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ABSTRACT 

When ambulances arrive at a crowded emergency department (ED), paramedics must wait 

with the patient until ED space opens, causing offload delay and reducing the number of 

ambulances available to the community. An Offload Zone (OZ) is a monitored waiting 

space for ambulance patients, designed to reduce offload delay and allow ambulance crews 

to return to service more quickly. The implementation of OZ-style concepts has been 

trialled around the world, but it is not clear why these efforts often have mixed results. In 

this analysis, data reflecting patients’ journeys through the ED are analyzed to show how the 

OZ affects the ED as a system and patients as individuals. Data from two hospitals in 

Halifax, Canada are contrasted to highlight differences in their OZ implementations and 

results. This study finds that these hospitals reduced offload delay to a certain extent, and 

identifies systemic factors that can lead to OZ issues. 
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GLOSSARY 

Boarding: A situation where admitted patients remain in the ED because there are no 

appropriate inpatient bed spaces available. 

Canadian Triage and Acuity Scale: A standardized sale for measuring the seriousness of 

an emergency patient’s condition, where 1 is the most severe and 5 is the least severe. 

Crowding: A situation where the demand for emergency services exceeds available 

resources for patient care. 

Clinical impression: The general category of illness/injury with which a patient presents. 

ED length of stay: The time interval between a patient’s arrival to and departure from the 

ED. 

Emergency Health Services: The name of the paramedic service provider for Nova Scotia. 

Emergency Medical Services: A generic term for paramedic services. 

Offload: The transfer of care of an emergency patient from the paramedics to the ED staff. 

Offload delay: The period of time taken for a patient’s offload beyond the targeted 

benchmark for offload time. 

Offload time: The time interval between a patient’s arrival to the ED and their offloading 

from the ambulance. 

Patient-level comparison: A term used in this paper to refer to the comparison between 

patients who pass through the OZ and those who do not. This type of comparison uses only 

data from periods when the OZ is open. 

Time to ED bed: The time interval between a patient’s arrival to the ED and their reaching 

an ED bed. For this measure, an OZ bed does not qualify as an ED bed. 

Time to MD: The time interval between a patient’s arrival to the ED and their first contact 

with a physician. 

Unit-level comparison: A term used in this paper to refer to the comparison between time 

periods when the OZ is open and when it is closed. 
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CHAPTER 1 INTRODUCTION 

Ambulance offload delay (AOD) occurs when patients arriving at a hospital are not 

transferred to the emergency department (ED) in a timely manner, forcing the ambulance to 

stay and monitor the patient until they can be admitted. 

 

AOD has become increasingly prevalent in urban centres across Canada. A 2023 report by 

the Office of the Auditor General of Nova Scotia states that province-wide average 

ambulance response times increased from 14 minutes in 2021 to 25 minutes in 2022. They 

cite offload delay as one of the main causes, noting that in 2022 paramedics spent on average 

a quarter of their working hours waiting to offload patients.  

 

In Canada’s larger urban areas, this problem is not new, for example in Toronto where the 

average offload delay was reported to be between 3 and 8 hours in 2007 (Almehdawe, 2012). 

Recently the phenomenon has become more widespread, with reports of increased offload 

time in British Columbia due to shortage of ED beds and in Saskatchewan due to pressures 

from the COVID-19 pandemic (Bain et al., 2022). 

 

Statistics from across the USA reveal that the national average for waiting time before 

paramedics are able to hand off their patients grew from 20 minutes in 2006 to 45 minutes in 

2014, representing a loss of nearly 5 million hours of Emergency Medical Services (EMS) 

productivity. In California, it was found that hospitals serving a larger population are more 

likely to report AOD as a significant problem (California Hospital Association, 2014).  

 

The problem exists outside North America as well. An Australian study (Cone et al., 2012) 

found that 17.5% of ambulance patients experienced AOD, with patients in large cities or in 

transport to large hospitals, or those over 65 years old, being more likely to experience 

delays.  

 

AOD has a range of potential consequences on the medical system, both clinical and 

systemic (Schwartz, 2015). For EMS, it can lead to decreased ambulance coverage and longer 

response time for other calls, as well as additional time required by administrators and 
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supervisors to reorganize resources. Many EMS systems have a contractual performance 

standard for response time, so AOD can incur costs through fines and penalties or through 

extra measures such as hiring more staff to keep response times at required levels (California 

Hospital Association, 2014; Cooney et al., 2011).  

 

A review of studies concluded that delays can compromise access to care, quality of care, 

and patient outcomes, especially for vulnerable populations such as racial and ethnic 

minorities (McHugh, 2013). More specifically, negative patient outcomes may include delay 

to treatment, poorer pain control, and increased morbidity and mortality (Cooney et al., 

2011). The wide-reaching effects of AOD have led to it being regarded as an important 

marker of ED performance and quality (Cooney et al., 2013). 

 

Perhaps the most important consequence of AOD has been the increasingly common 

phenomenon where a region’s entire fleet of paramedic crews becomes occupied, either with 

active responses or due to being tied up in AOD, and subsequent emergency calls cannot be 

quickly responded to. Such events are on the rise in many places where AOD is a problem, 

for example in Ottawa, Canada, where the incidence of “level zero” events doubled from 

2021 to 2022, and the city averaged 203 minutes per day in 2022 with no crews available 

(Porter, 2023). It can be difficult to empirically measure the outcomes of such events, since 

patients are often waiting at home outside of the clinical setting, but there are many news 

reports covering some of the worst consequences of delayed emergency responses. In Nova 

Scotia, there have been reports of a death while awaiting an ambulance at the patient’s home 

(Gorman, 2021) and at a rural hospital awaiting an ambulance transfer to a larger hospital 

(Gorman, 2019). In Montreal, a woman died after waiting 7 hours for an ambulance (Haines, 

2022). Jolly (2023) profiles four cases across the UK occurring in a span of five weeks where 

patients died at home or in hospital following waits of 1.5 to 16 hours for ambulances, also 

noting that the Royal College of Emergency Medicine estimates between 300 and 500 people 

per week across the UK are dying as a result of delays and issues in emergency care. An 

independent investigation in the city of Victoria, Australia found at least 33 cases in 18 

months where patients’ deaths were linked to delayed ambulance responses (Brown, 2022). 
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To reduce AOD, a dedicated and monitored “waiting room for ambulance patients” has 

been trialled to act as a buffer between EMS and the ED. Although the implementation is 

somewhat different in different regions, the goal for the buffers is the same: to have patients 

wait with ED medical personnel instead of with the ambulance crew, allowing the 

ambulance crew to return to service sooner. The Ministry of Health and Long-Term Care in 

Ontario, Canada hired dedicated offload nurses to monitor low-acuity ambulance patients 

while they wait for an ED bed (Newell et al., 2013). An offload nurse was used on a trial 

basis in Australia in 2012 (Greaves et al., 2017). In Halifax, Canada, the Capital District 

Health Authority (previously an independent healthcare district, but since assimilated into 

the Nova Scotia Health Authority) and the local paramedic provider trialled a waiting area 

known as the “offload zone” (OZ) in the municipality’s two largest EDs. Detailed patient 

flow information for Halifax’s OZ concept is available from Carter et al. (2015). 

 

The effectiveness of OZs and offload nurses at reducing AOD remains an open question. A 

trial reported by Greaves et al. (2017) in Australia found it to have only marginally reduced 

AOD. Carter et al. (2015) found that the OZ in Halifax is often at capacity, hindering its 

effectiveness. They reported that “one unexpected finding of the process map was that the 

real-life functioning of the OZ deviated significantly from the original protocol.” Similarly, 

Laan et al. (2016) reported that when EDs lack incentive to admit patients from the OZ, 

AOD will not be improved. In contrast, Clarey et al. (2014) examined ambulance turnaround 

with discrete event simulation which demonstrated a clear reduction in AOD when 

dedicated nursing levels are increased. However, the authors also reported that this would 

require unacceptably low staff utilization in practice.  

 

The goal of this study is to provide an empirical analysis that assesses the effectiveness of a 

real-world trial of the OZ, and contribute to the body of work seeking to understand what 

factors cause issues with the OZ in practice. This thesis examines the OZ as used by two 

EDs—Dartmouth General Hospital (DGH) and the QEII Health Sciences Centre (QEII)—

in the urban region of Halifax, NS. Together they serve the municipality’s population, which 

was just under 400,000 at the time of this study. QEII is a larger facility and is closer to the 

downtown core, and so serves more emergency patients. In 2013, QEII fielded around 

12,000 ambulance arrivals and 58,000 walk-in ED patients, while DGH fielded around 6,000 
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ambulance arrivals (walk-in data were unavailable). A third ED exists in Halifax at the IWK 

Health Centre, for children 16 years or younger, which was not part of the study. These two 

hospitals have the two highest figures for average offload delay in the province, according to 

the most recent statistics (Office of the Auditor General of Nova Scotia, 2023): 195 minutes 

at QEII and 170 minutes at DGH. 

 

The other healthcare provider involved in the offload zone concept is Emergency Health 

Service (EHS). EHS is Nova Scotia’s ground paramedic service, serving a catchment area of 

55,000 square kilometres and a population of nearly 1,000,000 at the time of this study. The 

province contains a mix of urban, suburban and rural regions. The annual 9-1-1 emergency 

call volume was approximately 132,000 in 2012. A staffing mix of primary, intermediate, and 

advanced care paramedics work in the ground ambulance system in a single agency. 

 

The analysis is designed to examine the treatment processes and time benchmarks for 

patients arriving to the ED by ambulance, to determine how the OZ is used and what its 

effects are. The concurrent comparison is completed using statistical analyses and one year 

of historical data from two hospitals. The OZ would most often be open during the daytime, 

however, there were times that it could not be opened as scheduled due to staffing reasons, 

forming a natural comparison. The first major comparison group is between periods when 

the OZ is open versus periods when it is closed, to reveal the OZ’s systemic effects. The 

second major comparison group is between patients in the OZ versus those outside of it, to 

reveal the OZ’s individual patient effects. Further comparisons stratified by systemic and 

demographic variables are explored.  

 

In this thesis, Chapter 2 reviews further literature related to AOD and efforts to reduce it. 

Chapter 3 introduces the data and the methods used in this research. Chapter 4 presents 

numeric results and discusses their interpretation. Chapter 5 provides further discussion and 

conclusions.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

This literature review’s purpose is to describe the phenomenon of offload delay, overview 

some relevant research studies on the subject, and highlight the need for further research on 

the Offload Zone. Ambulance offload delay itself is examined, in terms of its causes, effects, 

and possible solutions, to provide context. Because the process mapping and statistical 

analyses of this thesis are intended to contribute to the future development of operations 

research studies and tools, the application of operations research on offload delay is also 

reviewed, with a focus on queuing theory and simulation. One queuing model and one 

simulation model are found to be of particular interest with respect to the Offload Zone’s 

functioning. 

 

AOD is an emergency health phenomenon where ambulance patients arriving at the hospital 

are not able to be offloaded and transferred to the ED within the designated time, typically 

due to hospital congestion, forcing the ambulance to wait and monitor the patient until they 

can be accepted. One proposed solution to this problem is the use of an OZ, an area where 

a number of offloaded patients can be supervised by dedicated staff while they await 

admission. Since the OZ’s initial trial in Halifax, Nova Scotia, a few studies have assessed its 

functionality. This literature review provides context for the AOD problem and review 

relevant research on the topic, to reveal the need for an empirical analysis of data from the 

OZ’s trial period. 

 

In subsection 2.2, AOD itself is examined. Its causes and some previously attempted or 

suggested solutions are outlined to provide context for the discussion of research. Particular 

attention is paid to ED crowding as a cause and ambulance diversion as a solution, due to 

their complex relationship with AOD. Previous solutions using patient consolidation tactics 

which set the stage for the OZ’s conception are described. The two completed studies on 

Halifax’s OZ are described, indicating the need for further research on the program. A 

program similar to the OZ that was trialled in Australia is also highlighted. 
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In subsection 2.3, the application of industrial engineering tools to the AOD problem is 

reviewed. After brief discussion of applications in healthcare as a whole, focus narrows to 

AOD, crowding, and diversion. Detailed discussion is provided for two studies that were 

found to be of particular interest for this review. 

 

Finally, subsection 2.4 summarizes the main body of the review, concluding that empirical 

analysis of Halifax’s OZ is needed to better understand its impact, that the results would 

constitute a benefit to Halifax’s EDs and other emergency health systems, and that the study 

will contribute to future work in OR applications on the subject of AOD reduction. 

2.2 Ambulance Offload Delay 

AOD is generally defined as time that passes between the targeted time limit for patient 

offload and the actual time that their transfer of care (TOC) occurred. According to 

Schwartz (2015), the point of TOC of a patient from EMS to the ED staff was initially not 

defined, as it happened intuitively and almost always within minutes of arrival at the hospital. 

It was often marked by either the patient’s removal from the ambulance stretcher and a 

verbal report by the paramedic, or the beginning of the ED staff’s procedures on the patient. 

A formal definition of the point of TOC was not considered until AOD began to emerge as 

a problem (Schwartz, 2015). Even now that international attention is being given to AOD 

(Cooney et al., 2013), attempts at defining TOC have been met with resistance from both 

sides. The definition is often flexible, which can lead to conflicting interpretations and 

disagreements over who is responsible for a patient at a given time (Schwartz, 2015).  

 

The standard for offload time can vary by hospital, but is generally set at 30 minutes in 

Canada (Cooney et al., 2013). Exceeding this threshold implies that ambulance offload delay 

has occurred.  

 

Before discussing the current state of OR work on AOD, it will be beneficial to provide 

context by examining the causes behind it and the solutions that have already been tried or 

suggested, including several programs similar to the OZ. 
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2.2.1 Causes 

AOD is not an isolated issue, but a symptom of a larger problem, involving multiple 

interconnected phenomena including ED crowding, ambulance diversion, ED boarding (a 

term referring to admitted patients remaining in the ED because there are no appropriate 

inpatient bed spaces available), and obstructions in hospital throughput (California Hospital 

Association, 2014; Cooney et al., 2011). 

 

AOD has been called an “inevitable consequence” of crowding (Schwartz, 2015), and ability 

to offload is regarded as the best proxy measure for crowding (Beniuk et al., 2011). The two 

problems are tied together in a complicated way: ED crowding as measured by the National 

ED Overcrowding Scale has been found to be predictive of AOD (Cooney et al., 2013), 

while AOD has been found to be a strong predictor of an ED length of stay longer than 4 

hours (Crilly et al., 2015), which in turn contributes to crowding (Geelhoed & de Klerk, 

2012). 

 

This literature review’s focus is on AOD, but given its complex relationship with crowding, 

it will not be possible to offer a robust analysis of the former without devoting attention to 

the latter. 

 

ED crowding is “a situation in which demand for service exceeds the ability to provide care 

within a reasonable time, causing physicians and nurses to be unable to provide quality care” 

(Canadian Association of Emergency Physicians, n.d.). While crowding causes more delay 

for low- than high-acuity patients, it is particularly dangerous for critically ill patients, as EDs 

are designed and equipped for rapid stabilization, not prolonged critical care (Cowan & 

Trzeciak, 2005). In events where patients are cared for in unconventional places like hallways 

or waiting rooms, there are usually inadequate facilities to provide high-quality care. 

Crowding can also lead to stress on caregivers and increased potential for medical error 

(Canadian Association of Emergency Physicians, n.d.). Some research has found that it leads 

to delays in treatment for patients with cardiac problems, pain, pneumonia, and other 

conditions, and AOD may contribute additionally to these outcomes (Schwartz, 2015). 
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In the 1990s, both decision makers and the public placed the blame for ED crowding and 

delays on a large volume of low-acuity patients (Schwartz, 2015). While much of the public 

still believe this to be the case (Canadian Association of Emergency Physicians, n.d.), it has 

in fact been found that low-acuity patients require few resources, and ED crowding is 

primarily due to patients who need to be admitted to the hospital but are not able to be 

moved due to a lack of inpatient beds (Cooney et al., 2011; Cowan & Trzeciak, 2005; 

Higginson, 2012; Ovens, 2011). In this event, often referred to as “ED boarding,” patients 

may be stuck in the ED for upwards of 24 hours (Cowan & Trzeciak, 2015). The AOD 

problem arises when the ED is at full occupancy, and staff are unable to free beds to accept 

new patients. Many ambulance patients do not have severe conditions, which limits incentive 

to speed up the clearing of occupied beds (California Hospital Association, 2014). This 

extensive group of problems and chain of causality is present in Canada, the US, and 

internationally (Schwartz, 2015).  

 

Of course, ED boarding is not the only cause of crowding. A recent multi-stakeholder 

discussion held by Canada’s Drug and Health Technology Agency (CADTH) (2023) 

identified a number of factors related to ED crowding in the Canadian health system. They 

identified direct causal factors, which are categorized as being related to input, throughput, 

or output of patients, as well as additional contextual factors, which may be applicable at the 

ED level, the hospital level, or the sociocultural level. Causal factors related to throughput 

include barriers to operational efficiency, staffing considerations, and various types of delays. 

As CADTH notes, most studies that describe or assess interventions in ED crowding focus 

on these throughput factors, which tend to be the easiest to impact via policies and 

procedures within the ED itself. Input factors, such as limited primary care resources in the 

community, output factors, such as lack of space in inpatient wards, and contextual factors, 

such as population growth and shift, must be addressed outside the ED or by multiple 

stakeholders. As a result, the interventions relevant to these factors may be more difficult to 

put in place or to assess for effectiveness. 

 

Additional factors found to influence ED crowding in settings across the world include: 

increasing acuity and complexity of medical issues, increasing psychiatric holds due to lack of 

mental health resources, lack of home-care and long-term care resources, lack of access to 
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specialist care providers, lack of space and equipment, increased documentation 

requirements, and difficulty in arranging post-ED placement and follow-up care (California 

Hospital Association, 2014; Canadian Association of Emergency Physicians, n.d.; Schwartz, 

2015). Inpatient throughput itself is connected to many other factors as well, including 

inpatient capacity, nurse-to-patient ratios, hospital regulations limiting areas of care, and 

ability to rapidly turn over hospital beds (California Hospital Association, 2014). 

2.2.2 Practical Solutions to Crowding and AOD 

As the AOD phenomenon exists at the intersection of ED and EMS services, both groups 

need to be involved in determining an effective solution. It is important to note that EDs 

and EMS providers have individual agendas and incentives that may conflict when it comes 

to AOD—namely, the ED’s lack of space to accept patients versus EMS’s need to return to 

the community (Schwartz, 2015). Henderson (2011) has suggested changing both groups’ 

performance measures and the way they are written into contracts, for more compatible 

incentives and better cooperation. The California Hospital Association (2014) reports that 

collaboration between hospitals and EMS is a common factor in achieving low AOD.   

 

If the only way to fully address AOD is with a multidisciplinary, system-wide approach, 

developed with the involvement of all stakeholders (Cowan & Trzeciak, 2005; Schwartz, 

2015), then it follows that a unilateral approach will not be sufficient to eliminate all aspects 

of the problem. The addition of resources to the ED or EMS may seem like an obvious and 

tempting tactic, but Henderson (2011) notes that such approaches do not address the 

downstream issue of inpatient throughput, and will offer only temporary relief. Likewise, any 

effort to decrease AOD without improving ED throughput will not address crowding 

(Cooney et al., 2011), and nor will strategizing EMS dispatching, despite its ability to 

improve ambulance coverage (Henderson, 2011). On the other hand, Crilly et al. (2015) 

concede that targeted improvements to ED processes may be useful to pursue until a 

broader systemic approach is developed. Cowan and Trzeciak (2005) agree, suggesting that 

since ED boarding may take a long time to solve, EDs should meanwhile try to adapt to 

perform as best they can in their crowded conditions. 
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One avenue to combat crowding and AOD has been to reduce ED demand. Such efforts 

have included adding walk-in clinics and urgent care centres to communities to shift demand 

elsewhere (Schwartz, 2015). A review of studies on community paramedicine for elderly 

patients (van Vuuren et al., 2021) found evidence that their operation could reduce stress on 

other parts of the healthcare system, including emergency calls and ED visits. Another 

review of studies on “telephone triage” (Eastwood et al., 2015) found that while most of the 

studies focused on validating safety, some showed evidence that telephone triage succeeds in 

diverting non-emergent patients away from EDs. The authors point to the need for research 

as to whether this actually translates to reduced ambulance demand. Ambulance diversion—

the practice of refusing to accept ambulances and requiring them to divert their course to a 

different hospital—was first developed as a response to crowding (Lagoe & Jastremski, 

1990), but over decades of practice and analysis has come to be seen as a controversial and 

ethically ambiguous approach (Adkins & Werman, 2015). Due to its relationship with AOD 

and crowding, diversion will be discussed in more detail in the next subsection. 

 

Some ED-focused AOD reduction measures that have shown promise include overcapacity 

protocols, streamlining of the ED intake process, and continuous quality improvement 

(California Hospital Association, 2014; McRae et al., 2012). Some clinical and economic 

analyses (Baugh et al., 2011; Schreyer & Martin, 2017) have found that a holding unit for 

low-needs patients (i.e., a buffer between the ED and the inpatient unit) can be an effective 

approach, and their implementation in EDs has been increasingly common (Mace et al., 

2003). A few hospitals have found success in borrowing from manufacturing industries, 

adapting Lean management tools for use in the ED. Ng et al. (2010) describe using the 

Toyota Production System to reduce ED wait time without adding beds or funding. Chan et 

al. (2014) found that a Lean design including priority admission triage, communication 

enhancements, and the use of a new blood test was able to improve wait times for triage, 

consultation, and admission. Several hospitals in Toronto, Ontario found that AOD was 

“largely solved” after implementing some best practice and Lean management measures 

recommended by an expert panel, including targeted staff increases, process improvements, 

and culture changes (Ovens, 2011). 
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Beyond what has been previously assessed in studies such as the above, some other solutions 

have been proposed and either have not been tried or have not been formally assessed for 

effectiveness. Some suggestions include expedited discharge of inpatients, and planning 

ahead for the needs of patients who are awaiting admission (Cowan & Trzeciak, 2005). 

Higginson (2012) remarks that while many solutions have been proposed, most have weak 

evidence behind them, indicating a need for more analytic assessment on the subject. 

 

Ambulance diversion was first reported on by Lagoe and Jastremski in New York City in 

1990. They discussed the then-emerging crowding issue (at that time blamed on large 

numbers of non-emergent patients), and how diversion was conceived to address it by 

sending low-acuity patients to the less busy EDs in an area even if they were farther away 

from the patient’s pickup point. The practice was widely favoured, and became increasingly 

common. In some places, it became the go-to strategy for relieving crowding. In 2003, 45% 

of American EDs had used diversion in the previous year (Handel et al., 2011). 

 

While diversion is indeed effective in short-term relief of crowding (Cooney et al., 2011; 

Handel et al., 2011), it results in a longer transport time for those who are diverted, and the 

body of research on the phenomenon has revealed some negative consequences, such as 

lower quality of care, delays for some types of critically ill patients, and increased death rates 

from heart attacks (Canadian Association of Emergency Physicians, n.d.; Handel et al., 2011; 

Henderson, 2011). In light of the true cause of ED crowding—not low-acuity patients, but 

inpatient blockage—diversion began to see less support as a viable solution (Cooney et al., 

2011). In Canada, the end of diversion can be traced to 2001, when new policies were put in 

place in Ontario following a Toronto asthma patient’s death in 2000 after being diverted 

from the nearest hospital to his home (“Changes to ER procedures”, 2001). At the 

international scale, 2003 was the turning point at which many EDs began trying to reduce 

the use of diversion, although it has remained in use across the USA, and was still considered 

a major concern as recently as 2011 (Handel et al., 2011). 

 

However, the criticism of diversion has not been universal—Adkins and Werman (2015) 

argue that it is a “necessary evil,” as the safety considerations of the many patients in 

crowded EDs outweigh the risks to the few who are diverted. Carmen and Van 
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Nieuwenhuyse (2014) acknowledge that because crowding and diversion are causally linked 

and frequently co-occurring, it is difficult to disentangle their respective effects and show 

conclusive evidence that diversion actually contributes to clinical risks. Some have pointed 

out the inverse relationship between diversion and AOD: all else being equal, reducing 

diversion will lead to an increase in AOD (Cooney et al., 2011; Schwartz, 2015). While both 

types of delay can lead to negative clinical and systemic outcomes, the general opinion of 

hospital policymakers seems to be that it is better to minimize AOD even at the expense of 

allowing diversion, because AOD tends to be longer than the additional transport time 

caused by diversion (Carmen & Van Nieuwenhuyse, 2014; Cooney et al., 2011; Cooney et al., 

2013; Henderson, 2011). A recent literature review on AOD-related papers (Li et al., 2019) 

found that of 89 articles that propose a solution to AOD, 58 suggest diversion as a tactic. 

 

A more recent approach to reducing AOD has been the consolidation of patients under 

fewer health care providers. Sometimes this occurs on the EMS side, where one waiting 

paramedic crew will take over a second crew’s patient to allow the latter paramedics to leave 

the hospital and return to service; at other times, it is on the ED side, where designated staff 

will monitor offloaded patients (Schwartz, 2015). In 2010, the EMS provider in Calgary, 

Alberta was considering the EMS-side setup, after having tried an ED-side approach some 

years previously without success (“AHS tackles ER ‘offload delays’”, 2010). 

 

For the ED-side approach, the typical model is for a nurse and/or paramedic to be placed in 

the hospital to act as a buffer between the ambulance and the ED. They are tasked with 

receiving patients from ambulances, which allows the paramedic crew to depart immediately, 

and monitoring the patients until the ED has room to admit them. The staff may be asked to 

help with general ED tasks when not busy with offloading duties (Henderson, 2011). In 

Australia, such a setup was assessed, and it was found that the addition of an offload nurse 

marginally improved wait time to see a physician (Greaves et al., 2017). Critical to any 

analysis of this design is whether or not physicians can begin care on patients in the offload 

monitoring area. 

 

Perhaps the most extensive example of this method is in the province of Ontario, Canada. 

In 2008, the Ministry of Health and Long-Term Care began the Offload Nurse Program, 
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selecting a number of hospitals across 14 municipalities to receive funding for a dedicated 

offload nurse (Office of the Auditor General of Ontario, 2012). By 2016, the program had 

expanded to fund 49 hospitals in 20 municipalities (Ministry of Health and Long-Term Care, 

2016). Details like working hours, maximum supervisory capacity, and specific duties were 

left up to individual regions (Isaacson, 2008; McCallion, 2011; Middlesex County Council, 

2015). Some regions, such as Niagara, implemented the offload nurse alongside a range of 

other new ED measures (McCallion, 2011). 

 

At this time of this literature review, no formal studies of the program had been completed, 

but various government bodies and media outlets have reported on it, seeming to indicate 

that its success has varied by location. Most participants saw initial improvements; for 

example, Hastings and Toronto both observed a 15% reduction in AOD after the first year 

(City of Toronto, 2009; Hendry, 2012). For some regions, that initial trend continued, like in 

Ottawa, where there was a 29% reduction from 2009 to 2013 (Ottawa Paramedic Service, 

2014). For others, the trend reversed—in Niagara, AOD fell 77% from 2010 to 2014 and 

then rose 516% from 2014 to 2017 (Forsyth, 2017), and in Waterloo, it dropped by 54% 

from 2012 to 2013 and rose 99% from 2013 to 2015 (Desmond & Weidner, 2016). In a few 

unfortunate regions, the program never seemed to work—despite participating since the 

program’s inception, Halton found its AOD steadily increasing to double its pre-program 

rate by 2014 (Halton Region, n.d.).  

 

In Nova Scotia, the regional health authority took inspiration from these previous attempts 

to trial a similar program at two hospitals in Halifax starting in 2012. In this version, the OZ 

is staffed by a dedicated nurse and paramedic, who can together manage up to 6 patients at 

once (Laan et al., 2016). The OZ was intended originally only for supervision and any 

necessary emergency interventions, not for assessment or treatment (Carter et al., 2015). 

Since the trial’s conclusion, its effectiveness has only been reported on anecdotally by staff 

members, but its functionality has been examined in a few studies.  

 

Carter et al. (2015) developed a process map describing the real functioning of the OZ and 

used it to conduct a hazard analysis. They identified the most important potential failures 

and recommended actions that may prevent them. The biggest clinical risk was improper 
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care due to lack of equipment. The biggest systemic risk was patients receiving treatment 

within the OZ, which could delay their entry to the ED, in turn filling the OZ and once 

again causing AOD. Their results showed that the actual functioning of the OZ differed 

significantly from the original protocol.  

 

Laan et al. (2016) delved into the systemic issue numerically, with a queuing model designed 

to find the optimal patient selection criteria for reducing AOD. Their findings showed that 

in the case of Halifax’s OZ, ED beds should be given to OZ patients at least 35% of the 

time in order for the OZ to have a positive impact on AOD, with diminishing returns above 

60%. The results are sensitive to the OZ’s capacity and clinical load, in that increased OZ 

capacity or diminished clinical load will reduce the pressure to pick from the OZ. While 

these results provide an indication of how the OZ concept needs to be tweaked, an abstract 

policy of selecting OZ patients a certain percentage of the time may be difficult for ED staff 

to monitor and enforce. 

 

Acknowledgments of Canada’s various forays into this type of program typically come with 

the criticism that their effectiveness lacks formal evaluation, or have yet to be implemented 

in a systemic way. (Crilly et al., 2015; Schwartz, 2015). Schwartz does, however, applaud 

Carter et al.’s (2015) hazard analysis, finding it to be in line with his call for an integrative 

cross-system approach. However, as the OZ’s trial has not yet been empirically assessed for 

effectiveness, there is still a need for further analysis. 

 

The study most comparable to this thesis (Crilly et al., 2019) performed a retroactive 

statistical analysis on an Australian offload program trialled in 2012. The main differences 

between this program and Halifax’s program are highlighted in the table below (Table 1). 

The statistical analysis found modest but significant improvements in offload compliance, 

time to be seen, and length of stay, noting that less urgent patients had the best 

improvements. 
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Table 1 Points of contrast between Halifax and Australia offload program trials 

Trial details Halifax Offload Zone Australia Offload Nurse 

Trial period 1 year 39 days 

Operation schedule Variously open and closed Open 24/7 

Staffing Nurse and paramedic Nurse 

Treatment intended Patients intended to be 
monitored only 

Patients intended to begin 
treatment 

 

2.3 Industrial Engineering Work on AOD 

The history of industrial engineering in health systems goes back to the 1950s and 1960s 

(Ross & Bidanda, 2014). Initial analytic models were quantitative and deterministic, focusing 

on resource optimization (Romero-Conrado et al., 2017). Decision-making tools were 

popular, both in hospital (e.g., planning bed numbers, managing medicine inventory) and 

EMS applications (e.g., choosing base sites, scheduling staff) (Henderson, 2011; Romero-

Conrado et al., 2017). By the 1980s, however, it became clear that healthcare was associated 

with many complex social variables, some of which are not identifiable or measurable, 

leading to flawed results in quantitative decision-making tools. Thereafter, the more flexible 

category of decision support systems—tools to help administrators and clinicians make 

decisions, rather than computer models that make decisions themselves—gained favour, and 

has become an increasingly significant area of industrial engineering in healthcare (Romero-

Conrado et al., 2017)). Another driving force in the evolution of healthcare applications has 

been the consideration of patient safety, in particular finding a balance of minimizing 

resource usage while still providing a sufficient quality of care (Romero-Conrado et al., 

2017). 

 

The power of industrial engineering techniques has steadily increased alongside 

improvements in hardware and software technology (Romero-Conrado et al., 2017) and the 

quantity and quality of available data (Henderson, 2011). Healthcare has always generated a 

lot of information due to recordkeeping requirements, and its increasing digitization makes it 

easier for researchers to access it. Data are also being collected from novel sources, such as 

fitness devices or genetic sequencing, and in finer granularity, thanks to growing data storage 
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capacities, both of which factors will allow personalization of analysis. Some areas with the 

most potential for improvement through big data analytics include clinical decision support, 

patient monitoring, predictive analytics, and personalized treatment and medicine, all of 

which have potential for application in the ED (Raghupathi & Raghupathi, 2014).  

 

More recently, researchers have drawn from across the spectrum of industrial engineering 

and operations research methods for developing planning and decision support tools related 

to AOD. Various approaches have been used for making decisions related to ambulance 

diversion, including Markov decision process (Li et al., 2021) and mixed integer 

programming (Acuna et al., 2020). Other tools are for prediction and planning, such as a 

hybrid decision tree algorithm to predict the severity of AOD within the next 1–5 hours (Li 

et al., 2022) and a machine learning model to predict an individual patient’s offload time 

(Walker et al., 2021). 

 

As noted by Almehdawe et al. (2013), most research on AOD is clinical, covering the 

importance and implications of the problem. Li et al.’s review (2019) calls for more research 

in several specific avenues, including system-wide mitigation efforts, addressing root causes 

of access block, and evaluations of prior mitigation efforts. Despite the wide 

acknowledgment that inpatient blockage is the primary cause of crowding and AOD, a 

review of operational research studies on ED flow (Carmen & Van Nieuwenhuyse, 2014) 

notes that patient discharge is the least studied area for ED improvement, likely because it is 

not fully within the control of ED staff. This observation hearkens back to the previously 

cited calls for integrative, multidisciplinary perspectives on the problem. In the course of this 

review, very few analytic studies that specifically deal with AOD were found, and only two 

models that resemble the functionality of Halifax’s OZ were identified.  

 

There is an established area of study in simulation regarding the use of buffer zones between 

the ED and the inpatient unit to place patients who no longer need emergency treatment but 

cannot yet be removed from the ED (Haghighinejad et al., 2016; Hannan, 1975). This is 

similar to the OZ concept, but in a different place in the system. A study of note is Kolb et 

al.’s (2008) comparison of various configurations for such a buffer. The buffer types tested 

are a holding area for patients awaiting inpatient admission, an observation unit for patients 
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expected to need monitoring for less than 24 hours, a discharge lounge for patients waiting 

for transportation, and some combinations of those three ideas. Their results showed that 

each type of buffer can improve the system, but that combination buffers were much better 

than any of the three pure concepts applied on their own. In the context of Halifax’s 

ambulance transfer processes, the patient flows that could be considered buffers include the 

OZ, the redirection of low-severity patients to wait in the walk-in area, and the ED unit 

reserved for straightforward and quick-to-resolve issues. 

 

Of all industrial engineering applications identified, queuing theory accounts for the majority 

of work on AOD. It can be applied widely across the crowding/AOD continuum of issues, 

for example, in ambulance transfer policies (Hua & Xing, 2021), and in resource reallocation 

(Liu et al., 2022). Majedi (2008) claims to be the first to have modelled the ED and EHS 

together to investigate AOD rather than focusing on one or the other. The conceptual 

model is functionally similar to Halifax’s OZ, in that an ambulance in a state of offload delay 

can begin treating a patient at a rate slower than that of the ED. One of the assumptions 

made in the study is that if all ambulances are occupied then it is assumed that any 

emergency calls received are queued until an ambulance becomes free, while in reality such 

cases are typically handled immediately by a neighbouring EMS provider (Almehdawe et al., 

2013). Majedi’s model is used for analyzing the nature and sensitivities of AOD. Using 

assumed parameter values, the inputs for ED capacity, ED treatment time, and number of 

ambulances are varied. They find that either adding ED beds or reducing ED treatment time 

results in similar levels of system improvement and AOD reduction. In this model, adding 

ambulances actually worsens offload delay, because without changing the ED, added 

ambulances simply move more of the total population of queued patients from the waiting-

to-be-picked-up queue to the waiting-in-an-ambulance queue. Although this quirk may 

simply be a result of the assumption that patients queue for ambulance pickup, the author 

interprets it to mean that the ED is the bottleneck of the system and that allocation of 

resources in the ED will go further there than if added to the paramedic service. 

 

The AOD problem can be framed in terms of queuing and simulation as an imbalance in 𝜆 

(the arrival rate of patients) and 𝜇 (the service rate of the ED). In a mathematical model, 

when  𝜆 < 𝜇, there will be queues at certain times as a result of fluctuations in arrival and 
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processing rates, but eventually every patient will be processed. When 𝜆 ≥ 𝜇, the queue of 

patients waiting to be served will inevitably grow unbounded. In the ED setting, 𝜆 is a 

reflection of the combined amount of walk-in and ambulance arrival rates, while 𝜇 is 

primarily related to factors such as the type of conditions that patients present with, the ED 

staff levels, and the speed at which testing and ancillary services can be returned. ED 

boarding, while not related to the ED’s 𝜇, is blocking that occurs as a result of the 𝜇 in 

downstream parts of the healthcare system. 

2.4 Summary and Thesis Positioning 

AOD is a serious problem in emergency healthcare, with many clinical and systemic risks. It 

is increasingly prevalent in Canada and internationally, and will continue to worsen if it 

remains unchecked. It is part of a complex network of problems rooted in ED crowding and 

a lack of inpatient resources. This broad problem will ultimately require a multidisciplinary, 

system-wide solution, but in the meantime specific interventions are useful in mitigating its 

effects. A variety of targeted solutions have been trialled over the decades, but none have 

been able to resolve the issue. One of the more recent trends in solution attempts has been 

patient consolidation tactics, namely the OZ concept. This style of approach is promising, 

but almost none of its various implementations have been formally assessed for 

effectiveness, which is why the analyses in this thesis will be an important contribution to the 

body of research. 

 

Operations research has been widely applied in healthcare, and different tools find different 

levels of applicability depending on the area. In the realm of AOD and ED crowding, 

descriptive studies are the most common. At present, the few operations research studies 

focusing on AOD model it with queuing theory. Some studies use a configuration 

resembling Halifax’s OZ but have limited applicability to its issues. The data and analyses 

presented in this thesis will be useful for future analytical work to improve Halifax’s OZ and 

other programs like it, such as simulation or queuing studies to determine effective patient 

allocation policies or functional tweaks to the OZ. 
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CHAPTER 3 DATA AND METHODS 

3.1 Introduction 

In this chapter, the data systems, data extraction, data preparation, and study analysis 

methods to assess the effectiveness of a real-world trial of the OZ are presented.  

 

The EHS and hospital data collection systems are briefly described, along with the specific 

data that were requested for his study. The data preparation is discussed in terms of linking 

the disparate datasets provided by the two medical organizations, verifying that linking 

matches had been made correctly, and screening for erroneous information. 

 

For analysis the data are broken down into two main types of OZ-related comparison 

groupings, with a number of demographic and situational variable stratifications, all of which 

are laid out here. The statistical tests used in the analysis are a two-sample t-test, a chi-square 

test of independence, a two-proportion z-test, and a one-proportion z-test. These tests are 

explained in terms of their calculation methods and what they are seeking to determine from 

the data. 

3.2 Data 

Nova Scotia’s EHS ground paramedic service covers a catchment area of 55,000 square 

kilometres. The province contains a mix of urban, suburban and rural regions. At the time 

the data were collected, the province’s population was just under 1,000,000 and the annual 

emergency 9-1-1 call volume was approximately 132,000. A staffing mix of primary, 

intermediate, and advanced care paramedics work in the ground ambulance system as a 

single agency. The data for this study were collected for ambulance trips to two EDs, DGH 

and QEII, which are the two full-service EDs in the urban region of Halifax, NS. 

 

Dates cannot easily be classified as “OZ-open” or “OZ-closed.” The opening periods are of 

variable start and end times, subject to staff availability as opposed to scheduled or 

purposeful closure. During the entire trial period, only 26 days at DGH and two days at 

QEII did not have any OZ-open periods, however, the openings are sometimes as short as 
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one hour. In terms of whether the OZ was in operation upon a patient’s arrival, 50.8% of 

patients arrive during OZ-open periods at QEII, and 56.3% at DGH. 

 

Demographics are reported descriptively, including sex, age, severity of condition as 

measured by the Canadian Triage and Acuity Scale (CTAS), and the general category of 

illness/injury with which they presented (“clinical impression”). Each record specifies 

whether or not the OZ was open at the time that the patient arrived, as well as whether the 

patient entered the OZ. The time patients wait to be offloaded, wait for an ED bed, wait to 

be seen by the ED physicians, and total ED length of stay are reported for each patient. 

3.2.1 Data Systems and Linkage 

For all 9-1-1 calls in the province to which an ambulance is dispatched, data are collected by 

EHS paramedic charting via a tablet-based electronic patient care record (ePCR), and with 

time stamps sent by radio to the EHS dispatcher and recorded into the computer assisted 

dispatch (CAD) system. Data such as time stamps, interventions, chief complaint, triage 

level, demographics, vital signs, etc., are electronically queriable on all calls. The EHS ePCR 

and CAD databases maintain atomic clock synchronization. Information is uploaded to the 

EHS clinical data warehouse daily. Data from all EDs are recorded electronically in the ED, 

into the ED Information System (EDIS). 

 

Twelve months of data (from January 2, 2013 to January 1, 2014) beginning approximately 

eight months after the OZ became operational were extracted. A full year was wanted to 

avoid seasonal fluctuations in volume or operations. Case finding began with collecting the 

master incident number (MIN) for all ambulances that transported an emergency patient to 

either the QEII or DGH. The EHS ePCR and CAD were then queried for these MINs. 

These raw data were provided in two separate spreadsheets: dataset #1 and dataset #2, split 

for privacy purposes. Dataset #1 contained medical information related to the call, and 

dataset #2 contained the necessary elements of the patients’ personal information needed to 

match records to the EDIS data.  
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Table 2 Datasets extracted from EHS and ED information systems and the fields 
they contained 

Dataset #1: EHS medical 
information 

Dataset #2: EHS personal 
identifier information 

Dataset #3: EDIS records 

MIN 

Age 

Date of birth 

Sex 

CTAS 

Incident time 

Arrive hospital time 

OZ in operation 

Patient placed in OZ 

Time into OZ 

Time into ED bed 

Ambulance available time 

Time disposition assigned 

MIN 

First name * 

Last name * 

Date of birth * 

Date of service * 

Health card number * 

ID 

First name * 

Last name * 

Date of birth * 

Date of service * 

Health card number * 

Hospital site 

Site arrival time 

ED arrival time 

Patient registration time 

Patient triage time 

CTAS 

Clinical impression 

Time to ED bed 

Time to RN 

Time seen by MD 

Time disposition assigned 

Time departed ED 

 

Dataset #2 was brought to the hospital’s Emergency Medicine IT manager, and was used to 

query EDIS and create dataset #3. Because EHS and the EDs do not share a common 

incident identification key for their respective data systems, deterministic linkages were used 

to pair records pertaining to the same incident. To form a link, matches needed to be found 

for at least three of the following personal identifiers: first name, last name, date of birth, 

date of service, and health card number. Table 2 summarizes the three datasets and marks 

link-forming fields with a * symbol. The SOUNDEX function in analytics software SAS was 

used to match names that may have been otherwise unmatchable due to typos or spelling 

errors. Names matched with the SOUNDEX function were manually reviewed after the 

function was run. Records from dataset #2 that did not find a match were reviewed for 

errors such as mistaken entry of a health card number, reversal of month and day in dates, or 

other issues with names such as reversal of first and last name. 
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3.2.2 Data Preparation and Verification 

There were 18,640 EHS records extracted in datasets #1 and #2. Datasets #2 and #3 were 

matched with a 98.7% success rate. The combination of dataset #2 and #3 resulted in 

dataset #4, which was the starting point for this thesis’s work, and which needed to be 

verified and cleaned before analysis. 

 

Duplicate MINs were identified within dataset #4. The 135 duplicates detected were 

examined manually. Of these, 122 were found to be erroneously created records which 

combined information from other valid entries existing in the dataset, and were deleted. The 

remaining duplicates were instances of the same MIN being used for patients who took 

multiple ambulance trips in one day. These had likely been separate incidents with separate 

MINs but were assembled incorrectly due to the overlapping date and patient information. 

For each pair, it appeared that one contained correct information and the other contained a 

mix of information and timestamps that did not make sense, and so the latter of each pair 

was deleted. 

 

During extraction of dataset #3, an identifier called EDIS Unique ID had been created 

which considers each set of EDIS timestamps and gives duplicate IDs to entries that share 

identical timestamps. Duplicate EDIS Unique ID fields were identified within dataset #4. 

The 34 duplicate pairs detected were examined manually. They appeared to have resulted 

from an error where one entry is populated with information from a different entry instead, 

causing two entries with different MINs but identical EDIS timestamps. By comparing EHS 

and EDIS arrival timestamps, each pair’s correct entry was identified, and the erroneous 

entry deleted. 

 

For some records, matches were made based on name trims or phonetic (SOUNDEX) 

versions of the patient’s names. The 231 such records were examined manually for accuracy. 

Two records were deleted which appeared to have been created from different patients who 

coincidentally have the same first and last name. 

 

Discrepancies between EHS and EDIS data about which hospital a patient was taken to 

were investigated. A supplementary data file which logs transfer-of-care information was 
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consulted to confirm where each patient had actually been transported. This file was able to 

solve 28 of the discrepancies, but 24 remained conflictive. It appears to be an issue that 

occurs sometimes when multiple patients are transported in the same ambulance. With no 

way to resolve the discrepancy, these 24 records were deleted. 

 

Discrepancies between EHS and EDIS data about patients’ birthdates were investigated. 

The majority appeared to be small typos or reversals of month and day, which provides 

reassurance that the matchups were correct. Focus was narrowed to consider only 

differences between birth years, which is important for computing accurate age statistics. 

There were 160 such discrepancies, and with no way to tell which was the correct one, the 

birthdates from the EDIS transfer-of-care log were arbitrarily chosen to be used. Therefore, 

an error rate of around 0.0044% can be expected in patient age data. 

 

The differences between EHS and EDIS timestamps for patients’ arrival were examined. 

Only 6.5% of all records had the same timestamp in both database systems, however this is 

expected, as paramedics and hospital staff do not synchronize their inputs for this datapoint, 

and it is reasonable to expect a difference in what time they observe the arrival of a patient. 

The median amount of difference is 4 minutes, and the mean difference is 8.88 minutes with 

a standard deviation of 47.87. At least 95% of the records have EHS and EDIS arrival 

timestamps that are within 23 minutes of each other. In the case of EHS, errors in 

timestamp information may occur due to typos, or reporting information belatedly and 

misremembering the time. In the case of EDIS, an automatic timestamping system is used, 

so typos are not expected, but errors can occur when a patient’s record is updated belatedly. 

To see whether large differences in reported arrival time are correlated with OZ activity, 

two-proportion z-tests were performed for comparison. Cases where the EHS arrival time 

was >23 minutes earlier than the EDIS time occurred 0.99% of the time when the OZ was 

closed and 1.46% of the time when it was open (significantly different proportions with p = 

0.004). They occurred for patients outside the OZ 1.60% of the time and patients inside the 

OZ 1.33% of the time (no significant difference). For cases where the EDIS arrival time was 

>23 minutes earlier, these figures were 3.29%/3.56% and 3.47%/3.64% respectively (neither 

being significantly different). An earlier EHS arrival time can generally be assumed to mean 

that the EDIS time was logged belatedly. The difference in proportion for earlier EHS 
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arrival times may be due to the OZ’s operation giving ED staff more work to keep up with 

at once, and making them more likely to delay the processing of a new ambulance arrival. 

For the purposes of this thesis’s analysis, it was decided to use whichever arrival timestamp 

was closest to each patient’s triage timestamp. This is because triage is intended to happen as 

soon as possible after a patient’s arrival, therefore the arrival time closest to it is less likely to 

be erroneous. 

 

Various data categories could be used to reflect the time a patient is offloaded from the 

ambulance. They include the offload timestamp recorded in EHS’s CAD, the offload 

timestamp recorded in EHS’s ePCR, the offload timestamp recorded in the hospital’s OZ 

database, and the time the ambulance has marked itself available for a new call. Each of 

these fields had a large rate of missing data: 65.3%, 95.8%, 76.9%, and 34.4% respectively. 

(Note that the rate of missing data for the OZ database is counting all patients, even those 

who do not enter the OZ; the rate drops from 76.9% to 23.4% when considering only 

patients who entered the OZ.) There are 14.8% of records that have none of these 

timestamps. These sources of data were ranked in terms of desirability. EHS’s CAD 

timestamp, which is a quick communication via radio to the dispatcher, is the easiest to 

complete and the most likely to be performed promptly after the patient is moved. EHS’s 

ePCR timestamp is also likely to be completed before the paramedics begin preparing their 

ambulance for departure. EHS’s availability timestamp is less desirable, since it typically takes 

the paramedics some time after offloading a patient to clean and reorganize before they are 

available for another call. Finally, the OZ database is the least desirable, since it differs from 

the other sources in terms of the types of entry error it is susceptible to, and relying on it as 

little as possible should make the dataset more consistent. For analysis, each patient record 

in the dataset uses the highest-desirability source that is available. 

 

Some measures were taken to make the clinical impression field more easily analyzed. This 

field is an extensive dropdown list of options that can be selected to describe the nature of 

the patient’s complaint. A number of records had more than one clinical impression attached 

to the same incident. For the most part, these were similar items, e.g. “chest pain” with 

“heart attack,” and so a single description was chosen to best represent the condition. 
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However, 73 records had seemingly conflicting or unrelated items, e.g. “traumatic injury” 

with “allergic reaction.” These records were given the label “Complex.” 

 

After this adjustment, there were 86 possible designations for a patient’s clinical impression. 

This is too many to meaningfully represent in analysis, particularly because about half of 

them have small sample sizes (fewer than 30 patients). Therefore, clinical impressions were 

grouped into categories based on similarity of the condition or of the body system affected. 

This resulted in 25 categories, of which the five smallest categories involve a sample size 

smaller than 30 at one or both sites. The category groupings were verified and critiqued by 

an emergency physician. For example, she recommended giving “multi-system trauma” its 

own category rather than including it in the general “trauma” category, since it is usually 

much more complicated to treat than an injury to a single area of the body. See Table 3 for 

the full list of clinical impressions and the category each one was placed into, noting that 

“NYD” stands for “Not Yet Diagnosed.”  

 

About 4.5% of the dataset is missing a clinical impression (categorized as “NULL”). The 

clinical impression field is typically mandatory for the ambulance staff to fill out, except for 

in a handful of cases, namely various types of patient transfers. Since an inpatient transfer 

would not be directed to the ED, it may be the case that these NULLs are due to outpatient 

transfers from a crowded ED to a less crowded one. If so, it can be assumed that NULL 

clinical impressions comprise various low-acuity conditions. 

 

The remainder of the data to be used in analysis are sourced from EDIS only. Key 

information categories were examined for rates of missing entries. Of all data points to be 

used in the analysis, two were found to have missing entries. Timestamp to reach an ED bed 

is missing 7.3% of entries, potentially due to patients leaving without being seen, patients 

being treated in the OZ or hallway, or staff forgetting to mark the time. Timestamp to see a 

physician is missing 2.9% of entries, potentially due to patients leaving without being seen, 

patients having a complaint that does not warrant a doctor’s assessment, or staff forgetting 

to mark the time. Patients who leave without being seen are not marked in the data, but 

assuming that someone who leaves without being seen will have a series of missing 

timestamps, it can be estimated that between 1.9% and 2.7% of patients leave without being 
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seen. While calculating intervals between timestamps, care was taken to ensure that no 

intervals were mistakenly generated using a missing timestamp. 

 

After cleaning the data as described, 18,183 records remained, for an overall deletion rate of 

2.45%. Due to the columns that had missing entries, as discussed above, some calculations 

will have a sample size smaller than 18,183. Columns containing patients’ identifying 

information were no longer needed after preparation of the dataset, and were deleted for 

privacy prior to beginning the analysis. 

 

Table 3 Clinical impression categories with patient sample sizes in parentheses as 
(Hospital A/Hospital B), and the clinical impressions included in each 
broader category 

Clinical Impression 
Category (Incidences) 

Clinical Impressions Included 

Trauma (1967/987) Abdominal Injury; Arm Injury; Back Injury; Chest Injury; 
Eye/Ear/Nose/Throat Injury; Elbow Injury; 

Electrocution; Facial Injury; Foot Injury; Hand Injury; 
Head Injury; Hip Injury; Knee Injury; Leg Injury; Neck 

Injury; Pelvic Injury; Shoulder Injury 

Gastrointestinal/ 

Genitourinary (1720/1090) 

Abdominal/Flank Pain; Diarrhea; GI Bleed; Hematuria; 
Nausea/Vomiting; GI/GU (NYD); Renal Colic; UTI 

Complaint 

Neurological (1423/656) Altered Mental Status; Cerebrovascular 
Accident/Transient Ischemic Attack; Dizziness/Vertigo; 

Gait Disturbance/Ataxia; Migraine/Headache; 
Neurological (NYD); Seizure 

Cardiovascular (1330/641) Abdominal Aortic Aneurysm; Angina; Arrhythmia; 
Bradycardia; Chest Pain (NYD); Congestive Heart Failure; 

Deep Vein Thrombosis; Hypertension; Hypotension; 
Palpitations; ST-Elevation Myocardial Infarction; 

Tachycardia; Shock – Hypovolemic  

Respiratory (950/515) Airway Obstruction; Respiratory Arrest; Aspiration; 
Asthma; Chronic Obstructive Pulmonary Disease; 

Pulmonary Embolism; Pneumonia; Pulmonary Edema; 
Shortness of Breath (NYD); Spontaneous Pneumothorax 

General Malaise (904/523) Failure to Thrive; General Malaise; Palliative; 
Weakness/Fatigue 

Psychological (797/398) Abnormal Behaviour; Anxiety; Mental Health Crisis; 
Psychological (NYD); Suicide; Violent Behaviour 
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Clinical Impression 
Category (Incidences) 

Clinical Impressions Included 

NULL (507/304) NULL 

Wellness Check (414/211) Medication Check; No Apparent Injury/Illness; Wellness 
Check 

Fainting (328/150) Syncope/Pre-Syncope 

Toxicology (318/156) Chemical Exposure; Overdose/Poisoning; Toxic 
Inhalation 

Substance Misuse (207/81) Substance Misuse/Intoxication 

Chest Pain (Non-CV) 
(150/123) 

Chest Pain (Non-Cardiovascular) 

Eye, Ear, Nose, Throat 
(128/69) 

Broken/Avulsed Tooth; Difficulty Swallowing; Ear Pain; 
Epistaxis; Esophageal Obstruction; Eye Injury; Eye Pain; 
Foreign Body; EENT (NYD); Sinus Complaint; Vision 

Disturbance 

Sepsis (107/59) Sepsis; Shock – Septic  

Glycemic (98/85) Hyperglycemic; Hypoglycemic 

Skin (87/53) Burn; Cellulitis; Pressure Sore; Rash (NYD) 

Pain (76/55) Pain (NYD) 

Allergic Reaction (66/50) Allergic Reaction 

Multi-System Trauma 
(65/29) 

Trauma – Multi-System Injury 

Ob/Gyn (56/27) Childbirth; Ob/Gyn (NYD); Pregnancy Issues; Per 
Vaginum Bleed; Sexual Assault; Stillbirth; Threatened 

Abortion 

Complex (53/20) Complex 

Cardiac Arrest (42/35) No Return of Spontaneous Circulation; Obvious Death; 
Return of Spontaneous Circulation; Traumatic 

Medical Device 
Complication (24/27) 

General Medical Device Complication 

Environmental (12/10) Bite/Sting; Hyperthermia; Hypothermia 
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3.2.3 Data Independence 

During the study period, there were many times when the OZ was open and many when it 

was not. The primary reason cited for the OZ being closed was staffing shortages, a random 

and exogenous factor independent of the demand in the ED. This independence was 

investigated and is summarized in Figure 1, where the hospital identifiers are removed. 

Subfigures a) through c) pertain to Hospital A and subfigures d) through f) to Hospital B. 

Subfigures a) and d) plot the number of hours the OZ is open as a function of daily 

ambulance arrivals. Independence is assumed because the 95% confidence intervals overlap 

and because there is no discernible trend present. In subfigure d) an apparent upward trend 

is present but when considering only the majority of the data (which falls between 12 and 24 

arrivals per day) this trend is negligible. These results show that the OZ has roughly the same 

chance of being open on any given day regardless of the level of daily ambulance arrivals. 

Subfigures b) and e) display the probability that the OZ is open as a function of the hourly 

ambulance arrivals. According to these charts, OZ-open periods are typically busier than 

OZ-closed periods, at both hospitals. Note that subfigure b) excluded hourly arrivals of 8 

due to a low sample size of 2. Finally, subfigures c) and f) plot the number of hours open as 

a function of day of the week and likewise the 95% confidence intervals overlap and there is 

no discernible trend. These figures show that cyclical patterns, such as weekly staffing 

schedules or the daily arrival patterns of patients as influenced by the typical work week, do 

not influence whether the OZ opens. 

 

The trends observed in subfigures b) and e) are a result of the OZ generally having its open 

periods during the daytime, which is both when more staff tend to be available for 

scheduling and when there is higher demand on the ED. It is of course sensible for the 

hospital not to keep the OZ open during periods known to have lower demand, but for the 

purposes of this study, it means that results of unit-level comparisons may be skewed. 

However, this bias is self-limiting, because hospitals will generally do their best to schedule 

staff levels corresponding to demand levels, and thus the difference between daytime and 

nighttime delays will not be excessive. As well, for comparisons where the OZ reduces 

offload time, this bias actually makes the results more convincing than if it were an unbiased 

dataset. It would be expected for busier daytime periods to generally have more AOD than 

less busy nighttime periods, so if the comparison shows a reduction when the OZ opens, 
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then the actual net reduction is probably even more substantial than what is estimated by the 

test. To clarify the results, these unit-level tests can be cross-referenced with their 

corresponding patient-level tests, which are not subject to the same data skewing effect since 

they use data only from OZ-open periods. Considering all of this, the dataset can still be 

used in spite of this dependency. 

 

 

Figure a) Hours OZ is open as a function of daily ambulance arrivals at Hospital A 
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Figure b) Probability OZ is open as a function of hourly ambulance arrivals at Hospital A 

 

 

Figure c) Hours OZ is open as a function of day of the week at Hospital A 
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Figure d) Hours OZ is open as a function of daily ambulance arrivals at Hospital B 

 

 

Figure e) Probability OZ is open as a function of hourly ambulance arrivals at Hospital B 
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Figure f) Hours OZ is open as a function of day of the week at Hospital B 

 

Figure 1 Demonstration of data independence: Subfigures presented on the previous 
three pages display means and 95% confidence intervals, and overlapping 
confidence intervals imply data independence 

3.3 Methods 

In this subsection, the data are laid out in terms of the main OZ-related comparison groups 

that are used to assess its functionality. These comparison groupings apply to all of the data 

arrangements and statistical tests done throughout the analysis. The first part of the analysis 

examines the sequence of steps that patients take on their path through the ED, and the 

second part looks at key time benchmarks in the patients’ ED journeys. Some situational and 

demographic variables are available to further break down the comparisons of time 

benchmarks. Throughout this subsection, statistical tests to be used in the analysis are 

identified and explained. 

3.3.1 Comparison Groups 

During this study period, there were many periods when the OZ was open and many when 

it was not, in an ad-hoc fashion, creating a natural experiment. As revealed by the 
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independence analysis, the OZ did tend to operate during the daytime when demand was 

expected to be higher, but aside from this bias, the reasons for the specific periods that the 

OZ was open or closed were mainly staffing, and hence random and independent of the 

daily demand in the ED. These concurrent comparisons are preferable to a before-and-after 

comparison because of the rapidly changing nature of ED crowding and mitigation 

strategies. Two main types of comparisons are used in order to examine the OZ’s 

functioning, referred to as “unit-level” and “patient-level,” and all types of comparison show 

a separate analysis for each hospital site.  

 

For unit-level comparisons, all data are used, and periods where the OZ is open are 

compared to periods when the OZ is closed. For patient-level comparisons, only data from 

OZ-open periods are used, and patients who enter the OZ are compared to those who do 

not. Table 4 and Table 5 summarize the data usage and comparison groups for each type of 

comparison. Patient-level results will be more representative of the OZ’s effect on the 

patients who use it, and unit-level results will be more representative of its effect on the 

system as a whole. 

 

Table 4 Data used for unit-level comparisons 

OZ Status Patient Enters OZ Patient Does Not Enter OZ 

OZ Open Comparison group A 

OZ Closed Comparison group B N/A 

 

Table 5 Data used for patient-level comparisons 

OZ Status Patient Enters OZ Patient Does Not Enter OZ 

OZ Open Comparison group A Comparison group B 

OZ Closed Data not used N/A 

 

3.3.2 Path Analysis 

Patients are intended to travel through the ED in a specific sequence of steps. The major 

steps considered here are: reaching an ED bed, first contact with a registered nurse (RN), 

first contact with a medical doctor (MD), and discharge from the ED. Patients typically 
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receive treatment in this order but the data indicate at least 20 distinct paths. Table 6 

describes each of the major categories of possible paths through the ED and lists the specific 

treatment sequences that are included in each. The “Other” category represents a collection 

of treatment sequences that appeared very infrequently, e.g. MD – Discharge, which may be 

a reflection of patients who are not offloaded, but which occurs only six times at each 

hospital. Some 0.14% of the paths were noted to be erroneous records, as they included 

nonsensical implications such as receiving treatment after being discharged from the ED, 

and were excluded from consideration. 

 

Table 6 Categories of paths taken through the ED by patients and the major 
treatment sequences included in them 

ED Path Treatment Sequences Included 

Typical ED Bed – RN – MD – Discharge 

MD Before RN ED Bed – MD – RN – Discharge 

Treatment Before ED Bed MD – ED Bed – RN – Discharge 

RN – ED Bed – MD – Discharge 

RN – MD – ED Bed – Discharge 

MD – RN – ED Bed – Discharge 

No ED Bed RN – MD – Discharge 

MD – RN – Discharge 

Leave Without Being Seen (LWBS) ED Bed – Discharge 

Discharge 

Other Various infrequent sequences 

 

To consider the distribution of patients among the various possible paths through the ED, a 

chi-square test of independence was used to determine whether the distribution of paths 

differs between OZ comparison groups. The test estimates whether ED path and OZ group 

are independent variables. 

 

Because chi-square tests are sensitive to large sample sizes (Bergh, 2015), a random sampling 

of approximately one fifth of the dataset was used for these tests. The resulting sample sizes 

were 2,436 overall and 1,234 during OZ-open periods at Hospital A, and 1,290 overall and 

746 during OZ-open periods at Hospital B.  
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The chi-square test proposes the null hypothesis (𝐻0) that ED path and OZ group are not 

related in the population, and the alternative hypothesis (𝐻𝑎) that ED path and OZ group 

are related in the population. The table of observed frequencies is summed from the data 

sampling, and is used to generate a table of expected frequencies by calculating each cell 

(𝑟, 𝑐) as 

 

𝑅𝑜𝑤 𝑟 𝑡𝑜𝑡𝑎𝑙 ∗ 𝐶𝑜𝑙𝑢𝑚𝑛 𝑐 𝑡𝑜𝑡𝑎𝑙

𝑁
 

 

where 𝑁 represents the sum of all observed frequencies. The chi-square test statistic 𝜒2 is 

calculated by 

 

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸
 

 

summed across each cell in both tables, where 𝑂 is the observed frequency and 𝐸 is the 

expected frequency. The critical chi-square value is found using degrees of freedom       

𝑑𝑓 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐷 𝑝𝑎𝑡ℎ𝑠 − 1) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑍 𝑔𝑟𝑜𝑢𝑝𝑠 − 1) and a significance 

level of 𝛼 = 0.05. 

 

In addition to testing the overall distribution of paths, each path’s proportion of the 

distribution was tested independently. The two-proportion z-test compared the proportion 

of patients taking a given path when the OZ is open to the proportion taking it when the 

OZ is closed, as well as the proportions in and outside of the OZ. For these tests, the full 

dataset and not the one-fifth sampling was used. 

 

The two-proportion z-test proposes the null hypothesis (𝐻0) that the difference between the 

population proportions is 0, and the alternative hypothesis (𝐻𝑎) that the difference is not 0. 

The test statistic 𝑍 is calculated, using a pooled standard error, by  
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𝑍 =
𝑝̂1 − 𝑝̂2 − 0

√𝑝0(1 − 𝑝0)(
1
𝑛1

+
1

𝑛2
)

 

 

where 𝑝̂1 and 𝑝̂2 are the proportions of patients taking a given path in each of the two OZ 

groupings, 𝑛1 and 𝑛2 are sample sizes for each OZ grouping, and 𝑝0 is the combined 

proportion for the path across both OZ groupings. The critical value is found in the two-

tailed Z-table using a significance level of 𝛼 = 0.05. 

3.3.3 Time Analysis 

The main statistical test used in this study is an unpaired two-sample t-test. The t-tests are 

used to compare average time intervals between subsets of the population. Although the 

dataset contained essentially the entire population of ambulance patients from the studied 

time period, the variances are not considered to be known, because of the susceptibility to 

timestamp entry error. The main comparisons, performed on the entire dataset, are 

presented numerically alongside supplementary data for median and standard deviation, to 

give an idea of data skew. Some skew is present in the data, however, it is valid to perform t-

tests on skewed datasets with large sample sizes (Fagerland, 2012). The dataset is broken 

down into a variety of demographic and situational variables, and these comparisons are 

presented graphically in the form of 95% confidence interval charts for better 

comprehension, but are still functionally t-tests, where overlapping intervals within a given 

OZ group pairing implies that the null hypothesis is accepted. The t-test was chosen in 

favour of more complicated multivariate tests because the main interest is the difference 

between OZ groups, and it is not necessary to consider comparisons across multiple sets of 

variables or among variables with 3 or more groups. 

 

The t-test proposes the null hypothesis (𝐻0) that the sample means are the same, and the 

alternative hypothesis (𝐻𝑎) that they are different. The test statistic 𝑡 is calculated by  

 

𝑡 =
𝑥̅1 − 𝑥̅2

√𝑠2(
1
𝑛1

+
1

𝑛2
)
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using a pooled sample variance 

 

𝑠2 =
∑ (𝑥𝑖 − 𝑥̅1)2𝑛1

𝑖−1 + ∑ (𝑥𝑗 − 𝑥̅2)
2𝑛2

𝑗−1

𝑛1 + 𝑛2 − 2
 

 

where 𝑥̅1 and 𝑥̅2 are the sample means, and 𝑛1 and 𝑛2 are the sample sizes. The critical 

value is found in Student’s two-tailed t-table using degrees of freedom 𝑑𝑓 = 𝑛1 + 𝑛2 − 2 

and a significance level of 𝛼 = 0.05. 

 

The measurements used for the comparisons of means are time benchmarks in each 

patient’s journey through the ED. Many organizations will instead or additionally report on 

these benchmarks using a 90th percentile measurement, but here means are used for ease of 

analysis of a large volume of comparisons and variable stratifications. Of the benchmarks 

that are recorded in the data, four were selected for examination (Table 7). Note that the 

“Time to ED Bed” benchmark counts only the reaching of a regular ED bed, not an OZ 

bed. 

 

Table 7 Time intervals in the ED journey that were chosen for examination and why 
they were chosen 

Measurement Time Interval Reason for Choosing 

Offload Time Arrival–Being offloaded from 
ambulance 

To assess changes in AOD 

Time to ED Bed Arrival–Being assigned an ED 
bed 

To assess whether patients wait 
longer for an ED bed 

Time to MD Arrival–First time seen by an 
MD 

To assess whether patients’ time 
to treatment is impacted 

ED Length of Stay Arrival–Departure To assess whether patients stay 
longer in the ED 

 

A number of variables are considered, both demographic (Table 8) and situational (Table 9). 

The main dataset is broken down according to these variables, but for each one, only the 

comparisons between the OZ groupings described above are performed. Note that the 

majority of ambulance calls for children are directed to a children’s hospital in the area, and 
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so there are very few records in the dataset for such patients. Age groups younger than 15, 

totalling 23 records, are disregarded due to their scarcity. 

 

Table 8 Demographic variables that the OZ comparisons are stratified into 

Variable Variable Groups 

Sex Male, Female 

Age Group 15–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, 85+ 

CTAS (most to least acute) 1, 2, 3, 4, 5 

Clinical Impression See Table 3 

 

Table 9 Situational variables that the OZ comparisons are stratified into 

Variable Variable Groups 

Hospital A Hospital B 

Ambulance Patient Volume 
(arrivals/day, where each 
hospital has values specific to 
its own traffic levels)  

<20, 20–22, 23–25, 26–28, 
29–31, 32–34, 35–37,  

38–40, 41–43, 44–46, 47+ 

<9, 9–10, 11–12, 13–14, 
15–16, 17–18, 19–20,  

21–22, 23–24, 25–26, 27+ 

Day of Week Mon, Tue, Wed, Thu, Fri, Sat, Sun 

 

The data are broken down by only one variable stratification at a time. This is because most 

of the variables do not break down into similarly sized groups, and so once the data are 

broken down by two or more variables at once, sample sizes that are too small to reliably test 

begin to occur. Comparisons broken down by variable stratifications are displayed together 

in the same chart for brevity and comprehension, but the only comparisons made should be 

between the OZ groupings; it is not statistically valid to compare between variable 

stratification groups in these charts. 

 

These data and methods were adapted to focus on effects in the system caused by ED staff 

behaviour for a special interest publication by the Journal of the Operational Research 

Society (Elliott et al., 2020). 
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Introduction 

In the analysis, the sequence of treatment steps as well as the timeframe for various steps in 

the ED journey are examined. In each case, a type of OZ versus non-OZ comparison is 

made. Treatment paths are analyzed in terms of the overall distribution of paths as well as 

each individual path’s proportions. For the time-based analysis, comparisons are broken 

down into unit-level or patient-level, and then further into a number of descriptive variables. 

 

Results that are relevant to the discussion are presented in this section. That is to say, mainly 

the statistically significant results are shown. In some cases, results that are not significant are 

found to be relevant for discussion, because they reflect on the OZ process—for example, 

showing that the OZ does not delay the time it takes to be seen by a physician, because 

contrary to the initial concept, it was reported that staff were seeing patients in the OZ.  

 

Simple comparisons of two means are shown in the form of two-sample t-tests, summarized 

in tables. Comparisons that are further broken down by variable are shown graphically in the 

form of confidence intervals, for better comprehension. 

4.2 Conditions in the ED Pre-OZ 

To provide an estimate of what conditions were in each hospital prior to the OZ being 

introduced, Table 10 shows a general summary of performance during periods when the OZ 

is off, and compares each pair of means using two-sample t-tests.  

 

Table 10 OZ-closed time benchmarks compared between the hospital sites 

Benchmark 
(minutes) 

Mean ± St. Dev. Median (IQR) T-test  
p-value 

Hosp. A Hosp. B Hosp. A Hosp. B 

Offload Time 50.7 ± 76.3 49.3 ± 72.6 31 (35) 35 (34) 0.466 

Time to ED Bed 54.3 ± 77.4 60.2 ± 71.2 25 (52) 32 (60) 0.001 

Time to MD 97.3 ± 88.6 112 ± 91.7 70 (98) 85 (112) <0.001 

Length of Stay 507 ± 537 586 ± 531 355 (416) 438 (497) <0.001 
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The hospitals have a similar average offload time, but Hospital B takes longer to reach the 

other benchmarks. 

4.3 Treatment Path Analysis 

The chi-square test of independence was performed to see whether the distribution of paths 

taken through the ED would change between OZ-open and OZ-closed states, as well as 

between in-OZ and out-of-OZ states during periods when the OZ was running. The test 

data are not shown here, as displaying the information in the form of proportions is more 

intuitive for comprehensive, but the full tests can be seen in the Appendix. 

 

Table 11 shows the unit-level comparison of path proportions at both hospitals alongside 

the chi-square p-value result, and Table 12 shows the same but for the patient-level 

comparisons. The unit-level comparison of path distributions is different at both hospitals, 

but the patient-level comparison is different only at Hospital A. Furthermore, each 

individual path was tested using two-proportion z-tests, one each for the path’s proportional 

share of the OZ-open/OZ-closed populations and another for the in-OZ/out-of-OZ 

populations. The pairs of proportions tested are the same ones listed in Table 11 and Table 

12, and a * symbol has been added to pairs where the z-test found a significant difference. 

 

Table 11 Unit-level comparison of possible paths through the ED at both hospitals, 
where the overall distribution of path frequency is compared with a chi-
square test of independence, and * denotes pairs of proportions that were 
found to be different as determined by a two-proportion z-test  

Path Description Hospital A (%) Hospital B (%) 

OZ Open OZ Closed OZ Open OZ Closed 

Typical 36.2 * 41.9 * 37.4 * 47.6 * 

MD Before RN 43.4 42.3 32.6 * 35.2 * 

Treatment Before ED Bed 11.6 * 7.9 * 20.4 * 11.3 * 

No ED Bed 6.0 * 4.1 * 6.6 * 2.7 * 

LWBS 2.0 * 2.9 * 1.9 2.3 

Other 0.85 0.88 1.1 1.0 

Chi-square p-value <0.001 <0.001 
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Table 12 Patient-level comparison of possible paths through the ED at both hospitals, 
where the overall distribution of path frequency is compared with a chi-
square test of independence, and * denotes pairs of proportions that were 
found to be different as determined by a two-proportion z-test 

Path Description Hospital A (%) Hospital B (%) 

In OZ Out of OZ In OZ Out of OZ 

Typical 33.5 * 38.5 * 37.2 37.5 

MD Before RN 42.3 44.4 32.1 33.2 

Treatment Before ED Bed 13.9 * 9.6 * 21.4 * 18.5 * 

No ED Bed 7.6 * 4.5 * 6.4 7.0 

LWBS 1.5 * 2.3 * 1.8 2.7 

Other 1.2 * 0.59 * 1.1 1.1 

Chi-square p-value 0.012 0.689 

 

4.4 Comparison of Time Benchmarks 

4.4.1 Unit-Level Comparisons 

Table 13 through Table 16 show results for status-level (i.e. OZ-open versus OZ-closed) 

comparisons at both hospital sites, not stratified by any demographic or situational variables. 

The same general patterns are apparent at both sites, but with varying differences between 

sample means. Median and interquartile range (IQR) are shown in each table as well to 

provide a sense of skew, however the p-value shown applies only to the comparison of 

means. At times when the OZ is open, patients are offloaded from the ambulance an 

average of 5.8 minutes (11.4%) faster at Hospital A and 14.8 minutes (30.0%) faster at 

Hospital B than at times it is closed. Patients reach an ED bed an average of 4.2 minutes 

(7.7%) slower at Hospital A and 18.6 minutes (30.9%) slower at Hospital B at times when 

the OZ is open. Patients stay in the ED an average of 61 minutes (12.0%) longer at Hospital 

A and 55 minutes (9.4%) longer at Hospital B at times when the OZ is open. At both sites, 

there is no difference in the time it takes for patients to see an MD for OZ-open versus OZ-

closed periods. Interestingly, for length of stay at Hospital B, the mean is larger, yet the 

median appears to be smaller when the OZ opens. 
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Table 13 General statistics and results of unit-level t-tests for mean of offload time at 
both hospitals 

Offload Time (minutes) Hospital A Hospital B 

OZ Open OZ Closed OZ Open OZ Closed 

Mean ± St. Dev. 44.9 ± 51.6 50.7 ± 76.3 34.5 ± 37.6 49.3 ± 72.6 

Median (IQR) 32 (30) 31 (35) 27 (23) 35 (34) 

T-test p-value <0.001 <0.001 

 

Table 14 General statistics and results of unit-level t-tests for mean of time to ED bed 
at both hospitals 

Time to ED Bed 
(minutes) 

Hospital A Hospital B 

OZ Open OZ Closed OZ Open OZ Closed 

Mean ± St. Dev. 58.5 ± 77.9 54.3 ± 77.4 78.8 ± 81.8 60.2 ± 71.2 

Median (IQR) 27 (62) 25 (52)  48 (92) 32 (60) 

T-test p-value 0.005 <0.001 

 

Table 15 General statistics and results of unit-level t-tests for mean of time to MD at 
both hospitals 

Time to MD (minutes) Hospital A Hospital B 

OZ Open OZ Closed OZ Open OZ Closed 

Mean ± St. Dev. 96 ± 160 97.3 ± 88.6 110.6 ± 88.2 112.1 ± 91.7 

Median (IQR) 67 (88) 70 (98) 87 (112) 85 (112) 

T-test p-value 0.665 0.517 

 

Table 16 General statistics and results for unit-level t-tests for mean of length of stay 
at both hospitals 

Length of Stay (minutes) Hospital A Hospital B 

OZ Open OZ Closed OZ Open OZ Closed 

Mean ± St. Dev. 568 ± 684 507 ± 537 641 ± 637 586 ± 531 

Median (IQR) 345 (413) 355 (416) 378 (690) 438 (497) 

T-test p-value <0.001 <0.001 
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In general, when data were stratified by variable, results tended to follow similar patterns to 

those above. For some stratifications, the reduced sample sizes and thus greater uncertainties 

ended up eliminating the statistical significance of an apparent difference between means. 

The following results were selected to highlight interesting deviations from the previous 

patterns, or differences between the hospital sites. Stratifications where the pattern of results 

differed from the main results in Table 13 through Table 16, but which are not presented for 

discussion here, can be found in the Appendix. 

 

Figure 2 and Figure 3 show comparisons at Hospital A, stratified by patient sex. The former 

compares time to offload, and the latter compares time to bed. Only male patients have a 

reduction in offload time during periods when the OZ opens, while only female patients are 

delayed in reaching a bed when the OZ opens. Figure 4 shows comparisons for length of 

stay at Hospital B, stratified by patient sex. Only female patients have a longer length of stay 

when the OZ opens. 

 

 

Figure 2 Means and 95% confidence intervals for offload time at Hospital A, 
representing a unit-level comparison stratified by patient sex 
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Figure 3 Means and 95% confidence intervals for time to ED bed at Hospital A, 
representing a unit-level comparison stratified by patient sex 

 

 

Figure 4 Means and 95% confidence intervals for length of stay at Hospital B, 
representing a unit-level comparison stratified by patient sex 
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Figure 5 and Figure 6 show comparisons for offload time at both hospital sites, stratified by 

patient age groups. While Hospital A shows reduced offload times for a range of higher 

patient ages from 55 to 84 when the OZ is open, Hospital B shows reduced offload times 

for all patients outside of the 35 to 54 range. Figure 7 shows comparisons for time to reach 

an ED bed at Hospital A, where only patients 85 years and over are delayed in reaching a 

bed when the OZ is open. 

 

 

Figure 5 Means and 95% confidence intervals for offload time at Hospital A, 
representing a unit-level comparison stratified by patient age group 
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Figure 6 Means and 95% confidence intervals for offload time at Hospital B, 
representing a unit-level comparison stratified by patient age group 

 

 

Figure 7 Means and 95% confidence intervals for time to ED bed at Hospital A, 
representing a unit-level comparison stratified by patient age group 
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Figure 8 through Figure 13 show comparisons for offload time, time to reach an ED bed, 

and length of stay at both hospital sites, stratified by patient CTAS. At Hospital A, patients 

with CTAS 3 have reduced offload time when the OZ is open, and at Hospital B, patients 

with CTAS 2, 3, and 4 have reduced offload time. At both sites, patients with CTAS 2 and 3 

take longer to reach a bed when the OZ is open, and patients with CTAS 3 have a longer 

length of stay. 

 

 

Figure 8 Means and 95% confidence intervals for offload time at Hospital A, 
representing a unit-level comparison stratified by patient CTAS 
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Figure 9 Means and 95% confidence intervals for offload time at Hospital B, 
representing a unit-level comparison stratified by patient CTAS 

 

 

Figure 10 Means and 95% confidence intervals for time to ED bed at Hospital A, 
representing a unit-level comparison stratified by patient CTAS 
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Figure 11 Means and 95% confidence intervals for time to ED bed at Hospital B, 
representing a unit-level comparison stratified by patient CTAS 

 

 

Figure 12 Means and 95% confidence intervals for length of stay at Hospital A, 
representing a unit-level comparison stratified by patient CTAS 
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Figure 13 Means and 95% confidence intervals for length of stay at Hospital B, 
representing a unit-level comparison stratified by patient CTAS 

 

Figure 14 shows comparisons for time to reach an ED bed at Hospital B, stratified by 

patient’s clinical impression. Patients with fainting, general malaise, 

gastrointestinal/genitourinary, respiratory, or trauma conditions take longer to reach a bed. 

Figure 15 shows comparisons for length of stay at Hospital A. Patients with 

gastrointestinal/genitourinary or psychological conditions have a longer length of stay while 

those with “complex” conditions have a shorter length of stay. 
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Figure 14 Means and 95% confidence intervals for time to ED bed at Hospital B, 
representing a unit-level comparison stratified by patient clinical impression 

 

 

Figure 15 Means and 95% confidence intervals for length of stay at Hospital A, 
representing a unit-level comparison stratified by patient clinical impression 
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Figure 16 through Figure 21 show comparisons for offload time and time to reach an ED 

bed at both hospital sites, as well as time to reach an MD at Hospital B and length of stay at 

Hospital A, stratified by day of the week. When the OZ is open at Hospital A, no particular 

days show a difference in offload time or time to reach an ED bed, in contrast to the overall 

results for this hospital, although there is a longer length of stay on Sundays. When the OZ 

is open at Hospital B, all weekdays have reduced offload time, every day but Thursday has a 

longer time to reach an ED bed, and Saturday has a shorter time to reach an MD. 

 

 

Figure 16 Means and 95% confidence intervals for offload time at Hospital A, 
representing a unit-level comparison stratified by day of week 
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Figure 17 Means and 95% confidence intervals for offload time at Hospital B, 
representing a unit-level comparison stratified by day of week 

 

 

Figure 18 Means and 95% confidence intervals for time to ED bed at Hospital A, 
representing a unit-level comparison stratified by day of week 
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Figure 19 Means and 95% confidence intervals for time to ED bed at Hospital B, 
representing a unit-level comparison stratified by day of week 

 

 

Figure 20 Means and 95% confidence intervals for time to MD at Hospital B, 
representing a unit-level comparison stratified by day of week 
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Figure 21 Means and 95% confidence intervals for length of stay at Hospital A, 
representing a unit-level comparison stratified by day of week 

 

Figure 22 through Figure 25 show comparisons for time to reach an MD at both hospital 

sites, as well as offload time and time to reach an ED bed at Hospital B, stratified by daily 

ambulance arrival volumes. When the OZ is open at Hospital A, time to reach an MD is 

reduced on days with 26 to 28 arrivals. When the OZ is open at Hospital B, offload time is 

reduced on days with 13 to 24 arrivals, the time to reach an ED bed is longer on days with 

less than 9 arrivals, 15 to 16 arrivals, or 21 to 26 arrivals, and the time to reach an MD is 

reduced on days with 19 to 20 arrivals but increased on days with 21 to 22 arrivals or 25 to 

26 arrivals. 
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Figure 22 Means and 95% confidence intervals for offload time at Hospital B, 
representing a unit-level comparison stratified by daily ambulance arrivals 

 

 

Figure 23 Means and 95% confidence intervals for time to ED bed at Hospital B, 
representing a unit-level comparison stratified by daily ambulance arrivals 
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Figure 24 Means and 95% confidence intervals for time to MD at Hospital A, 
representing a unit-level comparison stratified by daily ambulance arrivals 

 

 

Figure 25 Means and 95% confidence intervals for time to MD at Hospital B, 
representing a unit-level comparison stratified by daily ambulance arrivals 
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4.4.2 Patient-Level Comparisons 

Some general tests were first performed to characterize patients who are selected for the OZ 

during OZ-open days (Table 17 through Table 22). At both hospitals, male and female 

patients are selected equally frequently, and patients in the OZ are on average approximately 

1.8 years older than those not in the OZ. At Hospital A, patients chosen for the OZ have a 

slightly higher acuity than those not selected, but there is no difference at Hospital B. For 

each hospital, every individual clinical impression category was tested against the population 

proportion using one-sample z-tests to see whether that clinical impression is selected for 

the OZ more or less often than typical, and the statistically significant results are included 

here. At Hospital A, cardiovascular conditions are more likely to be selected, and substance 

misuse conditions less likely. At Hospital B, wellness checks are less likely to be selected. 

 

Table 17 Two-proportion z-tests on proportion of each sex that is selected for the OZ 
at both hospitals 

Sex Proportion in OZ (%) 

Hospital A Hospital B 

Male 45.5 61.6 

Female 46.5 64.4 

Z-test p-value 0.434 0.094 

 

Table 18 Two-sample t-tests on mean of age of patients within and outside the OZ at 
both hospitals 

In OZ Mean of Age 

Hospital A Hospital B 

Yes 61.8 59.7 

No 60.1 57.9 

T-test p-value 0.002 0.012 
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Table 19 Two-sample t-tests on mean of CTAS of patients within and outside the OZ 
at both hospitals 

In OZ Mean of CTAS 

Hospital A Hospital B 

Yes 2.525 2.682 

No 2.601 2.688 

T-test p-value <0.001 0.800 

 

Table 20 One-proportion z-test comparing proportion of cardiovascular patients who 
are selected for the OZ to the general proportion of patients selected for the 
OZ at Hospital A 

Clinical Impression Proportion in OZ (%) 

Cardiovascular 51.0 

Entire Patient Population 46.1 

Z-test p-value 0.012 

 

Table 21 One-proportion z-test comparing proportion of substance misuse patients 
who are selected for the OZ to the general proportion of patients selected for 
the OZ at Hospital A 

Clinical Impression Proportion in OZ (%) 

Substance Misuse 33.8 

Entire Patient Population 46.1 

Z-test p-value 0.029 

 

Table 22 One-proportion z-test comparing proportion of wellness check patients who 
are selected for the OZ to the general proportion of patients selected for the 
OZ at Hospital B 

Clinical Impression Proportion in OZ 

Wellness Check 0.518182 

Entire Patient Population 0.635813 

Z-test p-value 0.012 
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Table 23 through Table 26 show results for patient-level (i.e. in OZ versus out of OZ) 

comparisons at both hospital sites, not stratified by any demographic or situational variables. 

Median and IQR are shown to give a sense of skew, but the p-value shown applies only to 

the comparison of means. The same general patterns are apparent at both sites. Patients who 

pass through the OZ are offloaded from the ambulance an average of 9.6 minutes (19.3%) 

faster at Hospital A and 8.8 minutes (21.7%) faster at Hospital B than patients who do not 

pass through the OZ. At both sites, there is no difference in the time it takes to reach an ED 

bed, to see an MD, or for overall length of stay. 

 

Table 23 General statistics and results of patient-level t-tests for mean of offload time 
at both hospitals 

Offload Time (minutes) Hospital A Hospital B 

In OZ Out of OZ In OZ Out of OZ 

Mean ± St. Dev. 40.1 ± 44.4 49.7 ± 57.4 31.7 ± 36.2 40.5 ± 39.9 

Median (IQR) 30 (26) 33 (35) 26 (22) 30 (24) 

T-test p-value <0.001 <0.001 

 

Table 24 General statistics and results of patient-level t-tests for mean of time to ED 
bed at both hospitals 

Time to ED Bed 
(minutes) 

Hospital A Hospital B 

In OZ Out of OZ In OZ Out of OZ 

Mean ± St. Dev. 58.6 ± 77.9 58.3 ± 77.9 79.4 ± 82.0 77.7 ± 81.5 

Median (IQR) 27 (61) 27 (62) 49 (92) 46 (91) 

T-test p-value 0.902 0.559 

 

Table 25 General statistics and results of patient-level t-tests for mean of time to MD 
at both hospitals 

Time to MD (minutes) Hospital A Hospital B 

In OZ Out of OZ In OZ Out of OZ 

Mean ± St. Dev. 92.8 ± 85.1 99 ± 204 110.2 ± 85.3 111.5 ± 93.1 

Median (IQR) 67 (83) 67 (92) 88 (111) 85 (112) 

T-test p-value 0.108 0.681 
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Table 26 General statistics and results of patient-level t-tests for mean of length of stay 
at both hospitals 

Length of Stay (minutes) Hospital A Hospital B 

In OZ Out of OZ In OZ Out of OZ 

Mean ± St. Dev. 563 ± 657 571 ± 706 649 ± 644 626 ± 625 

Median (IQR) 352.5 (394) 341 (432) 380 (685) 375 (694) 

T-test p-value 0.668 0.309 

 

In general, when data were stratified by variable, results tended to follow similar patterns to 

those above. For some stratifications, the reduced sample sizes and thus greater uncertainties 

ended up eliminating the statistical significance of an apparent difference between means. 

The following results were selected to highlight interesting deviations from the previous 

patterns, differences between the hospital sites, or differences from what was observed in 

the status-level section. The only variable entirely omitted from this section is comparisons 

stratified by sex, as their patterns simply mirrored the unstratified status-level comparisons. 

Stratifications where the pattern of results differed from the main results in Table 23 

through Table 26, but which are not presented for discussion here, can be found in the 

Appendix. 

 

Figure 26 and Figure 27 show comparisons for offload time at both hospital sites, stratified 

by patient age groups. At Hospital A, patients in the age ranges of 45 to 54 and 75 and over 

have reduced offload time when passing through the OZ, and Hospital B shows similar 

results, with age ranges of 45 to 54 and 85 and over having reduced offload time. 
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Figure 26 Means and 95% confidence intervals for offload time at Hospital A, 
representing a patient-level comparison stratified by patient age group 

 

 

Figure 27 Means and 95% confidence intervals for offload time at Hospital B, 
representing a patient-level comparison stratified by patient age group 
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Figure 28 and Figure 29 show comparisons for offload time at both hospitals, stratified by 

patient CTAS. At Hospital A, patients with CTAS 3 and 4 have a reduced offload time when 

they pass through the OZ, and at Hospital B, patients with CTAS 2 and 3 have reduced 

offload time. Figure 30 shows comparisons for time to reach an ED bed at Hospital A, 

where patients with CTAS 2 are delayed in reaching a bed when passing through the OZ. 

Figure 31 shows comparisons for length of stay at Hospital B, where patients with CTAS 1 

have a much longer length of stay when passing through the OZ. 

 

 

Figure 28 Means and 95% confidence intervals for offload time at Hospital A, 
representing a patient-level comparison stratified by patient CTAS 

 



64 
 

 

Figure 29 Means and 95% confidence intervals for offload time at Hospital B, 
representing a patient-level comparison stratified by patient CTAS 

 

 

Figure 30 Means and 95% confidence intervals for time to ED bed at Hospital A, 
representing a patient-level comparison stratified by patient CTAS 
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Figure 31 Means and 95% confidence intervals for length of stay at Hospital B, 
representing a patient-level comparison stratified by patient CTAS 

 

 

Figure 32 Means and 95% confidence intervals for length of stay at Hospital B, 
representing a patient-level comparison stratified by patient clinical 
impression 
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Figure 32 shows comparisons for length of stay at Hospital B, where patients with 

cardiovascular conditions have a longer length of stay after passing through the OZ. 

 

Figure 33 through Figure 36 show comparisons for offload time at both hospital sites, as 

well as time to reach an ED bed and time to reach an MD at Hospital B, stratified by day of 

the week. At Hospital A, patients passing through the OZ on Friday, Saturday, Sunday, or 

Tuesday have reduced offload time. When patients pass through the OZ at Hospital B, 

Wednesday, Friday, and Sunday have reduced offload time, and Friday has both reduced 

time to reach an ED bed and time to reach an MD. 

 

 

Figure 33 Means and 95% confidence intervals for offload time at Hospital A, 
representing a patient-level comparison stratified by day of week 
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Figure 34 Means and 95% confidence intervals for offload time at Hospital B, 
representing a patient-level comparison stratified by day of week 

 

 

Figure 35 Means and 95% confidence intervals for time to ED bed at Hospital B, 
representing a patient-level comparison stratified by day of week 
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Figure 36 Means and 95% confidence intervals for time to MD at Hospital B, 
representing a patient-level comparison stratified by day of week 

 

Figure 37 through Figure 39 show comparisons for offload time at both hospital sites, as 

well as time to reach an ED bed at Hospital A, stratified by daily arrival volumes. When 

patients pass through the OZ at Hospital A, offload time is reduced on days with 29 to 34 

arrivals or 38 to 43 arrivals, and time to reach an ED bed is increased on days with 35 to 37 

arrivals but reduced on days with 38 to 40 arrivals. When patients pass through the OZ at 

Hospital B, offload time is reduced on days with 23 to 26 arrivals. 
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Figure 37 Means and 95% confidence intervals for offload time at Hospital A, 
representing a patient-level comparison stratified by daily ambulance arrivals 

 

 

Figure 38 Means and 95% confidence intervals for offload time at Hospital B, 
representing a patient-level comparison stratified by daily ambulance arrivals 



70 
 

 

Figure 39 Means and 95% confidence intervals for time to ED bed at Hospital A, 
representing a patient-level comparison stratified by daily ambulance arrivals 

 

4.5 Discussion 

Examining the results laid out in the previous subsections provides insight as to how the OZ 

is used at each hospital, how different types of patients interact with it, and how it affects the 

overall flow of the ED. Contrasting the results of unit-level versus patient-level comparisons 

provides insight as to the systemic versus the individual patient effects of the OZ. Table 27 

shows a summary of the main findings that will be expanded on throughout the discussion. 
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Table 27 Summary of main findings at each hospital 

Section of Results Main findings 

Hospital A Hospital B 

Pre-OZ State Experiencing crowding Experiencing crowding 
more severely; 

More likely to use hallway 
admissions 

Characteristic of Patients 
Selected for the OZ 

Slightly older; 

Slightly higher acuity 

Slightly older 

Path Analysis Patients treated in the OZ; 

Hallways admissions 
sometimes occur; 

OZ reduces likelihood of 
LWBS 

Patients treated in the OZ 
and in hallways; 

Hallway admissions still 
common when OZ open 

Unstratified Time Analysis Offload time reduced 
primarily for patients who 
use the OZ 

Offload time reduced 
primarily for patients who 
use the OZ; 

Ratio of ED to OZ beds 
may impact results; 

Issue with ED boarding 

Time Analysis Stratified by 
Patient Age 

Best offload time 
improvement for ages 55–
84  

Best offload time 
improvement for ages <35 
and >54 

Time Analysis Stratified by 
Patient CTAS 

OZ is used to more freely 
allocate patients based on 
acuity; 

CTAS 2 most likely to be 
treated in OZ 

OZ is used first-come-first-
served to alleviate 
ambulances ASAP; 

CTAS 2 and 3 patients most 
likely to be treated in OZ or 
hallway; 

OZ may be used for less 
urgent CTAS 1 cases 

Time Analysis Stratified by 
Patient Clinical Impression 

 OZ is used to begin lengthy 
testing processes; 

Patients with low-needs 
conditions are left in OZ 
longer and are delayed in 
reaching an ED bed 

Time Analysis Stratified by 
Day of Week 

Some effects apparent from 
weekly staffing schedules 
and demand patterns 

Some effects apparent from 
weekly staffing schedules 
and demand patterns 
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Section of Results Main Findings 

Hospital A Hospital B 

Time Analysis Stratified by 
Ambulance Arrival 
Volume 

Possible relationship 
between OZ size and 
number of arrivals that can 
be managed 

Possible relationship 
between OZ size and 
number of arrivals that can 
be managed; 

Hallway admissions become 
more common after a 
certain arrival threshold is 
reached; 

Time to reach an MD is 
negatively impacted at 
highest level of demand 

 

4.5.1 Pre-OZ State 

To begin, the baseline statistics on each hospital’s OZ-closed performance (Table 10) can 

indicate the system state when the OZ was introduced. Both hospitals have the same 

performance in terms of offload time, around 50 minutes. This figure is already above the 

target of 30 minutes, and it should be noted that the true mean is likely even higher, since 

OZ-closed periods are on average less busy than when the OZ is opened. This result 

confirms that, as expected, both hospitals were dealing with crowding that impacted their 

ability to accept incoming ambulance arrivals.  

 

After patients are offloaded and before they reach an ED bed, a few intermediary steps 

occur: triage, registration, and physical transportation into the ED. According to discussions 

with hospital workers during the course of this study, these steps typically take only a few 

minutes. Hospital B takes 5.9 minutes longer than Hospital A to place patients in an ED 

bed, which would be unexpected if they have the same offload times. This margin is small 

enough that it could be explained by process differences or longer transportation distances. 

However, it could also be a systemic consequence of accepting patients into the ED before a 

bed is available for them. 

 

Patients at Hospital B also wait 14.8 minutes longer to see an MD and have a 79 minute 

longer ED length of stay than those at Hospital A, indicating that they generally face a larger 
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burden on their ED resources. In this case, it would be expected for their offload times to 

be impacted as well, so the result that the hospitals have a similar offload time supports the 

idea that patients at Hospital B are being offloaded before a bed is available to them, either 

to wait or to begin treatment in an undesignated area such as a hallway. This scenario will be 

referred to throughout the discussion as “hallway admissions.”  

4.5.2 Characteristics of Patients Selected for the OZ 

The tests characterizing patients who are selected for the OZ (Table 17 through Table 22) 

can provide some insight, but it must be considered that the non-OZ population comprises 

high-acuity patients who enter the ED right away, low-priority patients who must wait with 

ambulance paramedics when the OZ is full, and minimal acuity patients who are directed to 

the walk-in waiting room. Since CTAS 2 and 3 account for the bulk of the population 

(87.6% across both hospitals), the very high- and very low-acuity cases should not have a 

strong effect. OZ patients tend to be slightly older than non-OZ patients, which may be 

related to which acuities and conditions are more common at different ages, but may also be 

due to older patients being moved for their comfort. Hospital A’s OZ patients have a 

slightly higher acuity than those who do not use the OZ, indicating that the OZ may be 

relied on as a place where higher-acuity patients have more security and access to better 

resources in case their condition declines. The acuity for each group is the same at Hospital 

B, so they more likely allocate patients on a first-come-first-served basis, either as policy or 

out of necessity due to their higher burden of demand. 

 

With cardiovascular conditions being more commonly selected at Hospital A, note that 

cardiac arrest is a different category and is not included in this group. More than half of 

cardiovascular patients are initially tagged as “not yet diagnosed,” so this may be a condition 

where staff feel that bringing a patient into the OZ to order tests before they take up an ED 

bed is the most efficient use of resources. Substance misuse conditions are less commonly 

selected here, possibly because this condition often requires quick treatment. There are a 

number of high-acuity conditions that require quick treatment and would be expected to 

show different proportions as well, but they tend to be rarer, so it could be that their sample 

sizes are too small to register significance. Wellness checks are less likely to be selected at 

Hospital B, possibly because this type of condition is generally low-acuity and may be one of 
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the best types of patients to redirect to the walk-in waiting room. It is unclear why there are 

different condition selection patterns at each hospital, but it may be due to demographics of 

the local area, or simply due to the large number of condition types breaking the data into 

much smaller sample sizes with higher uncertainty levels. 

4.5.3 Path Analysis 

Looking at the sequence of treatment steps analyses in Table 11 and Table 12 reveals a 

change in ED staff’s behaviour and decision-making. At both hospitals, when the OZ is 

open, the typical path for treating patients becomes less frequent. Physicians are more likely 

to treat patients before they are assigned a bed and sometimes discharging them before ever 

being placed in a bed. This result implies that when the OZ is open, care providers are 

treating patients in the OZ. This is a concern because when patients are being treated in the 

OZ, they stay in an OZ bed longer, and offload delay will return when arriving ambulances 

find the OZ full.  

 

The patient-level comparison at Hospital A reflects that it is primarily OZ patients who are 

treated before reaching an ED bed, although it does appear to also occur for non-OZ 

patients who are admitted to hallways. Hospital B shows high rates of occurrence for the 

Treatment before ED Bed path, and with almost no differences in any of its patient-level 

tests, it would seem that both OZ and non-OZ patients travel through the ED in a similar 

way, with OZ patients being only slightly likelier to begin treatment before reaching an ED 

bed. This result shows that hallway admissions are a common occurrence at Hospital B, 

occurring frequently even when the OZ is available. 

 

A few other points of interest can be noted here. The only place where a change in the “MD 

before RN” path occurs is in Hospital B’s unit-level tests. Since this path becomes less 

common, it could show that when the OZ is open, MDs are stretched more thinly and start 

to take longer to see some patients. At Hospital A, the LWBS path becomes less frequent in 

both comparisons. Whether this is because patients are better satisfied with their care, or 

because they feel uncomfortable leaving in a more heavily supervised setting, it is a positive 

in terms of patient care outcomes. 
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4.5.4 Unstratified Time Analysis 

At both hospital sites, the OZ reduces offload time on both the unit level (OZ-open/OZ-

closed) (Table 13) and the patient level (in-OZ/out-of-OZ) (Table 23). The estimates for the 

means in the unit-level analyses may be biased by the higher likelihood of the OZ being 

open during higher traffic periods, however, as discussed in the data independence analysis, 

this bias does not make the statistical significance of the difference between means less likely 

to be true.  

 

In considering patient offload time, an ideal result would be to find a difference at the unit 

level but not the patient level, because it would indicate that the OZ benefits all ambulance 

patients and not just the ones selected for the OZ. The results described here, where there is 

a difference at both levels, is a moderate success, where patients selected for the OZ are 

more likely to see a benefit. This result is likely a reflection of the anecdotally reported 

scenario where the OZ fills up and AOD again becomes an issue. 

 

In the unit-level test (Table 13), the estimated difference between means is greater at 

Hospital B (30.0% reduction in offload time) than Hospital A (11.4% reduction in offload 

time). This discrepancy is unintuitive considering that the path analysis showed Hospital B as 

being likely to admit patients into hallways, which would lower the expected offload time 

during OZ-closed periods, and likely to treat patients within the OZ, which would cause the 

OZ to fill up and become less useful. To show a difference at the unit level, it is likely that 

Hospital B is not replacing hallway admissions with OZ admissions but rather is continuing 

to allow hallways admissions while the OZ is functioning. The greater difference between 

means may also be a reflection of better results from the OZ due to the ratio of OZ beds to 

general ED capacity. 

 

These main results were used to estimate the number of AOD hours avoided as a result of 

the OZ program (Table 28). The number of actual AOD hours was found using the 

calculated average offload times for OZ-on and OZ-off periods, with 30 minutes removed 

from each patient record, so that these figures reflect the amount of time beyond the typical 

target offload interval. The number of AOD hours that would have occurred during the 

same time period if there had been no OZ was estimated by using the OZ-off average 
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offload time and applying it to all patient records during the period. The estimated AOD 

hours avoided is the difference between these figures. These results are important to 

consider because in a resource-constrained system, every hour of AOD avoided is an hour 

that goes back into coverage to maintain response times in the community. 

 

Table 28 Actual AOD hours reflected in the dataset, an estimate of AOD hours that 
would have occurred during the same time period with no OZ in place, and 
an estimate of AOD hours avoided as a result of the OZ 

Hospital Actual AOD 
Hours 

Estimated AOD 
Hours If No OZ 

Estimated AOD 
Hours Avoided 

A 3,501 4,081 580 

B 1,161 2,044 883 

 

It is difficult to put these numbers into context due to the rapidly increasing severity of 

AOD. Carter et al. reported in 2015 that EHS had recently estimated AOD across all of 

Nova Scotia to total 2,900 hours annually. Using more recent data from the Office of the 

Auditor General of Nova Scotia (2023), reports of average AOD and number of offloads 

can be used to estimate 50,733 hours at QEII and 25,319 hours at DGH during 2022. The 

data in Table 28 reveal an estimated reduction in AOD of 14.2% at Hospital A and 43.2% at 

Hospital B, but it cannot be guaranteed that similar rates of effectiveness would occur with 

the much higher levels of AOD present in recent years. 

 

At both hospital sites, the OZ reduces time to reach an ED bed on the unit level (Table 14) 

but not the patient level (Table 24). This result would indicate that the OZ causes all 

ambulance patients, whether they enter the OZ or not, to be delayed in reaching a bed. 

However, this result may be partly or entirely caused by the OZ operation hours bias. Once 

again, the unit-level test shows a greater difference between means at Hospital B (30.9% 

slower to reach a bed) than Hospital A (7.7% slower to reach a bed). This discrepancy could 

be taken to mean that Hospital B is more likely to have something beyond just bias causing 

the difference, because if it was just bias, it would not be expected to see larger differences 

for both the offload time and the time to ED bed comparisons. Rather, it could be a result 

of OZ patients being delayed by starting treatment within the OZ, or general delays from 

admitting more patients than there are beds for. 
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An examination of the waiting time between steps, which can be estimated by the difference 

between time benchmark means, can further support some of the discussion points above. 

Table 29 shows the wait time from exiting an ambulance to being placed in an ED bed, as 

calculated from means found in Table 23 and Table 24. At Hospital A, patients not selected 

for the OZ wait an average of 8.6 minutes between exiting the ambulance and being placed 

in an ED bed, which is a reasonable amount of time to spend on the typical intermediary 

processes of triage, registration, and physical transportation between locations. Patients 

selected for the OZ wait an average of 18.5 minutes, with their wait time representing the 

same intermediary processes as well as any time spent in the OZ. At Hospital B, however, 

these figures are 37.2 minutes and 47.7 minutes respectively. Long waits for patients who do 

not use the OZ are further evidence of patients being admitted to the hallway, and long 

waits overall indicate that this hospital tends to admit more patients than it has the resources 

to process in order to alleviate ambulances. 

 

Table 29 Time from exiting ambulance to reaching an ED bed for patients in and out 
of the OZ, at both hospital sites 

In OZ Time From Exiting Ambulance to Reaching ED Bed (minutes) 

Hospital A Hospital B 

Yes       18.5 47.7 

No   8.6 37.2 

 

At both hospital sites, neither unit-level (Table 15) nor patient-level tests (Table 25) showed 

a difference in the time it takes to be seen by an MD. This result is promising in terms of 

patient outcomes, but it is unintuitive considering previous results showed delays in reaching 

a treatment bed. It can be taken as further evidence that some patients are receiving 

treatment within OZ or in the hallways, before officially reaching an ED bed. It might also 

be expected, given that treatment within the OZ or in the hallway represents an 

overburdening of stated ED resources, that time to reach an MD would be delayed as staff 

are stretched over a greater patient burden. Since there is no difference in this measure, it 

may be the case that a considerable amount of ED capacity is being used by patients who 

have concluded treatment and do not require much if any ED resources as they wait to be 

discharged or transferred, as is a commonly-cited phenomenon in the literature. 



78 
 

Finally, at both hospital sites, the OZ reduces patients’ ED length of stay on the unit level 

(Table 16) but not the patient level (Table 26), indicating that the OZ causes all ambulance 

patients, whether they enter the OZ or not, to have a longer length of stay. Patients stay an 

average of 61 minutes longer at Hospital A and 55 minutes longer at Hospital B. This 

difference could come from the OZ operation hours bias, extra time spent in the OZ, longer 

wait times due to more patients being brought in at once, or any combination of the three. If 

it is reflective of increased ED utilization rates by ambulance patients, then there could be 

ramifications for walk-in patient waiting times. 

 

An interesting occurrence in the unit-level comparison at Hospital B (Table 16) is that the 

mean for length of stay increases when the OZ opens, while the median appears to decrease. 

This could be interpreted to mean that while length of stay decreases for most patients, there 

is an increase in the number of outliers with very long stays, inflating the mean value. This 

interpretation is supported by the IQR also being larger when the OZ is open. This pattern 

is not apparent in the patient-level comparison, which means that it applies both to those 

using the OZ and those not using it. Given that time to reach an MD shows no difference 

when the OZ is open, and does not have a similar effect with the medians, it can be assumed 

that the effects seen in length of stay are rooted in something occurring after first contact 

with a physician. One possibility is that with more patients being admitted to the ED at a 

given time, their treatments take longer to administer, however this would more likely 

lengthen all patients’ stays rather than reduce the stay for some and increase it for others. 

Another possibility is that during the daytime, when the OZ is most often open, is when 

there is the greatest bottleneck in admitting patients to other hospital wards, resulting in a 

larger number of ED boarders with overly long stays during these periods. If so, it is unclear 

why this pattern would appear only at one of the hospitals. Perhaps Hospital B generally has 

more of a bottleneck in this area, which in turn feeds into their already-discussed issues with 

crowding. This could also be a motivator for the practice of hallway admission and treatment 

within the OZ/hallways; if ED capacity is taken up by patients not requiring treatment, then 

patient flow could be restored by finding additional places to treat those who do need it. 
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4.5.5 Time Analysis Stratified by Patient Sex 

Looking at the unit-level tests that are stratified by patient sex (Figure 2 through Figure 4), 

there are a few differences from the main result patterns, however, the patient-level tests 

follow the same patterns as the main results. This result would likely indicate that any 

differences in the processing of male and female patients come from the main ED ward and 

not from selection biases in the OZ. 

4.5.6 Time Analysis Stratified by Patient Age 

It is interesting to note that in the tests for offload time stratified by patient age groups, the 

unit-level (Figure 5 and Figure 6) and patient-level (Figure 26 and Figure 27) results are quite 

incongruous with each other. A few test result combinations have already been discussed: 

when a difference exists at both the unit level and the patient level, the OZ benefits mostly 

those who use it, and when a difference exists at the unit level but not the patient level, the 

OZ benefits all ambulance patients. These figures introduce some new results combinations. 

When a difference exists at the patient level but not the unit level, it tends to be because the 

OZ benefits those who use it while further delaying those who do not use it, resulting in the 

OZ-open group balancing out the OZ-closed group in the unit-level test. When there is no 

difference in either test, as long as it does not appear to be due to high uncertainty, it can be 

interpreted to mean that the patients in this group were already high priority and the OZ is 

not able to further improve their delay. The results where some or all patients benefit and 

none are further delayed—that is to say, the results that include a difference in the unit-level 

test—would be the more preferred outcomes. Hospital A achieves these outcomes for 

patients aged 55–84 and Hospital B achieves them for patients under 35 and over 54. The 

difference between the hospitals’ performance may be due to different patient 

demographics, or due to Hospital B being more likely to admit patients to the hallway. It 

could also be further indication that Hospital A is more intentional with the types of patients 

they allocate to the OZ while Hospital B is forced to respond to excessive demand by 

allocating on a first-come-first-served basis. 

 

Also of note in Hospital A’s age group analysis is that in the unit-level comparisons, patients 

aged 85+ are the only ones to show a longer time to reach an ED bed when the OZ is open 

(Figure 7), possibly because they normally cannot be prioritized very highly but when the 
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OZ opens they can be placed there and left to wait longer than usual with the pressure of 

needing to free an ambulance no longer applicable. 

4.5.7 Time Analysis Stratified by Patient CTAS 

The comparison of unit-level (Figure 8 and Figure 9) and patient-level (Figure 28 and Figure 

29) results can bring insight to the tests for offload time stratified by patient CTAS, as well. 

At Hospital A, CTAS 1, 2, and 5 are already high priority, and at Hospital B, CTAS 1 and 5 

are already high priority, and so these groups are not benefited by the OZ. In the context of 

patient offloading, a CTAS 5 is considered “high priority” for transferring in that they can 

often either be directed to wait in the walk-in patient area (the “Direct to Chairs” policy), or 

expedited to an ED ward reserved for concerns that are quick to resolve. At Hospital A, 

CTAS 3 patients, and at Hospital B, CTAS 2 and 3 patients, are mostly only benefited by the 

OZ when they are selected to use it. For CTAS 4, Hospital A shows that patients in the OZ 

benefit while those outside it are delayed, and Hospital B shows that all patients benefit from 

the OZ. These patterns are summarized in Table 30. The results can be placed into context 

as informed by the discussion surrounding previous results. At Hospital A, the OZ seems to 

be used as a way to be more flexible with patient allocation, allowing staff to more freely 

deprioritize lower-acuity patients and reserve capacity for higher-acuity patients. At Hospital 

B, the OZ seems to be an extension of the hallway admission practice, allowing them to free 

as many ambulances as possible. Another observation from these results is that because 

Hospital B uses this extra capacity to bring in CTAS 2 patients, while Hospital A was already 

prioritizing CTAS 2 patients highly enough that the OZ does not benefit them, it further 

hints that Hospital B struggles more with balancing overall demand and resources. This 

could be the underlying reason that they are generally more prone to allowing hallway 

admissions and beginning treatments before the patient reaches an ED bed. 

 

At both hospital sites, CTAS 2 and 3 patients take longer to reach an ED bed when the OZ 

is open (Figure 10 and Figure 11), however, only CTAS 2 patients at Hospital A have a 

difference between those who use the OZ and those who do not (Figure 30). The unit-level 

differences may just be from the OZ operation hours bias, but the patient-level difference 

could be due to the severity of CTAS 2 conditions that tempt staff to treat these patients 

within the OZ when they do end up having to use it. The lack of patient-level difference at 
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Hospital B, when considered alongside its unit-level differences, would indicate that CTAS 2 

and 3 patients who are admitted to either the OZ or to a hallway are all slowed due to 

competing for ED resources and/or being treated outside of a proper ED bed. With CTAS 

4 patients having improved offload times but no differences in the time to reach an ED bed, 

it seems that the OZ capacity allows more CTAS 4 patients to be offloaded but they are less 

likely to begin treatment in undesignated areas and are simply waiting for a bed. 

 

Table 30 The OZ’s effect on offload time for patients in and out of the OZ, at both 
hospital sites 

CTAS OZ’s Effect on Offload Time 

Hospital A Hospital B 

1 No change—already high priority No change—already high priority 

2 No change—already high priority Reduced only when selected for OZ 

3 Reduced only when selected for OZ Reduced only when selected for OZ 

4 Reduced when selected for OZ, 
increased when not selected for OZ 

Reduced for all patients 

5 No change—“Direct to Chairs” policy No change—“Direct to Chairs” policy 

 

At both hospital sites, CTAS 3 patients have a longer length of stay during periods when the 

OZ is open (Figure 12 and Figure 13), with all ambulance patients being affected regardless 

of whether they use the OZ. While this result may simply be an effect of their longer wait 

for an ED bed and/or the OZ operation hours bias, it is still a concern to note. CTAS 3 

patients represent about half of all ambulance arrivals, so their increased utilization of the 

ED could present serious ramifications for other patients’ wait times. 

 

An unexpected result is found in the patient-level comparisons for length of stay at Hospital 

B (Figure 31). Here, despite a low sample size leading to high uncertainty levels, the CTAS 1 

patients who use the OZ have a much longer length of stay than those who do not use the 

OZ, with an estimated difference of over 300 minutes. This phenomenon is particularly 

strange because this group is not delayed in reaching an ED bed nor in beginning their 

treatment, only in their overall stay; this would seem to indicate a difference in the types of 

conditions that go directly to the ED versus those afforded a brief detour first. Perhaps 

conditions that are serious enough to be deemed CTAS 1, yet still not so urgent that they go 
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immediately to an ED bed, are more vaguely-presenting conditions that are more likely to 

take some time to test and diagnose, in contrast to some of the other high-acuity events like 

trauma and heart attacks that are quickly identifiable. Another factor could be cases of 

extreme acuity being transferred quickly to the ICU, where their little-to-no time in the ED 

would artificially lower the mean for other non-OZ patients. 

4.5.8 Time Analysis Stratified by Patient Clinical Impression 

For analysis of clinical impressions, it’s important to recall that these conditions come in 

groups of vastly different sizes. The top 7 categories are trauma, 

gastrointestinal/genitourinal, neurological, cardiovascular, respiratory, general malaise, and 

psychological, after which point the frequencies of other types of complaints drop off 

sharply. These 7 categories together make up about 76.5% of all visits while the remaining 

18 categories make up 23.5%. When doing comparisons stratified by clinical impression, the 

majority of those that show a significant difference are ones for these top 7 conditions, and 

they just reflect the same patterns discussed in the non-stratified data. However, there are a 

few interesting phenomena to note.  

 

Firstly, although it has already been apparent that differences in time to see an MD are very 

uncommon among the stratified tests, it is particularly encouraging to note no clinical 

impression at either hospital site showed a difference in this respect, indicating that 

conditions of all types are given appropriate attention regardless of what other process 

differences the OZ may cause.  

 

Cardiovascular patients at Hospital B are shown to have a longer length of stay if they are 

placed in the OZ (Figure 32). This clinical impression is one of the largest groups, and while 

a difference for it might not be remarkable in another of the tests, this one is notable 

because it is the only condition at either hospital to show a difference in length of stay at the 

patient level, and because it contrasts with the results of the unstratified tests where no 

difference was shown. It may be that cardiovascular patients who are more acutely ill have 

conditions that are easier to diagnose, while less acute cardiovascular conditions are vaguer 

and require more testing to identify. It is also an important observation to note because as 
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one of the largest groups of patients, their increased utilization of the ED could have 

ramifications for other patients’ wait times. 

 

Patients with fainting conditions at Hospital B take longer to reach an ED bed when the OZ 

is open (Figure 14). This result is notable since it is one of the only uncommon conditions to 

show a difference in any of the clinical impression tests. This may be because a fainting 

condition is an ideal case to bring into an OZ or hallway area—their treatment frequently 

amounts to resting, so it is not an issue for these areas to be lacking in staff or equipment. 

When the OZ opens and more capacity becomes available at Hospital B, as long as a more 

urgent case doesn’t need attention, then patients with fainting may be a common choice to 

offload in order to free the ambulance without introducing as much additional demand for 

care to the ED. 

 

Unexpectedly, the “complex” condition—which is not an official hospital term but a term 

used in this paper for patients who had multiple seemingly-unrelated conditions—shows a 

shorter length of stay at Hospital A during times when the OZ is open (Figure 15). It is 

unintuitive that a complex condition could be resolved in less time when the ED tends to be 

busier. However, given that the OZ is generally open in the daytime, this difference could be 

due to certain testing and diagnostic services being unavailable during the night, causing 

“complex” conditions to take longer to diagnose and treat at that time. 

4.5.9 Time Analysis Stratified by Day of Week 

It is strange to note that at Hospital A, no differences appear in the unit-level tests for 

offload time stratified by day of the week (Figure 16). In the patient-level tests (Figure 33) a 

number of differences do exist. Since Wednesdays and Thursdays show no difference in 

either test, these days appear to be the best-balanced in terms of demand and resources, 

while the other days require some patients to be delayed in order for others to be expedited. 

This pattern could be a result of weekly staffing schedules. This hospital’s unit-level tests for 

time to reach an ED bed (Figure 18) also show no differences, contrasting with the 

unstratified test result, but this may be due to the small difference that was estimated 

between OZ-open and OZ-closed means, making smaller patient groups less likely to show a 

difference due to higher uncertainty. Another odd result for this site is a longer length of stay 
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when the OZ is open on Sundays (Figure 21). Since this applies both to patients within and 

outside of the OZ, it could be that this day is generally busier and/or tends to be 

understaffed. 

 

At Hospital B, the unit-level tests (Figure 17) show reduced offload time on weekdays only, 

indicating that weekends are less busy and/or better staffed. A lack of clear pattern in the 

patient-level tests (Figure 34) for offload time could indicate variability in traffic. These two 

ideas are supported by the tests for time to reach an ED bed as well (Figure 19 and Figure 

35), where no clear patterns emerge aside from noting that values associated with weekend 

days are among the lowest in each figure. The tests for time to reach an MD, however, show 

more consistency among values (Figure 20 and Figure 36), which may be a sign that despite 

potentially disorganized arrival processes, most patients still receive treatment on a 

predictable timescale. Two notable differences, however, are patients seeing an MD faster on 

Saturdays when the OZ is open, and patients who use the OZ seeing an MD faster on 

Fridays. The former would more likely be related to better staffing during busier hours on 

Saturday, since it affects all patients, and the latter may be related to ED demand, since 

especially high-demand days would cause both the OZ and the hallway to fill up and cause 

non-OZ patients (which comprises both hallway patients and patients remaining in 

ambulances) to be overall more delayed in being seen. 

4.5.10 Time Analysis Stratified by Ambulance Arrival Volume 

While some of the large confidence intervals in these figures make it difficult to be sure of 

what patterns are occurring, there are still some interesting observations to note. At both 

sites, lower-volume days are less likely to have any differences caused by the OZ, which 

makes sense as they are days where resources can keep up with demand easily. Although 

Hospital A has nearly double the ambulance arrivals of Hospital B, the patient-level charts 

(Figure 37 and Figure 38) show that both hospitals begin to fill their OZ and see AOD recur 

when daily arrival volumes reach the mid-to-upper 20s. This alignment would make sense 

given that the hospitals both used an OZ with a capacity of six. However, this cannot be 

claimed with certainty, because the comparative outcomes could have been affected by each 

hospital’s level of hallway admissions. 
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Hospital A shows some interesting results in the patient-level comparisons for offload time 

(Figure 37) and time to reach an ED bed (Figure 39). At around 35 patients per day, there is 

a single test where there is no difference in offload time, and there is a reversal of trends in 

the tests for time to reach a bed. This change could reflect a point at which the hospital asks 

on-call staff to come in.  

 

The unit-level tests for Hospital A reveal another occurrence where a difference exists in 

time to reach an MD (Figure 24). This reduction in time to reach treatment for all patients 

when the arrival volume is around 26–28, which is just before the OZ’s effects become 

apparent in the patient-level tests, and could represent a brief window of demand-to-

resource balance where staff are able to stretch themselves to treat a few extra patients 

within the OZ sooner than they would otherwise be seen.  

 

The unit-level test for time to reach an ED bed at Hospital B (Figure 23) shows that patients 

reach a bed more slowly on the lowest volume days with <9 arrivals, which is 

counterintuitive. It could be that staff begin admitting low-acuity patients to the OZ before 

arrival volumes rise, to keep ED space free for high-acuity cases, and when arrivals remain 

low there is no incentive to clear the OZ. 

 

The pattern in unit-level comparisons at Hospital B (Figure 22) is for differences between 

offload time for patients in and out of the OZ to increase to a peak at around 19–20 patients 

per day, and decrease thereafter. This arrival volume could represent a point where, when 

the OZ is not available, staff begin to grow concerned about ambulances waiting and begin 

admitting patients to the hallway. This idea is supported by the unit-level test for time to 

reach an ED bed (Figure 23), where patients begin to be delayed in reaching a bed after 

around 20 arrivals per day, and the unit-level test for time to reach an MD (Figure 25), where 

at around 20–21 patients per day there is a switch from reduced to increased time to see an 

MD. At the high end of the range of arrival volumes, 25–26 patients per day, patients who 

do not enter the OZ see a delayed time to reach treatment. This point could be where both 

the OZ and the hallways tend to be full and any further patients arriving by ambulance have 

no choice but to remain outside the ED. As this is the only result in the study where time to 
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reach an MD is negatively impacted by the OZ, it is a sign of caution against overburdening 

ED resources in the pursuit of reducing offload time. 

 

In contrast to the two cases presented in this thesis, Crilly et al. (2019) found that the use of 

an offload nurse in an Australian trial resulted in marginal reductions in offload time, time to 

be seen, and length of stay. Their pre-trial measurements (medians of 26 minutes for offload 

time and 24 minutes for time to be seen) can be contrasted with values in this paper 

(medians of 31 and 35 minutes for offload time and 70 and 85 minutes for time to be seen) 

to show that AOD and ED crowding were more severe issues at both of the Halifax sites. 

This difference in initial conditions may be why the Australian study found that offload time 

reductions were able to translate into reductions in time to be seen and length of stay. Its 

effectiveness may also be related to the hours of operation (24/7) or the size (not reported) 

of their offload area. They also found that there was more benefit for low-acuity patients, 

while the Halifax sites showed more benefit for moderate- and moderately high-acuity 

patients. It is unclear whether the Australian hospital has an analog to Halifax’s “Direct to 

Chairs” policy; if not, it may be that their offload program benefits low-acuity patients due to 

filling a similar functional role to this policy. 
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CHAPTER 5 CONCLUSION 

This study used statistics and data analysis techniques which assessed the functionality of the 

OZ at two locations. The data were able to shed light on the ED conditions that the OZ was 

introduced to, the ways in which it was used by the ED staff, the downstream effects on 

patients’ journeys through the ED, and the overall effectiveness of the OZ. These results 

provide a formal evaluation of the effectiveness of a patient consolidation tactic, which has 

been pointed out in literature reviews as a gap in the body of knowledge.  

 

The main finding of this study is that it is mainly patients within the OZ itself who benefit, 

but to some extent those who do not enter the OZ have improved offload time as well. If it 

is mainly patients within the OZ who benefit, then this is a confirmation of Carter et al.’s 

(2015) finding that the OZ would tend to fill up and AOD would then return. In spite of 

that, however, there is still a net improvement in AOD, with an estimated 580 hours avoided 

in Hospital A and 883 hours avoided at Hospital B over the course of one year. These results 

can be leveraged by the hospital to bring higher-acuity patients into the ED where resources 

will be available if their condition worsens, and to allow more ambulances to return to 

service than would otherwise occur. 

 

Another main finding is that the actual use of the OZ delays patients in reaching an ED bed, 

and in conditions of overwhelming demand, potentially in accessing treatment. According to 

the OZ’s original protocols for use, this should not occur—patients should wait the same 

amount, only in a different location. However, when patients are more often treated within 

the OZ and in hallways, they are increasingly delayed in reaching an ED bed. This apparent 

trade-off between delay in offload and disturbances in patient flow must be carefully 

balanced should any organization choose to implement a similar system. There does 

however appear to be some leeway in overburdening the stated capacity of the ED before 

treatment times are affected, and this may be due to some of the ED capacity being 

occupied by patients who do not require resources and are simply awaiting ED discharge. 

 

In almost all cases, patients’ wait to see a physician was not affected by the functioning of or 

by their entry to the OZ. This result addresses an important gap in the body of literature on 

AOD by showing that an offload program of this type, where more patients are introduced 
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into the ED than it normally holds, will not negatively impact patients’ access to treatment. 

The exception, as stated above, is in conditions of overwhelming demand, which might not 

be the fault of the OZ itself but simply the natural consequences of an imbalance between 

demand and resources. 

 

Recalling discussion from Chapter 2 that framed the AOD issue in terms of queuing theory, 

the state of overwhelming demand can be described as when 𝜆 ≥ 𝜇. If the OZ beds are used 

for treatment, the OZ can compensate for blocking by adding extra treatment space when 

ED beds are occupied by boarders, but ultimately it does not affect either 𝜆 or 𝜇, and so the 

throughput of the ED will be the same. An OZ of infinite capacity would eliminate AOD, 

but wait times for treatment and to be admitted to other parts of the healthcare system 

would be unchanged. Therefore, the OZ should be represented strictly as a way to 

accommodate the ambulance arrival queue in a way that improves paramedic performance, 

and not as a way to address the root of the problem which lies in ED crowding, ED 

boarding, and hospital understaffing. 

 

While many observations in the variable stratifications differed by hospital and led to an 

understanding of how each hospital operated their OZ, one interesting commonality 

between them was found in the analysis by arrival volume. Despite being EDs of different 

size with different burdens of demand, both sites began to top out the benefits of the OZ at 

around the same rate of patient arrivals volumes, from the mid-20s per day. There are too 

many other factors affecting these outcomes to be sure, but it may be that each added OZ 

bed provides a reliable safety net for 4 or 5 patients’ worth of demand, allowing the 

minimum beneficial OZ size to be estimated based on known demand levels. The 

relationship between demand levels and effective OZ size has been explored in some 

modelling work but not in empirical studies. These initial results should be investigated with 

further empirical and/or modelling research to develop a general guideline for the 

development of an effective OZ. 

 

One of the unexpected pieces of insight in this analysis was being able to piece together a 

rough idea of how the hospitals differed in the way they operated their OZs. In contrasting 

their methods and results, some lessons can be noted for future OZ implementations. 
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At Hospital A, which had been facing moderate crowding conditions, the OZ served as a 

tool for more flexible patient allocation and processing. Depending on the minute-to-minute 

demands being faced, it could be used as: a place to begin emergency treatment of high-

acuity cases during periods of overwhelming demand; a place to begin lengthy testing 

processes for ambiguous conditions without having to occupy an official ED bed for as long 

as they otherwise would; a place to host moderate-acuity patients in a more secure 

environment where resources are more accessible in case their condition worsens; or even as 

a more comfortable environment for older patients to wait. For the most part, the use of the 

OZ represented a reallocation of patients to spaces that best suited the types of resources 

they need, and did not seem to increase the burden on the ED’s resources, resulting in 

patients’ wait time for treatment and overall length of stay being generally unaffected. This is 

not the original intended function of the OZ, but nonetheless could present a number of 

benefits for patient outcomes and ED patient flow. 

 

At Hospital B, which had been facing more severe crowding and ED boarding, staff were 

already offsetting boarders by admitting patients to the hallway, and the OZ seemed to be 

used as an extension of this practice. The nature of the demand on their resources 

necessitated both the OZ and the hallway admissions to occur on a first-come-first-served 

basis, and for the patients therein to begin treatment before reaching an ED bed. Because 

the OZ admissions were in addition to and not a replacement for the hallway admissions, the 

most high-volume of periods could result in increased competition for ED beds and access 

to staff, leading to delays in treatment and longer stays in the ED. 

 

Clearly, the OZ is not a universal solution that can just be thrown at any struggling ED. 

Aside from the previously discussed aspect of finding an effective OZ-to-ED size ratio, 

there are considerations to be made for how human behaviour affects the system. While the 

OZ concept presented clear benefits on paper, the practical outcome is affected by actors in 

the system who may respond to situations in unanticipated ways. For one, even if there is 

policy in place to not initiate treatment in the OZ, some individuals may not be able to 

reconcile this with seeing people in need with nothing but policy preventing them from 

being helped. This appears to be especially true as demand on the department increases. 

Behaviour pre-existing in the system should also be considered, such as at Hospital B, where 
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an already-established practice of admitting and treating patients in hallways could have 

made it more likely for staff to end up using the OZ in a similar way. All of these 

considerations can help to explain why previous trials of OZ-style concepts have shown 

mixed results in practice. Of note in this regard are the projects implemented across Ontario, 

where details like working hours, maximum staff-to-patient ratio, and specific duties were 

left up to the region to decide, and consequently the results varied greatly from place to 

place. As well, in comparison to a formal evaluation of a similar offload program trial (Crilly 

et al., 2019), it seems that pre-OZ demand levels and interactions with pre-existing ED 

flows/policies may be highly influential to the OZ’s results. 

 

The above interpretations and conclusions are subject to a few limitations in the study. As 

discovered in the data independence analysis, there is a bias in the OZ’s open hours, where 

the OZ is more likely to be open during the daytime when patient arrivals are higher, which 

may skew the results of unit-level comparisons. However, this bias is self-limiting if the 

hospitals attempt to schedule staff levels corresponding to demand levels. As well, for 

comparisons where the OZ reduces offload time, this bias actually makes the results more 

convincing than if it were an unbiased dataset. Uncertainty due to this bias can sometimes be 

clarified by cross-referencing with a corresponding patient-level comparison, where there is 

no data bias. 

 

It is also important to note that the dataset comes with an inherent source of unreliability 

because data are recorded by employees working in a busy and high-stress environment, 

making them susceptible to entry errors or belated timestamping. Measures were taken to 

remove erroneous material from the dataset, but it cannot be guaranteed that all errors were 

identified, nor is there a way to estimate the rate or severity of remaining errors. 

 

Finally, a few blind spots in the data left gaps in the analysis that would have been useful to 

include. Because the hospitals record only the time at which a patient first sees an RN or 

MD, there is no way of estimating how much time the ED staff actually spend attending to a 

given patient, and so the only way to approximate resource utilization is with a patient’s 

overall length of stay. Because there have been some signs that some patients continue to 

stay in the ED without occupying staff resources as they await their departure, it would have 
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been interesting to have more granular data to reveal an accurate picture of staff utilization. 

As well, data for walk-in patients were unavailable for this study, leaving questions as to the 

impact of the OZ on ED journey benchmarks for walk-in patients. Both of these gaps in 

analysis would be valuable to address in future research. 

 

Another avenue to build upon this work would be to consider the various use-cases for the 

OZ that were noted in this analysis—namely as emergency treatment capacity, as an area for 

patients awaiting test processing, and the originally intended concept as a waiting room 

where no treatment occurs—and incorporate them into simulation or queuing modelling 

that could seek to find the most effective use of extra beds. These could be modelled 

alongside the original OZ concept as well as a “discharge zone” to address patients who 

occupy ED space while waiting to be transferred. 

 

As mentioned previously, a potential relationship between ambulance arrival rates and 

effective OZ capacity could be investigated. Because this variable stratification presented an 

indication of the arrival rate beyond which AOD returned, it may also be a way to build on 

the work by Laan et al. (2016) regarding patient selection criteria, by determining practical 

advice for ED staff to make patient selection decisions that ensure the OZ functions as 

intended. 

 

Finally, to build on the current assortment of empirical work related to OZ trials, which tend 

to focus on hospital-side effects and extrapolate how the results might translate to the 

ambulance side, studies could be devised which directly assess time savings and 

improvement in ambulance coverage for EHS as a result of hospital-side AOD 

interventions. 
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APPENDIX 

 

Figure A1 Means and 95% confidence intervals for time to ED bed at Hospital B, 

representing a unit-level comparison stratified by patient age group 

 

 

Figure A2 Means and 95% confidence intervals for length of stay at Hospital A, 

representing a unit-level comparison stratified by patient age group 
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Figure A3 Means and 95% confidence intervals for length of stay at Hospital B, 

representing a unit-level comparison stratified by patient age group 

 

 

Figure A4 Means and 95% confidence intervals for offload time at Hospital A, 

representing a unit-level comparison stratified by patient clinical imp. 
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Figure A5 Means and 95% confidence intervals for offload time at Hospital B, 

representing a unit-level comparison stratified by patient clinical imp. 

 

 

Figure A6 Means and 95% confidence intervals for time to ED bed at Hospital A, 

representing a unit-level comparison stratified by patient clinical imp. 
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Figure A7 Means and 95% confidence intervals for length of stay at Hospital B, 

representing a unit-level comparison stratified by patient clinical imp. 

 

 

Figure A8 Means and 95% confidence intervals for length of stay at Hospital B, 

representing a unit-level comparison stratified by day of week 
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Figure A9 Means and 95% confidence intervals for offload time at Hospital A, 

representing a unit-level comparison stratified by daily arrival volume 

 

 

Figure A10 Means and 95% confidence intervals for time to ED bed at Hospital A, 

representing a unit-level comparison stratified by daily arrival volume 



103 
 

 

Figure A11 Means and 95% confidence intervals for length of stay at Hospital A, 

representing a unit-level comparison stratified by daily arrival volume 

 

 

Figure A12 Means and 95% confidence intervals for length of stay at Hospital B, 

representing a unit-level comparison stratified by daily arrival volume 

 



104 
 

 

Figure A13 Means and 95% confidence intervals for offload time at Hospital A, 

representing a patient-level comparison stratified by patient clinical imp. 

 

 

Figure A14 Means and 95% confidence intervals for offload time at Hospital B, 

representing a patient-level comparison stratified by patient age group 
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Figure A15 Means and 95% confidence intervals for time to MD at Hospital B, 

representing a patient-level comparison stratified by daily arrival volume 

 


