P

n

i=1 I(�i = 2) and n = n1 + n2.
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For Case-II, the log-likelihood function can be expressed as

LII(✓) / J (log↵ + log �)�
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Here n1 =
P

J

i=1 I(�i = 1), n2 =
P

J

i=1 I(�i = 2), and J = n1 + n2.

To get the MLE of the parameters, we need to maximize the log-likelihood function.

This can be done by solving a system of three non-linear equations with respect to the

model parameters. These non-linear equation are called the likelihood equations that can

be obtained by setting the first partial derivatives of L(✓), with respect to ↵, � and �, say

L↵, L�, and L�, equal to zero. Note that the MLE of the parameters is the solution of

the likelihood equations such that the corresponding information matrix is positive definite.

The first and second partial derivatives of L(✓) are given in the Appendix. There is no

analytic solution of the likelihood equations. Therefore, numerical approximation methods

can be applied using R software to obtain the MLE of the parameters and the corresponding

standard errors.

3.3.2 Bayesian Estimation

In this section, we will consider the Bayesian estimation of the unknown parameters. In

the context of STH (↵, �) lifetimes, may be reasonably modeled by the gamma priors for

each parameter because they are positive parameters. We assume that ↵, �, and � are

following gamma(a1, a2), gamma(g1, g2), and gamma(b1, b2) respectively, where the gamma

hyper-parameters a1, a2, g1, g2, b1, and b2 are assumed to be positive. Then, the posterior
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distribution follows:

g (✓|x) / L (✓; x) g (↵, �, �) ,

where L (✓; x) is the likelihood function given in (3.1), (3.2), or (3.3) depending on which case

we have. It is helpful to reparameterize all parameters so that they are all unconstrained.

✓1 = log (↵) , ✓2 = log (�) , ✓3 = log (�) , ✓1, ✓2, ✓3 2 (�1,1) ,

! log gT (✓|x, r) = log g(↵ = e
✓1 , � = e

✓2 , � = 1 + e
✓3 |x, r) + (✓1 + ✓2 + ✓3).

Here gT (✓|x, r) is the posterior function of the transformed parameters. To carry out

Bayesian inference, we will use Markov Chain Monte Carlo to sample from the posterior

distribution. In addition, we will use noninformative priors for the unknown parameters.

We will use MCMC - Metropolis- Hastings algorithm as in Chapter 2.
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3.4 The Optimal Stress Change Time

Survival prediction for product design and high technology development plays a significant

role in the industry. To precisely estimate the product survival at increased stress, we use

a criterion defined to minimize the generalized asymptotic variance (GAV) of the maximum

likelihood estimates of the model parameters and the acceleration factor. This criterion will

lead to the test’s optimal design, yielding the most accurate estimates of a lifetime at the

increased stress. This method is called the D-Optimality, which is based on the determinant

of Fisher’s information matrix. It can be constructed in terms of the (GAV) of the MLEs

of the model parameters. As we mentioned earlier, determining the optimal change stress

time ⌧ is an important design problem in SSPALT. Determining ⌧ will lead us to the most

accurate estimates of our parameters, which is the optimal plan’s primary purpose. Many

authors have considered such optimal plans for their designs. DeGroot and Goel (1979) were

among the first to use optimal plans for their SSPALT designs. Bai et al. (1993) used such

optimal methods with Lognormal and Weibull distributions. The optimal ⌧ ⇤ is found by

minimizing the asymptotic variance of the MLE’s of all three parameters. The formula to

get GAV:

GAV =
1

|F | , (3.13)

Here F is the information matrix. We consider di↵erent ⌧ with ↵ = 2, � = (0.5, 1, 1.5)

and � = 1.5. We replicate the process 1000 times in each case and calculate the average

MLE’s, mean squared errors (MSEs), and the average of GAV values in Tables 3.1-3.3.

At the (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) quantiles for ⌧ , we investigated this process when n =

50, 100, 150, 200, 250. Figure 3.1 shows the MSE and GAV plots for di↵erent percentile of ⌧

for ↵ = 2, � = 1.5, and � = (0.5, 1, 1.5) respectively. We can see the optimal stress change

time at the 60% percentile since it has the lowest GAV using all the sample sizes. The

following are the algorithms to generate and apply SSPALT model.
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3.4.1 Generating SSPALT Data Algorithm

1. Specify the values of n, and ⌧ .

2. Specify the values of the parameters ↵, �, �.

3. Generate failure times from a given distribution Ti as in section 1.2 for i = 1, . . . , n,

using the specified sample size n, and the parameters values.

4. Use the generated failure times with ⌧ , and � to generate SSPALT data using the

following relationship:

Xi =

8
<

:
Ti if Ti  ⌧,

⌧ + 1
�
(Ti � ⌧) if Ti > ⌧,

i = 1, . . . , n. Then, for i = 1, . . . , J the test under the normal stress S1, and for

i = J + 1, . . . , n the test under a higher stress S2, where xJ is the failure time before

the pre-specified ⌧ , and xJ+1 is the failure time after ⌧ .

3.4.2 The Optimal change Time ⌧ - Simulation Algorithm

1. Specify the value of Q, where Q is the number of iterations.

2. Apply Algorithm 3.4.1 to generate SSPALT Data.

3. Get the estimations of the generated data for the parameters using maximum likelihood

method.

4. Compute the GAV as in (3.2).

5. Replicate the Steps 1-4, Q times.

6. Compute the mean of the GAV’s for the specified ⌧ .

7. Do Steps 1–6 with di↵erent ⌧ .

8. Compare the GAV values between all ⌧ ’s, the optimal ⌧ is associated with the minimum

GAV value.

9. Do Steps 1-8 with di↵rent sample size n.
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Figure 3.1: MSE and Gav plots for di↵erent percentile of ⌧ .
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n P.⌧ ⌧ ↵̂ �̂ �̂ MSE GAV

50

0.2 0.648 2.20 0.58 1.69 0.47898 1.911896e-04
0.3 0.809 2.17 0.53 1.58 0.20934 1.150338e-04
0.4 0.957 2.12 0.51 1.61 0.15723 9.157544e-05
0.5 1.102 2.10 0.51 1.57 0.11900 7.865766e-05
0.6 1.252 2.08 0.50 1.60 0.10854 7.779076e-05
0.7 1.420 2.06 0.50 1.61 0.11387 8.550826e-05
0.8 1.623 2.06 0.50 1.67 0.16687 1.414721e-04

100

0.2 0.648 2.08 0.54 1.58 0.11919 1.973898e-05
0.3 0.809 2.08 0.51 1.55 0.08039 1.354833e-05
0.4 0.957 2.06 0.51 1.54 0.05890 1.073601e-05
0.5 1.102 2.05 0.50 1.53 0.05155 9.153258e-06
0.6 1.252 2.06 0.50 1.53 0.04660 8.805506e-06
0.7 1.420 2.02 0.51 1.55 0.05364 9.595894e-06
0.8 1.623 2.03 0.50 1.58 0.06558 1.246408e-05

150

0.2 0.648 2.06 0.51 1.57 0.07367 5.710029e-06
0.3 0.809 2.05 0.51 1.53 0.05047 3.958314e-06
0.4 0.957 2.04 0.51 1.52 0.03755 3.087832e-06
0.5 1.102 2.02 0.50 1.54 0.03453 2.700987e-06
0.6 1.252 2.03 0.50 1.52 0.02800 2.529647e-06
0.7 1.420 2.02 0.50 1.54 0.03127 2.690847e-06
0.8 1.623 2.01 0.50 1.54 0.04277 3.246602e-06

200

0.2 0.648 2.05 0.51 1.55 0.05590 2.333784e-06
0.3 0.809 2.03 0.50 1.53 0.03716 1.640692e-06
0.4 0.957 2.03 0.50 1.52 0.02757 1.295455e-06
0.5 1.102 2.02 0.50 1.52 0.02576 1.119775e-06
0.6 1.252 2.01 0.50 1.53 0.02324 1.074275e-06
0.7 1.420 2.02 0.50 1.52 0.02454 1.089795e-06
0.8 1.623 2.01 0.50 1.53 0.02761 1.365280e-06

250

0.2 0.648 2.02 0.51 1.56 0.04395 1.175938e-06
0.3 0.809 2.03 0.50 1.52 0.02996 8.340445e-07
0.4 0.957 2.02 0.50 1.52 0.02363 6.624911e-07
0.5 1.102 2.02 0.50 1.51 0.01866 5.648149e-07
0.6 1.252 2.01 0.50 1.52 0.01784 5.404634e-07
0.7 1.420 2.01 0.50 1.52 0.01786 5.549227e-07
0.8 1.623 2.01 0.50 1.52 0.02030 6.716327e-07

Table 3.1: SSPALT - Simulation: ↵ = 2, � = 0.5, and � = 1.5 with di↵erent values of ⌧ and
sample size n.
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n P.⌧ ⌧ ↵̂ �̂ �̂ MSE GAV

50

0.2 0.462 2.19 1.45 1.72 0.41411 0.0029687134
0.3 0.578 2.16 1.17 1.65 0.25935 0.0006225235
0.4 0.685 2.12 1.07 1.62 0.17832 0.0004180005
0.5 0.791 2.11 1.06 1.56 0.11550 0.0003491258
0.6 0.902 2.09 1.04 1.56 0.10234 0.0003294564
0.7 1.025 2.07 1.02 1.59 0.10673 0.0003661194
0.8 1.177 2.06 1.01 1.67 0.14795 0.0005515513

100

0.2 0.462 2.08 1.15 1.60 0.13223 9.668716e-05
0.3 0.578 2.08 1.07 1.56 0.08115 6.255126e-05
0.4 0.685 2.05 1.04 1.55 0.05735 4.728748e-05
0.5 0.791 2.04 1.03 1.53 0.04983 4.023429e-05
0.6 0.902 2.04 1.01 1.56 0.04925 3.873934e-05
0.7 1.025 2.03 1.01 1.55 0.05147 4.008498e-05
0.8 1.177 2.02 1.01 1.61 0.06993 5.378453e-05

150

0.2 0.462 2.04 1.08 1.58 0.07659 2.529776e-05
0.3 0.578 2.04 1.04 1.54 0.04684 1.733810e-05
0.4 0.685 2.04 1.03 1.53 0.03748 1.361023e-05
0.5 0.791 2.03 1.01 1.53 0.03469 1.161658e-05
0.6 0.902 2.04 1.02 1.51 0.03024 1.101644e-05
0.7 1.025 2.02 1.01 1.53 0.03066 1.141203e-05
0.8 1.177 2.02 1.00 1.56 0.03942 1.454987e-05

200

0.2 0.462 2.04 1.06 1.55 0.05264 1.021429e-05
0.3 0.578 2.04 1.04 1.53 0.03630 7.167071e-06
0.4 0.685 2.03 1.02 1.52 0.02715 5.649523e-06
0.5 0.791 2.02 1.01 1.53 0.02453 4.841240e-06
0.6 0.902 2.04 1.01 1.51 0.02341 4.565923e-06
0.7 1.025 2.01 1.01 1.53 0.02311 4.765799e-06
0.8 1.177 2.01 1.00 1.54 0.02898 5.779970e-06

250

0.2 0.462 2.03 1.05 1.54 0.04101 5.150974e-06
0.3 0.578 2.03 1.03 1.52 0.02806 3.652422e-06
0.4 0.685 2.02 1.01 1.53 0.02335 2.870746e-06
0.5 0.791 2.02 1.01 1.52 0.02016 2.479516e-06
0.6 0.902 2.01 1.00 1.52 0.01804 2.294910e-06
0.7 1.025 2.01 1.00 1.53 0.01852 2.422474e-06
0.8 1.177 2.01 1.00 1.54 0.02119 2.971482e-06

Table 3.2: SSPALT - Simulation: ↵ = 2, � = 1, and � = 1.5 with di↵erent values of ⌧ and
sample size n.
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n P.⌧ ⌧ ↵̂ �̂ �̂ MSE GAV

50

0.2 0379 2.17 2.34 1.76 0.49135 0.0042562886
0.3 0.475 2.12 1.85 1.63 0.21467 0.0014854273
0.4 0.564 2.14 1.74 1.58 0.14072 0.0010843031
0.5 0.652 2.08 1.61 1.60 0.12828 0.0008455402
0.6 0.745 2.08 1.58 1.58 0.10316 0.0007778507
0.7 0.848 2.06 1.55 1.62 0.11143 0.0008610171
0.8 0.975 2.07 1.56 1.67 0.16126 0.0012952226

100

0.2 0379 2.10 1.84 1.55 0.10309 2.435789e-04
0.3 0.475 2.09 1.69 1.55 0.09858 1.514914e-04
0.4 0.564 2.05 1.59 1.56 0.06305 1.121168e-04
0.5 0.652 2.04 1.55 1.54 0.04743 9.339482e-05
0.6 0.745 2.04 1.55 1.53 0.04632 8.859848e-05
0.7 0.848 2.04 1.53 1.55 0.04720 9.373412e-05
0.8 0.975 2.03 1.53 1.57 0.06014 1.183638e-04

150

0.2 0379 2.05 1.66 1.55 0.06563 5.987418e-05
0.3 0.475 2.05 1.61 1.53 0.04776 4.137015e-05
0.4 0.564 2.04 1.57 1.53 0.03739 3.177870e-05
0.5 0.652 2.04 1.54 1.52 0.03263 2.710885e-05
0.6 0.745 2.02 1.53 1.53 0.03289 2.528512e-05
0.7 0.848 2.02 1.52 1.54 0.03069 2.674450e-05
0.8 0.975 2.02 1.51 1.54 0.03763 3.279174e-05

200

0.2 0379 2.05 1.65 1.54 0.05396 2.468398e-05
0.3 0.475 2.04 1.59 1.53 0.03813 1.710715e-05
0.4 0.564 2.03 1.55 1.51 0.02658 1.312830e-05
0.5 0.652 2.01 1.52 1.53 0.02635 1.121636e-05
0.6 0.745 2.02 1.52 1.51 0.02043 1.042439e-05
0.7 0.848 2.02 1.52 1.51 0.02173 1.098469e-05
0.8 0.975 2.01 1.51 1.53 0.02740 1.334999e-05

250

0.2 0379 2.03 1.61 1.54 0.04143 1.200040e-05
0.3 0.475 2.03 1.58 1.51 0.02798 8.419210e-06
0.4 0.564 2.02 1.54 1.51 0.02201 6.626313e-06
0.5 0.652 2.02 1.52 1.52 0.01888 5.692853e-06
0.6 0.745 2.02 1.51 1.51 0.01780 5.329162e-06
0.7 0.848 2.01 1.52 1.52 0.01903 5.557288e-06
0.8 0.975 2.01 1.50 1.52 0.02078 6.613481e-06

Table 3.3: SSPALT - Simulation: ↵ = 2, � = 1.5, and � = 1.5 with di↵erent values of ⌧ and
sample size n.
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3.5 Simulation Studies

3.5.1 SSPALT - STH

In this section, we will give an algorithm for the simulations conducted with di↵erent values

of n and percentile of ⌧ to test the performance of the MLE and BE’s estimations in terms

of their mean square error and coverage probabilities using a given distribution. Algorithm

3.5.2 is to conduct a simulation using SSPALT. We consider di↵erent n and ⌧ percentile

with ↵ = 2, � = (0.5, 1, 1.5) and � = 1.5. We got the MLE and the 95% confidence interval,

and the Bayesian estimation with its credible intervals. We replicate the process 1000 times

in each case and report average MLE estimation, the standard error, mean squared errors

(MSEs), and the coverage probabilities. We have the results obtained using the gamma prior

for the Bayesian estimation. For fixed n as ⌧ percentile increases, the MSEs increase too as

we start from the median. For fixed ⌧ percentile, as n increases, the MSEs decrease. The

result is summarized in Tables 3.4-3.6:

3.5.2 SSPALT - Simulation Algorithm

1. Specify the value of Q, where Q is the number of iterations.

2. Apply Algorithm 3.4.1 to generate SSPALT Data.

3. Get the estimations of the generated data for the parameters using MLE’s and Bayesian

methods.

4. Compute the confidence intervals with confidence levels 95% for the two parameters of

the model for ML’s and BE’s estimations.

5. Replicate the Steps 1-4, Q times.

6. Compute the mean square error and the coverage probabilities of our parameters.

7. repeat steps 1-6 with di↵erent values of n and change stress time ⌧ .
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n q⌧ Method
Point Estimate MSE CP

↵ � � ↵ � � ↵ � �

50

0.5
MLE 2.10 0.51 1.58 0.1744 0.0106 0.4033 0.954 0.939 0.909
Bayes 2.09 0.51 1.75 0.1703 0.0106 0.6102 0.953 0.945 0.935

0.6
MLE 2.08 0.50 1.59 0.1331 0.0086 0.3195 0.945 0.943 0.914
Bayes 2.07 0.51 1.72 0.1310 0.0086 0.4414 0.943 0.948 0.943

0.7
MLE 2.06 0.50 1.62 0.0974 0.0082 0.3539 0.952 0.935 0.932
Bayes 2.05 0.50 1.73 0.0965 0.0081 0.4604 0.952 0.949 0.948

100

0.5
MLE 2.05 0.50 1.55 0.0775 0.0047 0.1589 0.953 0.938 0.926
Bayes 2.04 0.50 1.62 0.0766 0.0047 0.1974 0.944 0.933 0.951

0.6
MLE 2.03 0.50 1.53 0.0624 0.0042 0.1320 0.941 0.942 0.938
Bayes 2.03 0.50 1.59 0.0619 0.0042 0.1558 0.940 0.948 0.955

0.7
MLE 2.04 0.50 1.53 0.0529 0.0038 0.1442 0.949 0.934 0.936
Bayes 2.04 0.50 1.58 0.0526 0.0037 0.1620 0.940 0.942 0.948

150

0.5
MLE 2.03 0.50 1.53 0.0484 0.0032 0.0986 0.946 0.948 0.942
Bayes 2.03 0.50 1.57 0.0480 0.0032 0.1129 0.947 0.945 0.952

0.6
MLE 2.02 0.50 1.54 0.0391 0.0028 0.0985 0.942 0.950 0.935
Bayes 2.02 0.50 1.58 0.0389 0.0028 0.1102 0.943 0.947 0.940

0.7
MLE 2.02 0.50 1.54 0.0341 0.0029 0.0915 0.953 0.941 0.957
Bayes 2.02 0.50 1.57 0.0339 0.0029 0.0999 0.951 0.942 0.953

200

0.5
MLE 2.02 0.50 1.52 0.0358 0.0022 0.0730 0.950 0.956 0.950
Bayes 2.02 0.50 1.56 0.0357 0.0022 0.0809 0.949 0.965 0.949

0.6
MLE 2.03 0.50 1.51 0.0287 0.0021 0.0634 0.954 0.936 0.952
Bayes 2.02 0.50 1.54 0.0285 0.0021 0.0686 0.951 0.938 0.961

0.7
MLE 2.01 0.50 1.53 0.0232 0.0021 0.0708 0.952 0.933 0.949
Bayes 2.01 0.50 1.55 0.0232 0.0021 0.0758 0.954 0.935 0.952

Table 3.4: SSPALT - Simulation: ↵ = 2, � = 0.5, and � = 1.5 with di↵erent values of ⌧ ,
sample size n, and gamma priors for the Bayesian estimation.

71



n q⌧ Method
Point Estimate MSE CP

↵ � � ↵ � � ↵ � �

50

0.5
MLE 2.11 1.06 1.57 0.1916 0.0750 0.3760 0.946 0.944 0.927
Bayes 2.10 1.07 1.74 0.1865 0.0781 0.5604 0.945 0.946 0.946

0.6
MLE 2.09 1.04 1.58 0.1336 0.0474 0.3660 0.956 0.943 0.925
Bayes 2.08 1.04 1.71 0.1316 0.0482 0.5181 0.951 0.946 0.941

0.7
MLE 2.07 1.03 1.61 0.1099 0.0338 0.3308 0.955 0.950 0.938
Bayes 2.07 1.04 1.70 0.1089 0.0340 0.4257 0.949 0.952 0.951

100

0.5
MLE 2.04 1.03 1.55 0.0790 0.0304 0.1575 0.941 0.956 0.948
Bayes 2.03 1.03 1.63 0.0783 0.0311 0.1945 0.941 0.958 0.946

0.6
MLE 2.05 1.02 1.52 0.0661 0.0216 0.1299 0.956 0.950 0.932
Bayes 2.05 1.02 1.58 0.0654 0.0217 0.1511 0.952 0.950 0.957

0.7
MLE 2.04 1.01 1.55 0.0488 0.0150 0.1419 0.950 0.956 0.940
Bayes 2.03 1.01 1.60 0.0485 0.0150 0.1614 0.948 0.955 0.954

150

0.5
MLE 2.01 1.00 1.56 0.0458 0.0196 0.1039 0.963 0.946 0.951
Bayes 2.01 1.01 1.61 0.0456 0.0198 0.1219 0.963 0.943 0.952

0.6
MLE 2.03 1.00 1.53 0.0420 0.0128 0.0888 0.946 0.950 0.944
Bayes 2.03 1.00 1.57 0.0418 0.0129 0.0993 0.951 0.946 0.948

0.7
MLE 2.02 1.01 1.54 0.0315 0.0110 0.0997 0.952 0.944 0.939
Bayes 2.02 1.01 1.57 0.0314 0.0110 0.1085 0.951 0.942 0.946

200

0.5
MLE 2.03 1.01 1.51 0.0375 0.0145 0.0691 0.950 0.947 0.942
Bayes 2.03 1.02 1.54 0.0373 0.0147 0.0761 0.946 0.942 0.953

0.6
MLE 2.02 1.01 1.51 0.0288 0.0092 0.0630 0.956 0.958 0.950
Bayes 2.02 1.01 1.54 0.0287 0.0093 0.0678 0.954 0.962 0.955

0.7
MLE 2.01 1.00 1.52 0.0243 0.0082 0.0649 0.953 0.947 0.940
Bayes 2.01 1.01 1.54 0.0243 0.0082 0.0692 0.953 0.948 0.950

Table 3.5: SSPALT - Simulation: ↵ = 2, � = 1, and � = 1.5 with di↵erent values of ⌧ ,
sample size n, and gamma priors for the Bayesian estimation.
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n q⌧ Method
Point Estimate MSE CP

↵ � � ↵ � � ↵ � �

50

0.5
MLE 2.11 1.64 1.57 0.1775 0.2713 0.3044 0.960 0.957 0.919
Bayes 2.09 1.68 1.73 0.1720 0.3018 0.4586 0.955 0.955 0.943

0.6
MLE 2.09 1.59 1.58 0.1379 0.1579 0.2991 0.957 0.954 0.931
Bayes 2.07 1.60 1.71 0.1342 0.1653 0.4145 0.957 0.948 0.952

0.7
MLE 2.08 1.57 1.60 0.1079 0.1132 0.3194 0.957 0.944 0.942
Bayes 2.07 1.58 1.70 0.1064 0.1156 0.4128 0.957 0.948 0.946

100

0.5
MLE 2.04 1.56 1.55 0.0727 0.1054 0.1487 0.951 0.963 0.942
Bayes 2.04 1.57 1.62 0.0716 0.1102 0.1826 0.953 0.960 0.952

0.6
MLE 2.02 1.53 1.57 0.0607 0.0734 0.1470 0.949 0.948 0.942
Bayes 2.02 1.54 1.62 0.0602 0.0749 0.1752 0.951 0.940 0.951

0.7
MLE 2.02 1.52 1.56 0.0492 0.0451 0.1475 0.953 0.955 0.942
Bayes 2.01 1.52 1.61 0.0490 0.0454 0.1681 0.952 0.953 0.947

150

0.5
MLE 2.03 1.54 1.53 0.0499 0.0690 0.0920 0.949 0.968 0.940
Bayes 2.03 1.55 1.58 0.0495 0.0713 0.1060 0.949 0.958 0.953

0.6
MLE 2.02 1.52 1.54 0.0413 0.0448 0.0898 0.946 0.952 0.949
Bayes 2.02 1.53 1.57 0.0411 0.0455 0.1006 0.944 0.944 0.948

0.7
MLE 2.02 1.52 1.53 0.0350 0.0340 0.0923 0.946 0.939 0.943
Bayes 2.02 1.52 1.56 0.0348 0.0342 0.1002 0.940 0.936 0.953

200

0.5
MLE 2.03 1.53 1.51 0.0380 0.0518 0.0735 0.941 0.944 0.934
Bayes 2.02 1.54 1.55 0.0376 0.0529 0.0807 0.945 0.949 0.942

0.6
MLE 2.02 1.52 1.53 0.0291 0.0334 0.0648 0.954 0.952 0.947
Bayes 2.02 1.52 1.55 0.0290 0.0338 0.0707 0.955 0.956 0.957

0.7
MLE 2.02 1.51 1.52 0.0266 0.0230 0.0682 0.938 0.954 0.941
Bayes 2.01 1.51 1.54 0.0265 0.0231 0.0727 0.940 0.952 0.948

Table 3.6: SSPALT - Simulation: ↵ = 2, � = 1.5, and � = 1.5 with di↵erent values of ⌧ ,
sample size n, and gamma priors for the Bayesian estimation.
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3.5.3 SSPALT - PHC - STH

After generating the data as in Section 1.2.1 and using a certain percentile of the sample as ⌧

to generate accelerated data, we applied the PHC scheme as in Chapter 2 and then applied

the R code to get the result of this simulation. q here is the percentage of the observed

failures, q = 0.9, 0.8, 0.7, and Cases is the percentage of Case-I and Case-II in each 1000

sample. We used n = 50, 100, 150, 200, ↵ = 2, � = (0.5, 1, 1.5) and � = 1.5 for the generated

data with the 0.6 percentile of the generated sample as ⌧ the optimal change stress time,

and Q(0.95) for T as the preassigned stop time. The results are shown in Tables 3.7-3.9.

Besides, we tested the measure GAV with six percentiles of ⌧ , and di↵erent percentage of

observed failures q for the PHC. Table 3.10 shows that the optimal percentile at 0.6 has the

lowest GAV for all given q’s compare to the other percentiles. The following algorithm will

give a full description of the simulation:

3.5.4 SSPALT - PHC - Simulation Algorithm

1. Specify the values of Q, n, ⌧ , m, p, and T , where m = q ⇥ n is the observed failures,

Q the number of iterations, and p is the removal probability.

2. Specify the values of the parameters ↵, �, �.

3. Apply Algorithm 2.5.1 to generate PHC Data.

4. Apply Algorithm 3.4.1 on the data in the previous step to generate SSPALT Data.

5. Get the estimations of the generated data for the parameters using MLE’s and Bayesian

methods.

6. Compute the confidence intervals with confidence levels 95% for the two parameters of

the model for ML’s and BE’s estimations.

7. Replicate the Steps 2-6, Q times.

8. Compute the mean square error and the coverage probabilities of our parameters.

9. repeat steps 1-8 with di↵erent values of n, m, ⌧ , and �.
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n m Method
PointEstimate MSE CP

↵ � � ↵ � � ↵ � �

50

45
MLE 2.08 0.50 1.57 0.1493 0.0096 0.3333 0.939 0.943 0.929
Bayes 2.07 0.50 1.71 0.1475 0.0096 0.4808 0.938 0.943 0.955

40
MLE 2.07 0.51 1.62 0.1617 0.0105 0.5311 0.939 0.938 0.905
Bayes 2.06 0.51 1.79 0.1607 0.0106 0.8116 0.935 0.942 0.926

35
MLE 2.07 0.51 1.63 0.1513 0.0128 0.5195 0.957 0.935 0.932
Bayes 2.06 0.51 1.81 0.1503 0.0128 0.8288 0.958 0.944 0.945

100

90
MLE 2.04 0.50 1.55 0.0614 0.0048 0.1573 0.960 0.937 0.946
Bayes 2.03 0.50 1.61 0.0611 0.0048 0.1881 0.956 0.934 0.955

80
MLE 2.03 0.50 1.58 0.0726 0.0050 0.2180 0.944 0.945 0.936
Bayes 2.02 0.50 1.66 0.0726 0.0050 0.2677 0.946 0.948 0.937

70
MLE 2.04 0.50 1.56 0.0733 0.0058 0.2254 0.954 0.943 0.941
Bayes 2.03 0.51 1.64 0.0732 0.0059 0.2767 0.954 0.950 0.943

150

135
MLE 2.03 0.50 1.52 0.0482 0.0030 0.1146 0.937 0.949 0.925
Bayes 2.03 0.50 1.56 0.0480 0.0030 0.1277 0.938 0.952 0.937

120
MLE 2.02 0.50 1.54 0.0487 0.0035 0.1211 0.942 0.936 0.952
Bayes 2.01 0.50 1.59 0.0486 0.0035 0.1378 0.941 0.946 0.942

105
MLE 2.03 0.50 1.54 0.0473 0.0037 0.1291 0.957 0.951 0.949
Bayes 2.03 0.50 1.59 0.0472 0.0037 0.1484 0.954 0.956 0.948

200

180
MLE 2.02 0.50 1.52 0.0330 0.0024 0.0771 0.942 0.932 0.948
Bayes 2.02 0.50 1.55 0.0329 0.0024 0.0838 0.937 0.940 0.951

160
MLE 2.02 0.50 1.53 0.0348 0.0026 0.0904 0.947 0.942 0.946
Bayes 2.01 0.50 1.56 0.0347 0.0026 0.0990 0.941 0.948 0.946

140
MLE 2.02 0.50 1.52 0.0380 0.0028 0.0957 0.951 0.953 0.947
Bayes 2.02 0.50 1.55 0.0380 0.0028 0.1053 0.952 0.953 0.945

Table 3.7: SSPALT - HPC - Simulation: ↵ = 2, � = 0.5, � = 1.5, T = 1.87, and q⌧ = 0.6
with di↵erent sample size n, and observed failure m using gamma priors for the Bayesian
estimations.
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n m Method
PointEstimate MSE CP

↵ � � ↵ � � ↵ � �

50

45
MLE 2.08 1.04 1.56 0.1405 0.0501 0.3586 0.964 0.946 0.916
Bayes 2.07 1.04 1.70 0.1395 0.0512 0.5127 0.957 0.953 0.939

40
MLE 2.08 1.03 1.62 0.1502 0.0594 0.4862 0.961 0.938 0.918
Bayes 2.07 1.04 1.78 0.1495 0.0607 0.7386 0.959 0.932 0.941

35
MLE 2.07 1.05 1.62 0.1549 0.0641 0.4796 0.956 0.949 0.915
Bayes 2.07 1.05 1.80 0.1553 0.0660 0.7429 0.953 0.954 0.945

100

90
MLE 2.03 1.01 1.55 0.0669 0.0219 0.1579 0.947 0.950 0.944
Bayes 2.02 1.01 1.61 0.0667 0.0221 0.1886 0.943 0.948 0.955

80
MLE 2.04 1.01 1.55 0.0716 0.0259 0.1827 0.954 0.944 0.942
Bayes 2.03 1.01 1.62 0.0716 0.0263 0.2213 0.946 0.940 0.950

70
MLE 2.06 1.03 1.55 0.0852 0.0340 0.2227 0.941 0.937 0.929
Bayes 2.05 1.04 1.62 0.0851 0.0346 0.2701 0.942 0.938 0.939

150

135
MLE 2.03 1.01 1.53 0.0444 0.0145 0.1053 0.949 0.949 0.943
Bayes 2.02 1.01 1.57 0.0444 0.0147 0.1174 0.951 0.951 0.954

120
MLE 2.03 1.01 1.53 0.0451 0.0167 0.1062 0.962 0.944 0.952
Bayes 2.02 1.01 1.57 0.0451 0.0168 0.1201 0.962 0.949 0.957

105
MLE 2.02 1.01 1.53 0.0507 0.0187 0.1354 0.954 0.948 0.940
Bayes 2.02 1.02 1.58 0.0507 0.0189 0.1541 0.950 0.951 0.951

200

180
MLE 2.01 1.01 1.53 0.0319 0.0116 0.0768 0.939 0.951 0.951
Bayes 2.01 1.01 1.56 0.0318 0.0117 0.0840 0.940 0.943 0.951

160
MLE 2.01 1.01 1.52 0.0324 0.0134 0.0790 0.955 0.942 0.940
Bayes 2.01 1.01 1.55 0.0324 0.0135 0.0863 0.959 0.941 0.954

140
MLE 2.03 1.01 1.52 0.0378 0.0144 0.0943 0.942 0.958 0.938
Bayes 2.03 1.01 1.55 0.0378 0.0145 0.1032 0.946 0.949 0.946

Table 3.8: SSPALT - HPC - Simulation: ↵ = 2, � = 1, � = 1.5, T = 1.36, and q⌧ = 0.6
with di↵erent sample size n, and observed failure m using gamma priors for the Bayesian
estimations.
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n m Method
PointEstimate MSE CP

↵ � � ↵ � � ↵ � �

50

45
MLE 2.08 1.60 1.60 0.1450 0.1836 0.3703 0.954 0.948 0.938
Bayes 2.07 1.62 1.74 0.1433 0.1940 0.5359 0.944 0.948 0.948

40
MLE 2.08 1.60 1.57 0.1507 0.2206 0.3630 0.956 0.956 0.926
Bayes 2.07 1.62 1.72 0.1489 0.2349 0.5297 0.957 0.947 0.949

35
MLE 2.09 1.62 1.64 0.1807 0.2679 0.4971 0.958 0.946 0.913
Bayes 2.08 1.64 1.82 0.1797 0.2866 0.8410 0.950 0.954 0.942

100

90
MLE 2.04 1.54 1.53 0.0674 0.0711 0.1371 0.955 0.958 0.959
Bayes 2.03 1.55 1.59 0.0671 0.0733 0.1621 0.950 0.964 0.967

80
MLE 2.04 1.54 1.54 0.0727 0.0859 0.1638 0.954 0.955 0.934
Bayes 2.03 1.55 1.61 0.0724 0.0885 0.1957 0.949 0.951 0.947

70
MLE 2.04 1.56 1.55 0.0844 0.1055 0.2257 0.944 0.951 0.929
Bayes 2.04 1.57 1.63 0.0841 0.1093 0.2758 0.942 0.947 0.946

150

135
MLE 2.02 1.52 1.53 0.0419 0.0484 0.0989 0.955 0.938 0.952
Bayes 2.01 1.52 1.57 0.0418 0.0492 0.1107 0.951 0.946 0.959

120
MLE 2.01 1.53 1.54 0.0442 0.0554 0.1058 0.950 0.954 0.955
Bayes 2.01 1.53 1.58 0.0442 0.0565 0.1204 0.954 0.954 0.956

105
MLE 2.02 1.53 1.55 0.0523 0.0640 0.1278 0.954 0.947 0.947
Bayes 2.02 1.54 1.60 0.0523 0.0655 0.1480 0.955 0.944 0.958

200

180
MLE 2.01 1.52 1.53 0.0310 0.0358 0.0763 0.959 0.949 0.943
Bayes 2.01 1.52 1.56 0.0310 0.0362 0.0835 0.962 0.948 0.957

160
MLE 2.00 1.50 1.55 0.0352 0.0409 0.0943 0.951 0.934 0.950
Bayes 2.00 1.51 1.58 0.0352 0.0414 0.1048 0.948 0.931 0.949

140
MLE 2.03 1.54 1.52 0.0404 0.0487 0.1007 0.960 0.962 0.927
Bayes 2.03 1.55 1.55 0.0404 0.0498 0.1105 0.956 0.956 0.944

Table 3.9: SSPALT - HPC - Simulation: ↵ = 2, � = 1.5, � = 1.5, T = 1.13, and q⌧ = 0.6
with di↵erent sample size n, and observed failure m using gamma priors for the Bayesian
estimations.
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n q⌧ m ¯GAV

100

0.3
90 0.000581
80 0.000812
70 0.001118

0.4
90 0.000394
80 0.000537
70 0.000787

0.5
90 0.000338
80 0.000464
70 0.000642

0.6
90 0.000321
80 0.000442
70 0.000642

0.7
90 0.000369
80 0.000514
70 0.000731

0.8
90 0.000522
80 0.000761
70 0.001047

Table 3.10: SSPALT - HPC - GAV - Simulation: ↵ = 3, � = 2, � = 1.2, T = 1.06, and
n = 100 with di↵erent values of ⌧ , and di↵erent values of observed failure m.

For fixed n as q decreases, the MSEs increase. In addition, as n increases, the MSEs

decrease for all parameters. As we saw from this simulation by using a preassigned stop time

T , not all the cases end up with the stop time T as Case-II, we had also some situations end

up with Case-I as they had observed the mth failure.
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3.6 Data Analysis

In this section, we consider a real-life data set. The data set was investigated using the

Modified Weibull distribution by Sarhan and Zaindin (2009b). The data set was given by

Aarset (1987), which contains the lifetimes (in months) of 50 devices. The data are given

below:

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46 47, 50, 55,

60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86

We estimated the MLEs using the complete and the accelerated samples. We assumed

that the life time of the distribution has the STH, Weibull, and PL distributions, as shown

in Table 3.11.

Model ↵̂MLE SD↵ �̂MLE SD� ll AIC
STH 0.8924 0.1118 0.0257 0.0125 -91.36 186.721
Weibull 0.9488 0.1195 0.0223 0.0034 -92.52 189.048
PL 0.6638 0.0685 0.1612 0.0447 -93.61 191.219

Table 3.11: Data Analysis - STH and Weibull distributions - Complete Sample.

The MLEs for the accelerated samples were obtained using the optimal change time ⌧

for each distribution. To find the optimal ⌧ , we perform the following:

1. Generate a sequence of the percentiles;

2. Based on the percentile, compute the corresponding ⌧ for the underlying distribution.

3. Generate an SSPLAT sample, from the complete sample, using ⌧ at a selected value

of � > 1.

4. Compute the MLE of the parameters, using the SSPALT sample.

5. Compute the mean squared error using the following formula.

MSE =
(↵̂S � ↵̂C)

2 + (�̂S � �̂C)
2 +

⇣
�̂S � �

⌘2

3
,

where ↵̂S, �̂S, �̂ are the MLE of ↵, �, � using the SSPALT sample, while ↵̂C and �̂C

are the MLE of ↵ and � using the complete sample.
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Figure 3.2 shows the MSE versus ⌧ , as the percentile of the distribution, when � = 1.5.

Based on the results in Figure 3.2, We found the changing time ⌧ occurs at: (1) the 35%

quantile (⌧ ⇤ = 20.99) for the STH distribution, (2) the 39% quantile (⌧ ⇤ = 20.13) for the

Weibull distribution, and (3) the 40% quantile (⌧ ⇤ = 21.49) for the PL distribution.

Figure 3.2: MSE plots for di↵erent percentile of ⌧ for STH (Left Panel), Weibull (Middle
Panel), and PL (Right Panel) distributions.

Then we used the optimal ⌧ for each distribution to estimate the parameters using the

SSPALT samples as shown in Table 3.12. In this Table, we include the AIC for each model

for comparison purposes.

Model ↵̂MLE �̂MLE �̂MLE MSE P.⌧ ⌧ AIC
STH 0.8915 0.0257 1.507 1.8e-05 35% 20.99 459.727
Weibull 0.9517 0.0224 1.4839 9.2e-05 39% 20.13 462.053
PL 0.6652 0.1611 1.4854 7.2e-05 40% 21.49 465.035

Table 3.12: The MLE of the model parameters, the MSE, percentile, optimal ⌧ , and AIC
for STH, Weibull, and PL distributions using the accelerated samples.

We can see that the STH(↵, �) has the smallest AIC in the accelerated samples, and

hence, this distribution provides a better fit of the data.

Now, using all the optimal change time ⌧ = (20.99, 20.13, 21.49) with all three distribu-

tions in Table 3.13:
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Model ⌧
⇤

↵̂MLE �̂MLE �̂MLE MSE AIC
STH

20.99
0.8915 0.0258 1.506 1.2e-05 459.727

Weibull 0.9329 0.0214 1.6094 0.0041 462.018
PL 0.6523 0.1635 1.621 0.0049 464.181
STH

20.13
0.9105 0.0249 1.387 0.0043 460.112

Weibull 0.9519 0.0224 1.482 0.00019 462.053
PL 0.6644 0.1611 1.494 9.8e-06 464.225
STH

21.49
0.9115 0.0251 1.378 0.00505 460.483

Weibull 0.9534 0.0225 1.471 0.00029 462.862
PL 0.6654 0.1609 1.485 7.3e-05 465.035

Table 3.13: Data Analysis - STH, Weibull, and PL distributions - Accelerated Sample.

Using the average of the optimal ⌧ ’s, and applying it to each of the three distributions,

leads to Table 3.14.

Model ⌧
⇤

↵̂MLE �̂MLE �̂MLE MSE AIC
STH

20.87
0.8943 0.0256 1.489 4.3e-05 460.304

Weibull 0.9358 0.0215 1.591 0.00279 462.029
PL 0.6541 0.1631 1.603 0.00361 464.192

Table 3.14: Data Analysis - STH, Weibull, and PL distributions - Accelerated Sample, using
the averages.

In all cases the STH distribution has the best fit to the Aarset data using SSPALT

method.

3.7 Conclusion

In this chapter, we discussed the SSPALT scheme using a given distribution. We obtain

the maximum likelihood estimators of the unknown parameters for SSPALT and SSPALT

- PHC. A Bayesian estimate of the unknown parameters is also considered using gamma

priors for both parameters. There is no closed-form solution for both parameters; hence, a

simulation is conducted using specified parameter values. MLEs and BE’s show promising

results for various sample sizes and acceleration factors �. Next, we apply the PHC schemes

to the SSPALT method. Next, we considered the suggested transformation in Balakrishnan

et al. (2000) on the generated failure times, accelerated failure times using ⌧ and �, and

removals. An optimal stress change time ⌧ is considered and obtained using di↵erent values

of the parameters. We encountered one problem with this method: determining the exact
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value of the change stress time ⌧ for generated failure times and accelerated failure times

before estimating the MLEs. We assigned di↵erent ⌧ percentiles of specified parameters’

values to overcome this. Then, we get the MLEs for all ⌧ percentiles, and according to the

minimum GAV, we pick the optimal ⌧ as mentioned in section 3.4. We applied this method

using an actual data set using three distributions. We can determine the optimal change time

stress using STH, PL, and Weibull distribution for this data set. All distributions provide

a good fit of the data, but the STH distribution has a better fit. A further investigation of

other optimal plan criteria and comparing this optimal plan is targeted for future work. As

a project goal, we can extend from one stress to k stresses for SSPALT - PHC. We could

also investigate the sensitivity analysis performed to examine the e↵ect of the preliminary

estimates of parameters on the optimal values of change time stress ⌧ . It will provide

information about the robustness of the optimal design. This will also identify the sensitive

parameters, which need to be estimated with special care to reduce estimation error.
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Chapter 4

Competing Risks

4.1 Introduction

The Weibull distribution is one of the most commonly used life-time distributions in re-

liability and lifetime data analysis. It is flexible for modeling failure time data, as the

corresponding hazard rate function can be increasing, constant or decreasing. But in many

applications in reliability and survival analysis, an appropriate hazard rate function should

be of bathtub shape. The hazard rate function plays a central role to the work of relia-

bility, see Bebbington et al. (2007b), Bebbington et al. (2007a) and the references therein.

Models with a bathtub hazard rate function are often needed in reliability analysis and

decision-making when the system’s lifetime is to be modeled. Many parametric probability

distributions have been introduced to analyze real data sets with bathtub shaped hazard

functions. The bathtub shaped hazard function provides an appropriate conceptual model

for some electronic and mechanical products as well as the lifetime of humans Sarhan and

Apaloo (2013b). An extensive amount of work has been done related to bathtub shaped haz-

ard functions, see for example, Sarhan et al. (2014a), Sarhan and Mustafa (2022a), Sarhan

and Zaindin (2009a), Sarhan (2009a), Sarhan and Kundu (2009), Sarhan et al. (2013a),

Smith and Bain (1975), Leemis (1986), Gaver and Acar (1979), Hjorth (1980), Mudholkar

and Srivastava (1993a), and Lemonte (2013). Xie et al. (2002) proposed a new modified

extension of the Weibull distribution with a bathtub-shaped hazard rate function. We refer

to this extension as the Modified Weibull Extension (MWE) distribution. The probability

density function (pdf), the survival function (sf), and the hazard rate function (hrf) of the

MWE(�,↵, �) distribution are, respectively:

fMWE (x;�,↵, �) = ��

⇣
x

↵

⌘��1

exp
n
↵�

⇣
1� exp

n⇣
x

↵

⌘�o⌘
+
⇣
x

↵

⌘�o
, (4.1)

SMWE (x;�,↵, �) = exp
n
�↵

h
1� e

( x
↵)

�io
, and (4.2)

hMWE (x;�,↵, �) = ��

⇣
x

↵

⌘��1

exp
n⇣

x

↵

⌘�o
, (4.3)
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where x � 0 and ↵, �,� > 0. Here ↵ and � are scale parameters while � is a shape parameter.

The Chen distribution Chen (2000) with parameters � and � is a special case of the MWE

with ↵ = 1.

In many practical situations, multivariate lifetime data arise, and it is important to con-

sider di↵erent distributions that could be used to model such data. Sarhan and Balakrishnan

(2007), Sarhan et al. (2009), Sarhan et al. (2011) , Kundu et al. (2012) and Sarhan et al.

(2022) used independent shock models to propose bivariate/multivariate lifetime distribu-

tions. These studies used the bivariate distributions mainly to fit bivariate data sets. Such

distributions can also be used to analyze dependent competing risks data. Recently, Sarhan

et al. (2022) used the same idea with Chen distribution to introduce a new bivariate dis-

tribution, abbreviated as BCD, to fit bivariate data and dependent competing risks data

sets.

In this chapter, we will first use the independent shock model concept to introduce a new

bivariate distribution using the MWE distribution, named as the BMWE distribution. The

BMWE distribution generalizes the BCD of Sarhan et al. (2022). We study the properties

of the BMWE distribution. We discuss how to use this new proposed distribution as a

dependent competing risks model. The maximum likelihood method is used to estimate the

unknown parameters of the BMWE distribution using both bivariate data and competing

risks data.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the BMWE

distribution and discuss some of its basic properties. In Section 4.3, we discuss the dependent

competing risks model. The maximum likelihood method using bivariate data and dependent

competing risks data is discussed in Section 4.4. Data generation and some simulation results

are presented in Section 4.5. In Section 4.6, we provide the analysis of two real data sets

using the new proposed distribution and compare it with the BCD. The chapter is concluded

in Section 4.7.

4.2 The BMWE distribution

The BMWE distribution can be formulated as follows. Let U1, U2, and U3 be independent

random variables such that Uj ⇠ MWE(�j,↵, �), j = 1, 2, 3. Let X1 = min(U1, U3) and

X2 = min(U2, U3). The distribution of the random vector (X1, X2) follows the bivariate

modified Weibull extension distribution, and it will be denoted by BMWE(�1,�2,�3,↵, �).
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This distribution can be interpreted in a reliability context as follows. Consider a reliability

system consisting of two units. The system units are subject to three independent fatal

sources of shocks. A shock from the first source destroys unit 1, a shock from the second

source destroys unit 2, while a shock from the third source destroys both units. Let X1 and

X2 be the lifetime of the system units 1 and 2, respectively. Then, X1 = min(U1, U3) and

X2 = min(U2, U3). Under the assumption that time at which the shocks occur (U1, U2 and

U3) follow MWE distributions, as described above, the joint distribution of (X1, X2) will

follow the BMWE distribution. We can easily show that the marginal distributions of X1

and X2 follow MWE(�1 + �3,↵, �) and MWE(�2 + �3,↵, �), respectively.

Note that due to the fact that P (X1 = X2) =
�1

�1+�2+�3
, while the Lebesgue measure of

the set A = (x1, x2)|x1 = x2 > 0 is zero, the BMWE distribution will have both absolutely

continuous and singular parts. This means that the BMWE distribution is continuous but

not absolutely continuous with respect to ordinary Lebesgue measure on (0,1)⇥ (0,1).

The following theorem gives the joint survival and joint probability density functions of

the BMWE distribution, and its marginal distributions.

Theorem 1 Let (X1, X2) follow the BMWE(�1,�2,�3,↵, �), then

1. The joint survival function of (X1, X2) is

SX1,X2 (x1, x2) =

8
>>>>>>>><

>>>>>>>>:

exp
n
↵ (�1 + �3)

h
1� e

(x1
↵ )

�i
+ ↵�2

h
1� e

(x2
↵ )

�io
, x1 > x2

exp
n
↵�1

h
1� e

(x1
↵ )

�i
+ ↵ (�2 + �3)

h
1� e

(x2
↵ )

�io
, x1 < x2

exp
n
↵

h
1� e

( x
↵)

�i
(�1 + �2 + �3)

o
, x1 = x2 = x

(4.4)

2. The joint probability density function of (X1, X2) is

fX1,X2 (x1, x2) =

8
>><

>>:

f1 (x1, x2) if x1 > x2 > 0,

f2 (x1, x2) if x2 > x1 > 0,

f3 (x) if x1 = x2 = x > 0,

(4.5)

where

f1 (x1, x2) = fMWE (x1;�1 + �3,↵, �) fMWE (x2;�2,↵, �) ,

f2 (x1, x2) = fMWE (x1;�1,↵, �) fMWE (x2;�2 + �3,↵, �) ,

f3 (x) =
�3

�1+�2+�3
fMWE (x;�1 + �2 + �3,↵, �) .

(4.6)
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Note: f1(x1, x2) and f2(x1, x2) are the continuous parts and f3(x) is the singular part

of the joint pdf of the BMWE distribution.

3. The marginal distributions are MWE. That is, Xj ⇠MWE(�j + �3,↵, �), j = 1, 2.

Proof:

1. Using the definition of the joint survival function of (X1, X2), SX1,X2 (x1, x2) = P (X1

> x1, X2 > x2), we get

SX1,X2 (x1, x2) = P (U1, x1, U3 > x1, U2 > x2, U3 > x2)

= (U1 > x1)P (U2 > x2)P (U3 > max (x1, x2))

=
3Y

j=1

SMWE (xj;�j,↵, �), x3 = max (x1, x2).

Substituting from (4.1) into the above equation, we get SX1,X2 (x1, x2) as given in (4.4).

2. The absolutely continuous parts of the joint pdf of (X1, X2), f1(x1, x2) and f2(x1, x2)

can be easily obtained by using the relationship between the joint pdf and joint sf given

by fX1,X2(x1, x2) =
@
2

@x1@x2
SX1,X2(x1, x2). The singular part f3(x) can be obtained by

using the following well know identity:

1 =

Z 1

0

f3(x) dx+

ZZ

x1>x2

fX1,X2(x1, x2) dx1 dx2 +

ZZ

x1<x2

fX1,X2(x1, x2) dx1 dx2.

3. It is straightforward using the definition of Xj = min(Uj, U3), j = 1, 2.

Special Case: The bivariate Chen distribution (BCD), that was proposed in Sarhan et al.

(2022), can be derived from the BMWE distribution as a special case from the BMWE

distribution when ↵ = 1.

Figure 4.1 depicts the continuous components of the joint probability density function

(jpdf) for (X1, X2), along with corresponding contour plots showcasing various parameter

values of the model. Simultaneously, figures 4.2 illustrate the singular portions of the jpdf,

while 4.3 showcases the probability density function (pdf) and hazard rate function (hrf) of

the marginal distribution for X1, utilizing three distinct sets of parameter values to highlight

diverse hazard function shapes. These figures were generated using Matlab. These figures

reveal that the distribution’s support fluctuates in response to the model parameters’ values

and the profiles of the probability density function (pdf) and hazard rate function (hrf)..
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Figure 4.1: The absolutely continuous parts of the joint pdf and the corresponding contour
plots of the BMWE distribution at di↵erent values for the model parameters: (1) Set 1:
�1 = 0.0031,�2 = 0.0036,�3 = 0.0011,↵ = 9905.2, � = 1.547; (2) Set 2: �1 = 1.2, �2 =
1.0, �3 = 1.7, ↵ = 0.2, and � = 0.5; (2) Set 3: �1 = 1.2, �2 = 1.0, �3 = 1.7, ↵ = 0.2, and
� = 2.5 (from top to bottom).
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Figure 4.2: The singular part of the BMWE(�1,�2,�3,↵, �) when: (1) Set 1: �1 =
0.0031,�2 = 0.0036,�3 = 0.0011,↵ = 9905.2, � = 1.547; (2) Set 2: �1 = 1.2, �2 = 1.0, �3 =
1.7, ↵ = 0.2, and � = 0.5; (2) Set 3: �1 = 1.2, �2 = 1.0, �3 = 1.7, ↵ = 0.2, and � = 2.5.

Substituting (4.1) into (4.6) we can get the explicit forms of f1, f2, and f0 as follows:

f1 (x1, x2) = (�1 + �3) �
⇣
x1

↵

⌘��1

exp
n
(�1 + �3)↵

h
1� e

(x1
↵ )

�i
+
⇣
x1

↵

⌘�o
(4.7)

⇥ �2�

⇣
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↵

⌘��1

exp
n
�2↵

h
1� e

(x2
↵ )

�i
+
⇣
x2

↵

⌘�o
,

f2 (x1, x2) = (�2 + �3) �
⇣
x2

↵

⌘��1

exp
n
(�2 + �3)↵

h
1� e

(x2
↵ )

�i
+
⇣
x2

↵

⌘�o
(4.8)
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⌘��1
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�1↵
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1� e
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�i
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↵

⌘�o
,

and

f3 (x) =
�3P3
i=1 �i

3X

i=1

�i�
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x

↵

⌘��1

exp

( 
3X
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�i

!
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1� e

( x
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= �3�

⇣
x
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exp
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3X
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�i

!
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1� e
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+
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.
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Figure 4.3: The pdf and the hrf of the marginal distribution of X1 when: (1) Set 1: �1 =
0.0031,�2 = 0.0036,�3 = 0.0011,↵ = 9905.2, � = 1.547; (2) Set 2: �1 = 1.2, �2 = 1.0, �3 =
1.7, ↵ = 0.2, and � = 0.5; (2) Set 3: �1 = 1.2, �2 = 1.0, �3 = 1.7, ↵ = 0.2, and � = 2.5.
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4.3 Dependent Competing Risks Model

In survival and reliability analysis one is often interested in the assessment of one risk in the

presence of other risk factors. In statistics, this is known as the competing risks problem. The

competing risks model assumes that the data consists of the failure time of the underlying

object and the associated cause of failure. An extensive amount of study has been carried out

under both parametric and non-parametric assumptions, see for example the monograph by

Crowder (2001) in this respect. In this chapter, we adopt the parametric setup along with the

latent failure time assumption. Furthermore, it is assumed here that there are two possible

causes of death (competing risks), although the method can be easily generalized to any

fixed number of competing risks.

It is assumed in the competing risks model that the underlying experimental object

(system, or a human, or an animal) is under fatal attack from two competing risks. The

object will be destroyed if it receives at least one attack from the two risks. The attack from

risk j (j = 1, 2) occurs at time Xj. When the object fails, we observe two quantities (T, �),

where T represents the lifetime of the object, and � is an indicator that describes the cause

of failure. That is, T = min {X1, X2}, and

� =

8
>><

>>:

1 if risk 1 causes the failure,

2 if risk 2 causes the failure,

3 if both risks cause the failure.

Crowder (2001) includes an extensive literature dealing with the analysis of competing

risks data based on the specific continuous parametric distribution assumption on X1 and

X2, assuming X1 and X2 to be independent random variables. In many applications, the

independence assumption will not hold. Therefore, competing risks models with dependent

causes of failure are needed in reliability/survival analysis.

Recently, to analyze the dependent competing risks data, some work adopted the as-

sumption that (X1, X2) has a specific bivariate distribution, see for example Feizjavadian

and Hashemi (2015), Shen and Xu (2018), Samanta and Kundu (2021) and Sarhan et al.

(2022). In this chapter, we assume that the joint distribution of (X1, X2) is the BMWE

distribution. This assumption produces a dependent competing risks model with risks that

follow modified Weibull distributions. Under this assumption, the risks will have either in-

creasing, decreasing or bathtub shaped hazard rate functions. It follows that the BMWE
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distribution can be applied to the analysis of a variety di↵erent types of lifetime data of

dependent competing risks type.

4.4 Maximum Likelihood Estimation

In this section, we estimate the model parameters ✓ = (�1,�2,�3,↵, �) using two di↵erent

types of data. Type I Data consists of simple random samples of the bivariate vector (X1, X2)

that follows the new bivariate distribution. Type II Data consists of dependent competing

risks data (T, �), with T = min{X1, X2}, where (X1, X2) follows a bivariate lifetime distri-

bution and � represents the cause of failure. The maximum likelihood method is used to

estimate model parameters.

Type I Data (Bivariate data): Let us assume that (X11, X21) , (X12, X22) , · · · , (X1n, X2n)

be an independent and identical random sample of (X1, X2) that follows the BMWE(�1, �2,

�3,↵, �). For simplicity, let us introduce an indicator variable �i, i = 1, 2, · · · , n, where:

�i =

8
>><

>>:

3 if Xi1 = Xi2 ,

1 if Xi1 < Xi2 ,

2 if Xi1 > Xi2 .

Using the above sample, the likelihood function can be expressed as

L1(✓) =
nY

i=1

[f2(x1i, x2i)]
I[�i=1] [f1(x1i, x2i)]

I[�i=2] [f3(x1i)]
I[�i=3]

. (4.10)

where f1(x1i, x2i), f2(x1i, x2i), and f3(x1i) are given in (4.7), (4.8), and (4.9). Substituting

from (4.5) into (4.10), we get the log-likelihood function as

L1(✓) = �2(n1 + n2)(� � 1) log↵ + (2n� n3) log � +
2X

j=1

nj log(�j + �3) +

(� � 1)
nX

i=1

log

 
x1ix2i

x
I(�i=3)
2i

!
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1

↵�

nX

i=1

[x�1i + x
�

2i � I(�i = 3)x�2i] +

↵

2X
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�j

nX

i=1

�
1� e

(xji/↵)�
�
+ ↵�3

nX

i=1

I(�i = j)
�
1� e

(xji/↵)�
�
+

↵�3

2X

j=1

nX

i=1

I(�i = j)
�
1� e

(xji/↵)�
�
+

3X

j=1

nj log �j , (4.11)
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where nj =
P

n

i=1 I(�i = j), j = 0, 1, 2, with I(A) = 1 if A is true and 0 otherwise.

In order to get the MLE of the model parameters, we need to maximize the log-likelihood

function of the parameters, for the given data, with respect to those unknown parameters.

Equivalently, we need to solve the likelihood equations derived by setting the first partial

derivatives of the log-likelihood function with respect to the unknown parameters to zero.

The MLE’s are the solution of obtained likelihood equations, at which the Fisher informa-

tion matrix should be positive definite. The Fisher information matrix consists of the second

partial derivatives of the log-likelihood function with respect to the parameters. For the dis-

tribution in question, the likelihood equations cannot be solved analytically, and we have

used numerical routines in R software to solve the system of five non-linear equations in five

unknowns. The likelihood equations and the second partial derivatives of f1, f2, and f0 are

given in Appendix C..

Type II Data (Dependent Competing Risks Data): We observe a pair of quantities:

T , the system time to failure, and � an indicator of the cause of failure. This means that the

observations in this case are (Ti, �i), i = 1, 2, · · · , n. The lifetime experiment that produces

this type of data can be illustrated as follows: (1) we put n independent and identical devices

(system/objects) on the life test, (2) each system is under the attack from two dependent

competing risks which occur at times X1 and X2, the system will fail once it receives one

of the two attacks, (3) (X1, X2) follows the BMWE distribution; (4) we observe (Ti, �i),

i = 1, 2, · · · , n, where Ti = min(X1i, X2i), and �i is defined as �i = 1, if risk 1 causes the

failure (X1i < X2i); �i = 2, if risk 2 causes the failure (X2i < X1i) and �i = 3, if the cause

of failure is due to both causes (X1i = X2i). The likelihood function using such dependent

competing risks data is

L2(✓) =
nY

i=1

[f ⇤
2 (ti)]

I[�i=1] [f ⇤
1 (ti)]

I[�i=2] [f ⇤
3 (ti)]

I[�i=3]
, (4.12)

where

f
⇤
j
(t) = hMWE (t;�j,↵, �) . SMWE (t;�1 + �2 + �3,↵, �) (4.13)

= �j�
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e
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e
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, j = 1, 2, 3;
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See Appendix C for more details. Substituting (4.13) into (4.12), we can get logarithm

of the likelihood function L2(✓), say L2(✓), as

L2(✓) = n3 log �3 + n1 log �1 + n2 log �2 + n log � + (� � 1)
nX

i=1

log ti + (4.14)

�n(� � 1) log↵ + (�1 + �2 + �3)↵
nX

i=1

⇣
1� e

( ti
↵ )

�⌘
+

nX

i=1

✓
ti

↵

◆�

.

To get the MLE of the model parameters, using dependent competing risks data, we set

the first partial derivatives of L2 with respect to the five parameters �1,�2,�3,↵, � equal to

zero, we get a system of five non-linear equations in five unknowns. Solving the first three

equations, in �j, j = 1, 2, 3, we get �j as a function of (↵, �), as

�j (↵, �) =
�nj

↵
P

n

i=1

�
1� exp

��
ti
↵

�� � , j = 1, 2, 3. (4.15)

Substituting (4.15) into (4.14), we can express the log-likelihood function as a function of

two parameters (↵, �), say L⇤
2(↵, �):

L⇤
2(↵, �) =

3X

j=1

nj log
�nj

↵
P

n

i=1

⇣
1� e

( ti
↵ )

�⌘ + n log � (4.16)

+ (� � 1)
nX

i=1

log ti � n (� � 1) log↵� n+
nX

i=1

✓
ti

↵

◆�

.

This will make the optimization of the log-likelihood function much easier, since we will deal

only with two parameters instead of five. Once we get the MLE of ↵ and �, we can use

(4.15) to get the MLE of �j, j = 1, 2, 3.

Since the MLE of the parameters using either type of data are not obtained in closed form,

we can not get the explicit sampling distributions of the MLEs of these parameters. There-

fore, we cannot obtain exact confidence intervals for the model parameters. Alternatively,

we can use the large sample distribution of the MLE and the corresponding observed Fisher

information matrix to derive approximate confidence intervals for the model parameters.

4.5 Data generation and simulation results

In this section, we present how to generate random samples from the proposed BMWE

model. We then show how to use the bivariate sample to generate dependent competing

risks data from the underlying distribution.
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4.5.1 Random sample generation from the BMWE distribution

The following algorithm can be applied to generate random samples of bivariate variables

(X1, X2) from the BMWE(�1, �2, �3,↵,�), ”Type I Data”:

Algorithm 1:

1. Specify the sample size n.

2. Specify the model parameters: �1,�2,�3,↵, �.

3. Generate three independent random values v1, v2, v3 from (0, 1) uniform distribution.

4. Compute the following three random values that follow MWE(�i,↵,�):

ui = ↵

✓
log

⇢
1� log (vi)

�↵

�◆ 1
�

i = 1, 2, 3.

5. Compute x1i = min (u1, u3) and x2i = min (u2, u3).

6. Repeat steps 3-5 n�times, we obtain a simple random sample (x1i, x2i), i = 1, 2, · · · , n,
for (X1, X2) that follows BMWE(�1,�2,�3,↵, �).

Given a random sample of the bivariate variables (X1, X2), say (x11, x21), (x12, x22), · · · ,
(x1n, x2n) from BMWE distribution, we can generate a dependent competing risks data set,

”Type II Data”, with two risks, by applying the following algorithm:

Algorithm 2:

1. Compute the time to failure of the i
th object as ti = min{x1i, x2i}, i = 1, 2, · · · , n,

2. Determine the cause of the i
th failure, �i, as

�i =

8
>><

>>:

1 if xi1 < xi2 (if risk 1 causes the failure),

2 if xi1 > xi2 (if risk 2 causes the failure),

3 if xi1 = xi2 (if both risks cause the failure).

We used algorithms 1 and 2, to generate a random sample of 100 dependent competing risk

observations from the BMWE distribution when �1 = 0.0031, �2 = 0.0036, �3 = 0.0011,

↵ = 9905.2, � = 1.547, as shown in Table 4.1. The reason for using these values of the model
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parameters is that we get similar values when we analyze a real data set, as will be discussed

later in Section 6.

Using the generated sample, we computed the MLE of all model parameters, the corre-

sponding standard error (SE), the 95% CI (lower and upper limits) and the percentage error

(PE) as given in Table 4.2. Based on these results, we conclude that the random number

generation algorithms and the estimation process used in this chapter work very well.

We used R software to do the simulation and all the computations for this example, the

simulations in Section 5 and data analysis in Section 6.

i 1 2 3 4 5 6 7 8 9 10
ti 219.1 297.5 456.1 331.0 594.8 472.3 904.2 226.4 1120.4 342.4
�i 2 1 1 2 1 1 3 1 2 1
i 11 12 13 14 15 16 17 18 19 20
ti 69.6 1668.3 607.5 1048.1 240.5 1453.2 1690.1 710.5 438.3 931.9
�i 1 2 3 1 3 1 2 2 3 2
i 21 22 23 24 25 26 27 28 29 30
ti 582.3 217.5 900.5 382.1 117.5 882.2 215.6 223.3 648.7 669.3
�i 2 3 1 1 1 1 1 1 2 2
i 31 32 33 34 35 36 37 38 39 40
ti 44.8 482.9 699.8 769.3 438.3 1124.3 202.4 539.8 292.7 298.5
�i 1 2 2 3 1 1 2 2 2 2
i 41 42 43 44 45 46 47 48 49 50
ti 457.2 312.8 1131.4 891.8 219.1 343.3 1474.1 767.5 683.1 749.1
�i 3 2 2 1 2 1 3 2 1 1
i 51 52 53 54 55 56 57 58 59 60
ti 228.2 107.9 564.8 225.7 427.1 735.9 235.1 764.5 550.6 883.6
�i 1 1 3 2 2 3 3 2 2 1
i 61 62 63 64 65 66 67 68 69 70
ti 288.1 667.3 225.5 58.5 870.9 729.2 272.5 1398.9 943.1 98.5
�i 3 2 2 1 3 2 1 2 1 3
i 71 72 73 74 75 76 77 78 79 80
ti 536.8 987.3 649.3 183.2 1034.5 953.9 871.3 804.2 384.9 114.4
�i 2 2 2 1 1 2 1 1 1 1
i 81 82 83 84 85 86 87 88 89 90
ti 250.2 297.5 175.4 523.2 530.4 113.9 664.9 180.5 918.7 291.5
�i 2 2 2 2 2 2 1 2 1 1
i 91 92 93 94 95 96 97 98 99 100
ti 708.4 473.7 345.6 438.1 278.2 121.5 172.4 765.1 156.3 372.7
�i 2 2 1 1 3 2 1 2 2 2

Table 4.1: Dependent competing risks data set generated from the BMWE distribution.
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Parameter �1 �2 �3 ↵ �

Actual Values 0.0031 0.0036 0.0011 9905.2 1.547
Estimation 0.003139 0.003532 0.001178 10891.5 1.5514
PE %1.26 %1.87 %7.06 %9.95 %0.28

Table 4.2: Parameters estimation using the generated sample in Table 4.1.

4.5.2 Simulation Study

In this section we present a simulation study to show how the proposed methods work for

di↵erent sample sizes and di↵erent parameter values. In this simulation study we used the

two algorithms 1 and 2 presented in the previous section to generate bivariate and dependent

competing risks samples with di↵erent sample sizes n = 100, 150, 200, 250, 1000 using two

di↵erent sets of the model parameter values. For every sample, we perform the following:

(1) generate 2000 samples; (2) for each sample, we find the MLE, its squared deviation from

the actual value, and a 95% confidence interval for each parameter are computed; (3) using

the 2000 MLEs and 95% CIs, we computed the average value of the MLEs (AMLE); the

mean squared error (MSE), and the coverage probability (CP) for each parameter:

AMLE✓ =

P2000
`=1 ✓̂

(`)

2000
, MSE✓ =

P2000
`=1

⇣
✓ � ✓̂

(`)
⌘

2000
, CP✓ =

P2000
`=1 I

⇣
✓̂
(`)
2CI

⌘

2000
.

where ✓ is the actual value of the parameter; ✓̂(`) is the MLE of ✓ using sample number `; CI

is the confidence interval using sample number `. This strategy for the simulation is followed

for the bivariate data sets and for the dependent competing risks data sets. Tables 4.3 and 4.4

show the results for bivariate data and depending competing risks data, respectively. In this

study, three sets of parameter values were used. In set 1, it is assumed that �1 = 0.3,�2 =

0.4,�3 = 0.7,↵ = 0.2, � = 2.5; in set 2, it is assumed that �1 = 1.2,�2 = 1,�3 = 1.7,↵ =

0.2, � = 2.5; and in set 3, it is assumed that �1 = 1.2,�2 = 1,�3 = 1.7,↵ = 0.2, � = 0.5.
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✓ n
Set 1 Set 2 Set 3

AMLE✓ MSE✓ CP✓ AMLE✓ MSE✓ CP✓ AMLE✓ MSE✓ CP✓

�1

100

0.43 0.1455 0.9165 1.51 1.3780 0.9130 0.36 0.0356 0.9155
�2 0.56 0.2249 0.9145 1.26 1.0183 0.9130 0.48 0.0655 0.9110
�3 1.00 0.7142 0.9170 2.14 2.9819 0.9175 0.83 0.1714 0.9520
↵ 0.21 0.0018 0.9115 0.20 0.0017 0.9695 0.36 0.1784 0.9095
� 2.68 0.4233 0.9125 2.55 0.2582 0.9285 0.54 0.0205 0.9080
�1

150

0.39 0.0802 0.9220 1.41 0.7389 0.9325 0.34 0.0185 0.9110
�2 0.53 0.1413 0.9270 1.19 0.5258 0.9285 0.45 0.0285 0.9150
�3 0.92 0.4420 0.9215 2.00 1.4055 0.9310 0.79 0.0860 0.9395
↵ 0.21 0.0014 0.9095 0.20 0.0011 0.9705 0.32 0.1047 0.9045
� 2.64 0.3172 0.9140 2.54 0.1859 0.9275 0.53 0.0150 0.9065
�1

200

0.37 0.0500 0.9215 1.36 0.5095 0.9180 0.33 0.0144 0.9200
�2 0.49 0.0840 0.9235 1.13 0.3599 0.9170 0.45 0.0255 0.9160
�3 0.87 0.2710 0.9175 1.93 1.0448 0.9255 0.78 0.0740 0.9300
↵ 0.20 0.0012 0.9055 0.20 0.0010 0.9625 0.28 0.0593 0.9080
� 2.61 0.2527 0.9050 2.52 0.1469 0.9330 0.52 0.0111 0.9035
�1

250

0.35 0.0418 0.9115 1.32 0.3559 0.9325 0.34 0.0131 0.9175
�2 0.47 0.0712 0.9145 1.10 0.2531 0.9335 0.45 0.0219 0.9255
�3 0.83 0.2226 0.9190 1.89 0.7613 0.9380 0.79 0.0627 0.9165
↵ 0.20 0.0010 0.9080 0.20 0.0008 0.9650 0.26 0.0480 0.9010
� 2.57 0.2112 0.9060 2.52 0.1184 0.9455 0.51 0.0101 0.9040
�1

1000

0.32 0.0103 0.9075 1.22 0.0734 0.9540 0.31 0.0030 0.9460
�2 0.42 0.0181 0.9075 1.02 0.0532 0.9520 0.42 0.0050 0.9275
�3 0.74 0.0538 0.9080 1.74 0.1510 0.9535 0.73 0.0145 0.9190
↵ 0.20 0.0004 0.9025 0.20 0.0002 0.9565 0.21 0.0106 0.9140
� 2.52 0.0755 0.9060 2.50 0.0317 0.9485 0.50 0.0032 0.9160

Table 4.3: Simulation results for the bivariate data from BMWED using the three sets of
parameters’ values. Set 1: �1 = 0.3,�2 = 0.4,�3 = 0.7,↵ = 0.2, � = 2.5; set 2: �1 = 1.2,�2 =
1,�3 = 1.7,↵ = 0.2, � = 2.5 and set 3: �1 = 0.3,�2 = 0.4,�3 = 0.7,↵ = 0.2, � = 0.5.
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✓ n
Set 1 Set 2 Set 3

AMLE✓ MSE✓ CP✓ AMLE✓ MSE✓ CP✓ AMLE✓ MSE✓ CP✓

�1

100

0.45 0.1639 0.9215 1.74 4.5560 0.8960 0.37 0.0418 0.9170
�2 0.59 0.2785 0.9180 1.45 3.0209 0.9000 0.48 0.0623 0.9145
�3 1.03 0.7791 0.9255 2.49 11.094 0.9010 0.85 0.1898 0.9385
↵ 0.21 0.0022 0.9480 0.20 0.0028 0.9750 0.40 0.3428 0.9030
� 2.68 0.4469 0.9195 2.54 0.2924 0.9365 0.53 0.0208 0.9000
�1

150

0.41 0.1198 0.9145 1.52 1.9245 0.9075 0.35 0.0280 0.9360
�2 0.55 0.2109 0.9135 1.28 1.2720 0.9075 0.47 0.0473 0.9230
�3 0.97 0.6338 0.9210 2.17 4.2002 0.9155 0.82 0.1369 0.9385
↵ 0.21 0.0018 0.9305 0.20 0.0018 0.9530 0.33 0.1156 0.9040
� 2.63 0.3655 0.9055 2.53 0.1991 0.9345 0.52 0.0155 0.9060
�1

200

0.38 0.0773 0.9090 1.45 1.1631 0.9215 0.34 0.0201 0.9230
�2 0.51 0.1370 0.9025 1.22 0.8122 0.9205 0.46 0.0339 0.9250
�3 0.89 0.3892 0.9095 2.07 2.2416 0.9235 0.81 0.0985 0.9350
↵ 0.20 0.0015 0.9225 0.20 0.0015 0.9550 0.31 0.1034 0.9065
� 2.58 0.2942 0.9140 2.52 0.1689 0.9340 0.52 0.0141 0.9015
�1

250

0.37 0.0637 0.9120 1.39 0.6535 0.9250 0.34 0.0126 0.9110
�2 0.49 0.1152 0.9140 1.16 0.4627 0.9250 0.46 0.0294 0.9290
�3 0.86 0.3510 0.9170 1.97 1.3191 0.9305 0.80 0.0850 0.9315
↵ 0.20 0.0013 0.9135 0.20 0.0011 0.9510 0.28 0.0721 0.9060
� 2.57 0.2550 0.9040 2.52 0.1367 0.9425 0.51 0.0112 0.9040
�1

1000

0.32 0.0110 0.9300 1.23 0.1056 0.9450 0.31 0.0023 0.9460
�2 0.42 0.0192 0.9340 1.03 0.0774 0.9405 0.42 0.0039 0.9480
�3 0.74 0.0586 0.9320 1.75 0.2084 0.9450 0.73 0.0119 0.9190
↵ 0.20 0.0004 0.9210 0.20 0.0003 0.9595 0.22 0.0125 0.9325
� 2.52 0.0822 0.9225 2.50 0.0364 0.9515 0.50 0.0032 0.9335

Table 4.4: Simulation results for the dependent competing risks data from BMWED using
the three sets of parameters’ values. Set 1: �1 = 0.3,�2 = 0.4,�3 = 0.7,↵ = 0.2, � = 2.5; set
2: �1 = 1.2,�2 = 1,�3 = 1.7,↵ = 0.2, � = 2.5 and set 3: �1 = 0.3,�2 = 0.4,�3 = 0.7,↵ =
0.2, � = 0.5.

Based on the simulation results, it is seen that in all cases, as the sample size increases,

the AMLE of all parameters approach their actual values, the MSE decreases and the cov-

erage probability approaches the nominal confidence level. This indicates consistency of the

maximum likelihood estimate of the parameters.
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4.6 Data Analysis

This section illustrates how the proposed BMWE distribution can be applied to real data

sets. We analyze two real data sets. The first is a bivariate data set and the second is a

dependent competing risks data set.

4.6.1 Bivariate real data set

In this subsection we analyze the Union of European Football Associations (UEFA) data set.

This data was introduced in Meintanis (2007). It consists of bivariate observations (X1i, X2i),

i = 1, 2 · · · , 37. Here X1 measures the time in minutes of the first kick goal scored by any

team, while X2 is the time in minutes of the first goal of any type scored by the home team.

For more information about this data, we refer to Meintanis (2007) .

This data was analyzed by di↵erent researchers using di↵erent bivariate distributions. For

example, Meintanis (2007) used the Marshall-Olkin bivariate exponential (MOBE), Kundu

and Gupta (2009) used the bivariate generalized exponential (BVGE), Sarhan et al. (2011)

used the bivariate generalized linear failure rate (BGLFR) distribution, and recently Sarhan

et al. (2022) used the bivariate Chen distribution (BCD). In this chapter, we use the BMWE

distribution to fit this data set.

To compare the performance of di↵erent non-nested distributions (BVGE, BGLFR, BCD,

and BMWE) to fit the underlying data set, we use Akaike Information Criterion Akaike

(1969), AIC = �2L̂+ 2k, where k is the number of the model parameters. Table 4.5 shows

the MLE, the value of the log-likelihood function and AIC for all the models stated above.

The results for BVGE, BGLFR and BCD are taken from Sarhan et al. (2022) .

Sarhan et al. (2011) showed that BVGE should be rejected versus the BGLFR distribution

at any significance level greater than or equal to 0.05. Sarhan et al. (2022) showed that BCD

fits the data better than BGLFR model. Since BCD is a special case from BMWE, we can

use the likelihood ratio test statistic ⇤ that follows a chi square distribution with one degree

of freedom �1, to test the following hypothesis:

H0 : the data follow BCD, (↵ = 1) vs H1 : the data follow BMWE, (↵ 6= 1).

Using the results in Table 4.5, we get ⇤ = �2
⇣
L̂H0 � L̂H1

⌘
= 4.08, and the corresponding

p-value is P (�1 � 4.08) = 0.04496. Therefore, BCD is rejected to fit this data set, in favor

of BMWE distribution at at any significance level of 0.04496 or larger.
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Model MLEs L̂ AIC
BVGE ↵̂1 = 1.351, ↵̂2 = 0.465, ↵̂3 = 1.153, �296.94 601.87

�̂ = 0.039
BGLFR ↵̂1 = 0.492, ↵̂2 = 0.166, ↵̂3 = 0.411, �293.38 596.76

�̂ = 2.013⇥ 10�4
, �̂ = 8.051⇥ 10�4

BCD ↵̂1 = 2.817⇥ 10�3
, ↵̂2 = 6.298⇥ 10�3

, �288.23 584.47
↵̂3 = 6.006⇥ 10�3, �̂ = 0.4035

BMWE �̂1 = 0.0039, �̂2 = 0.0086, �̂3 = 0.0082, �286.19 582.38
↵̂ = 47.55, �̂ = 1.192

Table 4.5: The MLEs of the models parameters, corresponding log-likelihood function values
and the values of AIC.

4.6.2 Diabetic retinopathy data analysis

Diabetic retinopathy is a major eye condition that can cause vision loss and blindness in

diabetic people. It a↵ects blood vessels in the retina (the light-sensitive layer of tissue in

the back of the eye). The National Eye Institute in Bethesda, Maryland conducted an

experiment on 71 patients, to study the e↵ect of laser treatment in reducing the risk of

blindness. For each patient, the laser treatment was given to a randomly selected eye. The

time to blindness and the indicator whether treated or untreated or both eyes became blind

were recorded. The main aim of the experiment is to test whether the laser treatment has

any e↵ect in delaying the onset of blindness in the diabetic retinopathy patients. The data

set provided from this experiment can be treated as a dependent competing risks data with

two causes of failure (blindness). The data are presented in Table 4.6, and the BMWE

distribution may be a reasonable model to analyze this data set. Sarhan et al. (2022) used

BCD to analyze this data and reported, based on the Kolmogorov-Smirnov test statistic,

that the BCD is a good fit for this data. In this chapter, we use the BMWE distribution to

fit this data set and compare it with the BCD. Table 4.7 shows the MLE, the corresponding

log-likelihood function and AIC for BCD and BMWE distribution.
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i 1 2 3 4 5 6 7 8 9 10 11 12
ti 266 91 154 285 583 547 79 622 707 469 93 1313
�i 1 2 2 3 1 2 1 3 2 2 1 2
i 13 14 15 16 17 18 19 20 21 22 23 24
ti 805 344 790 125 777 306 415 307 637 577 178 517
�i 1 1 2 2 2 1 1 2 2 2 1 2
i 25 26 27 28 29 30 31 32 33 34 35 36
ti 272 1137 1484 315 287 1252 717 642 141 407 356 1653
�i 3 3 1 1 2 1 2 1 2 1 1 3
i 37 38 39 40 41 42 43 44 45 46 47 48
ti 427 699 36 667 588 471 126 350 350 663 567 966
�i 2 1 2 1 2 3 1 2 1 3 2 3
i 49 50 51 52 53 54 55 56 57 58 59 60
ti 203 84 392 1140 901 1247 448 904 276 520 485 248
�i 3 1 1 2 1 3 2 2 1 1 2 2
i 61 62 63 64 65 66 67 68 69 70 71
ti 503 423 285 315 727 210 409 584 355 1302 227
�i 1 2 2 2 2 2 2 1 1 1 2

Table 4.6: Diabetic Retinopathy Data.

Based on the AIC, we can conclude that BMWE distribution fits this data set better

than BCD. Moreover, performing the likelihood ratio test, the value of the test statistic is

6.54 and the corresponding p-value is 0.0105. Therefore, the BCD is rejected in favor of the

BMWE distribution at a level of significance larger than or equal to 0.0105.

Model MLE L̂ AIC

BCD �̂1 = 0.00125, �̂2 = 0.001472, �̂3 = 0.00044, �̂ = 0.27193 �581.29 1170.58

BMWE �̂1 = 0.003059, �̂2 = 0.003612, �̂3 = 0.00109, ↵̂ = 9905.17, �578.05 1166.09
�̂ = 1.54657

Table 4.7: MLE, log-likelihood values, and AIC for BCD and BMWE distributions, using
the Diabetic Retinopathy Data.

Finally, we can investigate if the laser treatment has a significant e↵ect on delaying the

blindness of the Diabetic Retinopathy patients. To do so, we can test the following hypothesis

H0 : �1 = �2 (laser is not e↵ective) vs H1 : �1 6= �2 (laser is e↵ective)

To use the likelihood ratio test, we need the the log-likelihood function, under H0, which
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can be obtained from (4.14), by assuming that �1 = �2 = �, as

L02(✓) = n3 log �3 + (n1 + n2) log �+ n log � + (� � 1)
nX

i=1

log ti + (4.17)

�n(� � 1) log↵ + (2�+ �3)↵
nX

i=1

⇣
1� e

( ti
↵ )

�⌘
+

nX

i=1

✓
ti

↵

◆�

.

Under the null hypothesis, the MLE of the unknown parameters are �̂ = 0.00545, �̂3 =

0.00179, ↵̂ = 22857.73, �̂ = 1.55443, the corresponding log-likelihood value is �578.23.

Thus, the value of the test statistic is ⇤ = �2(�578.2249 + 578.0463) = 0.357, and the

associated p-value is 0.550. Therefore, we cannot reject H0, in favor of H1, at any reasonable

significance level, which indicates that the laser treatment does not have a significant e↵ect

in delaying blindness.

4.7 Conclusion

In this chapter, we used the fatal shock model concept to propose a new bivariate distribution

of Marshall-Olkin type, using three independent univariate random variables that follow

the modified Weibull extension distribution. This distribution is referred to as BMWE

distribution. The BMWE distribution generalizes the bivariate Chen distribution that was

recently proposed by Sarhan et al. (2022). We illustrated how to use the BMWE distribution

to fit dependent competing risks data as well as bivariate data. We estimated the unknown

parameters included in the BMWE distribution using the maximum likelihood method based

on two di↵erent types of data sets: a bivariate data set and a dependent competing risks

data set. We performed a simulation study to investigate the consistency of the maximum

likelihood method. Finally, we used the new proposed distribution to fit two real data sets

(bivariate data and dependent competing risks data) and compared it with the bivariate

Chen distribution and some other related distributions and reported that the BMWE fits

those data sets better than the other distributions.

As a future plan, we can use either step-stress acceleration life test plan and/or progres-

sively type-II censored data to estimate the parameters of BMWE in the presence of either

bivariate data or dependent competing risks data. This chapter was published in Manshi

et al. (2023).
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Chapter 5

Conclusion

In chapter 2, we discussed how to use progressively hybrid censoring (PHC) samples to

estimated the unknown parameters of Sarhan-Tadj-Hamilton (STH) distribution. We used

the maximum likelihood and Bayes methods to estimate those unknown parameters. For the

Bayes method, we assumed that the model parameters are independent and gamma prior

distributions with hyperparameters all equal to 0.001. This choice of the hyperparameters’

values reflect the lack of prior information on the model parameters. There is no closed-form

solution for either the maximum likelihood estimate or Bayes estimate for the parameters.

Hence, numerical methods are applied. We used R software to apply such numerical methods.

For the MLE, we used the R optim function to maximize the log-likelihood function. For

Bayes method, we used MCMC to approximate the Bayesian analysis. We applied the

theoretical methods discussed in this chapter on three real data sets and we compared the

STH distribution with Weibull and power Lindely distributions. For each of these real data

sets, we generated two PHC samples then we used them to estimate the model parameters for

the three mentioned distributions using maximum likelihood and Bayes methods. Based on

the log-likelihood, AIC and BIC values, we concluded that STH distribution fits those three

real data sets better than the other two distributions for the original samples and the PHC

samples. To investigate the performance of the estimation methods and compare them,

a large simulation study was performed using STH distribution at di↵erent values of the

model parameters and at di↵erent values of the sampling scheme (n,m, p and T ). Also, we

discussed the expected experimentation time, through the relative expected experimentation

time (REET), for the progressively Type-II censoring samples using the STH distribution.

We performed a simulation study to investigate how REET is a↵ected by the values of

the model parameters and progressively censoring values (n,m , p). Further investigations

for this method as future work. We could also consider the PHC samples with unknown

probability of removal. Also, Bayesian methods with informative prior information on the

unknown model parameters can be investigated. This chapter was published in Sarhan et al.
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(2023)

In Chapter 3, we discussed the SSPALT scheme using a given distribution. We obtain

the maximum likelihood estimators of the unknown parameters for SSPALT and SSPALT

- PHC. A Bayesian estimate of the unknown parameters is also considered using gamma

priors for both parameters. There is no closed-form solution for both parameters; hence, a

simulation is conducted using specified parameter values. MLEs and BE’s show promising

results for various sample sizes and acceleration factors �. Next, we apply the PHC schemes

to the SSPALT method. Next, we considered the suggested transformation in Balakrishnan

et al. (2000) on the generated failure times, accelerated failure times using ⌧ and �, and

removals. An optimal stress change time ⌧ is considered and obtained using di↵erent values

of the parameters. We encountered one problem with this method: determining the exact

value of the change stress time ⌧ for generated failure times and accelerated failure times

before estimating the MLEs. We assigned di↵erent ⌧ percentiles of specified parameters’

values to overcome this. Then, we get the MLEs for all ⌧ percentiles, and according to the

minimum GAV, we pick the optimal ⌧ as mentioned in section 3.4. We applied this method

using an actual data set using three distributions. We can determine the optimal change time

stress using STH, PL, and Weibull distribution for this data set. All distributions provide

a good fit of the data, but the STH distribution has a better fit. A further investigation of

other optimal plan criteria and comparing this optimal plan is targeted for future work. As

a project goal, we can extend from one stress to k stresses for SSPALT - PHC. We could

also investigate the sensitivity analysis performed to examine the e↵ect of the preliminary

estimates of parameters on the optimal values of change time stress ⌧ . It will provide

information about the robustness of the optimal design. This will also identify the sensitive

parameters, which need to be estimated with special care to reduce estimation error.

In Chapter 4, we used the fatal shock model concept to propose a new bivariate dis-

tribution of Marshall-Olkin type, using three independent univariate random variables that

follow the modified Weibull extension distribution. This distribution is referred to as BMWE

distribution. The BMWE distribution generalizes the bivariate Chen distribution that was

recently proposed by Sarhan et al. (2022). We illustrated how to use the BMWE distribution

to fit dependent competing risks data as well as bivariate data. We estimated the unknown

parameters included in the BMWE distribution using the maximum likelihood method based

on two di↵erent types of data sets: a bivariate data set and a dependent competing risks
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data set. We performed a simulation study to investigate the consistency of the maximum

likelihood method. Finally, we used the new proposed distribution to fit two real data sets

(bivariate data and dependent competing risks data) and compared it with the bivariate

Chen distribution and some other related distributions and reported that the BMWE fits

those data sets better than the other distributions. As a future plan, we can use either

step-stress acceleration life test plan and/or progressively type-II censored data to estimate

the parameters of BMWE in the presence of either bivariate data or dependent competing

risks data. This chapter was published in Manshi et al. (2023).
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Appendix A

Chapter 2

The derivatives of the log likelihood function for PHC

The following are the first and second partial derivatives of the log-likelihood given in equa-

tion 2.5, for PHC Case I. The first partial derivatives of LI , with respect to ↵ and �,

respectively are:

LI,↵ =
m

↵
+

mX
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The second partial derivatives of LI , with respect to ↵ and �, respectively are:

LI,↵2 = �m
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i
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2

+
mX

i=1

ri
Ci (↵, �)Ci,�2 (↵, �)� [Ci,� (↵, �)]

2

[Ci (↵, �)]
2 ,
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LI,↵,� = �
mX

i=1

(1 + ri) x
↵

i
log xi +

mX

i=1

Ai (↵, �)Ai,↵� (↵, �)� Ai,↵ (↵, �)Ai,� (↵, �)

[Ai (↵, �)]
2

+
mX

i=1

ri
Ci (↵, �)Ci,↵� (↵, �)� Ci,↵ (↵, �)Ci,� (↵, �)

[Ci (↵, �)]
2 ,

where

Ai,↵2 (↵, �) = �x
↵

i
(log (xi))

2 exp {��x↵
i
} (1� 5�x↵

i
+ 2�2

x
2↵
i
) ,

Ci,↵2 (↵, �) = �
2
x
2↵
i

(log (xi))
2 (�x↵ � 2) exp {��x↵

i
},

Ai,↵� (↵, �) = x
↵

i
log (xi) exp {��x↵i } (1� 5�x↵

i
+ 2�2

x
2↵
i
) ,

Ci,↵� (↵, �) = ↵�x
2
i
log (xi) exp {��x↵i } (�x↵i � 2) ,

Ai,�2 (↵, �) = x
2↵
i

exp {��x↵
i
} (3� 2�x↵

i
) , and

Ci,�2 (↵, �) = x
2↵
i

(�x↵
i
� 1) exp {��x↵

i
}.

Below are the first and second partial derivatives of the log-likelihood given in equation

2.6, for PHC Case II. The first partial derivatives of LII , with respect to ↵ and �, respectively

are:

LII,↵ =
J

↵
+

JX

i=1

log (xi)� �

"
JX

i=1

(1 + ri) x
↵

i
log xi +R

⇤
J
T
↵ log T

#
+

JX

i=1

Ai,↵ (↵, �)

Ai (↵, �)

+
JX

i=1

ri
Ci,↵ (↵, �)

Ci (↵, �)
+R

⇤
j

D↵ (↵, �)

D (↵, �)
,

LII,� =
J

�
�

h
J �R

⇤
J
+
P

J

i=1 ri

i

(1 + �)
�
"

JX

i=1

(1 + ri) x
↵

i
+R

⇤
J
T
↵

#
+

JX

i=1

Ai,� (↵, �)

Ai (↵, �)

+
JX

i=1

ri
Ci,� (↵, �)

Ci (↵, �)
+R

⇤
J

D� (↵, �)

D (↵, �)
,

where

D↵ (↵, �) =
@D(↵,�)
@↵

= �T
2↵ log (T )�2 exp {��T ↵} and

D� (↵, �) =
@D(↵,�)
@�

= 1� T
2↵
� exp {��T ↵}.
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The second derivative of LII with respect to ↵ and � are:

LII,↵2 = � J

↵2
� �

"
mX

i=1

(1 + ri) x
↵

i
(log xi)

2 +R
⇤
J
T
↵ (log T )2

#

+
JX

i=1

Ai (↵, �)Ai,↵2 (↵, �)� [Ai,↵ (↵, �)]
2

[Ai (↵, �)]
2

+
JX

i=1

ri
Ci (↵, �)Ci,↵2 (↵, �)� [Ci,↵ (↵, �)]

2

[Ci (↵, �)]
2 +

+R
⇤
J

D (↵, �)D↵2 (↵, �)� [D↵ (↵, �)]
2

[D (↵, �)]2
,

LII,�2 = � J

�2
+

h
J �R

⇤
J
+
P

J

i=1 ri

i

(1 + �)2

+
JX

i=1

Ai (↵, �)Ai,�2 (↵, �)� [Ai,� (↵, �)]
2

[Ai (↵, �)]
2 +

+
JX

i=1

ri
Ci (↵, �)Ci,�2 (↵, �)� [Ci,� (↵, �)]

2

[Ci (↵, �)]
2

+R
⇤
J

D (↵, �)D�2 (↵, �)� [D� (↵, �)]
2

[D (↵, �)]2
,

LII,↵,� = �
"

JX

i=1

(1 + ri) x
↵

i
log xi +R

⇤
J
T
↵ log T

#

+
JX

i=1

Ai (↵, �)Ai,↵� (↵, �)� Ai,↵ (↵, �)Ai,� (↵, �)

[Ai (↵, �)]
2

+
JX

i=1

ri
Ci (↵, �)Ci,↵� (↵, �)� Ci,↵ (↵, �)Ci,� (↵, �)

[Ci (↵, �)]
2

+R
⇤
J

D (↵, �)D↵� (↵, �)�D↵ (↵, �)D� (↵, �)

[D (↵, �)]2
,

where

D↵2 (↵, �) = �
2
T

2↵ (log (T ))2 (�T ↵ � 2) exp {��T ↵},
D�2 (↵, �) = T

2↵ (�T ↵ + 3) exp {��T ↵}, and
D↵� (↵, �) = �T

2↵ log (T ) (�T ↵ � 2) exp {��T ↵}.
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Appendix B

Chapter 3

The derivatives of the log likelihood function for SSPALT

For Case-I, the log-likelihood function can be expressed as follows:

LI(✓) / m (log↵ + log �)�
 
m+

mX

i=1

ri

!
log(1 + �) + n2 log � +

+(↵� 1)
mX

i=1

log
⇣
x
I(�i=1)
i

�
⌧ + �(xi � ⌧)

�I(�i=2)
⌘
+

��
mX

i=1

h
I(�i = 1) x↵

i
+ I(�i = 2)

�
⌧ + �(xi � ⌧)

�↵i
+

+
mX

i=1

ri


I (�i = 1) log


1

1 + �

�
� + (1 + �x

↵

i
) e��x

↵
i
�
e
��x↵

i

�

+I (�i = 2) log


1

1 + �

⇣
� + (1 + � ( i (�))

↵) e��( i(�))
↵
⌘
e
��( i(�))

↵

��

+
mX

i=1

⇥
I(�i = 1) log

�
� + (1 + 2�x↵

i
) e��x

↵
i
�

+I(�i = 2) log
⇣
� + (1 + 2� ( i (�))

↵) e��( i(�))
↵
⌘i
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This equation can be expressed as:

LI(✓) / m (log↵ + log �)�
 
m+

mX

i=1

ri

!
log(1 + �) + n2 log � +

(↵� 1)
n1X

i=1

log (xi) + (↵� 1)
mX

i=n1+1

log ( i (�))

��
n1X

i=1

x
↵

i
� �

mX

i=n1+1

[ i (�)]
↵ +

+
mX

i=1

ri


I (�i = 1) log


1

1 + �

�
� + (1 + �x

↵

i
) e��x

↵
i
�
e
��x↵

i

�

+I (�i = 2) log


1

1 + �

⇣
� + (1 + � ( i (�))

↵) e��( i(�))
↵
⌘
e
��( i(�))

↵

��

+
mX

i=1

⇥
I(�i = 1) log

�
� + (1 + 2�x↵

i
) e��x

↵
i
�

+I(�i = 2) log
⇣
� + (1 + 2� ( i (�))

↵) e��( i(�))
↵
⌘i

Therefore,

LI(✓) / m log (↵) +m log (�)�
 
m+

mX

i=1

ri

!
log (1 + �) + n2 log �

+(↵� 1)
n1X

i=1

log (xi)� �

n1X

i=1

x
↵

i
+

n1X

i=1

logAi (↵, �) +
n1X

i=1

ri logCi (↵, �)

+ (↵� 1)
mX

i=n1+1

log ( i (�))� �

mX

i=n1+1

[ i (�)]
↵ +

mX

i=n1+1

logDi (↵, �, �)

+
mX

i=n1+1

ri logGi (↵, �, �),

where

 i (�) = ⌧ + � (xi � ⌧) ,

Ai (↵, �) = � + (1 + 2�x↵
i
) exp {��

P
n1

i=1 x
↵

i
},

Ci (↵, �) =
1

1+� [� + (1 + �x
↵

i
) exp {��

P
n1

i=1 x
↵

i
}] exp {��

P
n1

i=1 x
↵

i
},

Di (↵, �, �) = � + (1 + 2� [ i (�)]
↵) exp

�
��

P
m

i=n1+1 [ i (�)]
↵
 
,

Gi (↵, �, �) =
1

1+�

⇥
� + (1 + � [ i (�)]

↵) exp
�
��

P
m

i=n1+1 [ i (�)]
↵
 ⇤

⇥ exp
�
��

P
m

i=n1+1 [ i (�)]
↵
 
,
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here n1 =
P

m

i=1 I(�i = 1) is the number of failures under the normal use condition, and

n2 =
P

m

i=1 I(�i = 2) is the number of failures at the higher stress use condition, m = n1+n2,

and ✓ = (↵, �, �) is the vector of the unknown parameters.

The first derivative with respect to ↵:

LI,↵ =
m

↵
+

n1X

i=1

log (xi)� �

n1X

i=1

x
↵

i
log xi +

n1X

i=1

Ai,↵ (↵, �)

Ai (↵, �)
+

n1X

i=1

riCi,↵ (↵, �)

Ci (↵, �)

+
mX

i=n1+1

log ( i (�))� �

mX

i=n1+1

[ i (�)]
↵ log i (�) +

mX

i=n1+1

Di,↵ (↵, �, �)

Di (↵, �, �)

mX

i=n1+1

riGi,↵ (↵, �, �)

Gi (↵, �, �)
.

The first derivative with respect to �:

LI,� =
m

�
� (m+

P
m

i=1 ri)

(1 + �)
�

n1X

i=1

x
↵

i
+

n1X

i=1

Ai,� (↵, �)

Ai (↵, �)
+

n1X

i=1

riCi,� (↵, �)

Ci (↵, �)

�
mX

i=n1+1

[ i (�)]
↵ +

mX

i=n1+1

Di,� (↵, �, �)

Di (↵, �, �)
+

mX

i=n1+1

riGi,� (↵, �, �)

Gi (↵, �, �)
.

The first derivative with respect to �:

LI,� =
n2

�
� (↵� 1)

mX

i=n1+1

(xi � ⌧)

 i (�)
� �↵

mX

i=n1+1

(xi � ⌧) [ i (�)]
↵�1

+
mX

i=n1+1

Di,� (↵, �, �)

Di (↵, �, �)
+

mX

i=n1+1

riGi,� (↵, �, �)

Gi (↵, �, �)
.

For the complete SSPALT sample, the log-likelihood function becomes:

L (✓) = n log (↵) + n log (�)� n log (1 + �) + n2 log � + (↵� 1)
n1X

i=1

log (xi) +

��
n1X

i=1

x
↵

i
+

n1X

i=1

log

 
� + (1 + 2�x↵

i
) exp

(
��

n1X

i=1

x
↵

i

)!
+

��
nX

i=n1+1

[⌧ + � (xi � ⌧)]↵ + (↵� 1)
nX

i=n1+1

log (⌧ + � (xi � ⌧)) +

+
nX

i=n1+1

log

 
� + (1 + 2� [⌧ + � (xi � ⌧)]↵ ) exp

(
��

nX

i=n1+1

[⌧ + � (xi � ⌧)]↵
)!

,
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L (✓) = n log (↵) + n log (�)� n log (1 + �) + n2 log � + (↵� 1)
n1X

i=1

log (xi) +

��
n1X

i=1

x
↵

i
+

n1X

i=1

logAi (↵, �)� �

nX

i=n1+1

[ i (�)]
↵ + (↵� 1)

nX

i=n1+1

log ( i (�))

+
nX

i=n1+1

logCi (↵, �, �),

where n1 =
P

n

i=1 I(�i = 1), n2 =
P

n

i=1 I(�i = 2) and n = n1 + n2,

 i (�) = ⌧ + � (xi � ⌧) ,

A (↵, �) = � + (1 + 2�x↵
i
) exp {��

P
n1

i=1 x
↵

i
}, and

C (↵, �, �) = � + (1 + 2� [ i (�)]
↵ ) exp

�
��

P
n

i=n1+1 [ i (�)]
↵
 
.

The first derivative with respect to ↵:

L↵ =
n

↵
+

n1X

i=1

log (xi)� �

n1X

i=1

x
↵

i
log xi +

n1X

i=1

Ai,↵ (↵, �)

Ai (↵, �)
+

+
nX

i=n1+1

log ( i (�))� �

nX

i=n1+1

[ i (�)]
↵ log i (�) +

nX

i=n1+1

Ci,↵ (↵, �, �)

Ci (↵, �, �)
.

The first derivative with respect to �:

L� =
n

�
� n

(1 + �)
�

n1X

i=1

x
↵

i
+

n1X

i=1

Ai,� (↵, �)

Ai (↵, �)
�

nX

i=n1+1

[ i (�)]
↵ +

nX

i=n1+1

Ci,� (↵, �, �)

Ci (↵, �, �)
.

The first derivative with respect to �:

L� =
n2

�
� (↵� 1)

nX

i=n1+1

(xi � ⌧)

 i (�)
� �↵

nX

i=n1+1

(xi � ⌧) [ i (�)]
↵�1 +

nX

i=n1+1

Ci,� (↵, �, �)

Ci (↵, �, �)
.

where

Ai,↵ (↵, �) =
dAi(↵,�)

d↵
= �x

↵

i
(1� 2�x↵

i
) log xi exp {��

P
n1

i=1 x
↵

i
},

Ai,� (↵, �) =
dAi(↵,�)

d�
= 1 + (1� 2�x↵

i
) log xi exp {��

P
n1

i=1 x
↵

i
},

Ci,↵ (↵, �, �) =
dCi(↵,�,�)

d↵
= � i (�)

2↵ log ( i (�))�2 exp
�
��

P
n

i=n1+1 [ i (�)]
↵
 
,

Ci,� (↵, �, �) =
dCi(↵,�,�)

d�
= 1�  i (�)

2↵
� exp

�
��

P
n

i=n1+1 [ i (�)]
↵
 
, and

Ci,� (↵, �, �) =
dCi(↵,�,�)

d�
= �↵� (1 + �) (xi � ⌧) ( i (�))

↵�1 exp
�
��

P
n

i=n1+1 [ i (�)]
↵
 
.
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For Case-II, the log-likelihood function can be expressed as

LII(✓) / J (log↵ + log �)�
 
r
⇤
J
+ J +

JX

i=1

ri

!
log(1 + �) + n2 log � +

+(↵� 1)
JX

i=1

log
⇣
x
I(�i=1)
i

�
⌧ + �(xi � ⌧)

�I(�i=2)
⌘
+

+
JX

i=1

ri


I (�i = 1) log
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�
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↵

i
) e��x

↵
i
�
e
��x↵

i

�
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
1
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⇣
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↵) e��( i(�))
↵
⌘
e
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+
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⇥
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�
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i
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↵
i
�
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⇣
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↵
⌘
e
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�
,

This equation can be expressed as:

LII(✓) / J (log↵ + log �)�
 
r
⇤
J
+ J +

JX

i=1

ri

!
log(1 + �) + n2 log � +

(↵� 1)
n1X
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x
↵
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[ i (�)]
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+
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1
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↵

i
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↵
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�
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i

�
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↵
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Therefore,

LII(✓) / J log (↵) + J log (�)�
 
r
⇤
J
+ J +

JX

i=1

ri

!
log (1 + �) + n2 log �

+(↵� 1)
n1X

i=1

log (xi)� �

n1X

i=1

x
↵

i
+

n1X

i=1
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JX
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+
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⇤
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where
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i
) exp {��

P
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↵
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↵

i
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P
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i
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↵) exp

n
��

P
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o
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↵) exp
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P
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H (↵, �, �) = 1
1+� [� + (1 + � [⌘ (�)]↵) exp {�� [⌘ (�)]↵}] exp {�� [⌘ (�)]↵}.

The first derivative with respect to ↵:
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J
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+

n1X
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↵

i
log xi +
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r
⇤
J
H↵ (↵, �, �)
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,

The first derivative with respect to �:
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J

�
�

⇣
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⇤
J
+ J +

P
J

i=1 ri
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n1X
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i
+

n1X
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Ai,� (↵, �)
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JX
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+
r
⇤
J
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,
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The first derivative with respect to �:

LII,� =
n2

�
� (↵� 1)

JX

i=n1+1

(xi � ⌧)

 i (�)
� �↵

JX

i=n1+1

(xi � ⌧) [ i (�)]
↵�1

+
JX

i=n1+1

Di,� (↵, �, �)

Di (↵, �, �)
+

JX

i=n1+1

riGi,� (↵, �, �)

Gi (↵, �, �)
+

r
⇤
J
H� (↵, �, �)

H (↵, �, �)
.

Since the system has no analytic solutions for ↵, �, and �, and hence, we will use numerical

technique such as Newton Raphson by R code.
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Appendix C

Chapter 4

C.1 Proof of Theorem 1

The joint survival of (X1, X2) is:

SX1,X2 (x1, x2) =

8
>><

>>:

SMWE(x1; (�1 + �3),↵, �)SMWE(x2;�2,↵, �) if x1 > x2

SMWE(x1;�1,↵, �)SMWE(x2; (�2 + �3),↵, �) if x1 < x2

SMWE(x; (�1 + �2 + �3),↵, �) if x1 = x2 = x

Using the MWE functions, we get:

SX1,X2 (x1, x2) =

8
>>><

>>>:

exp
n
↵
h
1� e(
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↵ )�
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o
if x1 < x2

exp
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h
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x
↵)
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(�1 + �2 + �3)

o
if x1 = x2 = x

For x1 6= x2, the expressions for f1 (x1, x2) and f2 (x1, x2) can be obtained from SX1,X2 (x1, x2)

using @
2

@x1@x2
SX1,X2 (x1, x2) and

@
2

@x2@x1
SX1,X2 (x1, x2) respectively. Finding

@
2
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@
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which can be written as:

fMWE (x1; (�1 + �3) ,↵, �) fMWE (x2;�2,↵, �) = f1 (x1, x2) .

Likewise, finding @
2

@x2@x1
SX1,X2 (x1, x2):

@
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which can be written as:

fMWE (x2; (�2 + �3) ,↵, �) fMWE (x1;�1,↵, �) = f2 (x1, x2) .

While, when x1 = x2 = x, we can get the expression of f3 (x1, x2) using the following fact:
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The same way for
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C.2 The Derivatives of f⇤
j
(t) and f⇤

3 (t)

Using T = min (X1, X2) and Xi = min (Ui, U3), i = 1, 2; Uj = MWE (�j ,↵, �), j = 1, 2, 3.

1. If X1 < X2 (� = 1):
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