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ABSTRACT 

Natural and man-made slopes are ubiquitous geotechnical structures found in a 

variety of contexts, such as roads, dams, canals, mines, and riverbanks. The stability of 

these slopes is critical for the protection of people and infrastructure. Slope failure can 

have disastrous results due to variables such as earthquakes, rainfall, external stress, or 

fast groundwater extraction. Landslides have caused substantial damage to property and 

human life, with the Straight Creek Landslide in the United States being one such 

current active landslide of concern. This landslide threatens a major roadway, and its 

failure might lead to fatalities and the long-term closure of the route near the 

Eisenhower Tunnel. The necessity for proper stabilization solutions to limit the dangers 

connected with landslides is addressed in this thesis. Soil nailing has gained prominence 

as a viable method for slope stabilization. However, a thorough study of soil nails' 

efficacy as a stabilization method, as well as its application under various geological 

and environmental situations, is still required. The primary goal of this research is to 

investigate the influence of soil nails on infiltration-induced failures in slopes using 

long-term modelling of site circumstances. In addition, the study intends to estimate 

future safety factors using the Excel forecast function and a deep learning model with 

Long Short-Term Memory (LSTM). 
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1. CHAPTER 1: INTRODUCTION 

1.1 Background 

Slopes, both natural and man-made, are in common geotechnical structures. 

They can be found on highway embankments, dams, canals, mines, near river banks, 

and so on. Furthermore, the breakdown of such structures can have catastrophic 

repercussions for human life and the surrounding infrastructure. As a result, it is critical 

to ensure that the slopes are stable and do not collapse. The collapse can be induced by 

a variety of factors, including earthquakes, rains, external stress, or fast groundwater 

withdrawal. Many landslides have occurred, causing significant damage to property and 

human lives. In this study, we will be focusing on one such active landslide called 

Straight Creek Landslide, USA. There is a major highway over the landslide, and failure 

of the slope can cause loss of lives and long-term closure of the highway just outside 

of the Eisenhower Tunnel.  

 

1.2 Problem Statement 

Landslides endanger human lives, infrastructure, and the environment, needing 

appropriate stabilization methods. Among the many approaches used, soil nailing has 

emerged as a potential solution for landslide stabilization. Despite its growing 

popularity, there is still a need to thoroughly examine the performance of soil nails as a 

stabilization technology and comprehend its application in various geological and 

environmental circumstances. 

The problem at hand is to simulate the yearly precipitation on the slope and, 

thereafter, model drains and monitor the change in safety factors. Thus, by 

implementing soil nails using numerical analysis and doing a parametric analysis on 

them will yield a comprehensive understanding of the effectiveness and limitations of 
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soil nails, and the finding will enable engineers to make informed decisions regarding 

the selection and design of soil nails for mitigation of landslides.  

Moreover, a small component of forecasting the safety factor has also been 

added where the well-known tool Excel has been used and a deep learning method Long 

Short-Term Memory (LSTM), is used to predict the future values. This will help in 

integrating the coding in the prediction of safety factors for the concerned engineers. 

1.3 Research Objective 

The main objective of the thesis is to study the effect of soil nails in improving 

infiltration-induced failures in slope by long-term modelling of the site conditions and 

further predict the future safety factor using Excel and LSTM deep learning model. 

The objective of this research is to determine the following: 

1. To replicate the site conditions using Fully Coupled Flow-Deformation 

Analysis method of PLAXIS to simulate the yearly change in the 

groundwater due to infiltration and its effects on the stability of the slope. 

2. To study the effect of drain in the upper portion of the slope which 

intercepts the groundwater and thereby increasing the stability of the 

slope. 

3. Modelling the soil nails in the slope to further increase the stability of 

the slope and see the effect of the nail spacing and inclination on the 

stability of the slope. 

4. To predict the future safety factors using excel forecast function and 

LSTM deep learning model. 

1.4 Research Approach 

Initially the soil properties and geometry of the slope were modelled in the 

software PLAXIS 2D and safety analysis was done to obtain the FOS. To confirm the 
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validity of the modelling, it was ensured that the fluctuations in groundwater levels are 

similar to that of the piezometric readings. Thereafter, the north drain was modelled to 

observe its effect on the safety factor of the slope. To further increase the safety factor 

soil nail were installed and parametric analysis was done on the same by changing the 

inclination and spacing between them. Lastly, the forecasting was done using excel and 

LSTM model in python.  

1.5 Thesis Organization/Arrangement 

Thesis is divided into 7 Chapters  . 

Chapter 1 … Introduction 

This chapter gives a bird’s eye view of the entire study and summarizes the aim 

and objectives of the study. 

Chapter 2 …Literature Review 

In this chapter comprehensive information is provided regarding the landslides, 

numerical modelling, and the coding aspect of the research. The concepts of matric 

suction and unsaturated soil is also explained in brief for better understanding of the 

study. 

Chapter 3 …Background 

Entire history of the study and list of events that occurred in the case study have 

been explained here, along with the past remedies and all relevant site data. 

Chapter 4 … Methodology 

This chapter breaks down the entire study systematically. The instructions from 

this chapter will enable readers to effectively replicate the things done in the numerical 

modelling and coding part of the thesis. 

Chapter 5 … Results and Discussion 
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Stepwise explanation of the results of the study are shown here, along with all 

the logical outcomes and takeaways.  

Chapter 6 …Conclusion and Recommendations 

A concise explanation of the entire outcome and importance of the study has 

been mentioned. 

Chapter 7 … References 
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2. CHAPTER 2: LITERATURE REVIEW 

1.6 Introduction 

Stabilizing the soil slopes is an important aspect in Geotechnical Engineering, 

as stable slopes facilitate construction of infrastructure over or around it. Slopes can fail 

due to infiltration, earthquake, geometry, and many other reasons[1]–[3], but here we 

will be focusing on infiltration-induced slope failure. Infiltration is notorious for 

causing landslides and slopes failure all over the world. It occurs more often on slopes 

having less cohesive soil and with slope angles ranging from 25° to 40°. Landslide 

catastrophes appear to be becoming more common. This is due to the increasing 

vulnerability and exposure of the population and infrastructure as cities grow in size. 

Increased human contact, unmanaged land use, and increased forest removal make 

surface soil more prone to instability [4][5]. To briefly outline the damages due to the 

slope failure; Natural Resources Canada state that thousands of landslides occur in 

Canada annually and cause $200 to $400 million in direct and indirect cost[6], in 2018 

Japan recorded 161 fatalities and 1505 damaged houses[7] and in US landslides are 

responsible for $1.6-$3.2 billion in annual losses[8].  

Now, to stabilize such slopes various methods have been adopted, such as 

reducing the slope angle, soil nailing, retaining wall, vegetation, geosynthetics and 

many more [9], [10].  

Due to infiltration the soil loses the matric suction and eventually fails. The 

matric suction increases the shear strength of the soil by holding the soil particles 

together. Still, during infiltration, the soil becomes saturated, and that results in the 

possible failure of the soil slope. In this study, the effect of geogrids on the soil is studied. 

The soil nails provide reinforcement and hold the soil particles together between the 

tendons. This results in an increase in the shear strength of the soil.  
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Moreover, the basics of slope stability analysis are mentioned in this chapter. 

LE FEA and FDA analysis are briefly explained.  

1.7 Landslide: Causes and Consequences 

The word "landslide" is often used. The reason for this is that researchers in a 

wide range of scientific disciplines are interested in the topic of landslides, including 

sedimentology, oceanography, geomorphology, volcanology, seismology, glaciology, 

aerology (i.e., geology of Mars), deep-sea structural engineering, highway engineering, 

soil mechanics, climate change, eustasy, natural hazards, and petroleum exploration and 

production [11]. Unsurprisingly, each scientific group has developed its own 

nomenclatural system [12].  In context of geotechnical engineering and for this research 

we will define it as downward movement of a mass of soil, rock or combination of both, 

on a sloping stratum triggered when the forces acting on the slope exceed its capacity 

to resist them and resulting in the movement and displacement in the slope. 

Out of all the natural disasters caused the landslides are 7th largest killer [13] 

and having a mortality rate of about 17% [14]. Landslides inflict an estimated one to 

3.6 billion dollars in economic damages in the United States each year, and 25-50 

people are killed, making it one of the most expensive disasters in the world [15]. 

Similarly, Japanese annual losses are estimated to be between $4 and $6 billion USD, 

with the most severe landslides claiming up to 100,000 people [16], [17]. Due to all 

these losses and damage, it’s important to learn causes of landslides and subsequently 

find ways to avoid the losses by either stabilizing the slope or entirely avoiding creating 

a structure over such soil. Following are some of the reasons for landslide to occur: 

1. Slope Geology and Geomorphology: The geological characteristics of a slope 

play a significant role in landslide occurrence. Weak or unstable rock and soil 

types, such as clay, silt, and loose sand, are more susceptible to landslides. Steep 
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slopes, rugged terrain, and the presence of fractures or faults can also contribute 

to instability. 

2. Water and Precipitation: Water is a major trigger for landslides. Heavy or 

prolonged rainfall can saturate the soil, increasing pore pressure and reducing 

its strength. This leads to a loss of soil cohesion, making it more prone to sliding. 

Similarly, rapid snowmelt, excessive irrigation, or changes in groundwater 

levels can contribute to slope instability. 

3. Slope Modification and Excavation: Human activities that modify slopes, such 

as construction, excavation, and mining, can weaken the natural stability of the 

land. Removing vegetation and altering drainage patterns can disrupt the 

balance of forces within a slope, making it more susceptible to failure. 

4. Earthquakes and Seismic Activity: Earthquakes can induce landslides by 

imparting strong ground shaking, which destabilizes the slope materials. The 

shaking can trigger landslides in areas where slopes were already close to failure, 

or it can generate new landslides by altering the stress distribution within the 

slope. 

5. Vegetation and Root Systems: Vegetation, particularly trees and their root 

systems, provide essential reinforcement to slopes by binding the soil together 

and absorbing excess water. Deforestation, wildfires, or the removal of 

vegetation for development purposes can significantly reduce the slope's 

stability. 

6. Human Activities and Land-Use Practices: Improper land-use practices, such as 

uncontrolled urbanization, improper slope grading, and inadequate drainage 

systems, can increase the likelihood of landslides. Poorly planned infrastructure, 
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such as roads and buildings on unstable slopes, can add weight and stress to the 

slope, leading to failure. 

7. Climate Change: Climate change can influence landslide occurrences through 

altered precipitation patterns, increased intensity of storms, and melting glaciers. 

These changes can lead to soil saturation, higher erosion rates, and changes in 

groundwater levels, all of which contribute to slope instability. 

1.7.1 Landslide classification 

Historically, the word landslide has been used to refer to nearly any type of mass 

movement of rocks and regolith at the Earth's surface. David Varnes, a geologist, 

noticed this imprecise usage in 1978 and developed a new, much stricter framework for 

classifying mass movements and subsidence processes [18]. Cruden and Varnes 

improved this approach in 1996,[19] and it was refined by Hutchinson (1988),[20] 

Hungr et al. (2001),[21] and lastly by Hungr, Leroueil, and Picarelli (2014) [22]. The 

categorization because of the most recent change is presented below based on the type 

of movement. 

 

Table 1 Hungr-Leroueil-Picarelli classification [22] 

Note: the words in italics are placeholders. Use only one. 

Type of 

movement 

Rock Soil 

Fall Rock/ice fall Boulder/debris/silt fall 

Topple Rock block topple Gravel/sand/silt topple 

Rock flexural topple 

Slide Rock rotational slide Clay/silt rotational slide 

Rock planar slide Clay/silt planar slide 

Rock wedge slide Gravel/sand/debris slide 

Rock compound 

slide 

Clay/silt compound slide 

Rock irregular slide 

Spread Rock slope spread Sand/silt liquefaction 

spread 

Sensitive clay spread 
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Flow Rock/ice avalanche Sand/silt/debris dry flow 

Sand/silt/debris flowslide 

Sensitive clay flowslide 

Debris flow 

Mud flow 

Debris flood 

Debris avalanche 

Earthflow 

Peat flow 

Slope 

deformation 

Mountain slope deformation Soil slope deformation 

Rock slope 

deformation 

Soil creep 

Solifluction 

 

In addition to type of movement, landslides can also be classified on the basis 

of material involved, triggering mechanism and rate of movement Fig.1. 

Based on Material Involved: 

a. Rockslides and Rockfalls: These landslides involve the movement of solid 

rock masses or individual rock blocks. They typically occur on steep slopes and are 

common in mountainous regions. 

b. Debris Avalanches: Debris avalanches involve the rapid movement of a 

mixture of rock fragments, soil, and other loose debris. They often result from the 

failure of steep slopes and can travel long distances. 

c. Earthflows: Earthflows involve the slow movement of saturated or semi-fluid 

soil or clay. They have a characteristic viscous behavior and are common in areas with 

fine-grained materials. 

d. Slump: A slump is a form of rotational slide where a block of soil or rock tilts 

backward and downward along a curved failure surface. The material remains intact 

during the movement. 

Based on Triggering Mechanism: 
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a. Rainfall-Induced Landslides: These landslides occur as a result of heavy or 

prolonged rainfall, which saturates the soil, increases pore pressure, and reduces soil 

strength. 

b. Seismically-Induced Landslides: Landslides triggered by earthquakes or 

seismic activity. The ground shaking from an earthquake can cause slope instability and 

failure. 

c. Human-Induced Landslides: These landslides result from human activities 

such as construction, mining, or excavation. Alterations to the slope's natural stability 

through human intervention can trigger landslides. 

d. Volcanic-Induced Landslides: Landslides associated with volcanic eruptions, 

including the collapse of volcanic edifices, pyroclastic flows, and lahars. 

 

 

Figure 1 Classification of landslide based on the rate of movement [19], [23] 
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1.8 Inclinometer 

An inclinometer is a device that measures the slope or angle of inclination with 

respect to the vertical. It is extensively used in engineering, geology, surveying, and 

construction to monitor changes in slope or tilt. If the inclinometer becomes useless 

after a particular displacement, it is likely that the device was calibrated for a specified 

range of movement [24]. 

 

Figure 2 Cross section of inclinometer with its components [24] 

1.9 Soil Mechanics for infiltration-based slope failures 

Pertaining to this research we will be focusing on the rainfall induced slope 

failure as our case study experiences failure due to infiltration. Following subtopics 

give better understanding of the concept behind the slope failure which occurs due to 

infiltration, or due to increase of water in soil medium. 
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1.9.1 Introduction 

The field of soil mechanics is divided into two parts, one dedicated to saturated 

soil mechanics and the other to unsaturated soil mechanics. To briefly differentiate 

between the two, the saturated soil is the soil present below the ground water level and 

soil above it is called unsaturated soil [25]. Also, most of the world’s regions are in 

semi-arid regions and hence the necessity to consider the later soil. Moreover, unlike 

the saturated soil which is governed by principle of effective stress by Terzaghi, the 

unsaturated soil mechanics is governed by normal stress and matric suction [26]. As 

shown in the figure the water pressure reduces to zero at the groundwater level and then 

it becomes negative above the groundwater level, thus introducing the concept of matric 

suction.  

 

Figure 3 Anatomy of the soil zones beneath the ground 
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Figure 4 Generalized visual representation of soil mechanics [27] 

 

1.9.2 Saturated and Unsaturated Soil Mechanics 

Initially, the shear strength of the soil was given by Mohr-Coulomb empirical 

equation [28], which gives the shearing resistance of the soil [29], where; 𝜏=shearing 

resistance, c=cohesion, σ=Normal Stress and 𝜑 =friction angle, and later on Karl 

Terzaghi gave a path to modern-day geotechnical engineering by describing the 

mechanical behavior of saturated soil and he also gave insight to concept of unsaturated 

soil mechanics. He revised the shear strength concept by assuming soil to be two phase 

system, i.e., considering the pore water.  In his book “Theoretical Soil Mechanics” [29], 

he discussed the shear strength of the saturated soils and gave insight to the unsaturated 

soil mechanics which will take some years to evolve.  

  

 𝜏 = 𝑐 + 𝜎 ∗ 𝑡𝑎𝑛𝜑 Eq  1 

 

As the soil was considered as having two phases by Terzaghi he modified the 

classical shear strength equation of Mohr-Coulomb and replaced the normal stress with 

the effective stress “𝜎′”(which is difference of total stress and pore water pressure) 
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and cohesion and Friction angle with their effective counterparts. There is no relation 

between the effective cohesion and friction angle with cohesion and friction angle, the 

effective are just the parameters when the pore water is considered in the soil i.e., a two-

phase system.  

 𝜏 = 𝑐′ + 𝜎′ ∗ 𝑡𝑎𝑛𝜑′ Eq  2 

 𝜎′ = 𝜎 − 𝑢 Eq  3 

 

One of the major issues necessary to create a credible prediction framework for 

the mechanical behavior of unsaturated soil has been to find a widely applicable and 

realistically implementable method to quantify the internal stress state[30]. Internal 

Stress State in unsaturated soil has a certain uniqueness to it as the forces arises from 

the physicochemical or cementation effects due to the capillary effect of water [30]. 

The mechanical behavior of unsaturated soil is greatly governed by the degree of 

saturation, geometry of pores and grain size. Also, total suction in unsaturated soil 

consists of two components namely, osmotic suction and matric suction [31]. Osmotic 

suction is the difference in pore water salt concentration within the soil and matric 

suction is difference between the pore-air pressure and the pore-water pressure [32][33]. 

Since the osmotic suction changes are less significant in comparison to matric suction, 

total suction is essentially assumed to be equal to matric suction [34] [32].  

Now, for unsaturated soil the shear strength can be given by Eq 4, where “𝜎 −

𝑢𝑎 ” is the net normal stress and “𝑢𝑎 − 𝑢𝑤 ” is matric suction. Also, effective stress 

parameter “𝜒” is introduced in this equation which ranges from 0 to 1, depending on 

the saturation of the soil. So, if the saturation is 100% the effective stress parameter will 

be unity “𝜒 = 1” and the equation will be transformed to Eq 4. 

 𝑠 = [(𝜎 − 𝑢𝑎) + 𝜒(𝑢𝑎 − 𝑢𝑤)]𝑡𝑎𝑛𝜑
′ + 𝑐′ Eq  4 
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Moreover, saturated soil consists of water and soil, while Unsaturated soil 

contains four components soil, water, air, and air-water interface[35]. The concept of 

the fourth phase was introduced by Fredlund and Morgenstern [36]. The air-water 

interface between the particles experiences unbalanced force towards the interior of 

water, and this develops a tensile full tangential to skin surface to balance the forces 

that results in added force that keeps the soil particles together. It therefore takes the 

shape of a catenoid shown in the figure [32]. The shape of the water is catenoid as seen 

in figure 5, and the shape occupies the least area when bounded by closed space further 

proof of tensile forces acting in the medium. 

 

 

Figure 5 Tensile forces of the water makes the soil particles to stay near each other [32] 

 

Figure 6 Catenoid shape of the water present between the particles [32] 
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1.9.3 Effect of infiltration on slope stability 

During rainfall or snowmelt, the water infiltrates and creates a wetting front. 

The gradual seepage of water then increases the groundwater level and results in rise of 

groundwater level. Traditional slope stability analysis assumes that the failure of the 

slope was the result of increase in groundwater level due to infiltration [37], [38]. 

However, in many slopes’ failure the advancement of wetting front was the reason for 

the reduction in the matrix suction, reduction in soil shear strength and eventual slope 

failure [39]. Thus, for unsaturated soil to include the infiltration in slope stability 

analysis is very crucial. The effect of infiltration in the unsaturated soil is dramatic and 

it can significantly reduce the shear strength of the soil eventually leading to failure 

[40].  

 

Figure 7 Mechanism of infiltration-induced slope failure [36] 
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1.10 Slope Stability: Numerical methods 

1.10.1 History 

Initial numerical modelling can be traced back to 1960s where method of slices, 

proposed by Fellenius and Bishop independently, was one of the earliest numerical 

methods for slope stability analysis [41]. It divides the soil mass into vertical slices and 

applies equilibrium and force/moment equilibrium to each slice. This method facilitated 

more accurate calculations of factors of safety and critical slip surfaces. Thereafter, 

Finite Element Analysis (FEA) and Limit Equilibrium Methods (LEM) developed in 

1970s both of which are widely used either interchangeably or together depending on 

type of analysis.  

1.10.2 Core Disparity between major numerical methods: Limit Equilibrium 

Methods, Finite Element Analysis and Finite Difference Analysis 

In this section, we will explore the fundamental differences between three major 

numerical methods commonly used in geotechnical engineering: Limit Equilibrium 

Methods, Finite Element Analysis (FEA), and Finite Difference Analysis (FDA). These 

methods have distinct characteristics and approaches, leading to disparities in their 

underlying principles and application [42]. 

 

• Limit Equilibrium Methods: Limit equilibrium techniques are founded 

on the idea of achieving equilibrium between driving forces (such as 

gravity forces) and resisting forces (such as shear strength) along 

probable failure surfaces. They are often used for slope stability analysis 

and use simplified assumptions such as assuming rigid body behavior 

and ignoring transient pore water pressure effects. Limit equilibrium 
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methods are commonly utilized in practice because they give a margin 

of safety against failure and are reasonably simple to apply. 

• Finite Element Analysis (FEA): FEA is a numerical approach for 

analyzing the behavior of a system under various situations that breaks 

a large problem into smaller, interrelated pieces. When compared to 

limit equilibrium approaches, it provides for a more thorough and 

precise description of the geometry, material characteristics, and 

boundary conditions. Spatial fluctuations, nonlinear behavior, and 

complex interactions between soil and structures may all be captured 

using FEA. However, greater computational resources and knowledge 

are required to effectively set up and evaluate the findings. 

• Finite Difference Analysis (FDA): FDA is another numerical approach 

that discretizes the problem domain into a grid of nodes and uses 

difference operators to estimate the derivatives of governing equations. 

It is extensively used in geotechnical engineering to solve partial 

differential equations, such as the governing equations for groundwater 

flow and consolidation analysis. FDA supports the depiction of 

transitory seepage and consolidation processes, making it appropriate 

for time-dependent analysis. However, as compared to FEA, FDA may 

have difficulties in dealing with complicated geometries and boundary 

conditions. 

 

The fundamental difference between these numerical approaches is reflected in 

their underlying concepts, assumptions, and capabilities. Limit equilibrium approaches 

yield simple, conservative estimates of stability, whereas FEA and FDA give more 
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thorough and extensive assessments capable of capturing complex behaviors and 

interactions. The approach chosen is determined by the individual problem, available 

data, necessary precision, and computer resources. Limit Equilibrium, Finite Element 

Analysis and Finite Difference Methods 

 

1.10.3 Safety Factor of Slope 

A slope's safety factor is an important measure used to assess the stability and 

safety of natural or artificial slopes. It is a fundamental element in geotechnical 

engineering and indicates the margin of safety against slope failure. Typically, the safety 

factor is computed by comparing the resisting forces to the driving forces operating on 

the slope. The shear strength of the soil or rock mass that offers resistance against 

possible slope breakdown is referred to as the resisting forces. Several elements 

influence it, including the cohesiveness, friction angle, and internal friction qualities of 

the soil or rock material. The opposing pressures serve to stabilize the slope and keep 

it from moving. The driving factors are those that cause slope instability and collapse. 

The gravitational force acting on the bulk of soil or rock material is the fundamental 

driving force working on a slope. The slope angle, material weight, and any external 

loads or pressures operating on the slope all determine the size of the driving force. 

By dividing the resisting forces by the driving forces, the safety factor is derived. 

It may be stated mathematically as: 

 

Safety Factor = Resisting Forces / Driving Forces 

 

The shear strength characteristics of the soil or rock material are often used to 

represent the resisting forces, while the gravity forces acting on the slope are used to 
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represent the pushing forces. A number greater than one suggests stability, whereas a 

value less than one indicates possible slope collapse.  

Local safety factor and global safety factor are two often utilised safety factors. 

 

• Local Safety Factor: the local safety factor is a measure of the stability 

of a specific point or place inside a structure or soil slope. It calculates 

the margin of safety against failure at that specific place. The local safety 

factor is computed by dividing the resistive forces at that site by the 

driving forces. 

• Global Safety Factor: The global safety factor, also known as the overall 

factor of safety, is a measure of the overall stability and safety of the 

structure or soil slope. It analyses the whole system's stability rather than 

individual points or regions. The global safety factor compares the total 

resisting forces to the total driving forces operating on the system to 

determine the overall stability of the structure or slope. 

However, the majority of slope stabilisation standard codes and geotechnical 

guides rely on global safety criteria. The US Army Corps has specified many safety 

factors for different slope circumstances, such as 1.5 for typical long-term conditions 

of embankment and safety factor of 1.3 and up for other slopes where the consequences 

can be heavy after failure [43].   

 For example, the safety parameters for soil nail walls are presented in the table 

below according to FHWA circular 7 [44]. Furthermore, there are no universally agreed 

criteria for determining the safety factors for a landslide-prone slope; the safety factors 

are determined based on the consequences of failure, risk tolerance, and site 

circumstances that may be unclear and represent a danger to stability. 
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Figure 8 Safety Factor Requirement for Soil Nail wall [45] 

 

1.10.4 Mechanism of Slope Stabilization 

It involves application of various engineering techniques to improve the 

stability of slope. The selection of the method depends on the type of project, the budget, 

time required to stabilize the slope and other factors. Following are some of the most 

used slope stabilization methods: 

• Grading and Benching: This is the process of redesigning a slope by 

cutting or filling it in order to lower its steepness and produce more 

stable slope angles. The slope has been graded into terraces or benches, 

which can aid in erosion management and lessen the danger of slope 

failure. 

• Surface Drainage Control: Slope stability is dependent on proper surface 

drainage. Surface drainage features like ditches, swales, and culverts can 

assist move water away from the slope and reduce soil saturation, 

lowering the risk of slope failure. 
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• Erosion Control Measures: It is critical to use erosion control measures 

to avoid soil erosion on slopes. Techniques such as the use of erosion 

control blankets, geotextiles, and revegetation using erosion-resistant 

plants can aid in the stabilization and protection of the slope. 

• Retaining Wall: Constructing retaining walls along the slope can give 

structural support while also preventing soil movement. Concrete, 

gabions, and mechanically stabilized earth (MSE) systems are all 

examples of retaining walls. 

• Soil Nailing: Soil nailing is a technique for strengthening a slope by 

inserting grouted steel bars (nails) at regular intervals into the soil mass. 

This increases the tensile strength of the soil and helps to stabilize the 

slope. 

• Slope Drainage and Groundwater Control: Proper groundwater control 

is critical for slope stability. Installing subsurface drainage systems, such 

as French drains, or horizontal or vertical drains, can assist in lowering 

the water table and relieving pore water pressure inside the slope. 

• Slope anchoring: It is the insertion of anchors or tiebacks into a slope to 

give additional stability. These anchors, which are often composed of 

high-strength steel, are typically inserted in the stable soil or rock mass 

behind the slope. 

• Slope Reinforcement: To reinforce the slope, many approaches can be 

utilized, such as the use of geosynthetics (such as geogrids or 

geotextiles) to enhance soil strength, slope stabilization mats, or slope 

mesh systems. 
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1.10.5 Soil Nails: Remedy to Slope Failure 

Soil nails are passive reinforcing devices that are drilled and grouted sub-

horizontally in the earth to support excavations in soil or soft and worn rock that: 

Tension caused by deformation of the retained soil or weathered rock mass contributes 

to the stability of earth-resisting systems. Tensile loads are transferred to the 

surrounding ground via shear stresses (i.e., bond stresses) at the grout-ground interface. 

History of Soil Nails [46]: 

• 1960s: Soil nailing evolved in Europe during the 1960s as a low-cost 

alternative to traditional slope stabilization technologies. The first 

applications were mostly from France and Germany. 

• 1970s: In the 1970s, soil nailing became popular in France, notably in 

the building of highway and railway cut slopes. During this time, 

research and development efforts were focused on developing design 

methodologies and studying the behavior of soil nails. 

• 1980s: Soil nailing became more popular over the world during the 

1980s. The approach gained popularity as a means of stabilizing slopes, 

excavations, and retaining walls. Design processes, building procedures, 

and the creation of specialized equipment were all improved. 

• 1990s: In the 1990s, soil nailing became increasingly frequently used 

across the world, with applications in a variety of geotechnical projects. 

The technology has been employed in both temporary and permanent 

slope stabilization projects, including highway and railway slopes, 

landslide rehabilitation, and mining applications. 
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Soil nailing is still a popular and well-established method of slope stabilization 

in the 2000s and beyond. Soil nails have been shown to be a versatile and effective 

method of slope stabilization across a wide range of soil types, slope geometries, and 

ground conditions. They have been utilized successfully in a wide range of geotechnical 

projects worldwide and have become a standard technique in slope stabilization and 

earth retention. 

1.10.6 Basic components of Soil Nail  

The components of soil nails according to FHWA circular no.7 [44]: 

• Tendons: Tendons, also known as steel bars, mobilize tensile stress in 

response to lateral movement and soil deformation. Soil movement can 

occur during excavation, after excavation (owing to time-dependent 

deformations), or after excavation in the presence of external loads such 

as surcharge or traffic loads. Tendons may be solid or hollow bars. After 

being put into strong drill holes, solid bars are grouted into place. 

Hollow bars with a sacrificial drill bit are utilised to drill the hole, which 

then serves as permanent soil nail reinforcement. 

• Grout for soil nails is typically composed of Portland cement and water. 

The grout has three purposes: (i) it transfers shear loads between the 

deforming ground and the tendons; (ii) it transfers tensile stresses from 

the tendons to the surrounding stable soil; and (iii) it protects the tendons 

from corrosion. Using the tremie technique, grout is poured in drill holes 

by gravity. 

• Facing: It is made up of two parts: the first and the last. To offer 

temporary stability and protection, the first facing is put on the exposed 

soil at each excavation lift before or after nail installation. The bearing 
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plate of the soil nail is also received by the first facing. The final facing 

is built on top of the first face and ensures structural continuity 

throughout the design life cycle. An aesthetic finish may also be used in 

the final face. The initial face is often reinforced shotcrete. 

• Drainage: Behind soil nail walls, a drainage system is placed to: (i) 

collect perched groundwater or infiltrated surface water that is present 

behind the facing; and (ii) move the collected groundwater away from 

the wall. The drainage system is often made out of composite, 

geosynthetic drainage strips, also known as geocomposite strip drains. 

The drainage system does not cover the entire wall surface, but generally 

10-20% or more of the excavation face, depending on the strip drain 

spacing and commercial widths that are available. 

 

1.11 Plaxis 2D for Unsaturated soil 

Application of numerical modelling in geotechnical engineering has been 

proven an effective way to premediate the solutions for various problems, provided that 

the model is suitably verified and can replicate the complex soil behavior to acceptable 

extent [47], [48]. Plaxis has the capability to solve the equations of deformation and 

flow of water simultaneously. It is crucial as the behavior of one depends on the other. 

More about that is explained in the next section. 

1.11.1 Fully Coupled Flow Deformation Analysis 

Plaxis uses an iterative solution approach to calculate both water flow and soil 

deformation in a fully connected study. The program concurrently solves the governing 

equations for both processes, accounting for the interactions and feedback between 
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water flow and soil deformation [49]. Here's an overview of how Plaxis calculates water 

flow and soil deformation together [49], [50]: 

• Soil Domain Discretization: The soil domain is discretized into finite 

elements or finite difference cells. This division allows the soil profile 

to be represented as a sequence of distinct components or cells, from 

which the governing equations may be solved. 

• Initialization: The analysis begins with a distribution of pore water 

pressures and saturation degrees. These beginning circumstances are 

frequently based on the problem's initial conditions or the outcomes of 

a previous investigation. 

• Deformation: Using all the parameters for the soil model plaxis solves 

the differential equation and gets the deformation in the soil, followed 

by the flow calculation. 

• Flow Calculation: Plaxis solves the Richards equation, which regulates 

water flow through soil, to compute pore water pressures and gradients 

of water content in each element or cell. The Richards equation takes 

into account hydraulic conductivity, gradients of matric suction and 

water content, and soil storage capacity. Based on the hydraulic 

parameters and the applied boundary constraints, the flow calculation 

calculates the redistribution of water within the soil profile. After this 

the pore pressures are updated for the new deformation calculations, and 

cycle goes on. 

• Coupling Iteration: Plaxis uses an iterative technique to establish 

convergence between the flow and deformation computations. The flow 

calculation's computed pore water pressures are utilized to update the 
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effective stresses and shear strength in the deformation calculation. The 

updated effective stresses, in turn, alter water flow behavior by 

influencing hydraulic gradients and pore water pressure distribution. 

The iteration method is repeated until a consistent solution is produced 

in which the computed pore water pressures and deformation field meet 

both the equilibrium conditions and the flow equations at the same time. 

• Convergence and Solution: The iterative procedure continues until 

convergence is reached, which means that the differences in pore water 

pressures and deformations between subsequent iterations are less than 

a predetermined tolerance. Plaxis then delivers the final solution, which 

includes the distributions of pore water pressures, degrees of saturation, 

deformations, and stresses in the soil profile. 

 

Although linear constitutive models are commonly used in numerical analyses 

[48], [51]–[55], sometimes to capture the complex behavior of the soil models other 

than Mohr-Coulomb are used. Here in this study for soils where the displacement needs 

to be monitored Hardening Soil is used and for the rest Mohr-Coulomb soil type is used. 

The following sections give brief information regarding the two soil types.  

1.12 Analyzing Unsaturated soil with respect to Mohr-Coulomb Soil model 

The Mohr-Coulomb (MC) and Soil Water Characteristic Curve (SWCC) 

parameters are indirectly dependent in fully coupled flow-deformation analysis [50]. 

The interplay between these factors results from the coupling effect between 

mechanical behavior and water movement in the soil. The pore water pressure, which 

is determined by the movement of water through the soil, influences the effective stress 

in the Mohr-Coulomb model. In turn, the pore water pressure is determined by the 
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volumetric water content, which is dictated by the SWCC. As a result, the SWCC can 

indirectly impact the effective stress and, as a result, the shear strength parameters (such 

as cohesion and friction angle) in the Mohr-Coulomb model. Changes in water content 

can impact the effective stress state and hence the mechanical behavior of the soil. 

1.13 Analyzing Unsaturated soil with respect to Hardening Soil model 

The Hardening Soil model was created as a significant development in 

geotechnical engineering to solve various inadequacies in previous soil models, 

particularly the traditional Mohr-Coulomb model [56]. The oversimplifications found 

in prior models, particularly with regard to unsaturated soil behaviour, were the main 

issues it sought to address. Because of its ability to effectively capture non-linear and 

time-dependent behaviours, the Hardening Soil model is particularly useful for tracking 

long-term displacements in soil [57]. The Mohr-Coulomb model, on the other hand, is 

unsuitable for long-term displacement monitoring because to its extremely simplified 

assumptions about soil behaviour, which treats it as elastic and fully flexible. This 

deficiency results in an inaccurate depiction of soil as extremely hard. 

1.13.1 Mesh 

In FEM, meshing is typically used to discretize the soil or rock domain into fine 

components. Once the domain has been subdivided into fine elements, they will behave 

in accordance with the properties provided to them by the user. The mesh is an 

important component of finite element analysis (FEA) software such as PLAXIS 2D 

because it allows for numerical approximation of the governing equations that explain 

soil behavior [58].  

PLAXIS 2D has two types of elements for modelling soil layers or other 

clusters: 6-node and 15-node triangular components (Fig. 15). The element type affects 

memory usage, computation speed, and accuracy. Nodes are precise spots within the 
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finite element mesh where analytical computations are conducted. Nodes are often 

situated near the vertices of the mesh's finite components. These nodes function as 

control points inside the analytical domain, defining displacements, stresses, strains, 

and other pertinent characteristics within the soil or rock structure. The 15-node 

components are chosen for the following 2D-studies to guarantee high accuracy [59], 

[60]. Also, one can control the density of mesh in the calculations, whether to make it 

denser or rarer. If the mesh is dense then it will give more accurate results but at the 

expense of long computational time.  

 

Figure 9 Nodes and Stress points for different soil elements [60] 

 

1.13.2 Safety Analysis in PLAXIS 2D 

The Safety calculation type is a PLAXIS 2D option for calculating global safety 

factors. The shear strength parameters tan and c of the soil, as well as the tensile strength, 

are gradually lowered in the Safety method until the structure fails. The number of steps 

is set to 100 by default, however a bigger value up to 10000 can be entered here if 

necessary. 

The FOS is governed by following equation in the software [50]: 
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Σ𝑀𝑠𝑓 =

𝑡𝑎𝑛𝜑′
𝑖𝑛𝑝𝑢𝑡

𝑡𝑎𝑛𝜑𝑟𝑒𝑑𝑢𝑐𝑒𝑑
′ =

𝑐′𝑖𝑛𝑝𝑢𝑡

𝑐𝑟𝑒𝑑𝑢𝑐𝑒𝑑
′  

 

Eq  5 

 

 

1.13.3 Numerical modeling parameters of Soil Nails in PLAXIS 2D 

In PLAXIS the soil nail can be made using embedded beam feature. In past 

studies in order to model soil nails plate element or geogrid were used but since the 

element extended in the Z-axis i.e. perpendicular to the screen [61], without any spacing 

it would not be accurate to predict the stability as soil nails have some spacing in 

between them.  

So, in this study embedded beam elements are used, where spacing and skin 

friction along with the material strength properties can be defined. The unit weight was 

averaged based on the cross-section area of the concrete and tendon. Similarly, the 

Young’s Modulus was also averaged based on the cross-section area. Following 

formulas represent the unit weight and young’s modulus for the soil nail, averages were 

taken as the material is a composite (concrete and steel).  

 
𝛾𝑎𝑣𝑔 = 𝛾𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝐴𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝐴𝑇𝑜𝑡𝑎𝑙

+ 𝛾𝑆𝑡𝑒𝑒𝑙
𝐴𝑆𝑡𝑒𝑒𝑙
𝐴𝑇𝑜𝑡𝑎𝑙

 
Eq  6 

 

 

 

 
𝐸𝑎𝑣𝑔 = 𝐸𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝐴𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝐴𝑇𝑜𝑡𝑎𝑙

+ 𝐸𝑆𝑡𝑒𝑒𝑙
𝐴𝑆𝑡𝑒𝑒𝑙
𝐴𝑇𝑜𝑡𝑎𝑙

 
Eq  7 

 

 

Moreover, the skin friction of the soil nails in PLAXIS can be defined in three 

ways, constant skin friction throughout the length, variable skin friction and lastly layer 

dependent skin friction. Within the third option, the skin resistance directly relates to 

the strength of the surrounding soil by the interface strength reduction factor Rinter, 

which amount of slide between the interface [62].  
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 𝜏𝑖 = 𝑐𝑖 + 𝜎𝑛
′ 𝑡𝑎𝑛𝜑𝑖 Eq  8 

 

 𝑐𝑖 = 𝑅𝑖𝑛𝑡𝑒𝑟𝑐𝑠𝑜𝑖𝑙 Eq  9 

 

 𝑡𝑎𝑛𝜑𝑖 = 𝑅𝑖𝑛𝑡𝑒𝑟𝑡𝑎𝑛𝜑𝑠𝑜𝑖𝑙 Eq  10 

 

 𝑇𝑖 = 2𝜋𝑅𝑒𝑞𝜏𝑖 Eq  11 

 

 

To minimize excessive skin resistance, an overall maximum resistance Tmax 

(constant value along the pile/rock bolt in force per unit pile/rock bolt length) can be 

defined in the embedded beam material data set as an overall cut-off value. 

 

1.14 Data forecasting methods 

Here we have used forecasting to predict the future safety factors based on the 

data calculated. The following are some of the methods for data forecasting.  

1.14.1 Exponential Smoothing 

Exponential Smoothing (ETS) is a forecasting approach that is often used to 

analyze time series data. The ETS method incorporates many algorithms that give 

varying weights to historical data and provide predictions based on weighted averages 

[63]. 

1.14.1.1 Simple Exponential Smoothing 

Simple exponential smoothing is one of the most basic methods for forecasting 

a time series; the only pattern learned from experience is the average value around 

which demand changes over time. As its final estimate of the level, the exponential 

smoothing model will project future demand. It is critical to recognise that there is no 

precise mathematical definition of the level—rather, model must approximate it, but in 

simple words it is at a given time point, the smoothed value of the series. It represents 
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the overall baseline or average of the series. The shortcoming of this one is that it does 

not take into consideration the trend [64].  

 

1.14.1.2 Double Exponential Smoothing 

One significant limitation of this simple smoothing is that it can only perceive 

a level and cannot identify and project a trend. The direction and rate of change of the 

data over time are represented by the trend. Double exponential smoothing recognizes 

rising and falling data trends. Trend represents the series' direction and rate of change 

over time. It detects growing and declining trends in data [64]. 

1.14.1.3 Excel forecast data function. 

The forecast function produces a table with historical and expected data as well 

as a chart [65]. The prediction forecasts future values using your existing time-based 

data and the Exponential Smoothing (ETS) algorithm's additive error, additive trend, 

and additive seasonality (AAA) version. These techniques are intended to detect trends, 

seasonality, and other patterns in data [64]. So, like double exponential smoothing 

method, but this adds one more parameter to it, the seasonality. Seasonality represents 

the data's recurring patterns or cycles, such as daily, weekly, or annual trends. 

AAA seasonal the Exponential Smoothing (ETS) algorithm Combines the level, 

trend, and seasonality components. It is useful for data that exhibits both trend and 

seasonality. 

1.14.2 Long Short-Term Memory (LSTM)  

Deep learning is a branch of machine learning that focuses on training artificial 

neural networks (ANNs) with numerous hidden layers to learn and extract hierarchical 

data representations. It has received a lot of attention and popularity in recent years 
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because of its capacity to learn nuanced patterns and features from huge and 

complicated datasets [66]. 

The LSTM (Long Short-Term Memory) architecture is a sort of recurrent neural 

network (RNN) architecture that is meant to overcome the vanishing gradient problem 

and capture long-term relationships in sequential data. Hochreiter and Schmidhuber 

developed it in 1997, and it has since been a frequently used model for a variety of 

applications requiring sequential data, such as time series forecasting, natural language 

processing [67], speech recognition, and others [68]. Following are brief explanations 

of open and closed loop forecasting: 

• Open Loop: The network in an open loop LSTM creates output entirely 

dependent on the input sequence. It does not consider the previously 

expected outcomes. This method considers the LSTM as a separate 

function that analyses inputs without considering its own past 

predictions [69].  

• Closed Loop: A closed loop LSTM creates output by considering both 

the input sequence and previously anticipated results. It incorporates 

feedback from prior forecasts into future predictions. This allows the 

network to record time-step relationships and produce more context-

aware predictions [69]. 

 

 Here we will be using the closed loop prediction instead of open loop, because 

the open loop prediction needs true values while the closed loop prediction does not 

require any true values. Here true value means that if the model has input of 4 years, it 

will train itself using 3 years and use the last year’s data to make the predictions, i.e it 

will have a target value of true values. In a sense it is forecasting but when the data is 
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already known. Since we want to forecast the data which is not known we will be using 

the closed loop prediction.  

 

1.14.3 Working of closed loop LSTM and its training process 

A closed loop LSTM (Long Short-Term Memory) architecture features 

feedback connections, allowing it to create sequential outputs by utilizing its own 

predictions as input for future predictions. The output of each time step in a closed loop 

LSTM is supplied back into the model as input for the following time step, forming a 

feedback loop. To give an example, if the input value for a particular data is 365 days 

and using that information the LSTM predicts one more day then the new day is again 

taken into account for second cycle where the first day is no considered and thus 

forming a loop for prediction. 

 

There are three special gates on the notepad: an input gate, a forget gate, and an 

output gate [70]. The input gate determines which fresh information should be stored 

in the memory cell. When anything is significant, it opens the gate and permits the 

information to be recorded[71]. However, if the information is unimportant, the gate 

remains closed and the information is disregarded. The forget gate decides what 

information from the memory cell should be deleted or forgotten. If something is no 

longer relevant, the gate opens, and the information in the memory cell is deleted[70]. 

If anything is still vital, the gate remains closed, and the information is saved. Finally, 

the output gate determines whether or not the information should be shared with others 

or utilized to make predictions. If anything, helpful is found in the memory cell, the 

gate opens and the information is transferred. However, if anything is not critical to the 

present activity, the gate remains closed, and the information is not used. 
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This allows the model to recall essential patterns in data sequences, forget 

irrelevant data, and generate accurate predictions based on the remembered data. LSTM 

has been widely employed for applications like time series forecasting, human language 

interpretation, and voice pattern recognition. Because of its capacity to capture long-

term relationships, it is an effective tool for analyzing sequential data and recognizing 

patterns that emerge over time. 

 

Figure 10 Basic working of LSTM 

1.14.4 Mathematical functions used in LSTM 

• Tanh Activation: A mathematical function that squashes input values 

between -1 and 1 is the tanh (hyperbolic tangent) activation function 

[72]. The tanh activation function is often employed in the LSTM to 
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control the values that flow through the memory cell. It is applied to the 

candidate cell state and the output of the memory cell from the previous 

time step. Tanh activation aids in the management of information flow, 

preventing it from increasing or vanishing too quickly [73]. 

• Sigmoid Activation: Another mathematical function that squashes input 

values between 0 and 1 is the sigmoid activation function. It is widely 

used to control the flow of information via the gates in the LSTM 

network. The sigmoid activation is applied to the input gate, forget gate, 

and output gate in the LSTM. The sigmoid function controls how much 

information to allow through by returning values between 0 and 1, with 

0 representing "close the gate" and 1 representing "open the gate" [73]. 

• Element-wise Multiplication: Element-wise multiplication is the 

process of multiplying together the matching elements of two vectors or 

matrices. To merge information from the previous memory cell state and 

the candidate cell state in the LSTM, element-wise multiplication is 

performed. The forget gate output, which selects what information to 

delete, is element-wise multiplied by the preceding memory cell state. 

Based on the settings of the forget gate, this action allows the LSTM to 

selectively maintain or delete information from the prior memory cell 

state [74]. 

• Element-wise Addition: As the name implies, element-wise addition 

entails adding appropriate elements of two vectors or matrices. The 

information from the input gate and the candidate cell state are combined 

via element-wise addition in the LSTM. The output of the input gate, 

which controls what additional information to incorporate, is added to 
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the modified candidate cell state element by element. The LSTM may 

use this operation to selectively add new information to the memory cell 

state based on the values of the input gates [74]. 

 

1.15 Case Studies of failure due to infiltration 

Slope failures and landslides due to infiltration is a common occurrence 

throughout world, especially in the regions where the environment is tropical and sub-

tropical [75]. In figure 6 [76], the global susceptibility of rainfall-induced landslides is 

given which was produced by National Aeronautics and Space Administration (NASA) 

with combination of surface landslide susceptibility and a real-time space-based rainfall 

analysis system [77]. The Pacific Rim, the Alps, the Himalayas and South Asia, the 

Rocky Mountains, the Appalachian Mountains, and sections of the Middle East and 

Africa are highlighted in red and orange, which indicates high-potential landslide risk. 

According to historical records, China, India, Japan, Singapore, the United States, Italy, 

Brazil, and Venezuela have experienced the most devastating landslides and debris 

flows [75]. Landslides in the Appalachian area, USA are caused mostly by heavy 

rainfall. Hurricanes, cloudbursts, and thunderstorms may produce fast-moving debris 

flows, which are among the most deadly and catastrophic types of landslides [78].  
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Figure 11 Global susceptibility map of rainfall-induced landslide [75], [76] 

Now let us focus on some noteworthy case studies around the globe, which 

experienced failure due to rainfall. 

1.15.1 La Conchita Landslides  

La Conchita is located on the southern California coastline midway between 

Ventura and Santa Barbara. It has a 180-m (600-ft) high bluff having a slope of about 

35°. The bluff above La Conchita has produced a variety of landslides over an extended 

period dating back to 1865 [79]. On March 4, 1995, at 2:03 p.m. PST, the La Conchita 

landslide failed and moved tens of meters in only a few minutes. The landslide 

destroyed or severely damaged nine houses. On March 10, a subsequent debris flow 

damaged five additional houses in the northwestern part of La Conchita. The 1995 slide 

was 120 m (400 ft) wide, 330 m (1100 ft) long, and covered approximately 4 ha (10 

acres). The depth was estimated at greater than 30 m (100 ft), and the volume was 

estimated at 1.3 million m3 (1.7 million yd3) [80]. The 1995 landslide apparently 

occurred because the annual rainfall was very high. Mean seasonal rainfall at Ojai (20 

km [12 mi] northeast of La Conchita) from October 1 through March 3 (the day before 
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the landslide occurred) is 390 mm (15.37 in) according to National Oceanic and 

Atmospheric Administration [81]–[83].  

In 2005, it experienced another devastating landslide, it destroyed or severely 

damaged 36 houses and killed ten people. The 2005 landslide occurred at the end of a 

15-day period that produced record and near-record amounts of rainfall in many areas 

of southern California. To conclude, the effect of infiltration on a slope can result in 

devastating failure and loss of life and property, further establishing the importance of 

stability for such slopes.  

 

 

Figure 6 Aerial photograph of the landslide which occurred in 1995 outlined in blue color 

and subsequent remobilized area which occurred in 2005 outlined in yellow color [84]. 
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Figure 12 View from the main scarp down the length of 2005 landslide [84]. 

 

 

1.15.2 Po Shan Road landslide 

On June 16, 1972, several mud slips were seen along the Po Shan Road [85]. 

Many structures were inspected, but because it was raining, no substantial evacuation 

or procedures were implemented. On June 17, a slip occurred across the whole width 

of the cut slope at the southern face of Inland Lot 2260 on Po Shan Road, destroying 

almost all the bamboo frame and metal sheet covering. Furthermore, officials observed 

considerable sinking of numerous houses near Lot 2260 [85]. As a precaution, residents 

were advised to abandon their homes and flats. On the same day the huge mass broke 

though the retaining wall on Kotewall Road and following this slip even larger slip 

occurred. This one knocked off the Kotewall Court and collapsed several flats, killing 

67 people and injuring 20. Due to such disaster the roads were affected not to mention 
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the adverse weather conditions, after hours the first survivors were pulled out of the 

rubble [85].  

 

Figure 13 Po Shan Road Landslide [86] 

1.15.3 Hadong and Pohang engineered cut slope failures 

In mountainous regions of Korea, there are many cut slopes, and they 

experience a lot of failure due to lack of standard regulation and design methods for 

unsaturated conditions. Due to such negligence and heavy rainfall, two cut slopes failed. 

The stratum of Cretaceous rocks contains mainly granitic gneiss and weathered granite 

in Hadong and mudstone and shale in Pohang [87]. The Hadong slope was an 

engineered cut slope and had been in service for several years, but in July of 2009, after 

heavy rainfall of 1029mm in span of three months, the slope failed. Like Hadong, 

Pohang slope failed after experiencing 420mm rainfall for three months, in June 2011. 

As seen in the figure the slope has angle of around 45° and finite element analysis of 
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both site showed that the Factor of safety were 0.9 and 1.0 for Hadong and Pohang sites 

respectively.  

 

Figure 14 Cross-section of (a) Hadong site and (b) Pohang site [87] 

  

1.15.4 Malda Railway embankment failure 

Malda district is a district in West Bengal, India. It lies 347 km north of Kolkata, 

the capital of West Bengal. The region gets hefty 2000mm-4000mm rainfall per year, 

most of the precipitation occurs between June to August [88]. The embankment's 

highest height is 4.4 m. The embankment's side slopes are 2(H):1 (V). The crest's 

average width is 6.7 m. The railway embankments at Malda are intended to withstand 

a single axle load of 25 tons from railway locomotives operating on both lines (up and 

down lines) positioned on top of them. This results in a distributed load of 94.5 kPa on 

the embankment's crest [89]. Besides the rainfall being the reason for the failure the 
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engineers also suggested filling up the ponds that develop besides the railway 

embankment to protect the embankment toes.  

 

Figure 15 Malda Embankment [89] 
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3. Background and Site Data 

1.16 Site Information 

The Straight Creek Landslide, located about 80km west of Denver city, 

Colorado, USA, near the Eisenhower/Johnson Memorial Tunnel is situated between 

mileposts 212.0 and 212.1 [90]. The GPS coordinates of the site are 39°40’24.98” N 

and 105°58’00.63” W. The Colorado Department of Transportation deemed it as large 

landslide, with a width greater than 152m and a depth of 15.2m [91]. The landslide 

impacted the I-70 highway, which is an important interstate highway in Colorado, with 

an annual daily average traffic of 20,000 vehicles. The landslide is a recurring failure 

that alternates between stable and unstable stages, with at least some movement 

occurring each year. Whereas many landslides fail just once, this repeating slide 

collapses in basically the same fashion every year, albeit to varied degrees [92]. 

 

 

                           Figure 16 Location of the landslide taken from Google Maps, about 80km 

west of Denver, CO, USA 
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Figure 17 Satellite image of the site taken from google earth pro 

 

1.17 Site History 

Construction began in late 1963 as the contract for the west approach for the 

interstate was awarded. The contract of grading and drainage was completed in 1965, 

but stabilization and paving were delayed until completion of Eisenhower tunnel. But 

during the grading and drainage stage a ninety-foot cut slope from stations 235 to 242 

was cracked and slipped in early June of 1964. As a result of a meeting held in July 

1967, Ken R. White Company was selected, and they carried out investigation of the 

slide. They concluded that the major reason for failure seemed to be groundwater 

activity. Moreover, in 1970 it was decided to further investigate the site and it was given 

to Robinson and Associates, which they carried out in 1971. They found out that the 

groundwater is unevenly distributed throughout the strata and groundwater influenced 

the stability of the slope significantly also they found out that the embankment was 

constructed by utilizing the tunnel cuttings from the Eisenhower Tunnel [93], [94].  

In 1973, a bulge in the eastbound lanes occurred right above the Straight Creek 

collapse. Although the Colorado Department of Highways (CDOH) first thought this 

was a settlement issue and proceeded to remedy the movements with asphalt tops to 
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preserve a level road surface, the bulge eventually changed into downslope movement 

[94].  

Later, in 1996 Kumar and Associates performed an investigation in the area and 

they concluded that the failures were due to landslide and not due to settlement. Thus, 

three inclinometers were installed along the east and westbound shoulders of the 

highway; the instrument reached its capacity in 2 years. In 1997, five pavement overlays 

were placed in the area to maintain a level road surface because the settlement of about 

60cm happened in 20 years before 1997 based on the asphalt thickness [91]. To 

remediate the landslide, in 2010 and in 2012 lightweight caissons were installed, along 

with drains near the toe of the slope in 2012. In addition, Colorado School of Mines 

and Colorado Department of Transportation drilled three new boreholes and installed 

three piezometers, each at westbound shoulder, eastbound shoulder and at the toe. The 

outcome from the readings showed that the landslides were due to rise in groundwater 

during late spring and early summer months [94].  

1.18 Remediation techniques previously used on the slope. 

To remediate the landslide lightweight caissons installed under highway 

pavement in 2010 and 2012. The lightweight caissons were unsuccessful in increasing 

the stability and marginally increased the factor of safety of the slope. The volume of 

the caissons was found to be 1.2% of the slide volume, this means reduction of 0.9% 

slide weight [90]. However, only ~1% increase in factor of safety was seen and it was 

thought that while the shear stress due to gravity was reduced, the normal stress on the 

failure plane was also reduced, that could reduce the available friction [95].  

The drains were installed in 2012 at the toe and they extended into low hydraulic 

conductivity bedrock and that resulted into drains having localized effect due to being 

installed in soil which had less hydraulic conductivity[90]. Also, out of ten drains only 
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5 have been observed to have any flow and the highest combined flow of drains was 

approx. 26.5 m3/day. When we compare the flow over for the entire area it equates to 

less than 0.1mm of infiltration per day[95].  

Since drains and caissons had negligible effect on the stability of the slope they 

were not considered in the modelling. 

1.19 Hydrologic Data 

The site's available hydrological data comprises stratigraphy from various 

boreholes, recorded water table behavior from four piezometers on the hillslope, soil 

hydrological parameters from laboratory tests, and atmospheric data from a nearby 

SNOTEL station. Since, the site experiences infiltration in the form of rainfall and 

snowmelt. Both of those data were taken from nearest SNOTEL station named Grizzly 

Peak station about 14km away from the site which is managed by United States 

Department of Agriculture's Natural Resource Conservation Service (NRCS) (USDA) 

[92][96]. 

 

 

Figure 18 The location of piezometers shown as red dot. 
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Figure 19 Seasonal change in water table taken from the case study for year 2014 [90] 

 

1.20 Displacement data from inclinometers 

The initial equipment on site was two Slope Indicator inclinometers (INC2 and 

INC3) installed by CDOT in 2008 along the westbound and eastbound shoulders of I-

70. The results from these reveal downslope changes of more than 5cm (2 inches) at 

around 28m (96 ft) depth over the course of a year. The westbound position (INC2) 

exhibits upslope displacements caused by the rotating character of the breakdown at 

this point [96] [97]. 
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Figure 20 Inclinometer data [97] 

During the 2011 examination by CSM/CDOT/USGS-LHP, a second pair of 

inclinometers (INC4 and INC5) were installed on either side of the roadway and reveal 

significantly lesser displacements of 0.63cm (0.25 inches) between installation and the 

most recent reading in April of 2015 (Figure 3.5b). The failure plane in these 

instruments was measured again at 28m (96 ft) below the eastbound shoulder (INC5), 

and some upslope movement is noted in the westbound location (INC4) due to the 

failure mass's continuous rotation. Unfortunately, data from both sets of inclinometers 

is limited since the boreholes are difficult to reach during the winter months, resulting 

in just 2-3 measurements per year and making it difficult to pinpoint precise times of 

movement. Although considerable displacements have been seen throughout the spring 

and summer seasons [96], [97]. 
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1.21 Soil Data 

The properties of soil were derived from the tests conducted by the Colorado 

Department of Transportation (CDOT), tests such as direct shear for obtaining strength 

parameters, Transient release and imbibition method (TRIM) for hydrological 

properties [97]. The following table represents the soil properties in the case study. 

 

Table 2 Soil Properties from the case study [83] 

Material Residual 

water 

content 

Saturated 

water 

content 

Inverse 

air-

entry 
head 

Pore size 

parameter 

Saturated 

hydraulic 

conductivity 

Bulk unit 

weight 

Cohesion  Friction 

angle 

Elastic 

modulus 

Poisson's 

ratio 

 
θr θs α n ks  γ c φ E ν 

 
[-] [-] [m-1] [-] [m/day] [kN/m3] [kPa] [°] [kPa] [-] 

           

Bedrock 0.06 0.34 1.374 1.72 0.001 23 5638 56 5.3*107 0.3 

Decomposed 

Gneiss 

0.065 0.41 7.5 1.89 1.06 22 25 38 5.0*104 0.25 

Colluvium 0.08 0.33 2.35 2.12 6 20 0 34 5.0*104 0.25 

Alluvium 0.07 0.33 2.35 2.12 3 20 0 30 5.0*104 0.25 

Fractured 
Gneiss 

0.06 0.34 1.374 1.72 40 22 1590 52 1.0 * 107 0.3 

Embankment 

Fill 

0.08 0.33 1.374 2.12 0.5 21 25 35 3.0*104 0.25 

Drain 0.07 0.5 0.5 1.65 1000 Set to match surrounding soil material 

 

Figure 21 Diagram showing cross-section of the study area from the case study [95] 
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A layer of fractured and weathered material coming from the same dark gneiss 

lies over the competent bedrock, ranging in thickness from 1 m to over 30 m. Because 

the degree of weathering increases as one descends the slope, this layer was separated 

into two groups for the conceptual and numerical models. The first kind, known as 

fractured gneiss, is found on the slope above the embankment; it features clean fracture 

surfaces with little weathering or filling, as well as strong frictional strength and 

hydraulic conductivity [92]. 

The slope's surficial soil is made up of colluvial deposits with angular, coarse 

sand to cobble-sized grains generated from the gneiss bedrock. Straight Creek deposited 

alluvial material on the valley floor, which is more homogeneous and composed of 

rounded sand-sized grains. The mechanical characteristics of the two materials are 

comparable, but the colluvium has better hydraulic conductivity due to decreased in 

situ density generated by depositional processes [92]. 

The tunnel-cuttings material utilized for embankment fill is exceedingly 

heterogeneous, containing big rock pieces and boulders, construction waste (such as 

shoring decaying timbers), and finer-grained material than the surrounding native soils 

[98]. Because of the particle’s concentration, the hydraulic conductivity of this material 

is quite poor. The embankment fill is approximately 14 m thick beneath I-70's 

westbound shoulder, 29 m thick under I-70's eastbound shoulder and continues 

approximately 61 m downslope. 
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1.22 Safety Factors  

The previous studies have calculated the local factor of safety using HYDRUS 

software and global safety factors using bishop method of slices which comes under 

limit equilibrium analysis. The images below show the local safety factor and global 

safety factor derived from bishops method. Since, the site undergoes changes and it not 

constant throughout the year to properly monitor the dynamic changes in slope bishops’ 

method is a simple and quick analysis albeit not as accurate as FEA analysis in PLAXIS 

2D. Moreover, majority of codes follow global safety factor for analysis of slope 

stability, no doubt the local safety factor is very useful and gives insights where there 

might be potential chances of failure but for overall stability global factor of safety is 

preferred.  

 

Figure 22 Cross Section of site depecting local safety factor without drains [95] 
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Figure 23 Cross Section of site depecting local safety factor with drains [95] 

 

Figure 24 Safety Factor calculated by modified bishop's method [99] 
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4. Methodology 

1.23 Approach 

The data was collected from the case study and was quantitative in nature. After 

data collection the first step was to make sure that the results are like the results of the 

case study and that will ensure the correctness of the model. So, for that the change in 

groundwater levels were matched with the case study. Thereafter, remedial measures 

were taken, and parametric analysis was done on spacing and angle of soil nails.  

1.24 Choice of remedial measure 

There are many slope stability measures, some require a lot of modification and 

intervention to the slope geometry and surrounding, while others require few 

modifications. Some of the measures such as terracing, retaining walls were not 

considered because of cost and less effectiveness of them in this case. Also, considering 

the nature of the site and importance of highway a method of less intervention must be 

selected, for that out of soil nail and ground anchors, soil nails were chosen because the 

nature of the embankment fill was alkaline and they can cause the ground anchors to 

corrode, while the soil nail having a better resistance than ground anchors were better 

choice.  

1.25 Data collection 

The data for this study was taken from the case study. The geometry of the cross-

section was created in AutoCAD and later imported to PLAXIS 2D, which is a finite 

element analysis software. Similarly, the soil properties were also taken from the case 

study. The initial step in analysis was to make sure that the factor of safety matched 

with the case study. All the seasonal data was simulated likewise and fully coupled flow 

deformation analysis was performed which accounts for the groundwater flow and the 

deformation of the soil mass all in one phase/step, thereby making the analysis more 
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accurate. Once the model got validated then the next step was to find remedies and 

increase the stability of the slope to prevent the landslide. Thus parametric analysis was 

done using different soil nail layout and lastly safety factor forecasting was done. 

 

Figure 25 Cross-section of study area viewed in PLAXIS 2D (all scale in meters) 

 

1.26 Numerical framework 

For this research Plaxis 2D version 22.02 was used, which is a finite element 

analysis software to perform deformation and stability analysis for variety of 

geotechnical problems. For this study plane strain modelling is used, which assumes 

that the cross-section in 2D extends out of the plane [60]. 

1.27 Geometry 

The geometry of the study was formulated in AutoCAD and later imported to 

PLAXIS 2D. The geometry was constructed in such a way that entire mountain was 

considered in the analysis to accurately involve the runoff due to elevation of mountain 

and enable the water flow in the soil layers not too different than the actual one. The 

total extent of the slope can be seen in the diagram below, where the distance between 

maximum and minimum point in X direction is 800m and in Y direction it is 370m. In 

the figure given below the scales show negative value on left hand side due to the origin 
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at right hand side as shown with x and y axis symbols. The width of highway is 30m 

and right below the highway there is a layer of embankment fill, which consist of 

organic materials and tunnel cutting from the Eisenhower Tunnel not too far from the 

site.  

 

 

Figure 26 Zoomed out version of cross-section in PLAXIS 2D (all scale in m) 

 

The site has a prominent bedrock primarily Gneiss and it is overlain by layer of 

decomposed and fractured gneiss. Among both layers the permeability of fractured 

gneiss is decent, and that is one of the major reasons for instability as it increases the 

saturation soil and it may result in a catastrophic failure. The angle of slope ranges from 

33° near the top to a gentle angle of 5° at the bottom. Initially the groundwater level 

was kept just below the bedrock as shown in figure 23.  

1.27.1 Boundary Conditions 

The deformations in the maximum and minimum X directions were kept 

Normally fixed, the Ymin was fully fixed and Ymax was Free. For groundwater the 

minimum X and Y directions were kept closed and the maximum directions were open. 
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1.27.2 Temporary embankments 

To consider the practicality of the installation it prudent to add the temporary to 

access the slope to install the nails. Each has 5 m space for ease of driving large vehicles. 

Each of them is 5m tall with a gentle angle of 25 degrees. The soil type was kept the 

same as the embankment type. For each embankment 20 days were assigned for 

construction and width of about 5m was kept at each for ease of movement of workers 

and vehicles. The material of embankment was kept with properties of the embankment 

fill soil. So, it took 80days for creation of embankment and thereafter the soil nails were 

activated in 50days. 

 

Figure 27 Four temporary embankments near the bottom of the slope 

1.28 Soil Model 

In this study two soil models were used to calculate and analyze the slope. First 

being Mohr-Coulomb and Hardening soil model. The latter was used in order to capture 

the displacements for long term, since one requires non-linear model to replicate the 

most sophisticated behavior of the soil.  
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Figure 28 Graph of Deviatoric Stress vs Axial Strain comparing the Mohr-Coulomb, Soil 

Hardening Soil and Modified Cam Clay model [100]. 

The figure above of the graph shows the linear model Mohr-Coulomb, 

Hardening Soil and Modified Cam Clay Soil Model. The actual soil behaviour will be 

similar to the Hardening or Modified Cam Clay model, hence for long deformation 

Hardening Soil will be a solid choice.  

The Mohr-Coulomb model is a linear elastic perfectly plastic model that was 

used to approximate normal soil behavior. The basics of this soil model is that when the 

shear stress at a point on any plane within a soil becomes equal to the shear strength, 

failure will occur at that point [101]. It requires a total of five parameters (two stiffness 

parameters namely Young's modulus and Poisson's ratio, and three strength parameters 

cohesion, friction angle and Dilatancy angle), which are generally familiar to most 

geotechnical engineers, and which can be obtained from basic tests on soil samples. 

The Hardening Soil model is an advanced simulation of soil dynamics. In the 

Mohr-Coulomb model, limiting states of stress are defined by the friction angle phi, 

cohesion angle c, and dilatancy angle psi. To reflect soil stiffness more correctly, three 
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different input stiffnesses are used: the triaxial stiffness E50, the triaxial unloading 

stiffness Eur, and the oedometer loading stiffness Eoed. The Hardening Soil model, 

unlike the Mohr-Coulomb model, considers the stress-dependence of stiffness moduli. 

This demonstrates that when pressure increases, all stiffnesses increase [102]. 

 

 

1.28.1 Soil Properties 

The soil properties were taken from the case study (shown in Table 2). The 

porosity was derived from the saturated moisture content which is also the porosity is 

already given in the case study, so to calculate the dry unit weight Eq 12 and 13 were 

used assuming the specific gravity 2.7 The hardening soil properties for the two soil in 

the table 4 have been decided after lots of trails to achieve closer values of the 

displacement with the case study. 

 
𝛾𝑢𝑛𝑠𝑎𝑡 =

𝐺𝛾𝑤
1 + 𝑒

 

 

Eq  12 

 

 

 𝑒 =
𝑛

1 − 𝑛
 

 

Eq  13 

 

Where, 

e is void ratio 

n is porosity 

G is specific gravity 

γw is the unit weight of water. 

γunsat is unsaturated unit weight of soil. 
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Table 3 Soil Properties for PLAXIS 2D input [92] 

Soil Type Soil Model Porosity Unsaturated 

unit weight 

Saturated 

unit weight 

Effective 

Young's 

Modulus 

Poisson's 

ratio 

Effective 

Cohesion 

Angle of 

Friction 

  
n γunsat (KN/m3) γsat 

(KN/m3) 

E'ref 

(KN/m2) 

ν  c'  

(KPa) 

ф 

(°) 

Alluvium Mohr-Coulomb 0.33  18.12 20 50000 0.25 0 30 

Decomposed 

Gneiss 

Mohr-Coulomb 0.41 15.98 

 

22 50000 0.25 25 38 

Bedrock Mohr-Coulomb 0.34  17.76 

 

23 53000000 0.3 5638 56 

Fractured Gneiss Mohr-Coulomb 0.34  17.76 22 10000000 0.3 1590 52 

Asphalt Linear Elastic - 0.45 0.45 2100000 - - - 

Drain same as surrounding soil properties 

 

Table 4 Hardening Soil properties for displacement prone soils the stiffness was reduced to 

match the displacement values from the case study [92] 

Soil Type Soil 

Model 

Porosity Unsaturated 

unit weight 

Saturated 

unit 

weight 

 Triaxial 

Stiffness 

 Odeometric 

modulus   

 Triaxial 

Unloading 

Stiffness 

Poisson's 

ratio 

Effective 

Cohesion 

Angle of 

Friction 

  n γunsat 

(KN/m3) 

γsat 

(KN/m3) 
E50 Eoed Eur 

ν c'  

(KPa) 

ф 

(°) 

Embankment 

Fill 

Hardening 

Soil 

0.33 18.12 21 26000 26000 78000 0.25 25 35 

Colluvium Hardening 

Soil 

0.33 18.12 20 45000 45000 135000 0.25 0 34 

 

1.28.2 Van-Gretchen Parameters 

To represent hydraulic characteristics of groundwater flow in unsaturated zones 

(typically above the phreatic surface), a Soil Water Characteristic Curve (SWCC) is 

introduced. The SWCC describes the soil's ability to retain water under various 

pressures. The soil-water characteristic (or retention) curve (SWCC) is a valuable 

conceptual tool for evaluating the property functions of unsaturated soil and the 

accompanying macro-scale behavior (strength, volume change, hydraulic conductivity, 

fluid flow, diffusivity, and so on) [103]. Here to get SWCC the Van Genuchten model 

was utilized [104].  
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𝜃𝑤 = 𝜃𝑟𝑒𝑠 +

𝜃𝑠𝑎𝑡 − 𝜃𝑟𝑒𝑠
[1 + (𝛼′𝜑)𝑛]𝑚

 

 

Eq  14 

 

Where,  

θres is residual volumetric water content (dimensionless)  

θsat is saturated volumetric water content (dimensionless)  

α' is the reciprocal of the air-entry value with units of [L-1]  

n is a measure of the pore-size distribution,  (dimensionless)  

φ is suction pressure ([L] or cm of water).  

In PLAXIS, the Van Genuchten parameters can be directly entered to construct 

these functional forms, or a Spline function can be used to fit smooth curves to tabular 

data. The parameters are different than one’s described in the above formulas, however 

they can be converted to required format using Eq. 16.  

 𝑆(𝜓) = 𝑆𝑟𝑒𝑠 + (𝑆𝑠𝑎𝑡 + 𝑆𝑟𝑒𝑠)[1 + (𝑔𝑎|𝜓|)
𝑔𝑛]𝑔𝑐 

 

Eq  15 

 

Where, 

Ψ   = negative ratio of suction pore stress and unit weight of pore fluid 

Sres = A residual saturation represents a portion of the fluid that stays in the pores 

even when suction heads are high. 

Ssat = In general, under saturated circumstances, the pores will not be totally 

filled with water because air can become trapped, and the saturation, Ssat, will be less 

than one. The default, however, is Ssat = 1.0. 

ga  = A fitting parameter that is connected to the soil's air entry value and must 

be measured for a specific material. It has a positive value and is measured in 1/L. 

gn = A fitting parameter based on the rate of water extraction from the soil after 

the air entry value is surpassed. This parameter must be measured for each substance. 
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𝑔𝑐 = (

1 − 𝑔𝑛
𝑔𝑛

) 

 

Eq  16 

 

 

To convert the parameters as per the above format, which is standards PLAXIS 

format following equations were used and parameters were changed accordingly. 

 𝜃 = 𝑆𝜂 

 

Eq  17 

 

Where, using the porosity (η) one can convert residual volumetric water content 

(θres) and saturated volumetric water content (θsat) to residual degree of saturation (Sres) 

and saturated degree of saturation (Ssat). Also, the reciprocal of the air-entry value (α') 

and measure of the pore-size distribution (n) are same but labelled differently as ga  and 

gn. 

 

 

Table 5 Van Genuchten parameters for PLAXIS 2D 

Soil Type Residual volumetric 

water content 

Saturated volumetric 

water content 

Reciprocal of the air-

entry value 

Pore-size 

distribution 
parameter 

Hydraulic 

Conductivity 

  Sres Ssat ga gn K (m/day) 

Alluvium 0.2121 1.00 2.350 2.120 3 

Decomposed Gneiss 0.1585 1.00 7.5 1.890 1.06 

Colluvium 0.2424 1.00 2.35 2.120 6 

Bedrock 0.06203 1.00 3.830 1.377 3 

Fractured Gneiss 0.1765 1.00 1.374 1.720 40 

Embankment Fill 0.2424 1.00 1.374 1.720 0.5 

Drain 0.07 1.00 0.5 1.650 1000 

 

1.29 Mesh  

For this study 15 nodded elements were adopted. The mesh was kept fine near 

the top boundaries to accurately simulate the infiltration conditions and coarser far from 

the top boundary. Overall, the mesh was kept medium-sized keeping the analysis time 

in mind as the simulation is for multiple weeks. The top boundary had the coarseness 
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factor of 0.1250, which will make the mesh denser near the surface and make the 

calculation more accurate as there is a component of precipitation in this study. Also, 

the bedrock layer was divided such that it has more elements near the top and less so in 

the bottom area which is of less concern.  

 

 

 

Figure 29 Mesh density distribution 

  

The figure provided below shows the quality of mesh, green means good and 

redder the color means bad. As seen where the elements are larger in size the quality is 

not as good, but since the area we are concerned is greener i.e good quality it should 

not hamper with the accuracy of the results. The obtuse triangle will mean that the mesh 

will not be accurate to predict the site values hence redder in colour, which acute 

triangle will be accurate.  

Finer mesh Coarse mesh 
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Figure 30 Mesh quality the obtuse triangle will be less accurate than the acute triangles 

hence redder 

 

Figure 31 Mesh distribution: It is closer at the surface as there is more activity due to 

infiltration. 

1.30 Integration of SNOTEL data  

The data was taken from a SNOTEL station called Grizzly Peak Snotel station. 

Now, from the station two parameters were extracted and some data cleaning was done 

so that they can be applied to the study at hand. The two parameters were Snow water 

equivalent (WTEQ) and rainfall data. The first step was to convert the data into metric 

units and make it daily from cumulative. Thereafter, the total precipitation was 

considered whenever the WTEQ data was non-zero and positive during snow, and if 

WTEQ data was zero i.e., time where there is no snowfall then the rainfall data the total 

precipitation. 

Finer mesh 

Obtuse triangle less accurate 
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Figure 32 Precipitation data taken from Grizzly peak SNOTEL station. 

To insert this data in PLAXIS a discharge function was defined under flow 

function section, where the data was fed according to seasons for that particular year. 

Then in the precipitation function of plaxis under the time dependency the respective 

discharge function was selected depending on date of the precipitation. Also, under 

model conditions the groundwater flow was closed for Xmin and Ymin boundaries.  

1.31 North Drain 

The north drain’s properties are described in the preceding sections. The 

diameter of the drain was kept as 6.5cm and a well element was kept at the end to extract 

the water, so it does not percolate again in the soil medium. The drain was modelled at 

an angle of 5° and extended till it reached the low permeability bedrock, so that it could 

intercept all the water traveling towards the highway. 
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Figure 33 Close up of the North Drain shown in red box. 

1.32 Soil Nails 

The nails were constructed under embedded beam structure, which allows 

different spacing in Z direction. Here according to the Soil Nails manual by National 

Highway institute, USA the bar diameter and bar grades were chosen to be 25mm and 

grade 75. Also, the hole diameter was suggested in the range  of 4-8inch and in this case 

4inch was selected that is 10cm. The unit weight and the elastic modulus of the nails 

were calculated using equations 6 and 7. The skin friction was set to layer dependent, 

where the skin resistance will be calculated using the equations described in literature 

review.  

Table 6 Properties of Soil Nails for PLAXIS 2D [45] 

Property Value 

Material type Elastic 

Unit Weight (KN/m3) 28.34 

Cross section  Solid Circular 

Diameter 10cm 

Elastic modulus E (kN/m2) 51.06 x 106 

Skin resistance Layer dependent 

 

Also, the soil nails were arranged in a square array with various spacings such as 1.2m, 

1.5m, 1.8m and 2.0m. Moreover, the inclinations were changed from 10°,15° and 20°. The out 

of plane spacing was same as spacing. 
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1.32.1 Facing 

The facing of soil nails was taken as M25 grade which is recommended by FHWA 

circular no 7. Here instead of using a plate element which allows the flow of water and which 

many studies have used previously [61], use of material type concrete was considered with 

drainage type as non-porous. The facing was extended for 1.5m both at the top and bottom, and 

the thickness was kept 0.3m considering both initial and final facing.  

Table 7 Properties of soil nail facing for PLAXIS 2D [45]. 

Property Value 

Soil model Concrete 

Drainage Type Non-porous 

Unit weight (kN/m3) 25 

Elastic modulus (kN/m2) 22.36 x 106 

Poisson’s ratio  0.2 

 28-day concrete compressive strength fc28 25 x 103 

 28-day concrete tensile strength ft28 2500 

Φmax 39.50° 

 

Drains were also modelled behind the facing to dissipate the pore pressures, 

here to model a drain a default drain and well at the base was modelled.  As shown in 

the figure the light blue represents the drain and dark blue is the well. Drain by default 

has the property to dissipate the pore pressure thereby making water move towards the 

well and the well extracts the water from the model or the soil. Thus, this system works 

as a drain to dissipate the excess pore pressure which can be damaging to the soil nail 

wall.  
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Figure 34 Close up of the soil nail facing which depicts the drain and well behind facing. 

1.33 Phases  

1.33.1 Initial Phase 

Many geotechnical engineering analysis problems need the establishment of a 

set of initial stresses for non-horizontal layers. The first step is the "Gravity loading," 

which considers the initial stresses in sloping terrain [60]. The early pressures in a soil 

body are determined by the weight of the material and the history of its formation.  

The following settings were kept for the phase 1 or the gravity loading step. 

 

Figure 35 Phase setting for initial phase 

1.33.2 Phase 1 

The second phase aimed to simulate the steady state of the groundwater, where 

in the context of this study, it means that the groundwater is near the bedrock, thereby 

Magnified 10x 

Drain behind facing. 
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simulating the conditions of the site to create an initial pressure head profile that 

accurately reflects the water table position observed in the field during winter months 

[96] and once that is achieved one can further add the steps where actual infiltration 

data is present. This phase was fully coupled with flow deformation and had a uniform 

precipitation rate of 0.1000E-3m/day for 7000 days. Since the analysis lasts such a 

prolonged duration, more than the default step parameter in the numerical and flow 

control parameters will be required. Thus, the maximum steps were increased to a 

maximum available number, 10000 steps.  

 

Figure 36 Phase setting for first phase 
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Figure 37 Control parameters of the first phase 

1.33.3 Following phases and respective safety analysis 

After the initial phase and phase 1, the actual precipitation cycle was added. The 

parameters were kept like the one described above in Phase 1, just as the days were 

changed according to season. The precipitation values were added via a discharge 

function. The discharge function was then linked to the precipitation function, changing 

the precipitation to a time dependent value instead of constant value like in previous 

phase 1. Thereafter, safety analysis was carried out so that we can obtain the safety 

factor after each season. Again, for safety analysis the maximum steps were changed 

due to duration of analysis being long, and the ignore suction box was not checked so 

to include the matric suction in the calculation.  
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Figure 38 Discharge function tab in PLAXIS 2D 

 

1.34 Data forecasting  

The data forecasting was done using two methods, one being the forecast 

function in excel and other using the LSTM method. For forecasting in excel selecting 

the columns and the rest of the calculations and graph generations are handled by excel. 

The only things needed to specify is the future prediction dates.  
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Figure 39 Data forecast panel in excel 2023. 

1.34.1 Code breakdown 

To predict the data in LSTM the date and safety factors were entered, and a 

closed loop prediction was done. The data here is thereby univariate because the only 

variable here is the safety factor. The data was kept univariate and since it predicted it 

with only one type of data the model was not made complex by adding precipitation. 

Also, the precipitation values had a lot of zeros and for machine learning model when 

there are lot of zeros then it will produce inaccuracy in prediction. Overall, for this 

study univariate data was enough but one can experiment further by adding more 

variables and playing with type of variables to see where the model will go with the 

prediction. The code used in this thesis was inspired by the work of user 

“pkraljnovak” available on Gitlab [105]. 

Following are some of the basic terminologies which will help understand the 

code better: 

Table 8 Basic terminologies of python 

MinMaxScaler Min-Max scaling: This method scales 

data to a specific range, usually between 

0 and 1. Z-score normalisation 

(Standardisation) is another approach 

that centres the data around a mean of 0 

and scales it to have a standard deviation 

of 1. Scaling prevents higher magnitude 

characteristics from overwhelming 
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smaller magnitude features, making the 

model more effective and guaranteeing 

fair comparisons across features. 

Sequential Sequential is a type of model in Keras 

that allows you to build neural networks 

layer by layer. 

 

LSTM LSTM is a type of recurrent neural 

network (RNN) layer 

Dense Dense is a standard fully connected layer, 

so is a type of layer where every neuron 

is connected to every neuron in the 

previous and subsequent layers 

mean squared error These functions are used for evaluating 

the performance of regression models. mean absolute error 

epoch During training, an epoch is a complete 

trip across the whole dataset. Assume you 

have a deck of flashcards and wish to 

remember the information on each card. 

Going through all of the flashcards at the 

same time would constitute one era. An 

epoch in machine learning is defined as 

providing the full dataset to the model, 

enabling it to make predictions and alter 

its internal parameters to enhance its 

performance. 

 

 

Batch size The dataset is partitioned into smaller 

groups or batches during training, and 

each batch is handled by the model one at 

a time. The number of samples or data 

points in each batch is referred to as batch 

size. To return to the flashcards analogy, 

if you want to memorise the flashcards 

but find it overwhelming to go through 

them all at once, you may divide them 

into smaller groups of five cards each. 

The batch size in this situation is 5. 

Before going on to the following group, 

each group allows you to make 

predictions and refresh your memory 

based on a smaller collection of facts. 

 

 

append means addition to the preexisting data 

concatenate means adding two preexisting data one 

after the other 

DataFrame It is a two-dimensional data structure in 

Python supplied by the pandas library. It 
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is a flexible and sophisticated data 

processing and analysis tool. Each 

column in a DataFrame represents a 

variable or feature, while each row 

represents an individual data entry or 

observation. 

 

Whole code is provided in the appendix. 

import pandas as pd 

import numpy as np 

from math import sqrt 

from sklearn.preprocessing import MinMaxScaler 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

import matplotlib.pyplot as plt 

 

 

The following lines of code import the necessary Python libraries and modules 

for creating a time series forecasting model with Long Short-Term Memory (LSTM) 

neural networks. Pandas and NumPy are used for data manipulation and numerical 

computations, Scikit-Learn's MinMaxScaler is used for data scaling, Keras is used to 

define the neural network architecture (Sequential, LSTM, and Dense layers), and 

Scikit-Learn is used to evaluate the model using mean squared error and mean absolute 

error. It also includes Matplotlib for making visualizations. 

# Read the data from excel1.xlsx 

df1 = pd.read_excel("d:/excel for python/excel3.xlsx") 

 

 

The above line just imports the data from the excel and stores it in a Pandas 

DataFrame called “df1”.  

# Add a date column as the index starting from April 7, 2010 

df1["Date"] = pd.date_range(start="2010-04-07", periods=len(df1)) 

df1.set_index("Date", inplace=True) 
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These lines of code change the DataFrame "df1" by adding a new "Date" 

column with a series of dates beginning on April 7, 2010, and then making this "Date" 

column the DataFrame's index. This is important for time series data analysis since it 

organises the data according on date values, making time-based operations quicker and 

data exploration more natural. 

# Frame the inputs as a supervised learning problem 

def lstm_super(data, n_in=1, n_out=1, dropnan=True): 

    df = pd.DataFrame(data) 

    columns, names = list(), list() 

 

    # Input sequence (t-n, ..., t-1) 

    for i in range(n_in, 0, -1): 

        columns.append(df.shift(i)) 

        names += [("var(t-%d)" % i)] 

 

    # Forecast sequence (t, t+1, ..., t+n) 

    for i in range(0, n_out): 

        columns.append(df.shift(-i)) 

        if i == 0: 

            names += [("var(t)")] 

        else: 

            names += [("var(t+%d)" % i)] 

 

    # Put it all together 

    final = pd.concat(columns, axis=1) 

    final.columns = names 

    return final 

 

 

The given code specifies a Python function named 'lstm_super' for converting 

time series data into a supervised learning problem [72], which is a typical need for 

training machine learning models like LSTM networks. The function accepts a dataset 

(a Pandas DataFrame or Series is assumed) and arguments such as the number of lag 

observations (n_in) and the number of future time steps to forecast (n_out). It creates a 

new DataFrame by moving the old data along time steps to generate input-output pairs 
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where the input consists of past observations (t-n, t-n+1, ..., t-1), and the output is the 

target to predict (t, t+1, ..., t+n). It then concatenates these columns and gives 

appropriate column names to provide a structured dataset suitable for supervised 

learning. 

# Load the values from the training dataset 

values = df1["Safety Factor"].values 

 

The code line retrieves information from the DataFrame "df1," which appears 

to be labelled as "Safety Factor." It takes the values from this column and saves them 

in a NumPy array called "values." This procedure allows you to isolate and manipulate 

data from the "Safety Factor" column, making it suitable for use in Python data analysis, 

modelling, or processing operations..  

# Convert all data to float data type 

values = values.astype("float32") 

 

The code snippet changes the data type of the variable "values" to "float32." 

This is a typical data type conversion technique that is used in data preparation for 

machine learning and numerical tasks. This is significant because many machine 

learning methods, such as neural networks, employ floating-point integers, and 

consistent data formats are required for correct computations and model training. 

# Normalize features using MinMaxScaler 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values.reshape(-1, 1)) 

 

The MinMaxScaler from the Scikit-Learn module is used to conduct feature 

scaling on a variable called "values" in this code snippet. Feature scaling is a 

preprocessing technique that converts data into a specified range, usually between 0 

and 1, in order to ensure that all features have similar scales. 

# Frame the inputs as a supervised learning problem 
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lstm_input = lstm_super(scaled, 1, 1) 

 

In the context of time series forecasting or sequence modelling, this code snippet 

frames the input data for a supervised learning task. It use the "lstm_super" function to 

convert "scaled" data, which represents a time series, into input-output pairs appropriate 

for training machine learning models. 

# splitting data into train and test set according to 80:20 policy 

train = scaled[:1652] 

test = scaled[1652:] 

 

The dataset is divided into training and test sets in this code snippet using an 

80:20 strategy, which is a standard practise in machine learning for model validation. 

The previously preprocessed or normalised "scaled" data is separated into two parts. 

The "train" subset contains the first 80% of the data, or 1652 data points, and is used to 

train the machine learning model. The "test" subset is made up of the remaining 20% 

of the data, beginning with the 1653rd data point, and is used to evaluate the model's 

performance. 

# split the train and test further into inputs represented by X and 

outputs represented by Y 

train_X, train_y = train[:-1], train[1:] 

test_X, test_y = test[:-1], test[1:] 

 

The data is divided into training and testing sets in this code sample, with the 

goal of constructing input and output pairs for a time series forecasting assignment. The 

"train" and "test" datasets are usually time series sequences, with the purpose of 

generating input-output pairs. To do this, the input sequences are represented by 

"train_X" and "test_X," where "train_X" is produced from the "train" data minus the 

final element and "test_X" is similarly constructed from the "test" data. "train_y" and 

"test_y" indicate the comparable output sequences, where "train_y" is made up of the 
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same "train" data but starts from the second element, and "test_y" is made up of the 

"test" data with a similar pattern. 

# reshape the input to be 3D [samples, timesteps, features] as LSTM 

requires inputs in 3D format 

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) 

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) 

 

 

These datasets are reshaped into a 3D representation by the algorithm. It turns 

each dataset into a 3D array by invoking "reshape," where each data point (sample) is 

represented as a 2D array with one time step and many characteristics. This format is 

required for LSTM networks, which are designed to simulate time-dependent 

sequences, and this reshaping allows the model to successfully learn and generate 

predictions based on the data sequence over time. 3D in a sense that instead of two 

columns of data, it divides it into three namely sample, timesteps and feature. For 

instance, a sample is a notebook to record measurement of something, each page 

records it at particular time which is timestep, and lines in notebook has information 

which is feature. 

# Design the LSTM model using the Adam optimizer and mean absolute error 

(MAE) as the loss function 

model = Sequential() 

model.add(LSTM(365, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dense(1)) 

model.compile(loss="mae", optimizer="adam") 

 

The Keras library is used to build the model. It starts with a Sequential model, 

which indicates that we're building a series of layers for the neural network. A single 

neuron Dense layer is placed after the LSTM layer to provide the model's output. The 

Adam optimizer, a prominent optimisation technique, is used to create the model, and 

mean absolute error (MAE) is chosen as the loss function, which evaluates the average 

absolute difference between predicted and actual values. 
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Model = sequential() This line creates an empty model object 

called model using the Sequential class. 

The Sequential model is a linear stack of 

layers, allowing us to add layers one after 

another. 
model.add(LSTM(365, 

input_shape=(train_X.shape[1], 

train_X.shape[2]))) 

 

Within this model, an LSTM layer of 365 

memory units is introduced, which is a 

hyperparameter that defines the network's 

ability to capture patterns. The input_shape 

is configured to correspond to the 

dimensions of the training data, specifying 

the number of timesteps and features. 
Model.add(Dense(units=1)) The Dense layer is added to the model by 

this line. The Dense layer is a completely 

connected layer in which each neuron is 

linked to every neuron in the preceding 

layer. It has units=1 in this example, 

indicating that it contains a single neuron. 

The Dense layer is in charge of creating the 

ultimate prediction based on the LSTM 

layer's output. 
model.compile(optimizer='adam', 

loss='mae’) 

 

The optimizer and loss function are 

specified on this line, which builds the 

model. 'adam', the optimizer, defines how 

the model is updated depending on the loss 

and assists in determining the optimum set 

of weights for the model. The 'mae' loss 

function calculates the difference between 

the predicted and actual output. During 

training, the model attempts to minimise 

this loss by making predictions that are as 

near to the actual values as feasible. 

 

 

# Train the model using 50 epochs 

history = model.fit( 

    train_X, 

    train_y, 

    epochs=50, 

    batch_size=365, 

    validation_data=(test_X, test_y), 

    verbose=4, 

    shuffle=False, 

) 
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To train the model with training data (train_X and train_y), use the model.fit 

function. The epochs option indicates how many times the model iterates over the 

whole training dataset. A batch size of 365 is also employed, which indicates that the 

data is divided into batches of 365 samples each to update the model's weights during 

training. To evaluate the model's performance during training, the validation_data 

parameter is assigned to the testing data (test_X and test_y). The verbose option is set 

to 4, indicating that just the most important training progress information is given 

during training, and the shuffle parameter is set to False, suggesting that the order of 

training data should not change. 

 

 

# Save the trained model for future predictions 

model.save("safety_factor_model.h5") 

 

# Make predictions for future unknown values using the trained model 

future_predictions = model.predict(future_X) 

 

# Invert the scaling for the forecasted predictions 

future_predictions = scaler.inverse_transform(future_predictions) 

 

 

 

Here the trained model is saved as "safety_factor_model.h5". The preserved 

model is then utilised to generate predictions on fresh, previously unseen data 

represented by "future_X." The anticipated values are first scaled to a certain range for 

modelling reasons before being transformed back to their original scale with the 

scaler.inverse_transform function. This scale inversion phase is critical because it 

guarantees that the anticipated values, such as safety factor predictions, are returned to 

their original units and can be read and used in their real-world context. 
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# Plot the training loss and validation loss over epochs 

plt.plot(history.history["loss"], label="Train") 

plt.plot(history.history["val_loss"], label="Test") 

plt.xlabel("Epochs") 

plt.ylabel("Loss") 

plt.legend() 

plt.show() 

 

 

Figure 40 Graph of loss vs epoch 

The code above generates a graph of loss vs epochs. The graph shows how the 

model is learning: ideally, as epochs advance, both training and validation loss should 

decrease, suggesting increased model performance. 

# Convert the NumPy array to a DataFrame 

test_predicted = pd.DataFrame({'Predicted Safety Factor': 

test_predictions.flatten()}) 

 

# Save the DataFrame to an Excel file 

test_predicted.to_excel('E:/New folder (2)/soil mode/excel for 

predictions/Pythonpredicted_data5.xlsx', index=False) 

 

The NumPy array containing anticipated safety factor values is turned into a 

Pandas DataFrame named "test_predicted." This conversion aids in the organisation 
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and possibly subsequent analysis of the expected data. The code then saves this 

DataFrame to an Excel file called 'Pythonpredicted_data5.xlsx' in the directory 'E:/New 

folder (2)/soil mode/excel for predictions/'. The option 'index=False' guarantees that the 

DataFrame is stored without the default index column. 
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5. Results and Discussion 

1.35 Model Validation 

The initial step was to make sure that the results of the analysis align well with 

the case study. The geometry and the soil properties are same as in the case study so for 

proper validation the change in groundwater was checked with the case study. 

 

1.35.1 Displacement 

The model was meticulously made and all the geotechnical parameters, 

dimensions and the weather conditions were replicated, but to further ensure that it is 

like the field conditions the displacement was measured. The values of westbound and 

eastbound shoulder were taken from the cross-section feature in Plaxis and then it was 

compared with the values of the study. Now, from the graphs given below the results of 

finite element analysis closely matched with the field data. The maximum deviation 

from the original data was at most 0.5cm which when considering the entire length of 

just the moving mass, which is 100m and that would make the deviation of 0.005m.   
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Figure 41 Displacements in the westbound shoulder 

 

 



85 

 

 

Figure 42 Displacement in eastbound shoulder 

 

 

1.35.2 Depth to water  

The change in the depth of the groundwater was monitored from the year 2010 

to the end of 2015. The main aim was to match the seasonal changes in the groundwater 

so that the model would match the conditions on the site. Also, since the properties of 

soil and geometry are entered according to the case study, replicating the change in 

groundwater will ensure that the model is responding to the change in precipitation 

values. Below is a graph showing the change in depth to water for two positions, 

Westbound shoulder, and Eastbound shoulder of the highway. Both were measured 

from the surface to bedrock. As one can see the changes are cyclic, the groundwater 

level increases at mid-year and gradually decreases till the end.  
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Figure 43 Depth to water for westbound and eastbound shoulder of the highway 

 

Figure 44 Piezometric reading from the case study [90] 

Here are snippets of the saturation percentages throughout the year, and it is 

apparent from the snippets that the change in the groundwater behaves like the 

piezometric reading taken on site. 

 

Figure 45 Distribution of Saturation after 90 days of the year 2010 without drains 
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Figure 46 Distribution of Saturation after 168 days of the year 2010 without drains 

 

Figure 47 Distribution of Saturation after 295 days of the year 2010 without drains 

 

Figure 48 Distribution of Saturation after 365 days of the year 2010 without drains 

1.36 North Drain 

According to the remedy suggested by the case study, drain was made on north 

end of just above the westbound shoulder. The effect of drains was impressive and it 

intercepted the flow of water travelling from the higher elevations in the slope, thus 

increasing the stability of the slope.  

Below snippets from the software show the effectiveness of the drain in 

intercepting the water, thus reducing the fluctuation in groundwater depth below the 

highway to contribute to stability of the slope. As seen from the figures there was 

considerable reduction in the saturation level in the slope after drains were installed. 

However, there is saturation of around 60% below the eastbound shoulder, and one 
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possible remedy can be drains in that area but it was not a wise choice because the 

drains were one the remedy already tried in that area and it had negligible impact on 

stability because of low permeability of soil. 

 

Figure 49 Distribution of Saturation after 90 days of the year 2010 with drains 

  

 

Figure 50  Distribution of Saturation after 168 days of the year 2010 with drains 

  

 

Figure 51  Distribution of Saturation after 295 days of the year 2010 with drains 

 

Figure 52  Distribution of Saturation after 365 days of the year 2010 with drains 

Drain 



89 

 

1.36.1 Safety factor for slope having north drain and no drains. 

After model validation safety factor changes for the slope were monitored. Here, in the 

graph their safety factors of slope with and without north drains are compared alongside 

the precipitation changes.  One of the most significant uncertainties in the data is the 

assumption that the Grizzly Peak SNOTEL data is indicative of the atmospheric 

conditions at this site. As predicted, using infiltration data from another site does not 

provide the same water table response as found at the Straight Creek landslide. The 

more exposed location of the Straight Creek landslide is most likely experiencing a 

faster rate of snowpack melting that begins earlier than indicated by the Grizzly Peak 

SNOTEL, which may account for the lag in the arrival time of water table peaks seen 

in simulated data as well as some of the difference in the volume of water in the hillslope 

in simulation versus observed data [96]. 

 

Figure 53 Comparison of safety factor with and without north drains, along with the 

precipitation data 
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The non-drained slope seemed to be more fluctuating in response to the 

precipitation, while the one having north drain is more stable and has safety factor of 

about 1.325 on average. Here since the highway is a busy one and failure of the slope 

can cause heavy casualties and long-term closure of the highway, for adequate safety, a 

safety factor of 1.5 was targeted.  

The note here is that the safety factor for the non-drained slope drops to 1.2, 

which is below minimum requirement decided for slope to be stable. Even for 

temporary soil nail wall slope the requirement is 1.35. Moreover, the slope with north 

drains has shown good increase in the stability from the previous model without drains, 

but at the same time it does not suffice the condition of having a safety factor of 1.5. 

1.37 Soil Nail 

To further improve the safety factor of the slope soil nails were selected. Here 

soil nails of varying angles of 10°,15° and 20° were selected according to FHWA 

circular no 7. Moreover, the spacing was changed from 1.2, 1.5, 1.8 and 2.0 meters. 

Following images show the layout of soil nails. 

 

Figure 54 Soil Nail layout with 1.2m spacing and 10 degree inclination 
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Figure 55 Soil Nail layout with 1.2m spacing and 15 degree inclination 

 

Figure 56 Soil Nail layout with 1.2m spacing and 20 degree inclination 

 

Figure 57 Soil Nail layout with 1.5m spacing and 10 degree inclination 
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Figure 58 Soil Nail layout with 1.5m spacing and 15 degree inclination 

 

Figure 59 Soil Nail layout with 1.5m spacing and 20 degree inclination 

 

Figure 60 Soil Nail layout with 1.8m spacing and 10 degree inclination 



93 

 

 

Figure 61 Soil Nail layout with 1.8m spacing and 15 degree inclination 

 

Figure 62 Soil Nail layout with 1.8m spacing and 20 degree inclination 

 

Figure 63 Soil Nail layout with 2.0m spacing and 10 degree inclination 
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Figure 64 Soil Nail layout with 2.0m spacing and 15 degree inclination 

 

Figure 65 Soil Nail layout with 2.0m spacing and 20 degree inclination 

1.38 Effect of Spacing and Inclination on Safety Factor 

Here to compare the effect of inclination and spacing the average safety factor 

values were taken throughout the year and comparison was done. The 20° inclination 

soil nails have constant effect on the slope regardless of the spacing. A major reason 

can be due to relatively longer embedded depth in the bedrock. For the 15° inclination 

the value of safety factor remains same except it reduces marginally for 2.0m spacing. 

As the spacing between nails increases it reduces the soil holding capacity and hence 

causes to have lesser safety factor. The 10° inclination proved to be least effective as it 

had the lowest value of safety factor and looking closely at the values of the 10° 

inclination one can see that the safety factor increases at 1.5m and then gradually 

decreases to 2.0m spacing. This demonstrates similar behavior that is seen in the piles, 
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when piles are too close to each other then it reduces the efficiency of them due to 

interference and it they are too far it becomes too distributed to support the load.  

 

Figure 66 Effect of Spacing and Inclination on the safety factor of the slope 

 

1.39 Yearly changes in Safety factors for all nail layouts  

Due to infiltration of water into the soil the safety factor of soil decreases as it 

loses matric suction. Now it is apparent from the graphs that the safety factor 

periodically drops at the end of the year and again increases once certain water gets 

removed from the system. Also, the safety factors are highest during the beginning and 

end of the year, because its when the saturation percentages are at their lowest, albeit 

not zero, as the water will contribute to strength of the soil by the help of matric suction. 

In general, the saturation ranges from 30-40% at the end and beginning of the year. 

Lastly, the 10° inclination shows highest fluctuations, reaching below 1.5 value 

multiple times.  
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Figure 67 Change in Safety factor for 1.2m spacing. 

 

 

Figure 68 Change in Safety factor for 1.5m spacing. 
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Figure 69 Change in Safety factor for 1.8m spacing. 

 

Figure 70 Change in Safety factor for 2.0m spacing. 

1.40 Data forecasting for safety factors 

In this study the data of safety factors were predicted for future using two 
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to forecast for each combination but to see and compare the forecasts from excel and 

LSTM, hence only one of the data is predicted.  

1.40.1 Excel forecasting 

The excel predictions are little lower than the previously calculated data, but the 

data seems to follow a general trend, seasonality and it is not too skew from the original 

data. There is also a lower and upper confidence bound which changes with respect to 

time, as for certain data accurate predictions can only be made up to a certain point then 

the accuracy gets reduced.  

 

Figure 71 Data forecasting result in excel. 

 

1.40.2 LSTM forecasting 

The LSTM model successfully predicted the data like the original data. The 

model was trained for 80% of the given data and it predicted the rest of 20% values.  
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Figure 72 Data forecasting result from LSTM 

The plot of the loss over epoch shows that once the epoch value reached just 

above 40, the trained value became closer to the test value i.e., original value. 

 

Figure 73 Plot of loss over epochs 
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6. Conclusion 

The present study investigates the effectiveness of soil nails and drains for 

infiltration induced landslide stabilization. Furthermore, the study explores the use of 

excel forecasting and LSTM algorithm for prediction of future factors of safety value.  

Valuable insights have been gathered by an in-depth review of relevant literature, and 

computer modelling. In this part, we summarize the research's significant results and 

consequences. 

The PLAXIS 2D successfully simulated the yearly precipitation cycle for the 

given slope. It further demonstrates that the north drains can dispel the majority of water 

and increase the factor of safety, but that won’t be enough as we are targeting the safety 

factor of 1.5. So, to further increase the safety factor soil nails were used. The effect of 

soil nail was promising, and it increased the safety factor to a significantly safe value. 

In addition to that, various layouts of soil nails were tested out here, and parametric 

analysis was conducted to see what the effects are of spacing and inclination on the 

stability of the slope.  

It was observed that nail inclinations of 15° and 20° are very effective and 

increased the safety factor, one of the main reasons for that was that the end of few nails 

were embedded in the bedrock which gave the nails necessary friction to hold onto and 

thereby holding the soil all together. For the spacing, the ideal spacing came out to be 

1.5m, as the spacing closer than that caused interference of nails like that of piles, and 

farther the nails less effectively they would hold the soil together.  

Moreover, the data was forecasted for a year using excel forecast function and 

using the LSTM deep learning model. The excel successfully predicted the trend, 

seasonal changes and level of the data using the previously inputted data. It not only 
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predicted the data but also displayed the upper and lower bound values which increased 

as the time progressed to show that the accuracy of the prediction decreased as the time 

progressed. The LSTM model is a very powerful tool to make predictions and in this 

study, it showed high accuracy in predicting the data.  

To sum it up, this thesis gives contribution in understanding and implementation 

of soil nails for infiltration induced landslide stabilization and explores ideal layout of 

soil nails. It also predicts the future safety factor values using two methods, using excel 

and LSTM deep learning model. It is hoped that the study inspires further investigation 

in integration of deep learning in safety factor prediction and improved landslide 

mitigation techniques. 

 

1.41 Future study recommendations 

 In this study the length and diameter of the soil nails were not changed so in 

future one can change them and observe what are their effects. For future study one can 

optimize the code further and calculate the preceding year’s safety factor values to 

better predict the safety factor. Also, one can use different methods instead of LSTM, 

such as ARIMA, SARIMA and VARMAX, to predict the safety factors. Additionally, 

one can make the model multivariate and add the values such as precipitation, 

displacement, groundwater level etc. to help the model correlate better, at the same time 

caring for data types where there are lot of zeros for instance moments where there is 

no precipitation, as it will be difficult for model to correlate and will cause inaccuracy. 

For that the data should be normalized or augmented in such a way that it makes sense 

for model. 
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Appendix 

Python code for data forecasting using LSTM method 

import pandas as pd 

import numpy as np 

from math import sqrt 

from sklearn.preprocessing import MinMaxScaler 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

import matplotlib.pyplot as plt 

 

 

# Read the data from excel1.xlsx 

df1 = pd.read_excel("d:/excel for python/excel3.xlsx") 

 

# Add a date column as the index starting from April 7, 2010 

df1["Date"] = pd.date_range(start="2010-04-07", periods=len(df1)) 

df1.set_index("Date", inplace=True) 

 

# Frame the inputs as a supervised learning problem 

def lstm_super(data, n_in=1, n_out=1, dropnan=True): 

    df = pd.DataFrame(data) 

    columns, names = list(), list() 

 

    # Input sequence (t-n, ..., t-1) 

    for i in range(n_in, 0, -1): 

        columns.append(df.shift(i)) 

        names += [("var(t-%d)" % i)] 

 

    # Forecast sequence (t, t+1, ..., t+n) 

    for i in range(0, n_out): 

        columns.append(df.shift(-i)) 

        if i == 0: 

            names += [("var(t)")] 

        else: 

            names += [("var(t+%d)" % i)] 

 

    # Put it all together 

    final = pd.concat(columns, axis=1) 

    final.columns = names 

    return final 

 

# Load the values from the training dataset 
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values = df1["Safety Factor"].values 

 

# Convert all data to float data type 

values = values.astype("float32") 

 

# Normalize features using MinMaxScaler 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values.reshape(-1, 1)) 

 

# Frame the inputs as a supervised learning problem 

lstm_input = lstm_super(scaled, 1, 1) 

 

# splitting data into train and test set according to 80:20 policy 

train = scaled[:1652] 

test = scaled[1652:] 

 

# split the train and test further into inputs represented by X and 

outputs represented by Y 

train_X, train_y = train[:-1], train[1:] 

test_X, test_y = test[:-1], test[1:] 

 

# reshape the input to be 3D [samples, timesteps, features] as LSTM 

requires inputs in 3D format 

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) 

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) 

 

# Design the LSTM model using the Adam optimizer and mean absolute error 

(MAE) as the loss function 

model = Sequential() 

model.add(LSTM(365, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dense(1)) 

model.compile(loss="mae", optimizer="adam") 

 

# Train the model using 50 epochs 

history = model.fit( 

    train_X, 

    train_y, 

    epochs=50, 

    batch_size=365, 

    validation_data=(test_X, test_y), 

    verbose=4, 

    shuffle=False, 

) 

 

 

 

# Save the trained model for future predictions 

model.save("safety_factor_model.h5") 
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# Make predictions for future unknown values using the trained model 

future_predictions = model.predict(future_X) 

 

# Invert the scaling for the forecasted predictions 

future_predictions = scaler.inverse_transform(future_predictions) 

 

# Plot the training loss and validation loss over epochs 

plt.plot(history.history["loss"], label="Train") 

plt.plot(history.history["val_loss"], label="Test") 

plt.xlabel("Epochs") 

plt.ylabel("Loss") 

plt.legend() 

plt.show() 

 

# Convert the NumPy array to a DataFrame 

test_predicted = pd.DataFrame({'Predicted Safety Factor': 

test_predictions.flatten()}) 

 

 

 

# Save the DataFrame to an Excel file 

test_predicted.to_excel('E:/New folder (2)/soil mode/excel for 

predictions/Pythonpredicted_data5.xlsx', index=False) 

 

 


