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Abstract

Background: Mnemonic Discrimination, the ability to distinguish between highly

similar memories is impaired in people with various neuropsychiatric disorders. While

hippocampus and prefrontal cortex are attributed to perform this strategic process,

there has been no study to understand the computational processes of executive

control systems trained with reinforcement learning such as prefrontal cortex in this

paradigm. In our study, we present a novel framework to study how prefrontal cortex

lesions affect verbal mnemonic discrimination.

Methods: We employ a computational model to simulate a yes/no recognition task

which is built upon Becker and Lim’s [10] work on the verbal free recall model. We

extend the model by representing words as continuous word embeddings to facilitate

the calculation of mnemonic discrimination performance in verbal learning paradigms.

We model hippocampus as a continuous Hopfield network and prefrontal cortex as a

reinforcement learning agent for memory retrieval based on task requirements. We

first validate our model by ensuring the free recall results are consistent with prior

results. Using our novel implementation of a verbal mnemonic discrimination task,

we then examine the role of prefrontal cortex lesions on mnemonic discrimination

performance.

Results: Our results indicate that the lesions in prefrontal cortex have a significant

negative impact on the mnemonic discrimination performance (β = −0.07, p = 0.004)

and overall recognition performance (β = −0.02, p = 0.014).

Conclusion: Our study is the first one to build a computational model of inter-

actions between the prefrontal cortex and hippocampus to study verbal mnemonic

discrimination. Our study highlights the role of intact reinforcement based executive

control system for mnemonic discrimination and recognition performance.
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Chapter 1

Introduction

Recognition memory is a vital cognitive function which gives us the ability to dis-

tinguish between old and new stimuli. A simple example of recognition memory is

when we can recognize a person whom we have met in the past. Mnemonic discrim-

ination is a specific part of the recognition memory mechanism which allows for the

differentiation of new and previously encountered stimuli when they are highly sim-

ilar. The hippocampus and the prefrontal cortex regions of the brain are attributed

to perform these strategic processes. While various computational models have at-

tributed the role of hippocampus to recognition memory and mnemonic discrimination

[55, 13, 49, 50, 51], there is currently no computational model that explains the role

of the prefrontal cortex, specifically in the verbal recognition paradigms.

The goal of this thesis is to build a biologically plausible computational model

(refer Appendix F to understand the key motivation to build a computational model)

that simulates the interactions between the brain’s prefrontal cortex and hippocam-

pus in order to predict how dysfunction in these interactions will impact mnemonic

discrimination performance on widely-used clinical recognition memory tasks. This

research will help us to better understand the mechanistic origins of neuropsycho-

logical deficits in clinical populations. From a computational perspective, this will

also help us to understand how executive control systems trained with reinforcement

learning, such as the human prefrontal cortex, affect the storage and recall capabilities

of content-addressable memory systems [37], such as the human hippocampus.

To simulate the verbal recognition memory paradigm, we model the yes/no recog-

nition task of the California Verbal Learning Test (CVLT) [1]. The CVLT is a widely

used test in neuropsychological studies to investigate verbal recognition memory, as

well as verbal recall, in humans. This means the focus of our study involves the use

of words as stimuli in recognition where the model should predict if the word was

encountered before or not.

1
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We model the prefrontal-hippocampal interactions on the CVLT yes/no recog-

nition task by extending an existing model of the CVLT free recall task by Becker

and Lim [10]. We first extend the model to represent CVLT words as continuous

representations using word embeddings. Additionally, we have implemented a con-

tinuous Hopfield network which can support this continuous input. We then include

the CVLT yes/no recognition memory task to measure recognition memory perfor-

mance and mnemonic discrimination. We propose three different approaches for the

prefrontal-hippocampal interactions in the recognition memory task. The model con-

sists of three layers (Fig. 3.1) each representing different regions of the brain that

are involved in the recall and recognition process. The first layer is the lexical rep-

resentation module where we model the CVLT words as continuous representation

using ConceptNet word embeddings [68] as opposed to the binary representation of

words in the Becker and Lim [10] model. The second layer is the medial temporal

lobe module where we model the hippocampus as an autoassociative attractor net-

work by using continuous Hopfield networks [58]. This gives the network two distinct

capabilities: storage and retrieval [21]. The third layer is the prefrontal cortex layer

which is modeled as a reinforcement learning agent that uses Q-learning algorithm to

facilitate retrieval of memories based on task demands [10, 81].

Using this model, we first replicate the results of the CVLT free recall performance

reported by Becker and Lim’s [10] model. We compare our results with the Becker and

Lim [10] model under three scenarios (1) intact model (2) lesioned model where nodes

in the prefrontal cortex layer and its incoming and outgoing connections to medial

temporal lobe layer are disabled and (3) blocked representation of input where words

belonging to the same category are presented together. In each of these scenarios,

we measure the recognition memory and mnemonic discrimination performance and

compare the results across the three proposed approaches.

The results of the yes/no recognition task suggest that lesioning the prefrontal

cortex has a statistically significant negative impact on the mnemonic discrimination

as well as the overall recognition performance. This emphasizes the role of the intact

prefrontal cortex in recognition memory paradigms. The mnemonic discrimination

performance is enhanced due to full recollection (strategic retrieval of full representa-

tion of pattern including its context), but the overall recognition performance worsens
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indicating a trade-off between mnemonic discrimination and overall recognition per-

formance. Further research is needed to address this trade-off between mnemonic

discrimination and overall recognition performance. Nonetheless, our framework pro-

vides a solid foundation to study the role of the executive functions in the brain in

recognition memory and mnemonic discrimination paradigms.

1.1 Research Question and Objectives

Our research focuses on building a computational model that studies how the pre-

frontal cortex and its interactions with the hippocampus influence the verbal recog-

nition memory task. Since patients with neuropsychiatric disorders often exhibit

prefrontal cortex lesions and experience verbal memory impairments [23], our study

offers a valuable framework to analyze the impact of the prefrontal cortex lesions on

verbal recognition memory.

Below is the research question, main objectives and contributions of this thesis.

1.1.1 Research Question

How do prefrontal cortical lesions impact verbal mnemonic discrimination perfor-

mance in the CVLT recognition memory task?

1.1.2 Research Objectives

1. The primary objective is to propose different strategies for facilitating the

prefrontal-hippocampal interactions in the CVLT yes/no recognition memory

task

2. The secondary objective is to statistically evaluate the performance of the

CVLT yes/no recognition task in recognition memory and mnemonic discrimi-

nation paradigms and to compare the performance among the three proposed

approaches

3. The third objective is to assess the impact of prefrontal cortex lesions on the

recognition memory and mnemonic discrimination performance and compare

these results with the intact models
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4. The fourth objective is to examine the influence of blocked presentation of the

CVLT words on the yes/no recognition task and mnemonic discrimination for

both the intact and lesioned models

1.1.3 Research Contributions

1. Developing a computational model that simulates the interactions between the

prefrontal cortex and hippocampus in order to predict how the dysfunction in

these interactions will impact the recognition memory and mnemonic discrimi-

nation paradigms

2. Employing word embeddings to encode the CVLT words as continuous repre-

sentation, thereby enabling the simulation of recognition memory as applied to

human trials

3. Introducing a method that extends the scope of CVLT’s recognition memory

paradigm allowing the evaluation of mnemonic discrimination within verbal

recognition tasks

1.2 Thesis Outline

The remainder of this thesis is organized into 5 chapters.

1. Chapter 2 provides background for CVLT, measurement of mnemonic discrimi-

nation and neural underpinnings of recognition memory. It also includes previ-

ous research on the recognition memory in the brain and existing computational

models which served as a foundation for our study.

2. Chapter 3 outlines the methodology designed for this study offering a detailed

explanation of mathematical formulations used and a description of the exper-

iments conducted.

3. Chapter 4 presents the results and conducts a comparative analysis of various

experiments proposed in Chapter 3

4. Chapter 5 provides the discussion of the findings obtained in Chapter 4 provid-

ing the limitations of this study and proposing future directions for research.



Chapter 2

Background and Related Work

In this chapter we provide an overview of

1. How we can measure mnemonic discrimination through verbal recognition mem-

ory tasks

2. Overview of the California Verbal Learning Test

3. The neurological basis of recognition memory

4. Utilization of AI models to study recognition memory

5. Existing neuro-computational models for verbal learning tasks

2.1 Formalization of Mnemonic Discrimination in Verbal Recognition

Memory Paradigms

In clinical assessments, the commonly used test for measuring mnemonic discrimina-

tion ability is the Mnemonic Similarity Task (MST) [69] (refer Appendix A for more

information), which is an object recognition task using image stimuli. Since verbal

memory is crucial for daily human functioning [22, 75, 16], it is important to study the

mnemonic discrimination ability in the context of verbal learning (refer Appendix B

for more information). Moreover, many commonly used neuropsychological tests that

assess memory, like CVLT and Rey Auditory Verbal Learning Test (RAVLT) [9] fo-

cus on verbal learning paradigms. Consequently, there are abundant clinical data

available for in depth analysis in this area [33]. In this section we aim to provide an

intuition on the formalization of the mnemonic discrimination in verbal recognition

memory paradigms.

In order to create a computational model of human behavior on recognition mem-

ory tasks, we must mathematically formalize these paradigms such that a suitable

5
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testing environment can be modeled. Furthermore, to understand the computational

nature of mnemonic discrimination and how it should be measured, we must derive

such a measure from a suitable formalism of recognition memory tasks in general. We

follow the intuition presented in Leger et al. [40] to formalize recognition memory

tasks, and from this formalism derive an understanding of, and measurement index

for, mnemonic discrimination.

A verbal recognition memory experiment consists of an encoding phase (also

known as study phase) and a test phase. In the encoding phase, the agent is supplied

with a sequence of N items which it must memorize. We denote the list of N items

presented during the encoding phase as Ys = (ys1 , ys2 , ..., ysN ). In the test phase, the

agent is presented with recognition test items, one at a time, which it must correctly

classify as old or new. Let Yr = (yr1 , yr2 , ..., yrM ) be the sequence of M items in the

recognition test list. Each item in Yr can either be one of the items in Ys or not.

Given the lists Ys and Yr, let X
∗ = (x∗

1, x
∗
2, ..., x

∗
M) be a binary vector denoting

x∗
i = 1[yri /∈ Ys] (2.1)

which takes a value of 1 if the recognition item is a novel stimulus that was not

memorized as part of the study list and 0 if the item was previously encountered.

Given the ground truth x∗
i , let xi be the agent’s prediction of whether the ith recog-

nition item is part of Ys or not. Let us consider

xi = fA(yi;Ys) (2.2)

where fA(yi;Ys) performs recognition memory judgements and generates predic-

tions.

Let d(y, Ys) be the distance between a test list item y and the perceptually or

semantically closest stimulus encoded list Ys such that d(y, Ys) = 0 indicates that

y is a target (part of the encoded list). This implies that y is by definition a novel

stimulus if d(y, Ys) > 0. However, as d(y, Ys) increases, the degree of perceptual or

semantic novelty increases. That is, the novel stimulus y becomes more different

from the stimuli previously encountered in the study list. We measure the mnemonic

discrimination capability by considering how the probability of identifying an item y

as novel, varies with the degree of similarity between y and the encoded list Ys. If we
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let pA(y) denote the probability that agent A classifies stimulus y as novel, then we

assume that

pA(y) ∝ d(y, Ys) (2.3)

This means that the more the recognition item y is distant from the encoded item,

the more likely it is to be classified as new. This assumption is well substantiated in

the literature [69]. For agents with perfect mnemonic discrimination capability, pA(y)

will be maximum even for small values of d(y, Ys) indicating that the recognition

memory is sensitive to small changes in the stimuli.

Having formalized the mnemonic discrimination in the context of verbal recog-

nition tasks, in the next section we will introduce the California Verbal Learning

Test (CVLT). We will elaborate on how recognition performance and mnemonic dis-

crimination are measured in CVLT specifically in the context of our computational

model.

2.2 The California Verbal Learning Test (CVLT)

2.2.1 Phases of the CVLT

The California Verbal Learning Test (CVLT) is among the world’s most commonly

used neuropsychological tasks in clinical settings [41, 7]. The CVLT test consists of 8

subtasks involving of a series of immediate and delayed recall and recognition tests,

which are listed here, but described in further detail below:

1. List A Immediate Free Recall

2. List B Immediate Free Recall

3. List A Short-Delay Free Recall

4. List A Cued Recall

5. List A Long-Delay Free Recall

6. List A Long-Delay Cued Recall

7. List A Yes/No Recognition
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8. List A Forced Choice Recognition

List A Immediate Free Recall (IFR-A) consists of an encoding phase (also

called study phase) and recall phase which happens over a course of Ntrials = 5 trials.

During the encoding phase, the agent is presented with 16 List A words, which are

organized into 4 categories: vehicles (truck, motorcycle, subway, boat), vegeta-

bles (spinach, onion, celery, cabbage), animals (giraffe, zebra, cow, squir-

rel), furniture (bookcase, cabinet, lamp, desk). However, despite the organi-

zation into four semantic categories, the words are read in a fixed, shuffled order:

(truck, spinach, giraffe, bookcase, onion, motorcycle, cabinet, zebra, sub-

way, lamp, celery, cow, desk, boat, squirrel, cabbage). Immediately after

being read the 16 words, the agent must recall the words from memory. Recall can

proceed in any order. We denote the number of attempts made to recall words at

trial t as Nattempts. Each recall phase is terminated when the agent cannot remember

any more words and so the number of attempts in each recall trial varies.

List B Immediate Free Recall (IFR-B) presents a new list of 16 words to the

agent, which it must then recall immediately. It consists of an encoding phase (also

called study phase) and recall phase which happens over a single trial. During the

encoding phase, the agent is presented with 16 words sequentially, which are split into

4 categories musical instruments (violin, guitar, clarinet, saxophone), locations

in homes (closet, basement, garage, patio), vegetables (cucumber, turnip,

corn, radishes), animals (elephant, sheep, rabbit, tiger), such that there are 2

categories that overlap with List A, and 2 categories that are distinct. The words are

presented in a fixed, shuffled order: (violin, cucumber, elephant, closet, turnip,

guitar, basement, sheep, clarinet, garage, corn, rabbit, patio, saxophone,

tiger, radishes). During the recall phase, the agent tries to reproduce, from memory,

the words learned during the encoding phase. The recall trial ends when the agent

cannot remember any more words. The purpose of IFR B is to serve as an interference

task for the rest of the tasks occurring later in the CVLT test.

List A Short-Delay Free Recall (SDFR-A) occurs immediately after IFR-B,

the agent is once again asked to recall List A, based only on the first five encoding

trials done during IFR-A.

List A Short-Delay Cued Recall (SDCR-A) involves asking the agent to
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recall List A in a cued fashion. That is, the agent is asked to recall all words that

were furniture, vegetables, vehicles, and animals.

List A Long-Delay Free Recall (LDFR-A) occurs following SDCR-A and a

20 minute delay. LDFR-A involves once again recalling as many List A words as

possible learned during the IFR-A phase.

List A Long-Delay Cued Recall (LDCR-A) occurs following LDFR-A, under

the same category prompts as SDCR-A.

List A Yes/No Recognition (YNR-A) occurs following LDCR-A, and involves

presenting the agent with 48 words, which it must identify as having been on List A

(Yes) or not (No). These words are divided into four sets:

1. true targets (those that were on List A)

2. those from List B with categories that are shared with List A

3. those from List B with categories not shared with List A

4. totally novel words

List A Forced Choice Recognition (FCR-A) occurs immediately after YNR-

A. Here, agents are presented with two words and asked which was on List A. Since

most subjects in psychiatric samples obtain perfect scores on forced choice recognition,

we will not model it in the present study [7, 15].

2.3 Performance Evaluation on the CVLT

2.3.1 Free Recall Performance Evaluation

For some recall attempt in any of the free or cued recall phases above (IFR-A, IFR-B,

SDFR-A, SDCR-A, LDFR-A, LDCR-A), we define q = (qi)i=1,2,...,Nattempts as a boolean

vector, where qi = 1 if the ith recalled word was present in the study list and is not a

repetition (an instance where a given word has been recalled before) or intrusion (an

instance where a given word was not part of the study list). The total number of

correct recalled words Ĉ in each trial is calculated by

Ĉ =

Nattempts∑
i=1

qi (2.4)
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Since IFR A task has 5 trials, the total correct recalled words from trial 1 to trial

5, denoted by C is calculated as:

C =

Ntrials∑
i=1

Ĉi (2.5)

This statistic is often used as a global summary of verbal memory performance in

clinical samples, and so forms the primary outcome measure for free-recall components

of our study.

Another important measure of performance on the CVLT which is reflective of

good executive control is semantic clustering, which identifies the degree to which

recalled words cluster into their semantic categories during free recall.

The Semantic Clustering (Observed) score measures the degree to which correct

words from the same category are recalled in close temporal proximity [1]. To calculate

the total semantic clustering score per trial, we need to sum the total number of

correct responses satisfying the above condition. Let sc = (sci)i=1,2,...Nattempts be a

boolean vector representing if the recalled word belongs to the same category as the

previous recalled word in a given trial. By default, the first element sc1 will be 0 since

it is the first word recalled. The semantic scores (observed) denoted by OS, is

calculated as

OS =

Nattempts∑
i=1

1(qi = qi−1 = sci = 1) (2.6)

2.3.2 Mnemonic Discrimination and Recognition Performance

Evaluation in the Delayed Yes/No Recognition Phase

We assess the mnemonic discrimination and overall recognition performance in the

List A Yes/No Recognition (YNR-A) phase. To assess the mnemonic discrimination

performance on the CVLT, we adopt the mnemonic discrimination measure proposed

by Leger et al. [40] that is designed specifically for tests such as CVLT that do

not specify a categorical distinction between lures (words that are semantically re-

lated to List A words but are not part of it) and foils (novel words). In this case

mnemonic discrimination performance can be measured as a function of similarity

between recognition test words and the encoded words which is List A words for the

CVLT test.
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Following the formalization of the mnemonic discrimination paradigms in Sec-

tion 2.1, Eq. (2.3) indicates that the probability of classifying a stimulus as new

increases as distance of the word increases from the encoded list (List A words of

CVLT). The distances d(y, Ys) are scaled between 0 and 1.

The mnemonic discrimination ability is specifically assessed for test words that

are highly similar to List A words, that means their distance from list A words is

minimum. In the CVLT recognition test, one such word is carrot which is not part

of list A words but is highly similar to vegetables in the List A words like spinach,

onion, celery, cabbage. Any subject with high mnemonic discrimination ability can

distinguish words like carrot as new making them highly sensitive to small differences

in stimuli.

Therefore, we need to model the probability of classification as a function of simi-

larity with the encoded (ListA) words. Let Pnew be the probability that a recognition

word is classified as new. The influence of similarity (distance) on the probability

Pnew is modeled as follows by Leger et al. [40]:

Pnew(Distance) = d+ (a− d)/(1 +Distance/c)b)e (2.7)

The parameter a is the lower asymptote of the curve which influences the proba-

bility that an old word is misclassified as new. The parameter b represents the slope

of the curve which indicates how sharply the words are distinguished compared to

previous words. The parameter c is the horizontal shift in the curve. The parameter

d is the upper asymptote of the curve which influences the probability that a new

word (distant from List A words) is correctly classified as new. The parameter e

allows flexibility in the curve by introducing asymmetry of the sigmoidal function.

Based on this, Leger et al. [40] calculates the Mnemonic Discrimination Index

(MDI).

MDI = 1− A

REC
(2.8)

where

REC = Pnew(1)− Pnew(0) (2.9)
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and

A = Pnew(1)−
∫ 1

0

Pnew(x)dx (2.10)

We use the MDI to calculate the mnemonic discrimination performance and the REC

to get the overall recognition performance. Findings from Leger et al. [40] demon-

strate that MDI and REC strongly associate with the measurements in the gold

standard MST. Therefore, these provide valid and well-seperated measurements for

mnemonic discrimination and overall recognition performance respectively.

The next step involves defining the function fA(yi;Ys) in Eq. (2.2) required to

execute the recognition memory judgements. To achieve this, it is important to gain

insight into the underlying processes of recognition memory in the brain. This will

serve as a foundation to develop a computational model capable of performing this

function in a way that may help us to understand the neural basis of recognition mem-

ory in humans. In the next section, we describe the neural mechanisms of recognition

memory in the brain.

2.4 Neurological Basis of Recognition Memory and Mnemonic

Discrimination:

The process of making recognition memory judgements, which involves distinguishing

between old and new stimuli is a multi-stage process. Various regions of the brain

have distinct functions in facilitating these computational processes. We propose

a computational framework which involves two important regions of the brain hip-

pocampus and prefrontal cortex that interact together to make successful recognition

memory judgements. Furthermore, we also look at how the interaction between these

two regions lead to a successful mnemonic discrimination capability. Below is a de-

tailed description of the role of hippocampus and prefrontal cortex in the recognition

memory. We also present previous studies that provide evidence for the role of these

regions in recognition memory and mnemonic discrimination.

2.4.1 Role of Hippocampus

When the brain is presented with any stimulus and is tasked with distinguishing

whether it is old or new, it initiates a recollection process [43, 85, 32] which involves
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strategic search in memory to get the contextual details of the stimulus. Successful

recollection depends on proper encoding of memories and retrieving context appropri-

ate memories. For example, in the CVLT, when the participant listens to the words,

successful encoding takes place in the brain. The yes/no recognition task requires the

brain to retrieve the encoded pattern that corresponds to the cue presented to the

participant. If the brain successfully retrieves the pattern, the participant responds

old or else responds new. These two stages of encoding and retrieval require a com-

putational process called pattern completion that takes place in the hippocampus.

Pattern completion allows for accurate generalization of any pattern when presented

with a noisy or partial cue [21].

The network architecture of the CA3 region of the hippocampus facilitates the

pattern completion processes. The recurrent interconnected pyramidal cells of the

CA3 [6] operate as an autoassociative network enabling storage of patterns and re-

trieval if a partial cue is presented to it [21, 60]. When a partial pattern is presented,

subsets of the CA3 neurons are activated subsequently retrieving the whole pattern

thus resulting in pattern completion.

Numerous studies have emphasized the role of hippocampus in recognition mem-

ory and mnemonic discrimination performance. Researchers frequently investigate

these aspects through Functional Magnetic Resonance Imaging (FMRI) studies, which

examine the activity of the hippocampus during recognition tasks, or by evaluating

the results of recognition tasks when individuals with hippocampal lesions engage in

the recognition tasks. In the next section we will provide an overview of past studies

that have explored the role of hippocampus in recognition memory and mnemonic

discrimination performance.

Previous Studies on the Role of Hippocampus in Recognition Memory

and Mnemonic Discrimination

FMRI studies in the human brain conducted by Bakker et al. [6] and Klippenstein et

al. [36] has provided evidence that the CA3 region of the hippocampus is activated

when lures or new items are presented during the recognition task. This strongly

supports the involvement of CA3 in storing distinctive representations of patterns

which is required for successful discrimination of stimuli.
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Bayley et al. [8] investigated memory impaired patients with hippocampal damage

by conducting a yes/no recognition task focused on object recognition. In this task,

the participants initially should identify if the presented images are living/man-made

followed by a yes/no recognition task and a forced-choice recognition task. The results

from the yes/no recognition task indicated that patients with hippocampal damage

performed poorly when the test items are highly similar to the study items impacting

mnemonic discrimination performance.

Yassa et al. [84] conducted a FMRI study to examine the performance of memory-

impaired older adults in an object recognition task where they had to classify images

as old, new or similar. The findings revealed that the CA3 region in the older adults

showed reduced activity when dealing with lure items that are highly similar to target

items as compared to young adults, whose CA3 region responded more robustly even

when the lure items are highly similar to the targets. These results suggest that

the age related microstructural changes in the CA3 region can lead to behavioral

discrimination deficits in mnemonic discrimination tasks.

Manns et al. [44] conducted a verbal recognition memory task using the ver-

bal learning test RAVLT on seven patients with bilateral hippocampal damage. All

patients obtained poorer recognition scores on the RAVLT test. In the next experi-

ment participants were asked to not only determine if they had encountered an item

previously but also to indicate if their judgment was based on recollection or simple

familiarity which does not involve any strategic search in memory. The results showed

that all participants were impaired similarly in both recollection and familiarity, sug-

gesting the essential role of intact hippocampus for recognition memory tasks that

requires both recollection and familiarity aspects.

2.4.2 Role of Prefrontal Cortex

The prefrontal cortex is characterized as the region responsible for executing strategic

functions based on specific requirements of a given task [48]. For example, when

the recollection involves semantic organization, serial organization of words, or cue

based recollection, the prefrontal cortex biases the medial temporal lobe’s retrieval to

facilitate organized recollection [57, 53].
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Previous Studies on the Role of Prefrontal Cortex as a Reinforcement

Learning Agent

Frith [20] defines the role of Dorsolateral Prefrontal Cortex (DLPFC) as selecting

an appropriate response when there are multiple alternate responses, as opposed to

situations where only one response is viable. This is based on the Positron Emission

Tomography (PET) study on DLPFC conducted by Nathaniel and Frith [52] where

participants engaged in a word generation test consisting of two tasks (1) generating

a word that should fit a sentence and (2) generating a word that should not fit a

sentence. Each task again had sentences with varying degrees of constraint. For

example, He mailed the letter without a.... is a highly constrained sentence because

98% of the participants complete this sentence with the word stamp. A sentence like

The police had never seen a man so.... has minimal constraint because it can have

many alternate responses (e.g. nervous, violent, upset) [52]. When the DLPFC was

monitored during these tasks, it showed higher levels of activation during tasks with

low constraint and in situations where the answer should not fit the sentence (task

2). In both these scenarios where answers were not immediately evident and required

participants to choose from numerous words known to them, Frith referred to this

response selection as sculpting the response space which captures the main role of

DLPFC.

Duncan [17] defines the fundamental role of the prefrontal cortex to be adaptive

neural coding where the neural representations in the prefrontal cortex can dynami-

cally adapt to suit the specific demands of the task at hand. This adaptability enables

the prefrontal cortex to emphasize relevant inputs and filter out irrelevant responses,

especially in the presence of many alternate responses. Duncan further suggests that

the relevance of information in any task in the prefrontal cortex is determined based

on rewards.

The process of reward-based learning in the prefrontal cortex is attributed to

the phasic signals provided by dopamine that conveys the reward-prediction error

influencing actions and learning in the prefrontal cortex [54, 81, 73]. Based on these

views, the prefrontal cortex has the capability to develop mnemonic codes rapidly

based on task demands and self-monitor its performance based on current state and

goals [10].
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In the following section, we will explore previous studies that have examined the

role of prefrontal cortex and its various sub-regions in recognition memory paradigms.

Previous Studies on the Role of Prefrontal Cortex in Recognition

Memory and Mnemonic Discrimination

Lauzon [39] specifically studied the impact of lesions in the Ventromedial Prefrontal

Cortex (vmPFC) on mnemonic discrimination performance. 10 adults with vmPFC

lesions along with 46 healthy participants were assessed while taking the MST. Par-

ticipants with vmPFC lesions exhibited excessive discrimination of lures by misiden-

tifying them as foils (novel), indicating impaired mnemonic discrimination.

In a study by Alexander et al. [41], the performance of individuals with frontal le-

sions was compared to that of healthy participants in the CVLT. Researchers recorded

the scores of each participant on every task of the CVLT while simultaneously record-

ing their brain activity using FMRI. The results from the yes/no recognition task

revealed that patients with frontal lesions exhibited significantly lower scores in the

recognition test. The FMRI analysis revealed a high activity in the DLPFC among

these patients. The lower scores were attributed to false-positive recognition of foils,

indicating a defective semantic encoding of words leading to abnormal response bias.

Baldo et al. [7] conducted CVLT to compare the peformance of patients with

frontal lesions to that of healthy participants. Three analyses were conducted in the

yes/no recognition task: (1) the ability to differentiate between semantically related

distractors, (2) the ability to differentiate between List B words with List A words

and (3) the ability to differentiate unrelated novel words. The results showed that

participants with frontal lesions showed poorer performance in the first two analysis

compared to healthy participants, whereas both groups showed similar performance in

the third analysis. This suggests that people with a lesioned prefrontal cortex use less

semantic clustering ability leading to an increased tendency to endorse semantically

related words.

Wais et al. [80] conducted an FMRI study to assess mnemonic discrimination,

focusing on Ventrolateral Prefrontal Cortex (VLPFC). Participants were tasked with

recognizing images as old/new. These images were taken from MST so that the images

consisted of targets, novels and lures. To study how disruptions in VLPFC can impact
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mnemonic discrimination performance, disruption in neural activity of VLPFC was

simulated in the participants. The results from this study showed that perturbations

in VLPFC diminished discrimination of highly similar lures from targets indicating

that VLPFC is necessary during successful mnemonic discrimination.

Johnson et al. [29] conducted a mnemonic discrimination test on rodents by

disrupting the activity in the prefrontal cortex. The findings from this test suggested

that when prefrontal cortex activity was disrupted, the rodents performance impaired

significantly. Moreover, the results indicated that the degree of impairment depended

on the target-lure similairity. Specifically, the performance was lower when the lures

shared a feature overlap of 50% to 90% with the targets. These outcomes suggest the

crucial role of the prefrontal cortex in resolving interference among stimuli, which is

required for successful mnemonic discrimination.

Stuss et al. [70] conducted a comparison of word list learning performance between

participants with bilateral frontal lobe damage and healthy individuals. The study

comprised of a free recall task followed by a yes/no recognition task. The results from

this study revealed significantly lower scores, specifically in the proportion of hits to

correct rejections, among people with frontal damage.

These studies collectively highlight the involvement of different sub regions within

the prefrontal cortex in recognition memory. In the next section, we will delve into

studies that explore the interactions between the prefrontal cortex and hippocampus

in the context of recognition memory.

Previous Studies on the Interactions between Prefrontal Cortex and

Hippocampus in Recognition Memory and Mnemonic Discrimination

To understand how the hippocampus and prefrontal cortex collaborate in the encod-

ing and retrieval of memory processes, it is important to understand the anatomical

connections between these regions. Preston et al. [57] suggest that there exist path-

ways from the Medial Prefrontal Cortex (mPFC) to the hippocampus through the

surrounding parahippocampal areas that facilitate the interaction between these re-

gions during encoding and retrieval.

The study by Navawongse et al. [53] further strengthens the above hypothesis by
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studying the retrieval mechanism in rodents within a context-guided object associa-

tion task by disabling the mPFC of the rodents. The results revealed that rodents

with mPFC inactivation required more time to make choices and had reduced perfor-

mance. In addition, the FMRI recordings during this task indicated that inactivation

in mPFC led to reduction in the activation of hippocampal neurons, resulting in a

failure to retrieve the required contextual information. These findings indicate the

critical role of the prefrontal cortex in retrieving context based memories suggesting

two way flow of information between the mPFC and hippocampus.

Wais et al. [79] conducted FMRI study focusing on medial temporal lobe and

VLPFC while twenty subjects participated in an object yes/no recognition task. The

study session involved the participants judging if the presented images (1) would fit

inside a ladies medium shoe box? and (2) could be carried across the room using only

the right hand? After the study session, participants had to judge if images presented

were old or new based on what they had seen in the study session. The test images

included targets, lures and novel items, similar to the MST. The recordings from the

FMRI study revealed that discriminating highly similar lures from targets showed in-

creased activity in the medial temporal lobe and VLPFC regions indicating the intact

medial temporal lobe-cortical requirement for successful mnemonic discrimination.

King et al. [34] employed FMRI analysis to investigate various brain regions

involved in the recollection process. They record the activity of the hippocampus,

mPFC and other brain regions like parahippocampal cortex and left angular gyrus

that are generally attributed to this strategic retrieval processes. Three different tasks

were conducted: (1) Remember-know judgements of objects, (2) Associative memory

procedure of pairs of objects and (3) source memory judgements, all of which involve

recollection of memories in the brain. During the recollection process, the study

revealed high levels of activations not only in the regions mentioned above but also

in the DLPFC. The findings suggest that the functional co-ordination among these

brain regions leads to successful recollection of memories.

Eichenbaum et al. [18] conducted an item recognition task on rodents, comparing

those with hippocampal damage to those with mPFC damage. The results indicated

that rodents with hippocampal damage tend to incorrectly identify old objects as

new indicating a tendency towards forgetting memories. On the other hand, rodents
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with prefrontal cortex damage were inclined to identify new objects as old indicating

a source memory impairment. These findings highlight the complementary roles of

the prefrontal cortex and hippocampus in recognition tasks.

Understanding the roles of each of these brain regions in recognition paradigms

helps us in designing the computational processes without compromising the biological

plausibility. In the next section, we will present different AI algorithms that we utilize

to implement our computational model.

2.5 Computational Modelling of Prefrontal-Hippocampal Interactions

During Recognition Memory

For our proposed computational model, we have three key components. (1) Encoding

the CVLT words as real-valued vector representations (2) designing hippocampus as

an autoassociative attractor network (3) designing prefrontal cortex as a reinforcement

learning agent. In this section, we discuss each of these AI algorithms.

2.5.1 Modeling CVLT Words as Vector Representations

To enable the model to perform the CVLT yes/no recognition task, we need to input

the CVLT words as vector representations such that their semantic information is

preserved [68, 47, 56]. For example, if we consider two semantically related words

like spinach and cabbage, their corresponding vector representations should be close

in the vector space. This representation of words is known as word embeddings, and

it represents a significant breakthrough in the field of Natural Language Processing.

The main goal of training a neural network with word embeddings is to enable

the network to comprehend words as closely as humans. This not only involves

understanding words based on distances between word vectors (as shown in the above

example of spinach and cabbage) but also encompasses various other dimensions [56].

As per the example in [56], the phrase king is to queen as man is to woman should be

encoded in vector space by the equation king - queen ∝ man - woman. This encoding

technique brings about clustering of words like king with man and queen with woman,

creating precise analogical reasoning using vector representations [47, 56]. This type

of vector representation captures the intrinsic details in a language aligning it more

closely with human understanding.
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Significant advancements in Natural Language Processing have introduced several

techniques for word embeddings like distributed representations proposed by Mikolov

et al. [47], GloVe by Pennington et al. [56] and ConceptNet by Speer et al. [68].

Each of these methods offer unique advantages compared to their predecessor. In our

thesis we implement word embeddings using the ConceptNet embeddings proposed

by Speer et al. [68]. Below, we explain in detail the ConceptNet embeddings and

outline their advantages compared to other methods.

ConceptNet Embeddings

ConceptNet is a large multilingual knowledge graph that connects words and phrases

of natural language [2]. The knowledge graph connects words and phrases called

terms with labeled edges called assertions. For example, consider the phrase a dog

has a tail. This phrase can be represented as a graph with start node: dog, end node:

tail and a labeled edge: HasA [68].

ConceptNet is trained on diverse sources such as (1) Facts acquired from Open

Mind Common Sense (OMCS) [67] and Games with a purpose [78] for common knowl-

edge of language like phrases to express relationship between words, (2) Data from

Wiktionary for multilingual vocabulary, (3) Open Multilingual WordNet [11] and

JMDict [12] a Japanese multilingual dictionary, (4) OpenCyc [19] for commonsense

knowledge, and (5) DBPedia [5] for facts extracted from Wikipedia sources. The

combination of these sources creates a large multilingual knowledge graph containing

21 million edges and 8 million nodes [68]. This graph representation of the Concept-

Net embeddings capture not just statistical patterns in large text corpora, but also

explicit human-curated relationships and facts which makes it unique from the other

word embedding techniques. This vast training source and graph representation of

knowledge makes it superior to the other word embedding techniques. Fig. 2.1 rep-

resents an example of the representation of the word garage taken from ConceptNet.

As seen in the figure, the ConceptNet contains not only the symmetric relationships

like synonyms, antonyms and etymology but also asymmetric relationships of words

like used for and capable of [68].
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Figure 2.1: Information about an English word garage as represented by ConceptNet

To assess the performance of ConceptNet, Speer et al. [68] compared the per-

formance of ConceptNet with other word embedding techniques like distributed rep-

resentations proposed by Mikolov et al. [47] and GloVe by Pennington et al. [56].

They evaluated ConceptNet’s performance across a range of tasks like ranking word

relatedness, choosing sensible ending to stories, and solving proportional analogies.

In all these tasks ConceptNet consistently outperformed the other techniques. One

such experiment in their research [68] is to rank the relatedness of word pairs and

compare these rankings to actual human judgements. The ConceptNet outperformed

other techniques in this task demonstrating its proficiency in representing the depth

and breadth of word relationships [68].

2.5.2 Modeling the Hippocampus as an Autoassociative Memory

The Hippocampus region of the brain is involved in (1) rapidly encoding patterns (2)

retrieving the encoded patterns when a partial cue is presented to it [21]. This forms

the central idea that the hippocampus can function as an autoassociative memory

[45, 46]. Therefore, in this section we introduce (1) Autoassociative memory, (2)

their instantiation in Hopfield networks, and (3) Applications of Hopfield networks in

AI.
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Auto Associative Memory - Intuition Behind Hopfield Networks

Autoassociative memory, also referred to as content addressable memory, is a type of

memory which can store patterns and is capable of retrieving them when a partial

input is presented to it. The Hopfield network [25] is an artificial neural network that

works as an auto associative memory.

Consider a pattern that is stored in memory. An ideal auto associative memory

can retrieve this pattern error-free when a sufficient partial cue is presented to it [25].

To be able to achieve this, Hopfield [25] proposes the idea of a physical system which

can be formulated as follows. Let us consider a physical system that has information

stored in it. Let the different patterns stored in the physical system be denoted by

X = (x1, x2, ...xN) which are local stable points in the system. Each element xi in

X is a vector representation of a pattern. Given these stored patterns, let us assume

we have a pattern cue y = x1 + Δ which is a point in the system nearer to x1 and

represents a partial cue for x1. Any physical system that can reach the stable state

x1 from y can be known as content addressable memory or auto associative memory

[25].

Classical Hopfield Network

The classical Hopfield network developed by Hopfield [25] designed the auto associa-

tive network as a sum of outer products of the patterns. Let us assume each of the

pattern in X = (x1, x2, ...., xN) is of length d and xi ∈ {−1, 1}. The weight matrix

stores the patterns which models the Hebbian plasticity [25]

W =
N∑
1

xix
�
i (2.11)

To retrieve a stored pattern from the partial pattern y, we use a rule to update the

states of the network until convergence is reached. The update rule in the classical

Hopfield network is as follows:

yt+1 = sgn(Wyt − b) (2.12)

where sgn() indicates the sign function. The convergence for this update rule is

reached when yt+1 = yt. Each time the update rule is converged, the energy function



23

of the network is minimized.

E = −0.5y�Wy + y�b (2.13)

If we tie back this network to the physical system mentioned above, the following is

the intuition. If the weight matrix W is viewed as an energy landscape (the physical

system), all the stored vectors in X are the local minima of this landscape. Therefore,

during the retrieval process, if the partial cue y is considered a point in the energy

landscape, the retrieval process is just a movement downhill towards the nearest local

minimum which is, to one of the stored patterns in X that closely matches y.

The storage capacity of the Hopfield network is crucial as it determines the perfor-

mance of the network. When the retrieval is error free, the classical Hopfield network

has a storage capacity of [58]

C ≈ d

2log(d)
. (2.14)

Ramsauer et al. [58] conducted an experiment where they store three images using

the classical Hopfield network and try to restore the image by presenting a partial

image to the network. They conclude that the retrieval is not error free when the

images stored are strongly correlated. Thus, in conclusion, the major limitation of

the classical Hopfield network is its low storage capacity.

Modern Hopfield Network (Dense Associative Memories)

The Modern Hopfield network proposed by Krotov et al. [38] is a discrete Hopfield

network similar to the classical Hopfield network. However, the energy function is a

polynomial interaction function which thereby increases the capacity of this network:

E = −
N∑
i=1

F (x�
i y) (2.15)

where F (z) = za is a polynomial interaction function with the degree of polynomial

being a. Let y[l] be the lth component of the partial pattern y that is being updated.

The update of the lth component is defined as the difference of energy of the current

pattern y and the next state when y[l] is flipped. This component y[l] is updated
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such that the energy is minimized. The update rule for the modern Hopfield network

is

ynew[l] = sgn[−E(y(l+)) + E(y(l−))] (2.16)

where y(l+)[l] = 1 and y(l−)[l] = −1. Unlike the classical Hopfield network, the modern

Hopfield network does not have a weight matrix and so the energy function is the dot

product of all stored patterns X with the state pattern y. The storage capacity of

the modern Hopfield network is

C ≈ 1

(2)(2a− 3)!!

da−1

log(d)
(2.17)

In our proposed model, since we use ConceptNet to model the input which is a

continuous valued representation of patterns, we need an autoassociative memory

that supports continuous input. Ramsauer et al. [58] proposed a version of the

modern Hopfield network for the continuous valued patterns.

Continuous Modern Hopfield Networks

Let us assume that the N stored patterns X = (x1, x2, ...., xN) are continuous pat-

terns. The energy for the continuous Hopfield network is as follows

E = −lse(βX�y) + 0.5y�y + β�logN + 0.5max(||M ||2) (2.18)

where

M = max
i

||xi||
is the largest norm of all stored patterns and β is the inverse temperature. The update

rule corresponding to the energy function is

ynew = Xsoftmax(βX�y) (2.19)

This update rule guarantees convergence of the energy function to a local minima.

The β value controls the learning dynamics of the network. If the patterns stored

in the Hopfield network are different from each other, the convergence will be to a

fixed point in the network which means it converges to one of the nearest stored

patterns. If the patterns stored are similar to each other, the network converges to a
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metastable state which is close to the arithmetic mean of the stored patterns [58]. In

such a case, high values of β, which corresponds to a low temperature can help each

pattern to reach a stable state such that the attraction basin of each pattern remains

separated from others. If the value of the β is lower, metastable states are formed

due to which the retrieved pattern will be a combination of similar patterns in the

network [58].

The important properties of this continuous Hopfield network according to Ram-

sauer et al. [58] are (1) global convergence to local minima (2) exponential storage

capacity of C ≈ 2
d
2 , and (3) convergence after one update step.

Since the continuous Hopfield networks (1) handle continuous data, (2) are dif-

ferentiable, and (3) converge in one step, they can be integrated into deep learning

architectures. Ramsauer et al. [58] propose applications in deep learning where the

Hopfield network can be integrated. In the next section we mention one such appli-

cation of Hopfield network in deep learning.

Modeling Deep Networks Using Hopfield Networks - Application

The Update Rule of the Continuous Hopfield Network is Self Attention

Mechanism in Transformers. In the study by Widrich et al. [83] it is shown that

the update rule for the continuous Hopfield network is the self-attention mechanism

of transformers [77]. Let us consider the update rule for the continuous Hopfield

networks.

ynew = Xsoftmax(βX�y) (2.20)

Let us assume that we are updating multiple state patterns Y = (y1, y2, ..., yM) si-

multaneously instead of a single pattern. Therefore,

Y new = Xsoftmax(βX�Y ) (2.21)

We assume that the stored patterns X are keys (K) and state patterns Y are queries

(Q). These are mapped into the Hopfield space with dimension dk. Therefore we set

X̂� = K = XWK (2.22)

Ŷ � = Q = YWQ (2.23)
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V = XWKWV = X̂�WV (2.24)

where Eq. (2.22), Eq. (2.23) and Eq. (2.24) are the Keys, Queries and Values

respectively.

The dimensions of the matrices are WK ∈ Rdx×dk , WQ ∈ Rdy×dk , WV ∈ Rdk×dv ,

K ∈ RN×dk , Q ∈ RM×dk and V ∈ RN×dv

If β = 1√
dk
, then for the update rule of the continuous Hopfield network, the

self-attention is:

softmax(
QKT

dk
)V = softmax(βYWQW

�
KX�)XWKWV (2.25)

Having an attention mechanism with high storage capacity, this Hopfield layer can

be used as a self-attention layer in deep learning architectures. Widrich et al. [83]

propose a Deep Repertoire Classification (DeepRC) network with a self attention Hop-

field layer which is tasked to predict immune status based on the immune repertoire

sequences. Since each of these sequences are very large, finding patterns within those

sequences can be a very challenging task. The study has shown that the DeepRC

network outperforms other state-of-the-art methods despite the massive sequences.

2.5.3 Modeling Prefrontal Cortex as a Reinforcement Learning

Agent

The prefrontal cortex region of the brain is said to be involved in higher cognitive tasks

like planning, rule learning and reasoning [61]. It is hypothesized that the prefrontal

cortex uses reinforcement learning to be able to perform such tasks. In this section

we discuss (1) modeling higher cognitive tasks, and (2) reinforcement Learning

Modeling Higher Cognitive Tasks - Reward Prediction Error

Other than storing and retrieving memories, the brain is specialized in tasks like

planning, grouping experiences into categories, and reasoning [65]. These are often

referred to as higher cognitive tasks and are attributed to many brain areas like

prefrontal cortex, basal ganglia and visual cortex [65]. In order to achieve these tasks,

the brain is hypothesized to implement reward-driven learning. It is said that the

brain structures like prefrontal cortex receive dopamine signals that convey reward
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prediction error which controls learning and facilitates goal directed behavior [54,

81, 73]. This idea of modulating actions through reward signals forms the basis for

understanding how the prefrontal cortex works as a reinforcement learning agent.

Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique where an agent learns

optimal behavior in an environment such that reward is maximized. The basic com-

ponents in any RL problem are: (1) Environment - The world in which the agent

operates, (2) State - Current situation of the environment, (3) Reward - Feedback

signal from the environment (4) Policy - The strategy that an agent uses to maximize

the reward (5) Value - Future rewards that can be expected based on the current

action. Fig. 2.2 represents the basic action-reward loop of a RL problem

Figure 2.2: Action-Reward loop in Reinforcement Learning Problems.

In any RL problem, the agent interacts with the environment to achieve a goal.

The agent does not have prior knowledge of what actions to take and so based on the

reward signal and the state of the environment, the agent executes its actions so as

to maximize the reward.

Let us assume that the agent starts interacting with the environment at a time

step t. At this time step, the agent receives the state of the environment denoted

by St. Based on the state of the environment, the agent selects an action At. The

agent executes this action and one time step later (denoted by t + 1), it receives a

reward signal from the environment Rt+1 and the environment moves to the next

state St+1. This loop continues until the agent reaches a terminal state, if one exists.

The loop consists of a finite number of time steps and the entire process gives rise to a
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sequence of states, actions and rewards (S,A,R). The mathematical formalization of

this RL loop is called a Markov Decision Process, and it forms the basis of formulating

RL problems. Please note that, in this section we use the mathematical notation

consistent with the formalization in Sutton and Barto [73].

Figure 2.3: Interaction between the agent and environment in Markov Decision Pro-
cess. (Source [73])

The variables Rt and St have probability distributions that are dependent only

on the preceding state and action. The probability of s′ ∈ S and r ∈ R occurring at

time step t is dependent on the previous state s ∈ S and action a ∈ A occurring at

the previous time step t− 1.

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (2.26)

Since the goal of the agent is to maximize the rewards, this is defined as Discounted

Expected Reward denoted by

Gt = Rt+1 + γRt+2 + γ2Rt+3.... (2.27)

Gt = ΣT
k=t+1γ

k−t−1Rk (2.28)

The γ value is a discount factor which makes sure the rewards from immediate suc-

cessive states weigh more than the rewards in the distant future.

Exploration vs Exploitation Tradeoff Since the agent has only limited knowl-

edge of the environment, it should choose between taking actions that produced

positive rewards in the past or exploring the environment to learn new information

that may result in actions that can give better rewards in the future.
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Value Function and Policy Every RL problem involves estimating value functions

that approximate how valuable it is to take a certain action (also known as expected

return) given the state of the environment. The value function is defined based on

the policy the agent follows. The policy is typically the actions taken by the agent in

its environment. Mathematically, a policy π is a mapping from states to probabilities

of selecting actions.

π(a|s) is the policy π the agent follows at any given time step t which is the

probability of taking an action At = a given the state St = s. Formally, the value

function of a state St = s under the policy π is defined as

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s] ∀s ∈ S. (2.29)

The Eπ is the expected value given the agent follows the policy π. This is the state-

value function. If we need to define the expected value of taking an action At = a

in a state St = s under a policy π, it is called an action-value function denoted by

qπ(s, a)

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a] (2.30)

Another property of the value function is the recursive relationships between the

value of a state s to its successor states s′. Below is the Fig. 2.4 which represents this

relationship. The head node is the current state s and the agent can take any action

from state s (denoted by coloured circles) based on the policy π. Based on this the

agent can land in any one of the successor states s′ with probability p. The reward

returned by the environment is denoted by r.

Mathematically, this can be defined as

vπ(s) = Eπ[Gt|St = s] (2.31)

= Eπ[Rt+1 + γGt+1|St = s] (2.32)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]] (2.33)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]∀s ∈ S (2.34)
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Figure 2.4: Relationship between values of current state with its successor states.
(Source [73])

This equation is the sum of the probabilities of all future state, action, reward pairs

weighted against the discounted value of the next state. This equation is called the

Bellman equation.

Optimal Value Function and Policy To solve an RL problem, the goal is to

find the optimal policy that can give maximum rewards. The basic idea behind this

is that a policy π is said to be better than policy π′, if the expected return of π is

greater than the return for π′.

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) (2.35)

So every optimal policy will have a corresponding optimal value function.

v∗(s) = max
π

vπ(s) (2.36)

is the optimal state-value function and

q∗(s, a) = max
π

qπ(s, a) (2.37)

is the optimal action-value. The Bellman optimality equation for optimal state-value

function can be written as:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)] (2.38)

And for the action-value function can be written as

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γq∗(s′, a′)] (2.39)

Below is the Fig. 2.5 representing the optimal state-value and action-value selection
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Figure 2.5: Pictorial representation for choosing Panel (A): v∗ and Panel (B): q∗
(Source [73])

Temporal Difference Learning Temporal Difference Learning algorithms are a

type of RL algorithms that are used to model decision making processes in the brain

[54]. FMRI images of the human brain have revealed similarities between phasic

dopaminergic firing patterns and the characteristics of temporal difference reward

prediction error [54]. In this section we will briefly discuss the Temporal Difference

Learning and Q-learning algorithm that we use in our thesis to model the prefrontal

cortex.

One of the problems in any environment is that the rewards are not immediately

observable. So, in the TD methods, instead of calculating the total future reward,

it estimates value based on immediate reward and the reward in the next time step

without waiting for the final outcome. This method is called bootstrapping. Thus, TD

learning is advantageous over other algorithms when the dynamics of the environment

are unknown.

The value function for TD learning is defined as:

V (St) = V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.40)

The Rt+1 + γV (St+1) − V (St) is the Temporal Difference Error which measures the

difference between value at state St and the value estimate of the next time step

Rt+1 + γV (St+1).

Q-learning Q-learning is a type of off-policy TD learning method. This is termed as

off-policy because the action-value function is independent of the policy. The policy

is only used to determine the state-action pairs that are visited. The action-value

function of Q-learning is as follows:
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Q(St, At) = Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.41)

In the next section, we will review the existing computational models that at-

tempted to design the computational processes in the brain for memory tasks. We

will discuss the workings of these models, their limitations and how we overcome

these limitations in our current model.

2.6 Existing Computational Models of Verbal Learning Tasks

In the first part of this section, we review the Temporal Context Model (TCM) [26]

which is essentially an associative model of recall and recognition. Next, we will

review the Becker and Lim [10] model which studies the dynamics of the verbal free

recall in the context of the CVLT task by implementing a reinforcement learning

agent along with associative memory that captures the recall strategies developed by

the prefrontal cortex in the brain.

2.6.1 Temporal Context Model

The basic principle behind the TCM is associate chaining theory that conceptualizes

the encoding process in the memory. In this theory, words are encoded such that

they form associations with neighboring words, with associations becoming weaker for

distant words. This is based on the principle of recency and principle of contiguity [26]

observed in humans. Principle of recency is a phenomenon in memory where people

tend to recall most recently heard information accurately. Principle of contiguity, on

the other hand, refers to the phenomena where recall of one word facilitates recall of

another word that was encoded closely in time to the previous word.

To model these effects Howard et al. [26] utilize the process of contextual coding

during encoding and retrieval. A context can be defined as a randomly fluctuating

signal that represents the current state of an event. For example, context can be a

vector which can represent time. It can be thought of as a gradually drifting vector

through a multidimensional context space. Because the context is gradually drifting,

two items encoded next to each other have high overlap in their context vectors.
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In TCM, the items are encoded along with context in the memory. This allows for

overlapping contextual features for items that are encoded closely in time.

Let us assume a vector space F consisting of L vectors where each vector fi in F

corresponds to the item to be encoded. Another vector space T with each vector ti

which corresponds to the state of the context vector at time i for the corresponding

item fi. To associate the items and context two matrices are defined. One matrix is

MTF which forms the Hebbian outer product of both the context T and the corre-

sponding item F . This matrix represents the strength of connections between each

element in context T with each element in F .

MTF =
L∑
i=1

fit
�
i (2.42)

Another associative matrixMFT is formed as the Hebbian outer product of the item F

and the corresponding context T . This matrix represents the strength of connections

between each element in F with each element in T .

MFT =
L∑
i=1

tif
�
i (2.43)

During the encoding process, when an item fi is presented, two sequential steps

occur. One, the item retrieves its existing context tINi (if the item is repeated previ-

ously during the encoding). To retrieve this context, the item fi will be presented to

the MFT which derives the context tINi :

tINi = MFT
i fi. (2.44)

In the second step, this existing context tINi is combined with the context in the

previous time step ti−1 to update the current context ti.

The context ti for the item fi is calculated as

ti = ρti−1 + βtINi , (2.45)

where β is a free parameter. 0 ≤ ρ ≤ 1 such that ||ti|| = 1 and determines the drift

in the vector. Since the new context ti is derived from the previous context ti−1, the

context vector changes gradually. Additionally updating the context based on this

logic preserves the principle of recency and contiguity.
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To satisfy the constraint of ||ti|| = 1, tIN is also set to 1. Subsequently the associ-

ation matrices MTF and MFT are updated. Fig. 2.6 depicts the recursive relationship

between the item and context in the Temporal Context Model.

Figure 2.6: The recursive relationship between the Items and Context in TCM where
one retrieves the other. Source([26])

During recall, the context serves as a cue to retrieve the item. Let the contextual

cue be denoted by t. The item retrieved by the context t is

f IN = MTF t (2.46)

The probability of recall of any item in the encoded vector space F is defined as based

on the euclidean distance from f IN to any vector fi

P (fi|f IN) =
exp(− 1

τ
||f IN − fi||2)∑

j exp(− 1
τ
||f IN − fi||2) (2.47)

τ is a free parameter which controls the sensitivity of Pi to the differences in

distances.

The matrix MTF is cleared at the beginning of encoding each list. This approach

of resetting the encoding list after completion of one study and recall session disables

the model to recall items that are not part of the encoded list. The phenomena of

recalling items that are not part of the encoding list is commonly observed in humans

during free recall tasks. Therefore, the limitation of this model lies in clearing the

MTF after encoding and retrieval of each list.

Though the TCM focuses on providing computational intuition behind the storage

and retrieval processes in the free recall paradigm, they do not explain the biological

plausibility of these processes in the brain which is another limitation in this model.
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In the next section we will review the Becker and Lim [10] model which focuses on

developing a computational model that characterizes the biological aspect of the free

recall paradigm in the brain.

2.6.2 Model of Prefrontal Cortex

The computational model developed by Becker and Lim [10] accounts for the interac-

tions between the hippocampus and the prefrontal cortex in the free recall paradigm

of verbal learning tasks. This is the only model which is built on the verbal free recall

task of CVLT. This model particularly measures: (1) total words recalled across tri-

als, (2) semantic clustering ability across trials, (3) effect of lesions in the prefrontal

cortex in total words recalled and semantic clustering ability, and (4) advantage of

blocked presentation of words in total words recalled and semantic clustering ability.

The model develops a strategic approach to learning words, enabling the self-

organization of retrieval cues to perform the free recall task. The model consists of

three layers. The first layer is the Lexical Semantic Memory which stores the CVLT

words as binary representations. This layer is pretrained with a set of 100 English

words including a mix of CVLT words, semantically related words that are not part

of CVLT, and unrelated words. This feature allows the model to sometimes recall

intrusions, overcoming the limitation in the TCM model and adding realism. The

Medial Temporal Lobe is the second layer which is a binary autoassociator network.

The third layer is the Prefrontal Cortex which acts as a reinforcement learning agent.

The prefrontal cortex learns to recall words by developing mnemonic cues through

trial and error. It receives a reward signal when correct words are recalled and a

punishment signal if repetitions or intrusions are observed. This process allows the

model to refine the retrieval strategies over the course of five trials of List A free

recall.

Results from the model on the CVLT free recall task indicate that the lesions in

prefrontal cortex reduces both the total correct responses and the semantic clustering

scores. Additionally, the blocking of words during encoding enhances recall, even in

the presence of prefrontal cortex lesions.

However, a notable limitation of the model is its binary representation of CVLT
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words. This binary representation of words will fail to capture the semantic informa-

tion of English vocabulary as represented in the real world. For example, consider

the words from animals category in the CVLT. The words sheep and cow should be

closer in the vector space compared to each of their distances to the word tiger. Using

binary encoding can make it challenging to capture these precise semantic distances

between the words.

Since Becker and Lim [10] model is the only existing model in literature that

studies the prefrontal-hippocampal interactions in CVLT task, we utilize this model

to extend it to perform a yes/no recognition task. We also overcome the limitation

of Becker and Lim [10] model by representing words as continuous word embeddings.

Additionally, we adapt the intuition about the context representation and updation

presented in the TCM model to design context in our proposed model. These ex-

tensions involve several modifications to the model and the next chapter delves into

these details including the mathematical computations and experiments conducted

in this study.



Chapter 3

Methodology and Experiments

This chapter explains the mathematical formalization of (A) the architecture of our

proposed computational model, and (B) the experimental protocols used for model

evaluation.

3.1 Model

Our model is an extension of a previous model by Becker and Lim [10], which is the

only existing model in literature that depicts the interactions of prefrontal cortex and

hippocampus on the free recall task of the CVLT, which is distinct from many free

recall tasks in that it includes categories of related words. However, our work extends

this model in several ways:

1. Whereas previous studies have modeled neural representations of words using

categorically structured binary vectors, we represent the CVLT words using con-

tinuous word embeddings that are more likely to reflect the semantic distances

between these words as perceived by humans [68].

2. Whereas previous studies have generally focused on binary autoassociative at-

tractor networks such as classical Hopfield networks [25], we implement a medial

temporal lobe hippocampal architecture capable of rapid storage and recall of

continuous patterns using modern Hopfield networks [58].

3. We model temporal context by incorporating a context vector which consists

of two features. (1) List context denoting the study list type and (2) Temporal

context representing the time. The list context is a standardized binary vector

which is constant for a study list and the temporal context is a slowly drifting

vector generated by an Ornstein-Uhlenbeck Process. This allows us to better

account for the fact that words on the CVLT are read in a defined sequence,

37
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and allows our model to capture the element of temporal sequencing inherent

in this task, whereas previous models did not account for this.

4. We modeled both the free recall components and yes/no recognition tasks in the

CVLT to measure the overall recognition performance and the mnemonic dis-

crimination performance. Therefore, rather than studying a model performing

a single task as has previously been done (free recall), we are better simulating

the fact that humans must perform multiple tasks during memory testing.

In this section, we will outline the structure of our computational model, which

consists of three modules. Each module represents different parts of the brain which

interact during free recall and recognition:

1. Lexical representation module

2. Medial temporal lobe module (MTL)

3. Prefrontal cortical module (PFC)

Fig. 3.1 represents the modules in the computational model

3.1.1 Lexicon

The lexical representation module consists of a function which accepts a token (a

word), and returns a continuous embedding, which here models the activity of a set

of dw neurons. These embeddings represent high level semantic information about

words, such that the embeddings of two words that mean similar things (e.g. ox

and bull) will be closer in distance than the embeddings of two words that mean

very different things (e.g. ox and pencil). To implement the word embeddings,

we have used the state-of-the-art ConceptNet embeddings technique [68] which can

capture semantic relationships between words as perceived by humans as opposed

to abstract binary representations employed in previous studies. Fig. 3.2 illustrates

a similarity matrix between ConceptNet embeddings of words found on the CVLT.

Embedding similarity was measured using the dot product which is scaled to 0-1.

If the dot product is higher (closely approaching to 1), the words exhibit strong

semantic relation. We have replaced the word subway with train since, interestingly,
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Word Input

N = 150

Lexicon
f : R

300×1
MTL

f : R
600×1

Context
f : R

300×1

PFC
f : R

10×1

Recall Cue
R
600×1

Recalled Word

Output

Update context based on state

Figure 3.1: Illustration of each layer in the model. Solid lines represent the encoding
process and the dotted line represent the recall process. During the encoding process,
each word is represented as a continuous word embedding in the lexicon. The MTL
layer combines the embedding of the word from the lexicon with the current context.
The self loop in the context module indicates that the context updates at each time
step. MTL input is passed to the PFC, where it undergoes reinforcement learning.
During the recall process, the recall cue is first passed to PFC which in turn passes
the pattern cue to the MTL. The Hopfield network in the MTL converges the pattern
cue to the desired pattern. This pattern is sent to the lexicon to generate the recall
word.

the word subway in ConceptNet was not closely related to any words that fall under

the vehicles category in CVLT.

Modeling the Lexicon and Transformation of a Word Token to Neural

Representation

The Lexicon consisting of Nw = 150 words are modeled as a matrix,

A = {aij : i = 1, 2, ..., dw; j = 1, 2, ..., Nw} (3.1)

where the jth column, A:,j is normalized to mean 0 and unit variance. The normal-

ization of the word vectors did not result in any loss of information with respect to

the semantic representation of the words. Fig. 3.3 depicts the PCA of CVLT word
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Figure 3.2: Heatmaps representing the dot product of CVLT words. The color bar
represents the color range for the dot product which is scaled to 0-1. The words that
are related the most have the highest dot product. Panel (A): Dot product between
the CVLT List A words. Panel (B): Dot product between the CVLT List B words.
The words in the graph are ordered based on their category and do not follow the
original order in the CVLT test.

embeddings before and after normalization.

While the ConceptNet embedding set consists of 162298 English words, we re-

stricted our lexicon to 150 words to facilitate computational efficiency. Furthermore,

recalled CVLT words are generally common and often related to existing words on

the study lists. As such, we selected the following four sets of words to comprise

agents’ lexicons:

1. Set 1: 48 words present in List A, List B and yes/no recognition test of CVLT.

2. Set 2: 30 new words which are from the same categories of CVLT List A and

List B. Since the List A and List B words of CVLT are distributed among 6

different categories, we selected 5 new words from each category.

3. Set 3: 8 words are taken from two new categories fruits and devices which

are not part of CVLT word categories. We choose 4 words from each of these

categories.

4. Set 4: The remaining 64 words are random and are not related to any words

selected above.
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Figure 3.3: Principal Component Analysis (PCA) of the word embeddings. Panel
(A): PCA of original ConceptNet embeddings. Panel (B): PCA of embeddings
when Z-score normalization is applied. The Z-score normalization did not result in
any loss of information in the word vectors

To generate the Set 2, Set 3 and Set 4 words for the lexicon, we used the Lex-

OPS package in R [74]. The LexOPS package provides the capability to generate

psycholinguistically controlled word stimuli. An inbuilt database of English words is

also provided which contains a range of (1) lexical variables like parts of speech, word

frequency (2) orthographic variables like bigram probability, (3) phonological vari-

ables like number of syllables, and (4) behavioral variables like proportion of people

who know any given word, that are commonly used in psycholinguistic research.

Using the LexOPS library, we set various properties for words like (1) Zipf fre-

quency, (2) Parts of speech (All CVLT words are nouns), (3) bigram probability, (4)

Length of the words, (5) Frequency per Million words, (6) number of syllables, (7)

level of concreteness (highly concrete words), and (8) familiarity (at least 98% know

the word), to ensure the selected words are commonly used in the English language.

For each of these conditions, we first recorded the values for the existing CVLT words

(Set 1) using the LexOPS user interface and used the same range of values to select

the other words. This is to ensure that all the words have the same properties of the

CVLT words. Additionally, we conducted similarity checks by computing dot product

between each selected word with the existing CVLT words to ensure the Set 2 words

have high similarity, while Set 3 and Set 4 have low similarities with the Set 1 words.
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Pre-Training the Lexicon layer

The Lexicon layer is first pre-trained via weights D ∈ Rdw×Nw . The lexicon weights

are initialized randomly and before the encoding process commences, the weights

are trained through the entire 150 words in Lexicon which updates them to the

corresponding word features in Lexicon [10].

D = D + αDA (3.2)

where 0 < αD < 1 is the learning rate.

Encoding in the Lexicon layer

During the encoding process, the weights in the Lexicon layer are trained via Hebbian

learning which strengthens connections of the words encoded in the Lexicon.

D = D + αD(A�H) (3.3)

where H ∈ Bdw×Nw such that the values are 1 for the embeddings of words that are

encoded, and 0 otherwise. 0 < αD < 1 is the learning rate which is the same as the

pre-training learning rate.

Recall in the Lexicon layer

Recall in the Lexicon layer involves computing the dot product between the pattern

generated by the hopfield network ζk(1:dw) and D. The detailed description of choosing

the recalled word through lexicon is described in Section 3.1.4.

i∗ = argmax(σ(D�ζk(1:dw)))i (3.4)

3.1.2 Context

Since (A) words are presented to the agent sequentially over time, and (B) an essential

aspect of the CVLT involves recalling words encountered in a particular context, it

is imperative that our model includes neural representations of temporal and list-

related contexts. The context representation consists of two features concatenated

into a single vector. The first is a vector representation of the specific list with which a
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word was associated (i.e., List A), and the second is a vector representing time [4]. Let

C = (c1, c2, ....cNstored(t))
� be the matrix of context representation C ∈ Rdc×Nstored(t)

where dc = 300 is the dimensionality of the context representation, and Nstored(t) is

the number of words that have been encoded by time t. The context vector c for each

word is a concatenation of list type context vector L with dimensions dL = 250 and

temporal context vector T with dimensions dT = 50

c = concat(L, T ) (3.5)

List Context

The first 250 elements in the context vector c denoted by L represent the type of

list presented. It is created by first generating a binary vector where the first 125

elements are 1’s for List A with the remainder set to 0. To ensure the concatenation

of context with word embeddings have 0 mean and unit variance, the List A context

vector is also standardized and scaled.

Temporal Context

The last set of 50 elements in the context vector c, denoted by T represents time

as a slowly drifting vector with constant mean (0) and variance (1) generated by

an Ornstein-Uhlenbeck Process [32]. This ensures that the items presented in close

temporal succession have more similar contexts than items presented further apart [4].

The Ornstein–Uhlenbeck process is defined in continuous time which is a stochastic

differential equation:

Tt+1 = Tt + θ(μ− Tt)dt+ σdWt (3.6)

where Tt ∈ RdT×1 is the drifting context vector for each time step t. The initial

value for Tt is random and follows a standard normal distribution. dWt is a Wiener

process. The parameters μ, θ and σ are positive constants representing mean, mean

reversion rate and volatility, respectively. This process has a stationary probability

distribution due to the drift term θ(μ−Tt)dt. The drift term ensures that the process

drifts towards the mean based on the mean reversion rate θ which makes it a mean-

reverting process. When Tt is above mean, the process moves downward and when
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Tt is below mean, it moves upwards. Fig. 3.4 below shows two simulations of the

Ornstein-Uhlenbeck Process.

Figure 3.4: Two illustrative simulations of a one-dimensional Ornstein-
Uhlenbeck Process with μ = 0 and σ = 1

We set dt to 1 second, such that Tt − Tt+1 represents the change in context rep-

resentation over 1 second. During the immediate free recall phase, each word is read

out to participants at a rate of no more than 2 seconds per word. As such, for succes-

sive words presented to the agent, the context vector will be incremented by 2 which

represents an increment of 2 seconds.

Upon completion of the encoding phase of each immediate free recall trial, tem-

poral context is incremented by dt = 2 seconds, and the recall phase is commenced.

After recall of each word, temporal context is again incremented by dt = 2 seconds.

Before the start of the Long Delay Free yes/no recognition process, there will be

approximately a 20 minute delay. So, the temporal context is incremented by 1200

seconds to represent this delay. After each step in the long delay yes/no recognition

process is incremented by 2 seconds.
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3.1.3 Medial Temporal Lobe Memory System

The Medial Temporal Lobe (MTL) represents the hippocampus in the brain modeled

based on the Modern Hopfield Network for continuous patterns [58] with dmtl units

where dmtl = dw + dc.

Encoding in the Medial Temporal Lobe

Encoding the words into MTL constitutes storage of Nstored(t) embeddings of words

observed by the agent. For example, during Immediate Free Recall A, we present

Nstored(t) = 16 words such that Y = (y1, y2, ....yNstored(t))
�.

These are concatenated with context such that each encoded word and its context

is represented as s = (y, c)� where s ∈ Rdmtl×1.

M =

(
Y

C

)
=

⎛
⎜⎜⎜⎜⎜⎝

s1

s2
...

sNstored(t)

⎞
⎟⎟⎟⎟⎟⎠

�

=

⎛
⎜⎜⎜⎜⎜⎝

y1 c1

y2 c2
...

...

yNstored(t) cNstored(t)

⎞
⎟⎟⎟⎟⎟⎠

�

(3.7)

For the first encoding trial, the embedding and context are concatenated as shown

above. From the second encoding trial, the existing temporal context of each word

in the M is averaged with the temporal context of the current trial. This models the

typical observation in human recognition memory studies that recency and contiguity

association of the words is higher in the first trial and gradually decreases in the

following trials [32]. That is, humans typically recall words in the sequence in which

they were heard on the first recall attempt. As the number of encoding trials and

recall attempts increases, the serial order of words tends to become less prominent in

the order in which subjects recall words. For example, consider the ith encoded word

si. During the first trial, the temporal context of the encoded word si is Tt where t

is the current time step. When the second trial commences, the time step progresses

to t = t + nsteps where nsteps = (Nstored(t) − i + Nattempts) × 2. (Note: We multiply

by 2 because encoding or recall of each word takes 2 seconds each). Let the temporal

context during this time step be Tcurrent. The corresponding temporal context of si

is updated to Tt = (Tt + Tcurrent)/2
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Attention During Encoding

In the verbal learning tasks, participants often attend more to the initial words pre-

sented in the task, with attention decreasing towards the middle and end of the list

[32]. As per Kahana [32], the context associated with each word can explain the

recency effect but the high attention towards the early list of words is independent

of the recency effect. This study also mentions that this phenomenon is the source

of the primacy effect observed during the free recall. Sederberg et al. [64] modeled

attention as an exponentially decaying scalar value. That is, for the ith encoded word,

the attention is modeled as follows:

φi = φs exp(−φd(i− 1)) + 1 (3.8)

where φs + 1 denotes the value of attention for the first encoded word. φd denotes

the decay in the attention for the rest of the encoded words. The Fig. 3.5 below

represents the decay in the value of attention φ for each of the encoded words.

Figure 3.5: The exponential decay in the attention parameter φ for each of the en-
coded words in List A. The parameters are φs = 6.0 and φd = 0.8

During the first trial of encoding, we incorporate this attention parameter by

multiplying the scalar value φ to each of the embeddings before adding the context.
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Modeling attention ensured a learning curve in the total number of words recalled

during the immediate free recall.

For ith encoded word yi, we multiply the corresponding attention value φi as shown

below.

yi = φi � yi (3.9)

Recall in the Medial Temporal Lobe

The recall process in the modern Hopfield network of MTL is implemented as follows:

ζ
′
= Msoftmax(βM�ζ) (3.10)

where ζ is an embedding of the cue generated during the recall phase. M ∈
Rdmtl×Nstored(t) is the set of previously memorized words at any time t. Nstored(t) =

16 List A words stored during Immediate Free Recall A (IFRA). β is the inverse

temperature [58]. The detailed description of recall process in the MTL is described

in Section 3.1.4

3.1.4 Inhibition of Return (Response Suppression)

Response suppression is a method where a temporary suppression mechanism is added

for the recently recalled words so that it prevents the model from recalling the same

words repeatedly [10, 32]. This phenomenon is known as inhibition of return [35].

In the Becker and Lim [10] model, the experiment lacking inhibition of return made

many repetition errors and recalled fewer words and had shallow learning curves.

To prevent this, we have included inhibition of return in the Lexicon and Medial

Temporal Lobe layers.

Response suppression at Medial Temporal Lobe

To implement response suppression, a short term memory window STM = (j∗1 , j
∗
2 , ..., j

∗
stm)

is maintained during the recall process. j∗ is the index of the previously recalled word

in the set of memorized words M . The capacity of the STM is stm = 7 which means

any time during the recall process, the STM holds the indices of the last recalled
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words. Choosing the STM capacity stm = 7 helped in reducing the repetitions and

improved the overall recall responses across all the agents

This STM is used to create a mask Z ∈ Bdmtl×Nstored(t) where

Zi,j =

⎧⎨
⎩0 at j ∈ STM

1 elsewhere
(3.11)

During the recall process in the medial temporal lobe, we include the mask Z

in the Hopfield network equation. This selectively disables the previously recalled

words from the encoded words M . We then allow the network dynamics of the

Hopfield network to reach equilibrium by running

ζ1 = (Z �M)softmax(β(Z �M)�ζ0) (3.12)

ζ2 = (Z �M)softmax(β(Z �M)�ζ1) (3.13)

and so on, until convergence is reached at time k.

ζk = (Z �M)softmax(β(Z �M)�ζk−1) (3.14)

such that the final converged pattern is ζk.

In our model, the convergence criteria for the Hopfield network is that the norm

of the previous state pattern and the current state pattern is less than the tolerance

level of 0.01. √√√√dw+dc∑
i=1

(ζki − ζ(k−1)i)
2 < 0.01 (3.15)

Response suppression at Lexicon

In cases where the model recalls intrusions, it is not possible to execute the response

suppression of these intrusions in the medial temporal lobe. So, the inhibition of

return mechanism is also included in the lexicon so that the this mechanism also

applies to intrusions that are not encoded in the M matrix. The response suppression

logic for lexicon is similar to medial temporal lobe.

The STM is used to create a mask Z ∈ Bdw×Nw where
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Zi,j =

⎧⎨
⎩0 at j ∈ STM

1 elsewhere
(3.16)

During the recall process in the lexicon, we include the mask when selecting the

recalled word as follows:

i∗ = argmax(σ((D � Z)�ζk(1:dw)))i (3.17)

where (D�Z)�ζk(1:dw) is the dot product between the retrieved Hopfield pattern and

the embeddings stored in lexicon. We compute the dot product so that we obtain the

word in lexicon that closely matches with the retrieved Hopfield pattern. We scale

the dot product values using the softmax function σ((D�Z)�ζk(1:dw)) and select the

index of the word i∗ that has the highest dot product. The word corresponding to

this index i∗ in the lexicon is the word recalled.

Let the word recalled be denoted by x̂. If the model is allowed to always select

the word corresponding to the highest dot product, we observed that the model is

recalling only from the encoded words. To ensure the model recalls out of list words

(intrusions) in some cases, we incorporated a non-greedy policy of choosing the word

unit. Rather than consistently choosing the word with the highest dot product, we

sometimes let the model choose the word with the next highest dot product. To

implement this, we first mask the word x̂ in the Lexicon D.

Di,j =

⎧⎨
⎩0 at j ∈ i∗

Di,j elsewhere
(3.18)

Using the updated Lexicon weightsD, we calculate the dot product of the Hopfield

pattern with D and select the word unit with the highest dot product.

i∗ = argmax(σ((D � Z)�ζ∗1:dw))i (3.19)

3.1.5 Prefrontal Cortex

The Prefrontal Cortex (PFC) layer is modeled following Becker and Lim [10] as a

RL agent using Q-learning that learns iteratively through trial and error, developing

strategies to facilitate the recall process. In essence, this model learns abstract repre-

sentations of word categories by reinforcement learning. The PFC layer is represented

as Q = (Q1, Q2, ...Qdpfc)
� where Q ∈ Rdpfc×1 and dpfc = 10.
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Encoding in the Prefrontal Cortex

During the encoding phase, the PFC agent takes in each of the encoded words from

the medial temporal lobe s = (y, c)� where s ∈ Rdmtl×1 and calculates state action

values, called Q-values, for each unit of PFC. It is the linear sum of weighted inputs

from the MTL layer and the bias b which stores the inputs from previous actions [10].

Q-values for each PFC unit at time step t is calculated as:

Qt = F�
t st + bt (3.20)

where F ∈ Rdmtl×dpfc is the matrix of connection weights from the MTL to the

PFC. We have that

bt = δslowt bslowt + δfastt bfastt , (3.21)

where bslow ∈ Rdpfc×1 and bfast ∈ Rdpfc×1 are the learnable slow bias and fast bias

terms in the PFC at time step t. As per Becker and Lim [10], the fast bias and slow

bias are added to the prefrontal cortex layer to maintain the prefrontal units’ activity

over time during the encoding and recall trials. Maintaining the previous activity

through the bias terms enables sustained response in the prefrontal units and allows

the model to perform semantic clustering where consistent activation in one prefrontal

unit during recall corresponds to recalling words of the same category together [10].

This strategy is inspired from the FMRI study by Constantinidis et al. [14] where

sustained activations were observed in DLPFC neurons of primates during working

memory tasks. At each time step, the bslow parameter accumulates the history of

actions taken at all previous time steps of one encoding and recall trial whereas bfast

only includes the action of the previous time step [10]. If the model lacks bias, it

exhibits very low semantic clustering scores across all trials [10]. δslowt and δfastt are

learnable scalars that determine the strength of the slow and fast bias.

The larger the Q-value, it is highly likely that the model will select that action

such that the rewards are maximized. Based on Becker and Lim [10], instead of letting

the model always choose the highest Q-value, we express the Q-values as probabilities

using the softmax function. This allows for some randomization during the action

selection. Thus, the Q-value with the highest probability is most likely chosen but

it is not always guaranteed to be chosen (we denote this as maxsoft in the equation

below). This lets the model balance between exploration and exploitation.
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The optimal action value (Q∗) is caculated as

Q∗ = max
soft

(σ(Qi)) = max
soft

(
eQi∑dpfc
i=1 eQi

) for i = 1, 2, . . . , dpfc (3.22)

p = arg max
i

(Qi = Q∗) (3.23)

is the prefrontal unit corresponding to the optimal Q-value selected.

Both the weights and bias are learnable parameters which are trained using Q-

learning:

Ft+1 ← Ft + αs(rt + γmax(F�
t st+1 + bt)− P�(F�

t st + bt))� stP
� (3.24)

where Ft ∈ Rdmtl×dpfc is the matrix of state-action values corresponding to weights

from MTL to PFC at the current time step t. P is a one hot vector taking value of

1 at the index p using Eq. (3.23). In the encoding phase, the model only focuses on

the current word to be encoded and does not consider any future actions. As a result

we set the γ value to 0. The rt + γmax(F�
t st+1 + bt) − P�(F�

t st + bt)) is called the

reward prediction error denoted by errort at a time step t. rt is the reward at time

t is the feedback received by the agent based on the action taken. Since the model

does not generate any response during the encoding phase, the reward is set to 1 [10].

0 < αs < 1 is the learning rate.

The connection weights from PFC to MTL layers denoted by B ∈ Rdpfc×dmtl is

also trained using the same logic described above:

Bt+1 ← Bt + αs(rt + γmax(Btst+1 + bt)− P�(Btst + bt))� Ps�t (3.25)

The bias terms are updated as follows.

bslow = λ · bslow (3.26)

(bslowp )p∈P = P · bslow + (1− λ)Q∗ (3.27)

where p is the index of the optimal Q-value, Q∗ from Eq. (3.23) and λ is a scalar

value which defines the strength of past activity to be accumulated.

(bfastp )p∈P = Q∗ (3.28)
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which is reset after each time step t and hence it is called fast bias. The δslow and

δfast values are updated at each time step by Q-learning:

δslowt+1 ← mean(diag(δslowt I +αδ
s(rt + γmax(F�

t st+1 + bt)−P�(F�
t st + bt))� bslowt P�))

(3.29)

and

δfastt+1 ← mean(diag(δfastt I +αδ
s(rt + γmax(F�

t st+1 + bt)−P�(F�
t st + bt))� bfastt P�))

(3.30)

where I ∈ Idpfc×dpfc and γ = 0

Recall in the Prefrontal Cortex

When recall is initiated, the first retrieval cue to the PFC is sNstored(t) which is the

last word studied during encoding. This is based on the recency effect in free recall

phenomenon where participants are more likely to recall the last studied word first

[31].

From the next recall attempt, the recall cue will be the word recalled in the

previous attempt. If the previous recalled word is part of the encoded word list (M),

then the embedding along with its context stored during the encoding is presented as

the next recall cue. If the recalled word is an intrusion, the context is set to zero.

This retrieval cue is used to select the PFC unit p that produces the optimal

action value using

Qt = F�
t sNstored(t) + bt (3.31)

In the first recall attempt, the Ft and bt are the weights and biases from the last

studied word in the encoding phase. The optimal action value (Q∗) is selected using

the same softmax function using the same policy defined in the encoding

Q∗ = max
soft

(σ(Qi)) = max
soft

(
eQi∑dpfc
i=1 eQi

) for i = 1, 2, . . . , dpfc (3.32)

p = arg max
i

(Qi = Q∗) (3.33)

This is used to generate the MTL pattern cue as follows:

ζ = (B�
t P )�Q∗ (3.34)
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which is the weighted sum of activations from the PFC layer. B ∈ Rdpfc×dmtl is the

PFC to MTL weight matrix. P is a one hot vector taking value of 1 at the index p.

Q∗ is the optimal action value for the corresponding retrieval cue of PFC.

This MTL pattern ζ is standardized and scaled and then transmitted to MTL

which uses equation Eq. (3.12) to converge the Hopfield network to an equilibrium

and generate the final converged pattern ζk. The standardizing and scaling of the

prefrontal output is important since the patterns stored in the Hopfield network and

the embeddings stored in the Lexicon are all standardized and scaled. We calculate

the dot product between this converged pattern and Lexicon weights D to generate

the recalled word using Eq. (3.17). We pass this resultant pattern along with its

context (st+1) as the retrieval cue for the next recall attempt.

The weights and biases are learnable parameters that are trained at each time

step t during recall, in addition to their training during encoding:

Ft+1 ← Ft + αrη(rt + γmax(F�
t st+1 + bt)− P�(F�

t st + bt))� stP
� (3.35)

where Ft ∈ Rdmtl×dpfc is the matrix of state-action values corresponding to weights

from MTL to PFC at the time step t. P is a one hot vector taking value of 1 at

the index p which is the index of the optimal Q-value, Q∗ from Eq. (3.33). The

rt+ γmax(F�
t st+1+ bt)−P�(F�

t st+ bt) is called the reward prediction error denoted

by errort at a time step t. rt is the reward at time t, which represents the feedback

received by the agent based on the previous word recalled. If the word recalled is the

correct word, then the reward is set to 1. If the word is not from the list (intrusion)

or if it is repeated, the reward is set to -1. γ is the discount factor. η is the learning

rate set to 1. If there are repetitions during the recall, it is set to 0.25 [10].

Bt+1 ← Bt + αrη(rt + γmax(Btst+1 + bt)− P�(Btst + bt))� Ps�t (3.36)

The bias terms bslow and bfast are updated as follows.

bslow = λ · bslow (3.37)

(bslowp )p∈P = P · bslow + (1− λ)Q∗ (3.38)

(bfastp )p∈P = Q∗ (3.39)



54

The δslow and δfast values are updated at each time step by Q-learning algorithm

δslowt+1 ← mean(diag(δslowt I +αδ
rη(rt+γmax(F�

t st+1+ bt)−P�(F�
t st+ bt))� bslowt P�))

(3.40)

and

δfastt+1 ← mean(diag(δfastt I +αδ
rη(rt+γmax(F�

t st+1+ bt)−P�(F�
t st+ bt))� bfastt P�))

(3.41)

Since each recall trial in the CVLT test ends when the agent cannot remember any

more words, our model ends a recall trial when two consecutive words are recalled

incorrectly.

3.2 Implementation of the Agent Under a Yes/No Recognition

Paradigm

Let Y ∗ = (y∗1, y
∗
2, ...., y

∗
N) be the embeddings of the test list for a recognition model.

These are concatenated with List A context such that each encoded word is repre-

sented as s∗ = (y∗, c∗)�. The context c∗ is set to the List A context.

We propose Approach 1, detailed in Section 3.2.1, which involves making recog-

nition memory judgements that involves full recollection process by engaging both

the prefrontal cortex and medial temporal lobe. This full recollection process encom-

passes performing reinforcement learning through the prefrontal cortex as described

in Section 3.1.5 and subsequently passing the output from the prefrontal cortex to the

medial temporal lobe. This allows for the pattern completion process as described

in Section 3.1.3. After the full recollection, our approach is designed to perform

recognition memory judgements.

In addition to approach 1, we also implemented two other approaches in Sec-

tion 3.2.2 and Section 3.2.3. The second approach only uses the executive control

system of the reinforcement learning process as described in Section 3.1.5 to make

recognition memory judgements and the third approach only utilizes the recollection

through the medial temporal lobe to make recognition memory judgements. This de-

tailed analysis allows us to evaluate the significance of full recollection in recognition

process and unravel the individual contributions of the prefrontal cortex and medial

temporal lobe.
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3.2.1 Approach 1: Full Recollection

The first approach implements full recollection, where each recognition cue undergoes

the entire recollection process similarly to what occurs during recall. This idea of rec-

ollection is discussed by Mandler in [43] and Yonelinas in [85] where the recognition

judgement process is viewed as a strategic search process that retrieves context infor-

mation of the cue. This idea is also proposed by Kahana in [32] where the recognition

process is modeled by presenting a cue and retrieving its associated pattern, similar

to cued recall. Fig. 3.6 below outlines our step by step process for this approach.

Figure 3.6: The step by step process of the first approach to the yes/no recognition
model. Step 1: The initial recognition cue s∗ is the embedding of the CVLT recogni-
tion word combined with its context. Step 2: The recognition cue is passed through
the PFC layer to generate the PFC cue s∗p. Step 3: The output from PFC layer
s∗p is passed through the MTL layer, which is allowed to perform iterative pattern
completion, in order to generate s∗m and complete the full recollection process. Step
4: The weighted average of the original embedding and the retrieved pattern is then
calculated to generate s′. Step 5: Hopfield energy of the resultant pattern using
Eq. (2.18) is calculated.

In step 1 we add context to the recognition word embedding to create s∗ =

(y∗, c∗)�. In step 2, we present s∗ as a cue to the prefrontal cortex module which

is denoted by s∗p = PFC(s∗) in Fig. 3.6. The PFC(s∗) involves passing the recog-

nition cue through the PFC to generate the MTL pattern cue using the Eqs. (3.31)
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to (3.34). The step 3 denoted by s∗m = MTL(s∗p) converges the MTL pattern cue in

the Hopfield network to generate the final converged pattern as shown in Eq. (3.12).

These three steps constitute the recollection process and are common for both recog-

nition and recall. In Step 4, the converged pattern is averaged with the original

recognition cue to generate s′ using the weighted average method. The weight vari-

able Δ is a scalar value which is between 0 and 1. We measured the performance of

the recognition test, by varying the values of Δ.

In Step 5 we calculate the energy of the Hopfield network using Eq. (2.18) as

presented in [58] for each of these patterns. As per the formalization of energy function

in [58], each pattern stored in the Hopfield network represents a fixed point in the

network leading to minimization of the energy value. So, when the retrieved pattern

in our model closely resembles the patterns stored in Hopfield network M , the energy

associated with the pattern will be minimum. When the energy value of a pattern is

minimum, it is highly likely that the pattern is stored in the memory M . Therefore,

we use this energy value to estimate the probability of recognizing the pattern as old

or new.

3.2.2 Approach 2: Recollection through PFC

In the second approach each recognition cue does not undergo full recollection; rather

the output from the PFC layer is combined with the original embedding for recogni-

tion. As per Becker and Lim [10], in contrast to the MTL which stores the detailed

episodic trace of the patterns (embedding with context), the PFC layer stores the

representations as a mnemonic code enhancing particular attributes like categori-

cal properties of the patterns to facilitate systematic retrieval and enable semantic

clustering. Based on this idea, we propose that the PFC layer typically enhances the

categorical properties of the cue which when combined with the recognition cue, helps

in recognizing a pattern as old or new. Comparing this approach with the previous

one enables us to test the importance of full recollection as opposed to relying on this

partial recollection process in recognition judgments. The Fig. 3.7 below outlines our

step by step process for this approach.

In step 1, we add context to the recognition word embedding to create s∗ =

(y∗, c∗)�. In step 2, we present s∗ as a cue to PFC which is denoted by s∗p = PFC(s∗)
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Figure 3.7: The step by step process of the second approach to the yes/no recogni-
tion model. Step 1: The initial recognition cue s∗ is the embedding of the CVLT
recognition word combined with its context. Step 2: The recognition cue is passed
through the PFC layer to generate the PFC cue s∗p. Step 3: The weighted average
of the original embedding and the pattern from PFC layer is calculated to generate
s′. Step 4: Hopfield energy of the resultant pattern using Eq. (2.18) is calculated.

in the Fig. 3.7. The PFC(s∗) involves passing the recognition cue through the PFC

to generate the MTL pattern cue using the Eqs. (3.31) to (3.34) present in the Recall

section of the Prefrontal Cortex. In step 3, the pattern generated from PFC layer is

averaged with the original recognition cue to generate s′ using the weighted average

method. The weight variable is a scalar value Δ which is between 0 and 1. We

measured the performance of the recognition test, by varying the values of Δ. In step

4 we calculate the energy of the Hopfield network as in Approach 1. This energy is

used as a measure for probability of recognizing the pattern as old or new.

3.2.3 Approach 3: Recollection through MTL

In the third approach the recognition process does not involve the PFC layer. The

recognition cue is directed to the MTL layer to perform pattern completion and

then is combined with the original embedding for recognition. Since the MTL is

always attributed to recognition process and mnemonic discrimination, comparing
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this approach with approach 1 allows us to compare how pattern completion process

in the hopfield network contributes to recognition as opposed to full recollection. The

Fig. 3.8 below outlines our step by step process for this approach.

Figure 3.8: The step by step process of the third approach to the yes/no recogni-
tion model. Step 1: The initial recognition cue s∗ is the embedding of the CVLT
recognition word combined with its context. Step 2: The recognition cue is passed
through the MTL layer to generate the MTL cue s∗m. Step 3: The weighted average
of the original embedding and the pattern from MTL layer is calculated to generate
s′. Step 4: Hopfield energy of the resultant pattern using Eq. (2.18) is calculated

In step 1, we add context to the recognition word embedding to create s∗ =

(y∗, c∗)�. In step 2, we present s∗ to the Hopfield network which converges the word

embedding to generate the final converged pattern from MTL as shown in Eq. (3.12).

In step 3, the converged pattern is averaged with the original recognition cue to

generate s′ using the weighted average method. The weight variable is a scalar value

Δ which is between 0 and 1. We measured the performance of the recognition test,

by varying the values of Δ. In step 4 we calculate the energy of the Hopfield network

same as presented in approach 1. This energy is used as a measure for probability of

recognizing the pattern as old or new.
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3.3 Experiments

We carried out series of experiments to assess performance of the free recall and

recognition tasks. Initially we aimed to validate the free recall results obtained by

extending our baseline model by Becker and Lim [10]. The details of this extended

model can be found in Section 3.1. Our evaluation of the free recall performance

included assessing the metrics of the CVLT: total number of correctly recalled words

and semantic clustering scores as outlined in Section 2.3.1.

In the second phase of our experiments, we introduced the delayed yes/no recog-

nition task. We evaluated the results of delayed mnemonic discrimination and overall

recognition performance on this task using a new measure of mnemonic discrimination

proposed by Leger et al. [40] which is described in Section 2.3.2.

To provide a basis for comparision, we measured the performance of our extended

free recall model against the Becker and Lim [10] with a focus on the first three

variables: group, blocked and trial, presented in Table 3.1. Furthermore, we evaluated

the yes/no recognition performance across the variables: group, blocked and delta,

presented in Table 3.1.

Sl No. Variable Values Description

1 group intact/lesion
A flag indicating if the agent is intact or le-
sioned

2 blocked blocked/unblocked
A flag indicating if the CVLT words are pre-
sented in the order of their categories during
encoding or not

3 trial between 1-5
Indicating one of the 5 trials executed during
free recall

4 delta (Δ) between 0-1
The weight variable that is utilized to calculate
the weighted average during yes/no recogni-
tion task

Table 3.1: Different scenarios for measuring model performance. The first two vari-
ables group and blocked are used in testing both free recall and recognition perfor-
mance. The variable trial only applies to free recall since the free recall process takes
place over a series of 5 trials. The delta (Δ) value is only applicable for yes/no recog-
nition test where it is used to calculate the weighted average.

This section has a detail explanation of (1) different tasks simulated, (2) different

agents for the experiment, and (3) statistical analysis for the free recall and mnemonic

discrimination experiments.
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3.3.1 Verification of Becker and Lim Results on Free Recall

Specific Task Instantiation

Our first experiment was to extend our baseline model by Becker and Lim [10] as

mentioned in the Section 3.1. We calculated CVLT metrics (1) total number of

correct recalled words and (2) semantic clustering scores and compared them to the

results reported in the Becker and Lim model [10].

As in Becker and Lim [10], our experiments involved simulating two kinds of

agents, intact and lesioned. As our study focuses on prefrontal cortex lesions, we

disabled 30% of nodes in the PFC layer and along with its incoming and outgoing

connections to MTL. Disabling more than 30% of the connections did not result in

any reduction in the number of correctly recalled responses. We then compared the

correct responses and semantic clustering scores of the lesioned model with the intact

model, where none of the connections were disrupted.

In the next task, we extended the previous experiment by evaluating how a blocked

presentation of CVLT words affects model performance. To do this, we simulated

free recall experiments by encoding the words in the order of their categories. This

experiment was carried out for both intact and lesioned agents.

Simulated Agents

Our experiments were conducted on four different agent types, intact, lesion, intact

blocked and lesion blocked. Within each of these groups, we executed the free recall

experiment on 100 agents. We then calculated the total number of correct recalled

words and semantic clustering scores (refer Section 2.3.1) for each trial and averaged

the results within each group. This allowed us to get an overall performance measure

of each group and make comparisons among the different groups.

Statistical Analysis

Total Number of Correct Recalled Words To estimate the effect of the first

three variables mentioned in Table 3.1 on the number of correct responses Ĉ generated

during free recall, we employed the linear regression model described below (presented

in R syntax):
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Model 1: Ĉ ∼ group+ blocked+ trial + group : blocked (3.42)

Observed Semantic Clustering Scores To assess the influence of the above

mentioned variables on the observed semantic clustering scores OS generated during

free recall, we conducted linear regression model described below:

Model 2: OS ∼ group+ blocked+ trial + group : blocked (3.43)

Both the models examined the impact of each of these variables and also analyzed

the interaction between the group and blocked variables on the number of correct

responses generated and semantic clustering scores respectively.

3.3.2 Evaluation of Model Performance on Delayed Mnemonic

Discrimination

Specific Task Instantiation

In our second experiment, we introduce the yes/no recognition task following the com-

pletion of the free recall task. For this recognition task, we calcuated the metrics MDI

and REC (Section 2.3.2) for each of the three approaches detailed in Sections 3.2.1

to 3.2.3. Similar to the free recall task, we applied these three approaches to different

agent types: intact, lesion, intact blocked and lesion blocked. We then conduct a

comparitive analysis of the MDI and REC for each of these agent types.

Simulated Agents

Our experiments were conducted on four different groups: intact, lesion, intact-

blocked and lesion-blocked. Each group was subjected to the experiment with 100

agents. For each individual agent, we consider a range of Δ values to identify the

influence Δ value on the MDI and REC. The Δ is the weight variable utilized in com-

puting the weighted average during the recognition process (refer Figs. 3.6 to 3.8).

In our assessment we fit a five-parameter logistic function for each agent as de-

scribed in the Eq. (2.7), to evaluate the model’s capability to classify new words as a

function of distance. Additionally, we calculated the MDI (Eq. (2.8)) and REC index
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(Eq. (2.9)) to assess how the mnemonic discrimination and recognition performance

vary when semantically related words are present, as described in Leger et al. [40].

Logistic Mnemonic Discrimination Index (MDI)

We fit the sigmoidal function in Eq. (2.7) to each agent, categorized by their group (in-

tact/lesion), blocked (blocked/unblocked) and delta values. We utilized the non-linear

least squares in the LsqFit.jl package of the Julia programming language (Dhanyaasri

et al., (manuscript in preparation)). After determining the best fitted curve for each

of the groups, we calculated the MDI using Eq. (2.8).

Statistical Analysis To estimate the effects of the variables group, blocked and

delta on MDI, we performed linear regression analysis described below:

Model 4: MDI ∼ group+ blocked+ delta+ group : blocked+

group : delta+ blocked : delta+ group : blocked : delta
(3.44)

Recognition Index (REC)

After calculating the MDI, we calculated the REC using Eq. (2.9) for each of the

agents and compared the recognition performance across the group, blocked and

delta variables.

Statistical Analysis To estimate the effects of the variables group, blocked and

delta on REC, we performed linear regression analysis described below:

Model 6: REC ∼ group+ blocked+ delta+ group : blocked (3.45)

Model 6: REC ∼ group+ blocked+ delta+ group : blocked+

group : delta+ blocked : delta+ group : blocked : delta
(3.46)

For all the linear regression models mentioned above, we conducted the statisti-

cal power calculations to assess whether the sample sizes in these experiments were
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adequate to draw meaningful and statistically significant conclusions. All power cal-

culations, Tables C.1, C.2, D.1 to D.3 and E.1 to E.6 show a power of 1 for significance

level of 0.001 showing that all the models yield results with high reliability for our

sample size of 100 agents. The next chapter will present the results for all the exper-

iments described in this section.
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Results

4.1 Verification of Becker and Lim Results on Free Recall

Fig. 4.1 shows the number of correct responses and observed semantic clustering

scores for different group of agents and blocked presentation of input over the course

of five trials. As reported in the Becker and Lim [10] results, lesioning nearly one

third of connections in the prefrontal cortex layer and its interactions with the hip-

pocampus degraded the recall performance. The effect of lesioning on total number

of correct recalled words shows a significant negative impact (β = −1.75, p < 0.001;

Table 4.1). The prefrontal cortex lesions also has a significant negative impact on

semantic clustering scores (β = −1.45, p < 0.001; Table 4.2).

Further, as reported in Becker and Lim [10], we see a significant negative effect

of unblocked list presentation on semantic clustering scores (β = −0.32, p = 0.006;

Table 4.2). Although the unblocked presentation of words shows a negative impact

for semantic clustering scores, we did not observe a significant impact on the total

number of correct recalled words. Furthermore, no significant impact was observed

for the interaction between unblocked and lesion as reported by Becker and Lim [10].

4.2 Comparison of Model Performance on Delayed Mnemonic

Discrimination

4.2.1 Logistic Mnemonic Discrimination Index (MDI)

Approach 1: Full Recollection

Based on Fig. 4.2 below, the MDI value is highest for lower delta values ( i.e. with

more PFC involvement) indicating that MDI heavily relies on the recollection pro-

cess involving both prefrontal cortex and medial temporal lobe. Linear Regression

64



65

Dependent variable (Total Recalled Words)

Predictors Estimates CI p

(Intercept) 11.2 10.96 – 11.44 <0.001

blocked [unblocked] -0.22 -0.45 – 0.01 0.064

group [lesion] -1.75 -1.98 – -1.52 <0.001

trial 0.2 0.14 – 0.26 <0.001

blocked [unblocked] × group
[lesion]

-0.07 -0.40 – 0.26 0.660

Observations 2000

R2 / R2 adjusted 0.202 / 0.201

Table 4.1: Results of the linear regression model Eq. (3.42)

Dependent variable (Semantic Clustering)

Predictors Estimates CI p

(Intercept) 4.3 4.06 – 4.54 <0.001

blocked [unblocked] -0.32 -0.56 – -0.09 0.006

group [lesion] -1.45 -1.68 – -1.22 <0.001

trial 0.31 0.26 – 0.37 <0.001

blocked [unblocked] × group
[lesion]

0.08 -0.24 – 0.41 0.616

Observations 2000

R2 / R2 adjusted 0.169 / 0.167

Table 4.2: Results of the linear regression model Eq. (3.43)
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Figure 4.1: List A Immediate Free Recall results. Panel (A): Total number of correct
recalled words over the course of five trials averaged over each group. Panel (B):
Semantic clustering scores over five trials averaged over each group

results show significant negative effect of delta on MDI (β = −0.42, p < 0.001; Ta-

ble 4.3). Furthermore, lesioning the model has significant negative effects on the MDI

(β = −0.07, p = 0.004; Table 4.3). These results collectively indicate that MDI per-

formance is associated with full recollection and benefits from the intact prefrontal

cortex.

Approach 2: Recollection through PFC

Based on Fig. 4.3, the effect of delta on MDI is consistent with the results seen in

Approach 1 (Section 4.2.1). Linear Regression results in Table 4.4 show a significant

negative impact of delta on MDI (β = −0.33, p < 0.001).

Approach 3: Recollection through MTL

Based on Fig. 4.4, delta is the only significant variable with linear regression results

showing a statistical significance of (β = −0.63, p =< 0.001) shown in Table 4.5. This

emphasizes on the importance of hippocampal recollection in mnemonic discrimina-

tion.



67

Dependent variable (MDI)

Predictors Estimates CI p

(Intercept) 0.83 0.79 – 0.86 <0.001

blocked [unblocked] 0 -0.05 – 0.05 0.928

group [lesion] -0.07 -0.12 – -0.02 0.004

delta -0.42 -0.48 – -0.37 <0.001

blocked [unblocked] × group
[lesion]

0.07 0.00 – 0.14 0.036

blocked [unblocked] × delta 0.01 -0.07 – 0.09 0.838

group [lesion] × delta 0.09 0.01 – 0.17 0.025

(blocked [unblocked] × group
[lesion]) × delta

-0.11 -0.22 – 0.00 0.057

Observations 4153

R2 / R2 adjusted 0.158 / 0.156

Table 4.3: Linear regression model results Eq. (3.44) for Approach 1



68

Dependent variable (MDI)

Predictors Estimates CI p

(Intercept) 0.65 0.62 – 0.67 <0.001

blocked [unblocked] 0.02 -0.01 – 0.05 0.28

group [lesion] 0.03 -0.00 – 0.06 0.06

delta -0.33 -0.37 – -0.29 <0.001

blocked [unblocked] × group
[lesion]

0.03 -0.02 – 0.07 0.262

blocked [unblocked] × delta -0.02 -0.07 – 0.04 0.579

group [lesion] × delta -0.03 -0.09 – 0.02 0.255

(blocked [unblocked] × group
[lesion]) × delta

-0.05 -0.12 – 0.03 0.228

Observations 4307

R2 / R2 adjusted 0.245 / 0.244

Table 4.4: Linear regression model results Eq. (3.44) for Approach 2



69

Dependent variable (MDI)

Predictors Estimates CI p

(Intercept) 0.9 0.88 – 0.91 <0.001

blocked [unblocked] 0 -0.02 – 0.02 0.773

group [lesion] -0.01 -0.02 – 0.01 0.574

delta -0.63 -0.65 – -0.60 <0.001

blocked [unblocked] × group
[lesion]

0.01 -0.02 – 0.04 0.529

blocked [unblocked] × delta 0 -0.03 – 0.03 0.9

group [lesion] × delta 0 -0.03 – 0.03 0.867

(blocked [unblocked] × group
[lesion]) × delta

-0.01 -0.05 – 0.04 0.753

Observations 4397

R2 / R2 adjusted 0.730 / 0.729

Table 4.5: Linear regression model results Eq. (3.44) for Approach 3
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Figure 4.2: The MDI vs delta for Approach 1. Panel (A): The MDI vs delta for
intact agents vs lesion agents. Panel (B): The MDI vs delta for intact agents vs
lesion agents when the input is a blocked presentation. Panel (C): The MDI vs delta
for intact agents when the words are encoded in blocked vs unblocked fashion. Panel
(D): The MDI vs delta for lesion agents when the words are encoded in blocked vs
unblocked fashion

4.2.2 Recognition Index (REC)

Approach 1: Full Recollection

Fig. 4.5 represents the REC vs Delta plots. Notably, the delta value has a sig-

nificant positive effect of REC, indicating that REC is compromised when recol-

lection takes place. This is in contrast to MDI where recollection enhances the

mnemonic discrimination performance. Linear Regression results of delta on REC

are (β = 0.75, p < 0.001; Table 4.6) and (β = 0.77, p < 0.001; Table 4.7)

Furthermore, when delta interactions are not introduced, the two way interac-

tion model Eq. (3.45), shows that lesioning the prefrontal cortex has a statistically

significant negative effect on the REC (β = −0.02, p = 0.014; Table 4.6).
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Figure 4.3: The MDI vs delta for Approach 2. Panel (A): The MDI vs delta for
intact agents vs lesion agents. Panel (B): The MDI vs delta for intact agents vs
lesion agents when the input is a blocked presentation. Panel (C): The MDI vs delta
for intact agents when the words are encoded in blocked vs unblocked fashion. Panel
(D): The MDI vs delta for lesion agents when the words are encoded in blocked vs
unblocked fashion

Unblocked list presentation has a significant positive impact on the REC (β =

0.02, p = 0.005; Table 4.6) and (β = 0.07, p < 0.001; Table 4.7) unlike MDI which did

not see any effect of blocking.

Approach 2: Recollection through PFC

Based on Fig. 4.6 below, the effect of delta value is consistent with the results seen

in approach 1 (Section 4.2.2). Linear Regression results indicate a significant positive

impact of the delta value (β = 0.63, p < 0.001; Table 4.8), (β = 0.59, p < 0.001;

Table 4.9) on the recognition performance.

Prefrontal cortex lesions further impact REC showing a statistically significant
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Dependent variable (REC)

Predictors Estimates CI p

(Intercept) 0.12 0.10 – 0.13 <0.001

blocked [unblocked] 0.02 0.01 – 0.04 0.005

group [lesion] -0.02 -0.04 – -0.00 0.014

delta 0.75 0.73 – 0.77 <0.001

blocked [unblocked] × group
[lesion]

-0.03 -0.05 – -0.00 0.019

Observations 4153

R2 / R2 adjusted 0.619 / 0.619

Table 4.6: Linear regression model results Eq. (3.45) for Approach 1

Dependent variable (REC)

Predictors Estimates CI p

(Intercept) 0.11 0.08 – 0.13 <0.001

blocked [unblocked] 0.07 0.04 – 0.10 <0.001

group [lesion] -0.02 -0.05 – 0.01 0.162

delta 0.77 0.73 – 0.81 <0.001

blocked [unblocked] × group
[lesion]

-0.08 -0.13 – -0.04 <0.001

blocked [unblocked] × delta -0.09 -0.14 – -0.04 <0.001

group [lesion] × delta 0 -0.05 – 0.05 0.88

(blocked [unblocked] × group
[lesion]) × delta

0.11 0.04 – 0.18 0.003

Observations 4153

R2 / R2 adjusted 0.621 / 0.621

Table 4.7: Linear regression model results Eq. (3.46) for Approach 1
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Figure 4.4: The MDI vs delta for Approach 3. Panel (A): The MDI vs delta for
intact agents vs lesion agents. Panel (B): The MDI vs delta for intact agents vs
lesion agents when the input is a blocked presentation. Panel (C): The MDI vs delta
for intact agents when the words are encoded in blocked vs unblocked fashion. Panel
(D): The MDI vs delta for lesion agents when the words are encoded in blocked vs
unblocked fashion

negative effect (β = −0.02, p = 0.005; Table 4.8) and (β = −0.06, p < 0.001; Ta-

ble 4.9).

Unblocked list presentation has a significant positive impact on the REC (β =

0.01, p = 0.022; Table 4.8) and (β = 0.02, p = 0.023; Table 4.9) consistent with

results seen in Approach 1.

Approach 3: Recollection through MTL

Based on Fig. 4.7, the REC value is only significantly impacted by delta (β = 0.3, p <

0.001; Table 4.10) and (β = 0.29, p < 0.001; Table 4.11) and shows consistency with
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Dependent variable (REC)

Predictors Estimates CI p

(Intercept) 0.25 0.24 – 0.26 <0.001

blocked [unblocked] 0.01 0.00 – 0.02 0.022

group [lesion] -0.02 -0.03 – -0.00 0.005

delta 0.63 0.62 – 0.64 <0.001

blocked [unblocked] × group
[lesion]

-0.03 -0.04 – -0.01 0.001

Observations 4307

R2 / R2 adjusted 0.686 / 0.686

Table 4.8: Linear regression model results Eq. (3.45) for Approach 2

Dependent variable (REC)

Predictors Estimates CI p

(Intercept) 0.27 0.25 – 0.28 <0.001

blocked [unblocked] 0.02 0.00 – 0.05 0.023

group [lesion] -0.06 -0.08 – -0.03 <0.001

delta 0.59 0.56 – 0.62 <0.001

blocked [unblocked] × group
[lesion]

-0.05 -0.08 – -0.02 0.001

blocked [unblocked] × delta -0.02 -0.06 – 0.01 0.202

group [lesion] × delta 0.08 0.04 – 0.11 <0.001

(blocked [unblocked] × group
[lesion]) × delta

0.05 0.00 – 0.10 0.037

Observations 4307

R2 / R2 adjusted 0.691 / 0.691

Table 4.9: Linear regression model results Eq. (3.46) for Approach 2
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Figure 4.5: The REC vs delta for Approach 1. Panel (A): The REC vs delta for
intact agents vs lesion agents. Panel (B): The REC vs delta for intact agents vs
lesion agents when the input is a blocked presentation. Panel (C): The REC vs delta
for intact agents when the words are encoded in blocked vs unblocked fashion. Panel
(D): The REC vs delta for lesion agents when the words are encoded in blocked vs
unblocked fashion

the results from Approach 1 in Section 4.2.2 and Approach 2 in Section 4.2.2.
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Dependent variable (REC)

Predictors Estimates CI p

(Intercept) 0.49 0.49 – 0.50 <0.001

blocked [unblocked] 0 -0.01 – 0.00 0.471

group [lesion] 0 -0.01 – 0.00 0.306

delta 0.3 0.29 – 0.30 <0.001

blocked [unblocked] × group
[lesion]

0.01 -0.00 – 0.02 0.254

Observations 4397

R2 / R2 adjusted 0.543 / 0.543

Table 4.10: Linear regression model results Eq. (3.45) for Approach 3

Dependent variable (REC)

Predictors Estimates CI p

(Intercept) 0.49 0.48 – 0.50 <0.001

blocked [unblocked] -0.01 -0.02 – 0.01 0.437

group [lesion] -0.01 -0.02 – 0.01 0.309

delta 0.29 0.28 – 0.31 <0.001

blocked [unblocked] × group
[lesion]

0.01 -0.01 – 0.03 0.193

blocked [unblocked] × delta 0.01 -0.02 – 0.03 0.642

group [lesion] × delta 0.01 -0.02 – 0.03 0.577

(blocked [unblocked] × group
[lesion]) × delta

-0.01 -0.05 – 0.02 0.413

Observations 4397

R2 / R2 adjusted 0.543 / 0.542

Table 4.11: Linear regression model results Eq. (3.46) for Approach 3
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Figure 4.6: The REC vs delta for Approach 2. Panel (A): The REC vs delta for
intact agents vs lesion agents. Panel (B): The REC vs delta for intact agents vs
lesion agents when the input is a blocked presentation. Panel (C): The REC vs delta
for intact agents when the words are encoded in blocked vs unblocked fashion. Panel
(D): The REC vs delta for lesion agents when the words are encoded in blocked vs
unblocked fashion
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Figure 4.7: The REC vs delta for Approach 3. Panel (A): The REC vs delta for
intact agents vs lesion agents. Panel (B): The REC vs delta for intact agents vs
lesion agents when the input is a blocked presentation. Panel (C): The REC vs delta
for intact agents when the words are encoded in blocked vs unblocked fashion. Panel
(D): The REC vs delta for lesion agents when the words are encoded in blocked vs
unblocked fashion



Chapter 5

Discussion and Conclusion

In the present study, we developed a computational model of prefrontal cortex-

hippocampal interactions to perform the CVLT yes/no recognition task. We are the

first study in the existing literature to measure the influence of prefrontal cortex and

its lesions on verbal mnemonic discrimination performance through computational

modeling approach. To accomplish this, we extend Becker and Lim’s [10] model,

which is the only model in literature that developed a prefrontal cortex-hippocampal

model for the CVLT free recall task. Our extension involves replacing the binary

representations of CVLT words with continuous word embeddings using ConceptNet

[68], providing a more realistic representations of words. This representation helps

us to capture the accurate semantic distances of words as interpreted in real world

as opposed to simulated binary representations. Moreover, the use of the continu-

ous representation of words facilitates the measurement of mnemonic discrimination

performance in verbal recognition paradigm, employing a novel approach proposed

by Leger et al. [40]. Our model incorporates the continuous Hopfield network as

an autoassociator network for the hippocampus. We utilize the Ornstein-Uhlenbeck

process as a context vector to represent continuous time which enables the repre-

sentation of the temporal sequencing observed in the CVLT task. Furthermore, this

enables us to accurately represent the temporal associations between words in the

CVLT task, a factor known to influence the task performance [26, 32]. The prefrontal

cortex is designed as a reinforcement learning agent that can learn to execute tasks

depending on strategic requirements. For the yes/no recognition task, we implement

three distinct approaches. The first one relies on full recollection which is based on

previous research indicating that recognition performance relies on strategic retrieval

of memories same as recall tasks [43, 85, 32]. In the second and third approaches we

look at the individual contributions of the prefrontal cortex and the the hippocampus

respectively. This will enable us to understand the influence of individual components

79



80

on the mnemonic discrimination performance.

Mnemonic Discrimination Performance: The results of the mnemonic discrim-

ination performance indicate that it is enhanced due to full recollection. Furthermore,

the lesions in the prefrontal cortex impair the mnemonic discrimination performance

and overall recognition performance. These findings support the view that strategic

retrieval of memories plays an important role in mnemonic discrimination and that

intact prefrontal cortex is required for the enhanced performance [39, 80, 29]. How-

ever, we observe that the overall recognition performance worsens due to recollection

indicating a trade-off between mnemonic discrimination and overall recognition per-

formance. This may arise due to a potential limitation in employing the recollection

process of recall in recognition as discussed in Yonelinas et al. [85], given that both

these processes may require different types of responses. While recall involves pro-

ducing the studied words from memory, recognition process involves judging a given

cue as old/new. These differences in test conditions could influence how individuals

engage in the recollection process. For example, in our model, recollection involves

the Hopfield network converging to one of the patterns stored in the memory. This

approach is effective for recall, since the recall process simply requires production

of words from memory and convergence of the Hopfield network will assist in this

process. However, consider a scenario where a novel word from the recognition list

undergoes this convergence. As the model always converges to the nearest stored

pattern, it may fail to recognize the novel word as new. This phenomenon is also

similar to hallucinations in large language models, in which the model generates a

response that is nonsensical or unfaithful to the provided source content [27]. Un-

derstanding the nuances in retrieval strategies for recognition to prevent these false

alarms can also guide us towards a better understanding of mitigating hallucinations

in language models. Additionally, future studies can also look at incorporating confi-

dence judgements to understand whether the recognition is based on recollection or is

merely based on a sense of familiarity [76, 85]. This addition will provide a nuanced

understanding of the cognitive processes involved in recognition tasks.

Another limitation in our study is the absence of list B recall of CVLT. The list B

words in CVLT are a set of 16 words divided into 4 categories such that 2 categories
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overlap with List A, and the other 2 categories are distinct. The list B recall process

acts as interference to the yes/no recognition task. Examining the effect of interfer-

ence on the mnemonic discrimination performance could be an interesting potential

research, especially considering previous research that have indicated the necessity

of an intact executive control system to resolve interference during memory tasks

[3, 66, 30]. These executive control systems, particularly the VLPFC, is hypothe-

sized to mediate distinctive encoding in the hippocampus and facilitate interference

resolution to support mnemonic discrimination. To explore this, future studies can

incorporate a pattern separation mechanism to enable distinctive encoding in the

hippocampus which is known to be facilitated by the Dentate Gyrus [21, 3].

Free Recall Performance: By extending the original Becker and Lim [23] model,

we were able to replicate the effects of prefrontal cortex lesions on the free recall perfor-

mance. This marks a significant contribution in understanding free recall paradigms

using the continuous word embeddings. However, one challenging aspect of using the

continuous Hopfield network as compared to the binary autoassociator network is its

exponentially high storage capacity. Due to the high capacity and rapid learning of

this Hopfield network, we were not able to replicate the dramatic learning slopes as

reported in Becker and Lim [10] results. For example, in our model the recall ca-

pacity was approximately around 12 out of 16 words in the first trial, in contrast to

Becker and Lim’s model [10] which recalled only around 4 to 6 words out of 16. To

address this discrepancy, we introduced an attention mechanism in the model. This

mechanism is the phenomena observed during free recall tasks where participants of-

ten attend more to the initial words presented in the task, with attention decreasing

towards the middle and end of the list [32]. Although this led to a learning curve,

reducing the model’s learning capacity in the first trial from 12 to 10, we still could

not replicate the steep learning curves demonstrated in the original results. As a re-

sult, the high storage capacity of the continuous Hopfield network poses a limitation

in our study. However, in real world data for CVLT, the learning curves differ for

each participant. Thus, further studies can enhance the free recall algorithm such

that these heterogeneous learning curves are captured.

In addition, recent study by Snow [105] has questioned the biological plausibility
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of the modern Hopfield network, indicating that the softmax computation is not

biologically plausible in the brain. Recent study by Krotov et. al [106] proposed a

biologically plausible modern Hopfield network but this network also has high storage

capacity and so may not address the high storage capacity limitation of the Hopfield

network.

We are the first study to propose a computational framework that outlines the role

of the prefrontal cortex in a verbal mnemonic discrimination paradigm. We extend

the existing model of free recall by Becker and Lim [10] to measure the mnemonic dis-

crimination performance in the verbal yes/no recognition test. The results highlight

the importance of an intact prefrontal cortex in the mnemonic discrimination and

overall recognition performance. Our model can be a foundational framework that

can be utilized to examine the role of executive functions like the prefrontal cortex in

the verbal mnemonic discrimination paradigms. Future work should examine the use

of confidence judgments during CVLT yes/no recognition to understand the degree

to which this function depends on recollection vs. familiarity. Future studies should

also capture the effects of interference from List B on yes/no recognition performance

(including mnemonic discrimination). It would also be of great interest to understand

the effects of non-local thresholding operations in the modern Hopfield network, as

well as addition of pattern separating preprocessors (to model the dentate gyrus) in

order to enhance the biological plausibility of our model. Finally, the predictions

made by the model in the present study should be tested using real-world data in

healthy controls and patients with frontal lesions.
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Appendix A

Mnemonic Similarity Task

A.1 Mnemonic Discrimination - Mnemonic Similarity Task

The gold standard task for assessing the mnemonic discrimination ability is the object

recognition memory task called the Mnemonic Similarity Task (MST) developed by

Stark et al. [69]. This task is used clinically to study the hippocampal dysfunction

in humans with neurological diseases like depression and schizophrenia.

The traditional version of MST has two phases. The initial phase is a study phase

where the participants are shown images of everyday objects and are asked to judge

if they are indoor/outdoor. This is immediately followed by a recognition test phase

where the participants should identify if each image is new, old or similar. Fig. A.1

gives an example of the images shown during the study phase and test phase [69].

The images in the test phase are equally divided into targets (images that are exact

repetitions of study phase), foils (new images) and lures (images that are perpetually

similar to the ones in study phase but are not identical). The main goal of MST is to

analyze the ability to discriminate the lures and flag them as similar instead of old

which measures the degree of pattern separation in the brain.

To calculate the performance of MST, Lure Discrimination Index (LDI) and

Recognition Memory performance (REC) are calculated. The LDI is the difference

between probability of a lure image correctly being identified as similar and the proba-

bility that a foil image is mistakenly identified as similar. The LDI performance relies

a lot on pattern separation and is critical when assessing hippocampal integrity [69].

The REC score is the difference between probability of an old image correctly being

identified as old and the probability that a foil image is mistakenly identified as old.

While LDI measures mnemonic discrimination, REC measures the overall recognition

performance.
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Figure A.1: Mnemonic Similarity Task. Panel (A): Left side are images in the
encoding phase where they should be identified as indoor/outdoor. Images on the right
are shown during the test phase where they should be classified as old/new/similar.
Panel (B): The lures shown during encoding and test phase. (Source [69])



Appendix B

Importance of Assessing Mnemonic Discrimination on

Verbal Memory

Below we outline the reasons why analyzing mnemonic discrimination in verbal mem-

ory is crucial and offers a distinct advantage compared to object recognition tasks.

1. Verbal memory, which relates to storage of language and vocabulary related in-

formation, plays a crucial role in influencing functional aspects like engagement

in community activities, problem solving in social contexts and acquisition of

new skills [71]. Moreover, patients with psychiatric disorders like bipolar disor-

der and schizophrenia often exhibit significant impairments in verbal memory.

Consequently, examining verbal memory has always been a subject of interest

in studies involving patients with neuropsychiatric disorders. Numerous meta-

analysis and longitudinal studies have been conducted to ascertain the impact of

verbal memory impairments on the day-to-day functioning of individuals with

neuropsychiatric disorders [22, 75, 16]. All these studies consistently affirm the

significant effect of verbal memory impairments on functional well-being of in-

dividuals with neuropsychiatric disorders. These factors emphasize a crucial

need for exploring various aspects of verbal memory paradigms.

2. Given the importance of verbal memory in humans, memory tests like CVLT

and RAVLT [9] have been used extensively to study verbal memory impair-

ments in humans. However, these studies have always focused on verbal recall

and recognition memory paradigms, overlooking the aspect of mnemonic dis-

crimination. So, it is important to bridge this gap by exploring mnemonic

discrimination in the context of verbal learning tasks, which has the potential

to yield insightful revelations.
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3. Since verbal memory tests are most commonly used in both research and clin-

ical settings, they provide access to extensive and diverse clinical datasets. A

recent study conducted by Enhancing Neuroimaging Genetics through Meta-

Analysis (ENIGMA) consortium [33], involved data harmonization from 53

studies consisting of nearly 10,000 healthy and brain injured individuals. Also,

the mnemonic discrimination paradigm has primarily been studied using the

Mnemonic Similarity Task, limiting the amount of data available for its study.

Therefore, assessing mnemonic discrimination within verbal learning tasks would

provide us access with large ecologically relevant datasets for analysis of mnemonic

discrimination across many conditions.



Appendix C

Power Calculations for Free Recall Results

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

4

v (F-statistic denominator degrees of freedom) 1995

f2 (R2/(1−R2)) 0.2536041

Sig.level (Significance level) 0.001

power 1

Table C.1: Power calculation for Model 1 (Eq. (3.42))

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

4

v (F-statistic denominator degrees of freedom) 1995

f2 (R2/(1−R2)) 0.2033694

Sig.level (Significance level) 0.001

power 1

Table C.2: Power calculation for Model 2 (Eq. (3.43))
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Appendix D

Power Calculations for MDI

D.1 Approach 1: Full Recollection

The Table D.1 represent the Power Calculations for Eq. (3.44) for Approach 1

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

7

v (F-statistic denominator degrees of freedom) 4145

f2 (R2/(1−R2)) 0.1875074

Sig.level (Significance level) 0.001

power 1

Table D.1: Power calculation for Eq. (3.44) in Approach 1

D.2 Approach 2: Recollection through PFC

The Table D.2 represent the Power Calculations for Eq. (3.44) for Approach 2

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

7

v (F-statistic denominator degrees of freedom) 4299

f2 (R2/(1−R2)) 0.3241525

Sig.level (Significance level) 0.001

power 1

Table D.2: Power calculation for Eq. (3.44) in Approach 2

D.3 Approach 3: Recollection through MTL

The Table D.3 represent the Power Calculations for Eq. (3.44) for Approach 3
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u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

7

v (F-statistic denominator degrees of freedom) 4389

f2 (R2/(1−R2)) 2.699593

Sig.level (Significance level) 0.001

power 1

Table D.3: Power calculation for Eq. (3.44) in Approach 3



Appendix E

Power Calculations for REC

E.1 Approach 1: Full Recollection

The Tables E.1 and E.2 represent the Power Calculations for Eq. (3.45) and Eq. (3.46)

respectively for Approach 1

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

4

v (F-statistic denominator degrees of freedom) 4148

f2 (R2/(1−R2)) 1.624672

Sig.level (Significance level) 0.001

power 1

Table E.1: Power calculation for Eq. (3.45) in Approach 1

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

7

v (F-statistic denominator degrees of freedom) 4145

f2 (R2/(1−R2)) 1.639916

Sig.level (Significance level) 0.001

power 1

Table E.2: Power calculation for Eq. (3.46) in Approach 1

E.2 Approach 2: Recollection through PFC

The Tables E.3 and E.4 represent the Power Calculations for Eq. (3.45) and Eq. (3.46)

respectively for Approach 2
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u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

4

v (F-statistic denominator degrees of freedom) 4302

f2 (R2/(1−R2)) 2.184713

Sig.level (Significance level) 0.001

power 1

Table E.3: Power calculation for Eq. (3.45) in Approach 2

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

7

v (F-statistic denominator degrees of freedom) 4299

f2 (R2/(1−R2)) 2.237294

Sig.level (Significance level) 0.001

power 1

Table E.4: Power calculation for Eq. (3.46) in Approach 2

E.3 Approach 3: Recollection through MTL

The Tables E.5 and E.6 represent the Power Calculations for Eq. (3.45) and Eq. (3.46)

respectively for Approach 3

u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

4

v (F-statistic denominator degrees of freedom) 4392

f2 (R2/(1−R2)) 1.187705

Sig.level (Significance level) 0.001

power 1

Table E.5: Power calculation for Eq. (3.45) in Approach 3
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u (F-statistic numerator degrees of freedom - number of coefficients
in the model without the intercept)

7

v (F-statistic denominator degrees of freedom) 4389

f2 (R2/(1−R2)) 1.188184

Sig.level (Significance level) 0.001

power 1

Table E.6: Power calculation for Eq. (3.46) in Approach 3



Appendix F

Key Motivation to Build a Computational Model

Advancements in artificial intelligence (AI) and neuroscience have always been closely

linked [42, 24, 86]. Major breakthroughs in AI have created neural networks based on

the properties of cognitive systems. For example, deep reinforcement learning models

are based on models originally used to understand classical and operant behavioral

conditioning in animals [59, 72]. Moreover, developments in AI are also being utilized

as a tool for neuroscience research to understand the functioning of the brain. For

example, spin-glass models and autoassociative attractor networks have been used

to understand memory processing in the hippocampal CA3 region [28, 25]. Autoen-

coders [21] and transformer models [82] have each also been proposed as models of

overall hippocampal functioning. Similarly, AI models designed to perform reinforce-

ment learning have helped neuroscientists provide an interpretation of how dopamine

neurons mediate reward dependent learning in the brain [42, 62, 63].

F.1 Key Motivation to Build a Computational Model For Our Study

A key motivation for utilizing AI to build computational models of the brain is that

this enables the simulation of specific brain functions and various experimental condi-

tions that would be unethical to perform on humans. This is particularly important

for research involving human neurological disorders involving language-based memory,

since

1. Only humans possess language, thereby precluding its study using animal mod-

els.

2. The function of language-related microcircuits cannot be feasibly studied in

vivo in large samples of patients and healthy controls.
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Therefore, the use of computational modeling approaches to study brain functioning

may help guide neuroscience research toward understanding the biological basis of

cognition in health and disease.


