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Abstract

It is well documented both in the őeld and in laboratory experiments that hydraulic fracture

could deviate from its original plane of propagation, typically parallel to the direction of the

maximum principal stress, due to varying stress and pore pressure conditions. It has also been

observed that due to possible stress reversal around a previously fractured well, refracturing a

well may lead to new fractures, orthogonal to the original fracture.

This work considered two problems. First, the possible path of propagation of a fracture in

the neighborhood of unfractured ŕuid injector-producer pair using the stress trajectory concept

was re-examined. A fracture initially equidistant between the wells was shown to likely propagate

in the direction of the injection well as indicated by the maximum principal stress trajectories

around the fracture-well system, provided a particular dimensionless fracture toughness is small.

Additional parameters such as the far őeld stress deviator and the production/injection times

were shown to have signiőcant impact on the stress őeld perturbation. A modiőed stress tra-

jectory equation that incorporate fracture toughness effect in order to approximate the fracture

propagation direction was also introduced.

The second problem examined the stress reorientation around an unpropped fractured pro-

ducer. The extent of the orthogonal segment of the refracture half-length as a function of

production time and far-őeld stress deviator for a purely poroelastic case as well as the relevant

parameters inŕuencing the extent of stress reversal around the fractured well was examined.

Adequate knowledge of the stress őeld will be quite helpful in future re-development of existing

őelds with fractured wells.
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Chapter 1

Introduction

1.1 Background

Hydraulic fracturing (HF) also commonly known as fracking plays a signiőcant role in the produc-

tion of hydrocarbons from conventional and unconventional reservoirs. Unconventional hydrocar-

bon reservoirs (tight gas, tight oil and shale formations) that were once considered uneconomical

or cap rocks due to their low porosity and permeability can now be developed economically with

hydraulic fracturing. The łshale boomž is a testament to the success of the hydraulic fracturing

technology. Hydraulic fracturing, however, do have other use cases apart from hydrocarbon

extraction. This includes underground waste drill cuttings disposals, measurement of in-situ

stresses and heat production from geothermal reservoirs.

Hydraulic fracturing generally involves injecting high-pressured ŕuid into a conőned section

of a borehole until a fracture is initiated due to tensile failure of the rock in the pressurized

section. Depending on the objective of the fracturing process, additional ŕuid may be injected

to propagate the fracture and proppants may be introduced to keep the fracture open. This is

usually the case for hydrocarbon stimulation which will be of primary concern in this thesis.

Hydrocarbon stimulation hydraulic fracturing is a multi-stage well stimulation technique

[27]. The őrst stage (also called łthe padž) involves injecting only ŕuid (usually water) at high

pressures through the wellbore into the target segment of the reservoir to create a fracture. A

fracture is initiated when the injected ŕuid pressure exceeds the minimum conőning stress of the

reservoir. The second stage involves the injection of a slurry, a mixture of water, some additives

and propping agents such as graded sand and ceramics. The purpose of the proppants is to

keep the created fracture open and provide pathways for the reservoir ŕuids to ŕow towards

the wellbore. This second stage treatment is often carried out multiple times till the desired

proppant concentration are placed in the fractures. The third stage, also called the ŕush stage
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involves pumping ŕuid only down the wellbore to help breakdown some gel deposits and clean

up stranded proppants from the wellbore. The well is shut in for a while to allow all the pumped

ŕuid to be lost to the formation while also allowing the fracture to close on to the proppants

properly before the well is then put to production.

While hydraulic fracturing started with vertical wells, the technique has been extended to

horizontal wells and has found great success in several unconventional reservoir formations such

as Bakken, Barnett, Eagle ford and Marcellus shales to name a few [13]. The hydraulic fracturing

conducted in horizontal wells are usually completed on various segments of the well (often referred

to as stages). The number of perforation clusters or stages on a well is dependent on the lateral

length of the well.

The łplug and perfž method is the most commonly used approach of completing multi-stage

hydraulic fracturing in horizontal wells. The method involves running an assembly of perforation

guns and frac plugs on a wireline or coiled tubing into the well to perforate the desired sections

of the well so that fracturing ŕuid can be pumped down to fracture the target section. Once the

őrst stage or section (usually near the toe of the well) is fractured, perforating guns and plugs

are run on a wireline again into the well to seal off the őrst stage with the plug before the second

stage or segment is perforated and fractured. The process is repeated till the entire length of

interest is perforated and fractured. The plugs are then milled out with a drill bit on a coiled

tubing before putting the well to production.

Oftentimes, the initial stimulation implemented for an unconventional reservoir may not

adequately recover the hydrocarbon reserve in the formation. This could be due to a number

of different factors such as poor initial well design and completion. To access the unrecovered

hydrocarbons, operators generally explore two main options: drill new inőll wells or refracture

existing wells. The decision as to which approach to adopt is dependent on various factors

including the reservoir characteristics, the existing őeld development plan, the current stress

regime and the economics around each strategy among many other variables [58].

1.2 Refracturing in Oil and Gas Fields

Refracturing (or refracking) is a well restimulation technique with a primary objective of improv-

ing the production rates from existing fractured wells with declining production. The decline in

production rates may be due to lost fracture conductivity caused by proppant embedment and

degradation, cyclic stress, gel damage and őnes plugging among other factors [58]. Refractur-

ing helps with reopening and extending existing fractures which restores or improves fracture

conductivity. Other beneőts include creating new fractures to contact virgin segments of the

reservoir due to the reorientation of the stress őelds and re-energizing natural fractures. When
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the goal is to contact new segments of the reservoir between existing perforations, isolation pack-

ers and seal assemblies on a coiled tubing are used to isolate existing perforation clusters and

restimulate the target intervals [58]. A more recent approach is to use refrac liners speciőcally

designed to isolate the entire sections of the old perforations with enough internal diameter to

accommodate perforation guns, plugs and ŕuid and proppant pumping at high rates[38].

A major attraction of refracturing over drilling in-őll wells is cost. Refracturing costs a

fraction of new wells [37]. A refracture could costs between $1 million to $3 million while a

brand new well may cost anywhere between $8 million and $16 million depending on depth,

location and type among other factors.

This thesis is devoted towards understanding the stress regime around existing production

and injection wells with the goal of providing some guidelines for the hydraulic fracture designer

who is considering refracturing existing wells.

1.3 Objectives of the Study

While hydraulic fracturing (HF) has been around for well over 50 years, the technique is far

from being perfected and has remained a major research focus in the oil and gas industry. HF

modeling is a science in its own class with myriads of factors that must be considered in order

to have an effective design. One area of ongoing research in HF modeling is understanding how

stress perturbation due to ŕuid injection or pumping would inŕuence the direction of fracture

propagation in a porous media especially during a refracturing operation [7, 45, 13].

The objective of the thesis is to examine the stress state around injection and production

wells due to injection and pumping activities, within a 2D plane strain model. Of particular

interest is to study the inŕuence of the induced stress őeld evolution on the possible path a

fracture will follow using the concept of stress trajectories. Two problems were studied. First

is the Berchenko-Detournay Problem in which a fracture was initially at a location equidistant

from an unfractured injector-producer pair injecting and pumping ŕuid at a constant rate. The

second problem pertains to a single fractured producer well being considered for a refracturing

operation.

To accomplish the set objective, the following methodology was adopted.

For the őrst problem, the stress őeld equations around the wells were őrst derived from the

governing equations of poroelasticity following previous work done by Berchenko and Detournay

[7]. The obtained induced stresses were then used to construct the stress trajectories around

the fracture-well system. For the second problem, the stress őeld equations were formulated

using the poroelastic stress fundamental solutions of a point source and the transient pressure

solutions developed by Sarvaramini and Garagash[47]. Where applicable, asymptotic solutions
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were also reported to help validate numerical solutions. The solution for the second problem

were sought in Laplace space before being inverted back to the time domain. Stress trajectories

were used to map the likely fracture growth path. Dimensionless groups were also used to simply

derivations and generalize the formulations in both problems. Solution to the formulations were

implemented using the computer software, Mathematica.

It should be noted that actual fracture propagation was not modeled in this work, but rather

the possible path a propagating fracture may follow due to poroelastic induced stresses were

examined. Also, the study was carried out within the poroelastic framework which adequately

describes the behaviour of a solid medium under some loading when saturated with ŕuid, for

which an hydrocarbon reservoir is an excellent example .

An understanding of the perturbed stress őeld must be put into consideration when planning

a refracturing operation as it is expected to have non-trivial effects on the refracturing require-

ments as well as the refracture characteristics (direction, length and interaction with neighboring

cracks).

1.4 Organization of the Thesis

This thesis is organized as follows:

Chapter 1 provides a general background introduction to HF, refracturing and research ob-

jectives.

Chapter 2 provides a review of existing literature on the HF and refracturing techniques as

well as the concept of stress reorientation.

Chapter 3 provides some details on the mathematical framework and equations on poroe-

lasticity to model the stress state in a poroelastic medium as well as the numerical solution

techniques adopted in the work.

Chapter 4 covers stress őeld re-orientation in a single unfractured injector-producer system.

Attraction and repulsion zones around the injection and producer wells are examined. A heuristic

semi-analytical approach is also developed to predict the path of a propagating fracture as it

approaches an injector. This is done as an alternative to full scale numerical modeling to predict

the fracture path.

Chapter 5 examines stress reorientation around a fractured producer that is being considered

for refracturing. The inŕuence of the difference between the induced horizontal stresses on the

stress-reversal envelop around the wells are also examined. An asymptote for the stress difference

is also established for extended production times.

Chapter 6 closes out the thesis with conclusions and recommendations for further research.
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Chapter 2

Literature Review

2.1 Introduction

In tectonically relaxed reservoirs, characterized by normal faults, the general state of stress is

such that the three orthogonal principal stresses - the vertical overburden stress, the principal

maximum horizontal stress and the principal minimum horizontal stress are not equal [35, 27] .

In shallow reservoirs (<2000 ft deep), the smallest of these three stresses is the overburden stress

and as such fractures are expected to be horizontal since hydraulic fracture propagate in the

direction perpendicular to the direction of the minimum conőning stress. In deep reservoirs (>

2000 ft), hydraulic fractures would propagate in the direction perpendicular to the direction of

the principal minimum horizontal stress because it is the least of the three principal stresses and

as such vertical fractures are expected to be created. Deep reservoirs and by extension vertical

fractures are the most prevalent in practice.

2.2 Hydraulic Fracture Models

One important consideration in the design of hydraulic fractures is the fracture geometry which

is a function of lithological and related stress heterogeneity of the reservoir conditions, fracture

pressure, injection rates, fracturing ŕuid type and proppants among other factors [34, 2]. It is

practically impossible to model this complicated process without making certain assumptions in

an effort to simplify the problem while capturing the major characteristics of hydraulic fracture

geometry. Since it is currently not possible to carry out a direct accurate measurement of the

fracture geometry during and after the fracturing process, it is customary to use models, with

underlying assumptions, to provide some estimation of the fracture dimensions. There are various

models used in the industry, however, three classical models are most common because of their

relative simplicity, usefulness in bench-marking numerical algorithms as well as for analyzing the
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inŕuence of the various problem parameters and the existence of different regimes of fracture

propagation. These are the Khristianovich-Geertsma-de-Klerk (KGD) model, Perkins-Kern-

Nordgren (PKN) model and the penny-shaped or radial crack model. In all three classical

models, rock deformation is described by theory of elasticity, the ŕuid ŕow in the fracture is

modeled by Poiseuille’s law, and the leak-off process follows Carter’s leakoff rate [43].

2.2.1 Khristianovich-Geertsma-de-Klerk (KGD) Model

The KGD Model (see Figure 2.1) is a vertical fracture with an inőnite height [27, 34]. The crack

has an elliptical horizontal cross-section and a rectangular vertical cross-section if the pressure

in the crack is uniform. The model assumes that the width of the crack at any distance from the

well is independent of the vertical position, i.e. along the fracture face in the vertical direction.

This assumption is reasonable for a fracture with a height much greater than its length, thus

can be described as a 2D plane strain crack in the horizontal plane. The classical model also

incorporates fracture tip effects in which a small region near the crack tip is not penetrated

by the fracture ŕuid as such is modeled as zero ŕuid pressure. Fluid ŕow is assumed to be

one-dimensional along the fracture length in the classical KGD model.

2.2.2 Perkins-Kern-Nordgren (PKN) Model

The PKN model is a vertical fracture with a constant height independent of fracture length

[27, 34].The fracture height is constrained by the higher horizontal stresses in the adjacent layers

above and below the reservoir layer. The model assumes elliptical cross sections both in the

vertical and horizontal planes when the ŕuid pressure in the fracture is uniform. In a situation

when the ŕuid pressure is non uniform (i.e. the effect of viscous dissipation is signiőcant), the

cross-sections are not elliptical. The crack model is appropriate for a fracture whose height is

much more smaller than the length and as such can be modeled as a 2D plane-strain fracture in

the vertical plane. The classical PKN assumes ŕuid ŕow is one-dimensional along the fracture

length.

2.2.3 Penny-Shaped Crack Model

The radial crack or penny-shaped was őrst presented by Sneddon and Elliot [55]. This crack is

assumed to propagate within a plane and it is symmetrical around the injection line source or

wellbore if the ŕuid pressure and injection rate is constant.

With advancements in numerical modeling enhanced by greater computing powers, these

classic models originally developed for homogeneous, isotropic and elastic rocks have been im-

proved upon with many of the assumptions relaxed to pave the way for more realistic conditions.

Other models such as Pseudo 3D and full-ŕedged 3D are also popular. As mentioned earlier, the
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Figure 2.1: Classic fracture models (after Adachi [2])

3 classic models, however, still remains relevant for benchmarking and validation purposes.

2.3 Stress Re-orientation Around Production and Injection

Wells

Stress re-orientation describes the conditions in which the direction of the in-situ principal

stresses change from their initial or original orientation [24]. It is well established from őeld

observations that the injection/production of ŕuid in/out of the reservoir changes the pore pres-

sure of the reservoir. The changes in pore pressure subsequently produces stress redistribution

in the medium due to poroelastic coupling between the two variables and by extension inŕuences

the direction of the local principal stresses. This behaviour is better understood from a poroelas-

tic standpoint. When a load (e.g ŕuid pressure) is applied to a poroelastic medium, the medium

attempts to compensate for the loading by distributing the applied load to its constituents (in-

situ pore ŕuid and solid grain component) [10]. The changes in the pore pressure due to the

addition or removal of ŕuid not only induces a strain on the medium but also changes the stress

state because these variables are usually coupled. Since principal stresses dictate the direction a

fracture will grow, it is expected that fractures placed in or around such wells will be accordingly

inŕuenced. This further implies that in a reservoir with multiple wells, the orientations of the

fractures in the different wells will be varied as dictated by the local stress regimes around the
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wells.

The impact of these stress perturbations has been a subject of study by many researchers

with the aim of understanding how these changes affect well planning, fracture propagation,

completion, production and overall reservoir maintenance strategy. One approach often adopted

is to study the stress trajectories around the wells in order to infer possible fracture propagation

paths. While the stress trajectory can provide an approximation of the fracture path under

certain conditions, a full numerical modeling is usually required to determine the actual fracture

path. A review of previous work done around stress re-orientation is presented as follows.

Bouteca et al [11] provided a mathematical model to describe fracture reorientation as well

as laboratory and őeld experiments to demonstrate fracture direction control due to induced

stress reorientation. They were able to successfully link two wells in a coal seam by hydraulic

fracture to enhance coal gasiőcation.

Warpinski and Branagan [62] suggested taking advantage of stress reorientation in the per-

turbed region to create a desirable fracture orientation. This process was referred to as altered

stress fracturing. It is a concept whereby a hydraulic fracture in one well is reoriented by another

hydraulic fracture in a nearby location. They conducted a őeld test to validate the idea and

found that it is possible to inŕuence the direction of a fracture by altering the stress state in the

medium.

Elbel and Mack [28] addressed the issue of fracture reorientation during refracturing treat-

ment. They suggested that horizontal stress changes due to production creates favorable condi-

tions for refracturing treatment orthogonal to the initial fracture treatment. They observed that

during production, the maximum horizontal stress decreased faster than the minimum horizon-

tal stress, thereby causing a stress reversal (switching of directions of the principal horizontal

stresses compared to their initial direction) in the neighborhood of the fracture. This makes it

possible to initiate and propagate a fracture orthogonal to the initial fracture within the stress

reversal envelope.

Bruno and Nakagawa [12] also conducted laboratory experiments in which a propagating

fracture which was initially equidistant between an injector and a producer propagated towards

the injector due to the higher pore pressure őeld around the injector. With increased and

sustained injection pressure, they observed the fracture was eventually attracted by and ended

up in the injector. They attributed this behavior to the local pore pressure gradient at the crack

tip. This assertion however was disputed by Detournay and Boone [21] who argued that the pore

pressure őeld near the fracture tip could not have been responsible for the fracture’s direction

of propagation because the pore pressure őeld is not singular.

Later, Berchenko and Detournay [7] provided some rigorous mathematical models to describe
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and analyze the poroelastic mechanism responsible for the hydraulic fracture deviation. They

carried out an analytical study of the stress trajectories around an injector-producer system

to predict the fracture’s path of propagation and compared the results with numerically com-

puted path. They observed both methods are in excellent agreement provided that a certain

dimensionless toughness parameter is small. They summarized their őndings by stating that

a propagating hydraulic fracture initially equidistant between a producer and an injector will

always be deviated by the injector due to the induced stresses in the poroelastic medium. Such a

fracture will eventually be attracted by and end up in the injector well if the fracture propagates

into an žattraction basinž - a region around the injector well in which all trajectories within

it converge to the injection point. This attraction basin was shown to have a stress induced

łfracture barrierž characterized by a 90 degree rotation of the principal stress directions along

the vertical axis passing through the injector well - thus any stress trajectory that intercepts

the łfracture barrierž will be redirected towards the injection point. They concluded that the

fracture orientation is controlled primarily by two dimensionless parameters: the ratio of the

stress deviator at inőnity to the characteristic poroelastic stress associated with the injection

and production of ŕuid and the dimensionless time.

Siebrits et al [53] investigated some factors affecting the azimuth and length of a secondary

fracture during a refracture treatment in the neighborhood of a fractured vertical well. They

developed 2D and 3D models to determine the necessary conditions to initiate a secondary

fracture orthogonal to the primary fracture and its potential growth path. They concluded

that three dimensionless groups are the primary inŕuencers of the fracture path in the 2D

model − the dimensionless far-őeld stress deviator, dimensionless time and a dimensionless

toughness parameter. For the 3D model, two additional dimensionless parameters; dimensionless

fracture height ratio and dimensionless shear modulus ratio were shown to inŕuence the fracture

path as well. Their 3D model was used to quantify the stress reversal region (pore pressure

induced stress maps) around the initial fracture in a reservoir bounded by conőning layers with

different mechanical properties. They concluded that the stiffer the conőning layers, the smaller

is the region with stress reorientation around the fracture. They also suggested some optimum

requirements for selecting a well for refracturing purposes.

Several őeld studies have been carried out in the őeld to validate the stress őeld re-orientation

concept. Wright and Conant[63] examined tiltmeter readings from őve refractured wells where

initial tiltmeter data, prior to refracturing were available. They inferred a 30 - 40 degree variation

in the refracture dip angle compared to the initial fractures. In another őeld tiltmeter data

examination for a large scale waterŕood operation, Wright et.al [1] provided additional evidence

of fracture reorientation in fractured inőll wells . They compared tiltmeter readings prior to
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and after waterŕooding and inferred that fracture azimuths could vary as much as 60 degrees

from the original fracture orientation and cause horizontal fractures to propagate in areas where

vertical fractures were predominant. Fracture dip and strike were also inŕuenced by the local

stress changes induced by the pore pressure gradients.

It is worth noting that tiltmeter readings provide average values for fracture orientation.

A refracture may indeed be initiated orthogonal to the old fracture due to the strong stress

perturbation closer to the initial fracture but as it grows outside of that region it will gradually

re-orient itself back to a direction parallel to the old fracture. The tiltmeter would only provide

an average orientation values depending on the extent of refracture propagation.

Minner et al [42] yet corroborated the effects of poroelastic stress changes in fracture geometry

by examining a data-set of 76 fracture treatments in 12 inőll wells. They further conőrm that

not only were there stress reorientation but also that the fracture orientation depends on the

pattern of injectors and producers and their interaction. They found that hydraulic fracture

azimuth variability is signiőcantly smaller in inőll inline wells placed along the injector rows

compared with offset wells placed along the producer rows.

Nicolas and Mukul [45] studied the combined effects of open propped fractures (mechanical

effects) and injection/production of ŕuids in the reservoir (poroelastic effects) on stress pertur-

bation around a fractured vertical well. Their focus was to couple both effects and quantify

the stress redistribution around the production wells. They validated their models with őeld

tiltmeter data conőrming the presence of a refracture reorientation in the formation. They also

provided some guidelines in the selection of an ideal well for refracturing as well as the timing

and possible estimates of production increase after refracking.

Sarvaramini and Garagash [48] studied the problem of transient pressurization of a pre-

existing, PKN crack in a poroelastic medium due to constant ŕuid injection. They examined

the effect of 2-D leak off (at large times) on poroelastic backstress which was shown to conőne

the crack. They also examined the effects of poroelastic backstress on the evolution of the

ŕuid pressure in the crack and the initiation of fracture propagation. They compared their

solutions to a similar őnger-like crack problem in a non-poroelastic medium[47] and concluded

that poroelasticity has a minor effect on the ŕuid pressure evolution in the crack. However, it

was shown that poroelasticity does have a signiőcant impact on the evolution of the fracture

volume and the onset of the fracture propagation. The induced poroelastic backstress hindered

both quantities at large times as the ŕuid diffusion could no longer be described as 1-D.

Li et al. [65] used a coupled poromechanical model to examine stress redistribution associated

with refracturing and the optimal refrac timing . Bearing in mind the time dependency of the

stress reorientation, they observed that pressure depletion and the Biot coefficient have positive
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correlations with the optimal refracturing time, while the horizontal stress ratio and Poisson’s

ratio have negative correlations with the time. Permeability and porosity were shown to have

no effect on the size of the stress reversal zone but are negatively and positively correlated to

the refrac timing, respectively.

Wang et al. [59] investigated parameters affecting the direction of propagation of a refracture

including the initiation angle, stress anisotropy, production time and the mechanical effects of

propped fractures. They observed that the stress difference and the initiation angle have an

inverse relationship with the diverting radius of the refracture (i.e. how far out the refracture

travels perpendicular to the old fracture before turning in the direction of the maximum principal

stress outside the stress reversal region). The larger the stress difference between the horizontal

maximum and minimum stresses, the smaller the diverting radius and vice versa. conversely, the

larger the initiation angle (assumed to be the perforation angle), the larger the diverting radius,

with an initiation angle of 90 degree being the most favourable. Mechanical effects were shown

to have a detrimental inŕuence on the orthogonal propagation path of the refracture.

2.4 Refracturing on the Field

It is well documented from őeld experiences that when hydraulic fracturing is implemented in

wells, there is an initial increase in the production rates of those wells followed by a sharp

decline, which often necessitates the implementation of additional stimulations [58, 63, 1, 26].

Refracturing or refracking is one of those re-stimulation techniques that is often employed to

mitigate production decline and restore well productivity. Steep production decline associated

with the initial fracturing are often a result of inadequate treatment and ineffective or damaged

proppant in the fractures[26, 25]. Although refracturing has been in practice for several decades,

the use of the technique declined starting from the 1990’s till late 2000’s due to improvements

in hydraulic fracturing design, implementation and maintenance[41]. A renewed interest in the

technique was awakened by the oil market collapse in 2014 which forced őeld operators to explore

effective means to enhance production while keeping cost low[37, 64].

Three main factors have been identiőed as key drivers for refracturing adoption among op-

erators: economic scale, technical feasibility and risks [41]. The economics of refracturing is

perhaps the biggest factor, from a global oil price standpoint, associated costs with implement-

ing a refracturing job (usually costs less that 40 % of a new well) as well as the overall rate of

return on investment. The technical feasibility involves understanding how to select the best

wells for refracturing, fracture reorientation and conductivity, proppant selection and diversion

techniques among others. The risk of failed treatments which could include loss of production in

the original well or reduced production in neighboring wells as observed in many őeld trials has
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hampered adoption among many operators. Lack of proper understanding of the stress distri-

bution in the reservoir coupled with poor candidate well selection and poor refracturing design

have been the leading causes of failures [58].

2.4.1 Design Considerations in Refracturing

The advancement in fracturing technologies in recent times which has made it possible to pump

more proppant and ŕuid as well as design tighter cluster spacing in extended lateral lengths

to improve production outcomes have inŕuenced many őeld operators to conclude that older

generation wells may have been understimulated and as such they could be good candidates for

refracturing in order to recover stranded reserves. For the refracturing exercise to be successful,

there is need for adequate refracturing design.

There are four main steps followed by operators in the design and implementation of a

refracturing job. They are (1) candidate well selection, (2) choosing an appropriate treatment

system (ŕuid type and volume, proppant types and sizes and perforation scheme), (3) designing

effective isolation and diversion techniques (4) Diagnostics and post refracture evaluation and

optimization [32, 41, 51].

2.4.1.1 Candidate Well Selection

Selecting the ideal well for a refracturing operation is perhaps the single most important factor

in determining the success of the operation. Not all production wells are ideal for refracturing

[58] and as such a careful analysis must be carried out in deciding on which well(s) to choose for

a refrac. This typically involve analyzing rock properties (type, stress anisotropy, mechanical

and petrophysical properties) and previous stimulation history (fracturing ŕuid and proppant

types, initial fracture geometry, fracture complexity, leak off data, perforation strategy, proppant

placement and contribution of perforation clusters) and if there are any naturally fractured zones

and water producing zones in the vicinity of the refracture job [51, 41].

Several concepts have been proposed by different investigators to aid the selection process,

some of which are reviewed below.

Gas Research Institute (GRI) proposed a three-level analytical approach to help identify

the best candidates [44]. Level 1, referred to as rapid screening or statistical production data

analysis entails analyzing the early and late time production performance of each well compared

to it offset wells. This method could help identify under-performing wells in reservoirs with

consistent completion/stimulation methods. The downside of this approach is that it often

would miss production wells that are performing well, which could actually beneőt more from

a restimulation. Level 2 also known as advanced screening uses artiőcial neural networks and

genetic algorithms to identify potential candidates for a refrac. Various data input parameters
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such as location, geology, drilling, completion, stimulation etc. are fed to the model and the

production response due to each input is measured to gauge which of the these have the greatest

impact. Patterns are then identiőed to deduce best and worst practices after which potential

wells, especially those with ’worst’ practices (in drilling, completion and stimulation methods) are

curated for refracturing considerations. Reasons for poor performances are also deduced during

the advanced screening process with some recommendations of how to őx the identiőed problems.

The downside to this approach is that quality data on all of the different input parameters are

often scarce or incomplete, thereby detracting from carrying out meaningful analysis. Level 3

involves the use of production type curve matching which has been developed speciőcally for

hydraulically fractured reservoirs to provide estimates on permeability, skin and drainage area.

This approach however, have several shortcomings: (1) models are often idealistic, developed for

single layer reservoir (realistically most reservoirs are multi-layer and production often cut across

several layers), (2) production data used to develop such type curves often include ’noise’ and

such data also depend on the unique properties of the reservoirs from which they were obtained.

Extrapolating from such type curves to match performance in other wells is often difficult and

results may not be unique. While the 3-level analysis showed that poor performers are not

necessarily the best wells to select for refracturing, the approach’s downside is that each type

of analysis selects different łcandidate wellsž as such rendering the approach inconclusive in its

ability to conődently select top candidate wells for refracturing.

Barba and Shook [6] suggested the use of łcompletion efficiencyž concept to screen candi-

date wells for refracturing. The completion efficiency metric is obtained by dividing the actual

production rate by the predicted rate for a minimum acceptable propped fracture length and

conductivity. It is a performance evaluation concept that could help identify underlying problems

such as low formation capacity (kh), low production pressure and poor initial fracture treatment

that may be associated with a subprime performance of a well.

Sinha and Ramakrishnan [54]suggested the use of łcompletion indexž and łproduction indexž

to screen potential refrac candidates. They deőne the completion index as the ratio of the total

volume of pumped ŕuid to the lateral length divided by the number of stages. A cross plot of the

the completion index and production index is then used to identify those wells with reasonably

high production index but low completion index. One advantage of this approach is that it offers

quick screening of potential wells for refrac. A downside to this method however, is that, further

and in-depth analysis is often required to further narrow down the list obtained via the method.

The impact of stress redistribution, for instance, is not considered in the analysis.

Rousell and Sharma [46] proposed a framework for selecting candidate wells for refracturing

using using őve dimensionless variables based on historical reservoir properties and production
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data. The framework incorporates the effects of stress reorientation, initial completion perfor-

mance, reservoir quality and neighboring wells production history. They suggested the following

dimensionless groupings: Stress reorientation numbers (poroelastic & mechanical), well com-

pletion number, reservoir depletion number and production decline number. Apart from stress

reorientation numbers, the other 3 parameters are well speciőc and is typically calculated for

each well.

While different candidate well selection methods seem to differ in some ways, we see a com-

mon list of factors to consider while making the selection. These include reservoir proper-

ties(petrophysical, ŕuid, mechanical), the initial completion and production data. Since there is

no widely accepted approach of selecting candidate wells, multiple method could be used con-

currently with the aim of selecting those wells that show up across all models. The underlying

assumptions in these selection models should be understood before choosing one model over

another.

The use of Artiőcial Intelligence (AI) to aid candidate well selection has been proposed by

a number of researchers [49, 66]. With the tremendous amount of production and completion

datasets, there seems to be an opportunity for machine learning algorithms to ingest these

data to aid predictive analytics and modeling of refracturing operations. Aryanto et al [4]

and Gupta et al [33] presented cases studies where AI algorithms were used to rank candidate

wells considered for fracturing operations. These AI-powered models integrates reservoir and

production data to learn patterns and transfer such knowledge into workŕows that improves

production efficiency. Due to the fact that AI adoption in the oil and gas industry is still in its

infancy stages, extensive development of the tool and its application to different aspect of oil

and gas operations, particularly hydraulic fracturing is yet to be seen. Convincing case studies

need to be published before operators can begin to consider broader adoption of the tool to their

existing operational workŕows.

2.4.1.2 Refracture Treatment System

This step involves deciding on the best fracturing ŕuid and proppant types for the job in order

to attain the overall design objective. A thorough understanding of the reservoir properties

(mechanical and petrophysical) and the initial well completion strategy is vital in the success of

this phase of the refracturing process.

Fracturing Fluid

Fracturing ŕuid aid in initiating and extending fractures as well as placing proppants inside the

fractures. The reservoir geomechanical properties, rock type, stress state, reservoir ŕuid and

intended fracture geometry are all important factors that must be carefully considered when
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designing an appropriate fracturing ŕuid. [36, 32]. For instance, reservoirs with high stress

anisotropy and a greater degree of ductility, will typically require a high viscosity ŕuid if the

goal is to produce thick planar fractures and transport proppants farther into the fractures.

Similarly, for more brittle rocks with low-stress anisotropy, low-viscosity ŕuid such as slick water

is often used for refracturing operations in many unconventional plays in other to create complex

fractures and transport proppants effectively into the fracture network [41]

Proppant Type

The proppants help keep the fracture open and conductive once the fracturing ŕuid is dissipated.

The proppant type, strength and size as well as fracture geometry, formation and fracturing ŕuid

properties are important factors to consider when choosing the appropriate proppants for any

fracturing job. [50]. Ductile formation with high stress anisotropy typically requires a larger

proppant size e.g. 20/40 mesh with more viscous frac ŕuid to create and extend wider fractures.

For refracturing jobs especially in more the brittle formation and fairly isotropic stress conditions

where more complex fracture networks are expected, smaller proppant sizes e.g. 40/70 or 70/140

mesh are often used [41]. High concentrations of smaller proppant sizes are favored in wells

initially fractured with larger proppants [61, 20].

2.4.1.3 Isolation and Diversion Technique

The objective of the refracturing exercise often dictates what type of isolation technique to

deploy. In cases where the goal is simply to reopen, extend or increase proppant concentration

in the existing fractures, the standard łplug and perf’ž method is the preferred choice because

of the ŕexibility in designing and implementation. However, for a refrac whose goal is to access

new sections of the wellbore not previously fractured, there is a need to isolate the existing

perforations for the planned restimulation to be effective. There are four main methods used to

isolate previous perforations.

The őrst approach involves pumping cement into the existing perforations to seal them off.

Once the cement is set, the reminder cement in the wellbore is drilled out so that the well can be

re-perforated to allow reservoir ŕuid ŕow into the well. While this approach is fast and cheap, it

has a major drawback [67]. Because cement contains solid particles, the tendency for bridging

over the proppant pack in the main fractures is high and thus often lead to ineffective seal of

the perforations as the cement may not be able to block off the microcracks leading to the main

cracks. This often results in leaks and sometimes the ultimate failure of the procedure.

The second isolation technique is the use of mechanical barriers to isolate existing perforations

[67, 51]. This involves running an expandable liner with a smaller outer diameter than the inner

diameter of the production casing across the perforated internals to provide a seal. Once the liner
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reaches the target perforated interval, it is expanded against the wall of the casing to provide

a patch that seals off the perforations. This is repeated until the entire perforated sections are

sealed off. New perforations are added and treated with proppant slurries to create new fractures

after which the liners are mechanically removed from the well to provide access to old fractures

for ŕuid ŕow into the wellbore. While this method is quite effective, it has some drawbacks

as well. Costs could be prohibitive if there are numerous perforated stages and clusters on

the production casing. A second potential drawback is the possibility of damaging the cement

integrity of the casing. During the expansion of the liner against the walls of the casing, the

casing wall itself expands against the cement which upon the relieve of the pressure may create

ŕow pathways behind the casing.

The third isolation method is the use of straddle packer on a coiled tubing [67, 51]. The

straddle packer can isolate speciőc sections of the wellbore so that ŕuid and proppants can be

directed appropriately to target zones. The entire refrac job is pumped down through the coiled

tubing, which characteristically, has very small internal diameter and thus the pumping rate

will be much lower due to pipe friction. This in turn results in smaller and shorter fractures

being created as high pump rates and large proppant concentrations are often required for larger

fractures. Longer treatment duration as a result of smaller pump rates may lead to increased

operational costs.

The fourth method is the use of degradable polymer diverters or particulates [50, 29]. These

are specially formulated chemicals that have the ability to solidify under certain conditions and

stay solid for a period of time before dissolving back to liquid forms. One of the most popular

chemical used as a diverter is the polylactic acid or polylactide due to its self-degradable ability

as well as ease with which its composition could be modiőed to suit various reservoir temper-

ature and pressure conditions. Chemical diverters are pumped down into existing fractures to

provide a temporary seal through the mechanisms of ’jamming’ - larger molecule particulates

bridge the ŕow paths between proppants thereby forming a base structure for the őner molecule

particulates to settle and provide a complete seal for any remaining ŕow paths (’plugging’).

Once the polymers are set, new stages can be fractured and treated with proppants. The main

advantages of this method are that they are cost-effective, environmentally friendly and capable

of withstanding high treatment pressure and temperatures[51, 50] and will self-degrade over a

controlled period of time to re-establish the ŕow paths to the old fractures without any damage

to the reservoir or the casing. There are however some major drawbacks for chemical divert-

ers. The success of the technique is signiőcantly dependent on thorough understanding of the

formation ŕuid and mineral properties as these could interact with the chemical compositions

of the diverters thereby altering their properties and ultimately affecting their performance as a
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sealant. Unlike mechanical diverters, chemical diverters cannot be randomly applied to different

formations without őrst understanding the formation chemistry; this additional knowledge gap,

may hinder a widespread adoption.

2.4.1.4 Diagnostics and post refracture evaluation and optimization

One critical component of the refracturing enterprise is the ability to monitor the progress and

evaluate the success of the operation real-time. Diagnostics methods are broadly grouped into

direct far őeld, direct near wellbore and indirect techniques [17, 41].

Direct far-őeld monitoring involves the use of tiltmeter, accelorometer and/or geophones to

measure tilt (deformation) and microseisms in the rock mass during a refracturing job. Such

diagnostics are conducted from offset wellbores or from the surface while the refracturing op-

eration is underway to provide a bird’s eye view of the fracture growth and direction, that is

the data obtained from these measurements are anaylsed and inferences are drawn about the

fracture characteristics such as length, geometry, azimuth and dip. Moreover, the distribution

of microseismic events locations can help identify which part of the well is being restimulated.

Microseismic mapping can also help to track the effectiveness of diverter for zonal isolation [51].

A major drawback of direct far-őeld monitoring is that they do not provide any insight into

the effective propped fracture length and it conductivity [17]. Another draw back is that their

mapping resolution decreases the farther they are away from the refracturing treatment source.

In direct near-wellbore monitoring, speciőc physical properties such as temperature or ra-

diation are logged directly from the the treatment wellbore after the refracturing treatment.

One signiőcant merit of this technique is its ability to accurately identify ŕuid/proppant entry

intervals as well as production from each zone in a well with multiple zone completions. For

instance, because frac ŕuids have lower temperatures than the formation, it is possible to track

which perforations zones are receiving the most ŕuid by monitoring the change in temperature.

The zone with the biggest temperature drop is the zone taking the most frac ŕuid. The down-

side of this technique, however, is that it has very low resolution depth and cannot ’see’ beyond

about 2 feet from the wellbore and such may not provide meaningful fracture characteristics. It

may, however, provide a lower-bound estimate of fracture height if the well and the fracture are

misaligned [17].

In indirect fracture monitoring technique, pressure response and ŕow rate measurements are

inverted to estimate fracture dimensions and conductivity. The dataset needed for such analysis

are readily available from the fracturing operations and production data. Observed data are

compared with reservoir/ fracture models to estimate the fracture characteristics. Example

of analyses carried out in this category are fracture net pressure analysis, pressure transient

testing and production data analysis [17]. The major drawback of this method is that analytical

17



or numerical solutions obtained from modeling are not usually unique and therefore must be

calibrated with direct observations.The indirect approach, however, can be a very useful tool once

calibrated to detect refracture-treatment problems as well as re-fracture optimization workŕows.

2.5 Theory of Linear Poroelasticity

The theory of poroelasticity captures the various interactions between the solid and ŕuid com-

ponent of the poroelastic media. It is a framework used to understand the deformation/diffusion

processes ŕuid-őlled porous rocks undergo when subjected to different loading conditions. In-

situ hydrocarbon rocks are always under stress and are usually saturated with ŕuids - oil, gas

or water, as such, their behaviour is more realistically studied under the poroelastic framework.

Poroelasticity has been widely studied in hydrogeology and geomechanics. It is well known

that the injection or extraction of ŕuids from a ŕuid-saturated rock formations induces stress

changes, pore pressure changes as well as deformations in the porous media [23, 60]. The changes

in these variables (stress, strain, pore pressure and ŕuid content) are often coupled such that a

change in one variable produces a change in another and ultimately inŕuence the mechanical and

volumetric response of the porous medium. These coupling - solid-to-ŕuid ( a change in applied

stress produces a change in pore ŕuid pressure and ŕuid mass) and ŕuid-to-solid (a change in

ŕuid pressure induces stress and rock deformation) - are central in the study of poroelasticity.

There are two limiting states of describing a poroelastic medium : undrained and drained

states. A ŕuid inőltrated porous medium is said to be in an undrained state when the trapped

ŕuid in its pore spaces are prevented from escaping after a loading has been applied to it. This

behaviour is also observed when there is a sudden application of a loading on a ŕuid-őlled porous

material. The trapped ŕuid does not have sufficient time to escape and as such this leads to

an excess pore pressure build-up (Mandel-Cryer effect) and thus the material appears to be

’stiffer’[60]. On the other hand a material is said to be in a drained state if all the excess ŕuid

pressure are allowed to dissipate. Such drained materials appears to be ’softer’ compared to

its undrained state. It is obvious from the foregoing that these mechanism will introduce some

time-dependency on the mechanical and volumetric response of a ŕuid-saturated poroelastic

material.

A poroelastic medium can be characterized with numerous material property constants.

However, only four of such constants can be independently selected while the other variables

can be derived from different combinations of the independent constants. Different authors

[23, 19, 18, 30, 10] seems to adopt unique sets of the independent material constants for their

constitutive equation formulations depending on whether the ŕuid or the solid component re-

sponse is being modeled. For instance Detournay and Cheng [23] adopted the drained bulk
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modulus, K, undrained bulk modulus, Ku, and the Biot’s coefficient, α, as a fundamental set for

modeling the volumetric response of a poroelastic media. In modeling the mechanical response,

they adopted drained Poisson ratio, v, undrained Poisson ratio,vu, shear modulus, G, and Biot’s

coefficient,α. In this work, we adopt the Detournay and Cheng fundamental sets. There are other

material constants that are very important in formulating poroelastic equations, even though,

they are dependent on the fundamental set. Three of such that will be used in this thesis are

poroelastic stress constant, η, uniaxial speciőc storage coefficient, S and the Skempton’s pore

pressure coefficient, B.

A brief description of the material constants used in this work are presented below with their

formulas given in appendix A [60].

• Biot’s coefficient, α: a ratio of pore volume change (increment in ŕuid content) to bulk

volume change at constant pore ŕuid pressure. It describes how effective the pore ŕuid

could ’cushion’ the effect of the total applied stress on a ŕuid-saturated media. It is often

used in the calculation of effective stress. It is dimensionless and its value ranges between

0 and 1[23].

• Poroelastic stress constant, η: this dimensionless parameter controls the value of stress

changes induced by pore pressure changes as a result of ŕuid injection, production or

fracture ŕuid loss [23, 27]. It is a function of the Biot’s coefficient and the Poisson ratio of

the porous media .

• Uniaxial speciőc storage coefficient, S: a measure of the amount of ŕuid that must be

added or removed from a rock sample under uniaxial strain and constant vertical stress to

produce a given ŕuid pressure change. It controls the amount of ŕuid that can be stored

in or released from storage as the uniaxial constraint (zero lateral strain) limits the extent

of pore volume change. It has the unit of [pressure]−1. In the limiting case where v ≃ vu,

the inverse of the storage coefficient is called the Biot Modulus, M .

• Undrained Poisson ratio, υu: whereas the drained Poisson ratio,υ(same as in elasticity)

describes the ratio of lateral strain to longitudinal strain under axial loading, the undrained

Poisson ratio,υu, describes such deformation for a ŕuid-saturated media by taking into

cognizance the presence of the ŕuid which is prevented from escaping during the loading

process. It is a parameter that captures the interaction between the solid skeleton and the

ŕuid in the pore spaces of a medium.

• Drained bulk modulus, K, as in elasticity, is a measure of the poroelastic medium’s ability

to resist compression or change in volume when under external loading after the pore ŕuid
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had escaped as a result of the loading . It is the ratio of a small increase in pressure to the

resultant relative decrease in a drained elemental representative volume of the poroelastic

medium.

• Undrained bulk modulus, Ku, similar to K, except that the ŕuid in the pore spaces are

prevented from escaping while the representative elemental volume is under compression.

It is a measure of the medium’s compressibility while ŕuid is trapped in the medium.

• Shear modulus, G, as in elasticity, is the measure of the rigidity or shear deformation of

the poroelastic medium while under shear stress. It is generally expressed as the ratio of

shear stress to shear strain acting on the representative elemental volume of the medium.
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Chapter 3

Poroelasticity and Boundary

Integral Equations

There are four key equations governing the behaviour of a ŕuid-saturated poroelastic media.

They are the constitutive relations between the stress, strain and pore pressure, force equilibrium

equations, ŕuid ŕow equation and continuity equation [60, 23]. These four equations when

combined forms the őeld equations that needs be solved to quantify the various őeld quantities

that describe the poroelastic model.

3.1 Governing Equations of Linear Isotropic Poroelasticity

In this section a brief description of the four equations that forms the the governing equations

for poroelasticity is provided.

3.1.1 Constitutive Equations

Constitutive equations in poroelasticity relates stress, strain and pore ŕuid pressure to describe

the response of the poroelastic material to applied loads. There are two types of responses: the

response of the solid component to applied loads and the response of the ŕuid component to

the applied loads. Thus, there are two constitutive equations to describe a poroelastic material

unlike in the case of elasticity where only one of such equation is required. Furthermore, the őrst

equation relates solid strain to total stress and pore pressure and the second relates the variation

of ŕuid content to pore pressure and solid volumetric strain [23, 31]. The following formulations

have ignored body forces and ŕuid sources within the representative element of the poroelastic

media.

The general form of these equations are given by Detournay and Cheng [23] either as a

strain-stress relation (3.1) or a stress-strain relation (3.2)
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2Gεij = σij −
v

1 + v
σkkδij +

α(1− 2v)

1 + v
pδij (3.1)

σij + αpδij = 2Gεij +
2Gv

1− 2v
εδij (3.2)

The above constitutive expressions can be reduced to the plane strain equivalent by noting

that the strain ε13 = ε23 = ε33 = 0 and the subscripts i, j, k take on the values 1 and 2, while

the out of plane normal stress, σ33 becomes

σ33 = vσkk − α(1− 2v)p, k = 1, 2 (3.3)

Thus, for plane strain, equations (3.1) and (3.2) becomes

2Gεij = σij − vσkkδij + α(1− 2v)pδij (3.4)

σij + αpδij = 2Gεij +
2Gv

1− 2v
εδij (3.5)

Note equation (3.5) is the same as (3.2) with the only difference in the range of i, j which

are now 1, 2

The response of the pore ŕuid to the applied loads can be expressed also in two forms,

depending on whether the mean stress or the volumetric strain is used as the coupling term [23].

The preferred expression used in this work is given as

p =M(ζ − αε) (3.6)

where ζ is the increment or variation in ŕuid content per unit reference volume.

3.1.2 Equilibrium Equations

A representative elemental volume (REV) of a poroelastic medium subjected to stresses is usu-

ally, in static translational and rotational equilibrium at any instant in time. Such medium is in

static equilibrium if the body is not accelerating and the net forces acting on it is zero and it is

in rotational equilibrium if the stress tensor is symmetric. These conditions needs must be true

for the medium to be deemed in equilibrium. The equilibrium equation, assuming zero body

forces is given by

σij,j = 0 (3.7)
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The subscript i, j ranges from 1 to 3 for a 3D model and 1 to 2 for a 2D plane strain

formulation.

3.1.3 Fluid Flow Equation

The ŕuid ŕow in the poroelastic medium is generally governed by Darcy’s law which states

that the ŕuid ŕux across a cross-sectional area is directly prosegmental to the pressure gradient.

Fluid ŕow in the medium is assumed linear. Again, assuming zero ŕuid body forces, this can be

written mathematically as [23]

qi = −κp,i (3.8)

where κ = k/µ, is the permeability coefficient, k, is the intrinsic permeability of the medium

and µ, is the viscosity of the ŕuid in the medium.

3.1.4 Continuity Equation

The continuity equation is a mass conservation equation of the ŕuid ŕowing into and out of a

representative elemental volume. This is given as

∂ζ

∂t
+ qi,i = 0 (3.9)

where ζ is the variation of the ŕuid content which describes the increment of ŕuid volume

per unit volume of the porous medium [9] and q is the speciőc discharge. The above equation

assumes there is no source density within the elemental volume.

A combination of the four governing equations produce two őeld equations expressed in terms

of displacement vector (i.e a Navier- type equation) and the pore pressure (a diffusion equation).

Navier Equations The solid strain can be expressed in terms of displacement components as

εij =
1

2
(ui,j + uj,i) (3.10)

By combining the equilibrium equation (3.7) and the constitutive equations (3.1) with strain

expressed using (3.10), we obtain the Navier type equation for the displacement as

G∇2ui +
G

1− 2v
uk,ki = αp,i (3.11)

Diffusion Equations Two diffusion equations can be derived; one in terms of pore pressure,

p, and the other in terms of variation of ŕuid content, ζ. In this work, we focus on the diffusion

equation derived in terms of pore pressure. The combination of the constitutive equation (3.5),

ŕow equation (3.8), and continuity equation (3.9), produces the coupled diffusion equation given

23



as [23, 16]

∂p

∂t
− κM∇2p = −αM ∂ε

∂t
(3.12)

Equation (3.12) indicates that the diffusion of pore pressure is coupled with the rate of change

of the volumetric strain. Under certain conditions, the pore pressure őeld can be uncoupled from

the displacement őeld [16, 60] . This condition exists if one of the boundaries of the problem’s

domain is inőnite. By noting that the right side of (3.12) is purely time dependent, at inőnity,

the change in volumetric strain is zero as such the equation can be reduced to:

c∇2p− ∂p

∂t
= 0 (3.13)

Where, κM = k/µS = c. The constant, c is the diffusivity coefficient and S is the uniaxial

speciőc storage coefficient which is approximately 1/M when vu ≃ v.

Equations (3.11) and (3.12) for the basic set of equation which when solved together using

the appropriate boundary and initial conditions, would produce solutions for the displacement

and pore pressure őeld.

3.2 Solution to the Poroelastic Field Equations

To aid in the solutions of the these equations, fundamental solutions (also known as free-space

Green’s function) are of the essence [15, 31]. These are solutions derived using various singular

impulses at a point in an unbounded domain with no particular boundary condition to satisfy.

These fundamental solutions are well behaved everywhere in the problem domain except at the

point of application of the impulse where there is a mathematical singularity. Common impulses

used are the point force, dipoles, point ŕuid source and point displacement discontinuity to name

a few.

3.2.1 Boundary Integral Equations (BIE)

To attempt a solution to the őeld equations, the partial differential equations (PDE) in (3.11)and

(3.13) are recast in boundary integral forms using the rigorous reciprocal theorem or heuristic

superposition theory [15]. The boundary integral equations are set up by convoluting the fun-

damental solutions and the source densities distributed along the boundaries of the problem

domain in time and space [23, 57]. Once the densities of these impulses are known, it is possible

to determine other őeld quantities such as stress, ŕuid ŕux, pore pressure and displacement us-

ing the superposition principle. The fundamental solutions used in this work have already been

derived by Cheng and Detournay [15, 16] and are provided in Appendix B.

To formulate the BIE for a fractured injector or producer well problem, consider a fracture
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whose boundary is denoted by Γ in a poroelastic medium . We can write a boundary integral

representation of the solution for the stress and pore pressure őelds around the fracture by using

the fundamental solutions and the source densities distributed along the locus of the fracture as

follows:

σij(x, t) =

ˆ t

0

ˆ

Γ

σip
ijk(x, χ; t− τ)Fk(χ, τ)dΓdτ +

ˆ t

0

ˆ

Γ

σis
ij (x, χ; t− τ)ψ∗(χ, τ)dΓdτ (3.14)

p(x, t) =

ˆ t

0

ˆ

Γ

pipk (x, χ; t− τ)Fk(χ, τ)dΓdτ +

ˆ t

0

ˆ

Γ

pis(x, χ; t− τ)ψ∗(χ, τ)dΓdτ (3.15)

where x and χare two-dimensional coordinate tensors, σij(x, t) is the stress component at

coordinates x and time t. Fk(χ, τ) and ψ∗(χ, τ) are instantaneous point force and ŕuid source

densities respectively located at χand induced at time τ . σip
ijk(x, χ; t − τ) and σis

ij (x, χ; t − τ)

are the fundamental solutions for the stress components induced by the instantaneous point

force and ŕuid source respectively, while pipk (x, χ; t − τ) and pis(x, χ; t − τ) are fundamental

solutions for the pore pressure őeld as a result of the instantaneous point force and ŕuid sources

respectively. The superscript ”ip” and ”is” represents instantaneous point force and ŕuid source

respectively while the subscripts i, j, k represents directions which ranges from 1 to 2 since the

problems considered in this work are in plane strain.

3.2.2 Boundary Element Method

Several solution techniques abound in the literature for solving the resulting boundary inte-

gral equations including Finite Element Method (FEM), Extended Finite Method (XFEM) and

Boundary Element Method (BEM) to name a few [5, 57, 3, 59]. In this work, boundary el-

ement method has been adopted as the preferred method of solution for a couple of reasons.

Unlike, FEM which requires full domain descritization, only the problem boundaries need to be

descritized in BEM [5, 40]. This implies that the data points and the number of simultaneous

equations that needs to be solved are signiőcantly less, resulting in lesser computation time

compared to FEM. Since only boundaries are descritized, it is very suitable to solve problems

involving inőnite domains. While the traditional BEM does have some few drawbacks, one of

which is that it has some difficulty in treating nonlinear problems, luckily, the set of problems

considered in this work are linear and homogeneous. There are however, extensions of the the

traditional BEM that can now handle these difficulties with ease, but those will not be consid-

ered in this work. Also the fully populated matrices may require more computing power, but
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the problem boundary into a number of elements and replacing the integrals over the boundary

by a sum of integrals. However, the temporal descritization can be avoided by recasting the

integral equations in the Laplace transform space so that we only need to carry out a spatial

descritization, effectively reducing the problem dimension by one. Once the densities are deter-

mined in the Laplace space, they need to be inverted back into the time space for meaningful

interpretation.

Taking the Laplace transform of equations (3.14) and (3.15), we can rewrite the equations as

σij(x, s) =

ˆ

Γ

σ̃ip
ijk(x, χ; s)F̃k(χ, s)dΓ +

ˆ

Γ

σ̃is
ij (x, χ; s)ψ̃

∗(χ, s)dΓ (3.16)

p(x, s) =

ˆ

Γ

p̃ipk (x, χ; s)F̃k(χ, s)dΓ +

ˆ

Γ

p̃is(x, χ; s)ψ̃∗(χ, s)dΓ (3.17)

where the tilde overbar denotes the Laplace transform. The fundamental solutions in the

Laplace space are provided in Appendix B.

We make the following approximation in the numerical implementation of the BEM: (1)

constant straight line boundary elements of equal dimensions are used to segment the problem

boundary (2) the fundamental solutions due to the point force and ŕuid source are applied at

the mid nodal point of each element. (3) the source densities are constant over each element and

are collocated at the mid nodal point.

With N number of boundary elements and noting that the source densities are constant on

each element, the induced stress and pore pressure can be approximated using the following

summation;

σij(x
m, s) =

N
∑

n=1

(
ˆ

Γn

σ̃ip
ijk(x

m, χ; s)dΓ

)

F̃k(χ
n, s) +

N
∑

n=1

(
ˆ

Γn

σ̃is
ij (x

m, χ; s)dΓ

)

ψ̃∗(χn, s)

(3.18)

p(xm, s) =

N
∑

n=1

(
ˆ

Γn

p̃ipk (xm, χ; s)dΓ

)

F̃k(χ
n, s) +

N
∑

n=1

(
ˆ

Γn

p̃is(xm, χ; s)dΓ

)

ψ̃∗(χn, s) (3.19)

m and n are nodal points of element m and n on the boundary and they range from 1 to N .

By introducing the following notation

mn

A =

ˆ

Γn

σ̃ip
ijk(x

m, χ; s)dΓ (3.20)
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mn

B =

ˆ

Γn

σ̃is
ij (x

m, χ; s)dΓ (3.21)

mn

C =

ˆ

Γn

p̃ipk (xm, χ; s)dΓ (3.22)

mn

D =

ˆ

Γn

p̃is(xm, χ; s)dΓ (3.23)

Equations (3.18) and (3.19) can be written as

m
σ ij =

N
∑

n=1

mn

A
m

F̃k+
N
∑

n=1

mn

A
m

ψ̃∗ (3.24)

m
p =

N
∑

n=1

mn

A
m

F̃k+

N
∑

n=1

mn

A
m

ψ̃∗ (3.25)

A few remarks about equations (3.24) and (3.25).

• The coordinate of the inŕuencing point, χ, changes with each boundary element as the

boundary is traversed.

• Boundary conditions needs must be speciőed to solve for the unknowns
m

F̃kand
m

ψ̃. Once

solved, a similar equation as in (3.24) and (3.25) can be written to solve for the problem

quantities such as displacement, stress, ŕux etc. at any location with the domain or on

the boundary.

Similar formulation can be done for the displacement discontinuity method. The major difference

in implementation is the change in the integration kernel from point force fundamental solution

to point displacement discontinuity fundamental solution.

Since the goal of this work is to model perturbed stress őeld around fractured wells due to

ŕuid injection and pumping, the inŕuence of the ŕuid source will be predominant as such the őrst

part of equations (3.24) and (3.25) may be dropped such that the modiőed numerical solution

to the problem becomes

m
σ ij =

N
∑

n=1

Bmn

m

ψ̃∗ (3.26)

m
p =

N
∑

n=1

Dmn

m

ψ̃∗ (3.27)

Next we consider the inversion of the solution back to time domain.

3.2.2.2 Numerical Inversion of Laplace Transform

There are several inversion techniques to invert functions from Laplace space back to time

space. The choice of which inversion algorithm to use is often inŕuenced by the behaviour of
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the function to be inverted. For instance Gaver-Stehfest algorithm works excellently well for

non-periodic or non-oscillatory functions [56, 39]. The set of problems considered in this work

are non-oscillatory as such the choice of the algorithm for the Laplace space inversion. A brief

summary of the algorithm is provided as follow.

Given a function f̃(s) in Laplace domain, we can obtain its equivalent, f(t) in time domain

by using the following expression [56, 39]:

f(t) ≈
ln2

t

N
∑

n=1

Vnf̃(n
ln2

t
) (3.28)

where the coefficient Vn is given by

Vn = (−1)n+N/2

min(n,N/2)
∑

k=(n+1)/2

kN/2(2k)!

(N/2− k)!k!(k − 1)!(n− k)!(2k − n)!
(3.29)

A six-point Stehfest weights, Vn are used in this work. Where V1−6 = 1,−49, 366,−858, 810,−270.

The solution techniques discussed in this chapter will be applied to problems in Chapter 5

when a fractured producer well is considered. There, the dimensionless versions of the boundary

integral equations for stresses and pore pressure are provided and solved using a computer code

developed in Mathematica.

29



Chapter 4

Stress Trajectories and Fracture

Deviation Around Unfractured

Producer-Injector Well System

4.1 Introduction

In this chapter, the problem of fracture deviation will be examined using the concept of stress

trajectories. Speciőcally, the inŕuence of induced stresses due to the activity of ŕuid injection and

pumping on the stress trajectories around an injector- producer well system will be examined.

The problem considered in this chapter was motivated by a previous work done by Berchenko and

Detournay in which they studied the deviation of a hydraulic fracture towards an injector well,

but initially propagating on a straight course, mid-way between the injector and a producer

well. They argued that the change in direction of the fracture towards the injector well was

informed by the fact that the injector well, having a higher pressure őeld around it, creates an

attraction zone. Thus, any fracture propagating into this zone will be deviated by the stress

őeld around the injector and the fracture could ultimately end up in the injector well. They also

concluded that the fracture path can be approximated by the stress trajectory as long as certain

dimensionless toughness parameter is small. If the toughness parameter is large, they concluded

that a recourse to full numerical fracture propagation modeling should be pursued to predict the

fracture path as the stress trajectory would no longer be accurate to predict the fracture path.

In this chapter the Berchenko-Detournay problem was revisited using the stress trajectory

to predict fracture propagation direction. While the authors carried out a full numerical mod-

eling of the fracture path in order to account for the effect of large fracture toughness, such
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Figure 4.1: Berchenko-Detournay problem [7] with extra annotations

numerical modeling is not done in this work. Rather a new parameter which is a function of

fracture toughness was introduced into the stress trajectory equation to approximately account

for the effect of rock toughness on the fracture propagation path without recourse to full fracture

propagation modeling. The goal is to examine how good of a predictor is the stress trajectory

to approximate the fracture propagation direction.

4.2 The Berchenko-Detournay Problem

Consider a hydraulic fracture propagating in a poroelastic medium towards a system of two

wells, an injector well injecting ŕuid at a constant rate Qo and a producer, withdrawing ŕuid at

the same rate, −Qo since time t = 0 [7]. The fracture, initially propagating equidistant from the

two wells, is perpendicular to the far-őeld compressive minimum principal stress, Po−So, where

Po is the mean stress and So is the deviatoric stress at inőnity (see őgure 4.1). The coordinates

of the injector and producer are (0, L) and (0,−L), respectively while the hydraulic fracture was

propagating along the negative x− axis.

Berchenko et. al made the following assumptions about the problem to keep it manageable:

• The internal pressure, pf of the fracture is constant.

• Effects of leak-off from the fracture is ignored.

• Pore pressure evolution as a result of the injection and pumping activity is negligible while

the fracture is still outside the region of inŕuence between the two wells.

• The fracture path is independent of the speed of propagation

With these assumptions, the possible factors inŕuencing the advancing fracture path are (1) the
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far őeld stresses,Po and So and the pore pressure po, (2) the injection and pumping rate, Qo,

(3) the poroelastic material constants, (4) the half-distance between the two wells, L, (5) the

fracture pressure, pf and (6) the time, t, as the induced stress őeld evolves with time due to the

pumping and injection.

Berchenko et. al proposed using the stress trajectory to gain some insight into the possible

propagation path since fractures generally propagate perpendicularly to the direction of the min-

imum principal stress or along the direction of the maximum principal stress. This necessitates

the need to develop an equation for stress őeld around the wells which subsequently is then used

to produce the stress trajectories.

Berchenko et. al did not provide the derivation of the induced stress őeld equations but

rather gave the őnal expressions for these quantities. In the next section, the required stress

őeld equations for an unfractured well in a poroelastic medium in a 2D plane strain model is

derived for the purpose of completeness and reference.

It should be noted that Berchenko et. al considered tensile forces as positive in their paper,

thus the induced stresses were positive while the far őeld stresses, being compressive, are deemed

negative. In this work, we adopted the classical geotechnical convention of compressive stress

being positive, thus the induced stresses, being tensile are negative. As such the stress trajectory

that will ultimately be developed will follow in the direction of the maximum principal stress

rather than the minimum principal stress direction used in Berchenko’s paper.

4.2.1 Stress Field Around Injector/ Producer Wells in a Poroelastic

medium

4.2.1.1 Displacement and Pore Pressure Field around a Well

To aid the derivations, the equilibrium equation and constitutive equation are written in the

polar coordinate system (since we are dealing with a 2D problem). The combination of these

two equations will aid in the derivation of one of the őeld equations (i.e the Navier-type equation

for the solid displacement).

The force equilibrium equation is given as

∂σrr
∂r

+
σrr − σθθ

r
= 0 (4.1)

The constitutive equations for the radial and tangential stresses in terms of pore pressure are

given as

σrr = 2Gεrr + 2Gp
ν

1− 2ν
εkk − αp (4.2)
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σθθ = 2Gεθθ + 2G
ν

1− 2ν
εkk − αp (4.3)

Where the radial, tangential strains and volumetric strains are given respectively by

ϵrr =
∂ur
∂r

; ϵθθ =
ur
r
; ϵkk =

∂ur
∂r

+
ur
r

(4.4)

We can obtain a partial differential equation for the displacement by substituting (4.2), (4.3),and

(4.4) into (4.1) and upon simpliőcation, we obtain

∂2ur
∂r2

+
1

r

∂ur
∂r

− ur
r2

=
η

G

∂p

∂r
(4.5)

where
α(1− 2υ)

2(1− υ)
· 1

G
=

η

G
(4.6)

The poroelastic constants in the above expressions have been deőned in chapter 2.

The general solution to (4.5) is given by

ur(r, t) = C1(t)r + C2(t)
1

r
+

η

Gr

ˆ r

0

r′p(r′, t)dr′ (4.7)

Where C1(t) and C2(t) are constants of integration.

Since the well diameter is very small compared to the inőnite poroelastic medium, the well

can be modeled as a line source, as such, as r → 0, the term C1(t)r in (4.7) also tends to zero.

Also, the displacement should be őnite and bounded at inőnity. Thus as r → ∞, the term

C2(t)
1
r in (4.7) also tends to zero. Equation (4.7) reduces to

ur(r, t) =
η

Gr

ˆ

r′p(r′, t)dr′ (4.8)

To obtain ur(r, t), we need őrst solve the diffusion equation for pore ŕuid pressure, p(r′, t). The

pressure diffusion equation in a poroelastic medium in the absence of ŕuid body forces is given

by

∂p

∂t
− κM∇2p = −αM ∂ε

∂t
+Mγ (4.9)

Where γ is the source density and the other parameters deőned in Chapter 2.

For an irrotational displacement őeld in an inőnite domain, the pore pressure and displace-

ment change at inőnity is zero, thus under such condition, the solid coupling term, αM ∂ε
∂t

varnishes. The pore pressure diffusion equation uncouples and in the absence of body forces

(4.9) reduces to
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∂p

∂t
− c∇2p =

γ

S
(4.10)

Where S = 1/M is the uniaxial speciőc storage coefficient. The solution to (4.10) with a line

source of constant continuous injection of ŕuid volume per unit length, Qo at the origin from

time t = 0 is given by Carslaw and Jaeger [14] as

p(r, t) =
Qo

4π(k/µ)
E1

(

r2

4ct

)

(4.11)

Where r2 = (x− x′)2 + (y − y′)2,x′ = y′ = 0 is the source location and E1is the exponential

integral, E1(ξ) =
´

∞

ξ
e−t

t dt

Thus we can obtain an expression for the radial displacement, ur(r, t) by substituting (4.11)

into (4.8) and upon integration with respect to r′(ranges from 0 to r)

ur(r, t) =
Qo

8π(k/µ)
· η
G
r

[

4ct

r2

(

1− exp

(

− r2

4ct

))

+ E1

(

r2

4ct

)]

(4.12)

Note that equations (4.11) and (4.12) is equally applicable to producer wells. The only

difference is the change in the ŕow rate sign from Qo to −Qo.

Next we introduce some dimensionless parameters with respect to the problem as described

in őgure (4.1) to aid a general formulation.

We recall that the fracture was initially propagating along the negative x− axis equidistant

from the injector and producer whose coordinates are (X1, Y1)and (X2, Y2) respectively.

We deőne the following dimensionless parameters

x =
X

L
; y =

Y

L
;x1 =

X1

L
; y1 =

Y1
L
;x2 =

X2

L
; y2 =

Y2
L
; τ =

4ct

L2
(4.13)

Where X and Y are the spatial principal coordinates and x, y are the dimensionless spatial

coordinates of an arbitrary őeld point. (x1, y1) and (x2, y2) are dimensionless injector and

producer coordinates respectively.

The radial displacement in (4.12) can be written in terms of the deőned dimensionless pa-

rameters as

ur(r, τ) =
Qo

8π(k/µ)

η

G
r

[

τ

r2

(

1− exp

(

−r
2

τ

))

+ E1

(

r2

τ

)]

(4.14)

And the pore pressure as

P (r, τ) =
Qo

4π(k/µ)
E1

(

r2

τ

)

(4.15)
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The strains induced in the poroelastic medium due to the injector well is obtained by sub-

stituting (4.14) into (4.4).

ϵrr(r, τ) =
Qo

8π(k/µ)
· η
G

[

− τ

r2
+

τ

r2
exp

(

−r
2

τ

)

+ E1

(

r2

τ

)]

(4.16)

ϵθθ(r, τ) =
Qo

8π(k/µ)
· η
G

[

τ

r2
− τ

r2
exp

(

−r
2

τ

)

+ E1

(

r2

τ

)]

(4.17)

ϵkk(r, τ) =
Qo

4π(k/µ)
· η
G
E1

(

r2

τ

)

(4.18)

Similarly, the strains induced due to the producer is obtained by merely using −Qo instead in

equations (4.16), (4.17) and (4.18).

The radial and tangential stresses at the őeld point (x, y) due to the injector is obtained by

substituting (4.11), (4.16), (4.17) and (4.18) into (4.2) and (4.3) respectively;

σrr,inj(r, τ) =
Qoη

4π(k/µ)
·
[

− τ

r21

(

1− exp

(

−r
2
1

τ

))

− E1

(

r21
τ

)]

(4.19)

σθθ,inj(r, τ) =
Qoη

4π(k/µ)
·
[

τ

r21

(

1− exp

(

−r
2
1

τ

))

− E1

(

r21
τ

)]

(4.20)

Similar expressions are obtained for induced stresses due to the producer by using −Qo

instead in equations (4.19) and (4.20).

4.2.1.2 Stress Functions

We can transform the obtained stresses from polar coordinates to Cartesian coordinates using

the stress transformation equations:

σxx(x, y, τ) = σrr(r, τ)Cos
2θ + σθθ(r, τ)Sin

2θ − 2σrθ(r, τ)SinθCosθ (4.21)

σyy(x, y, τ) = σrr(r, τ)Sin
2θ + σθθ(r, τ)Cos

2θ + 2σrθ(r, τ)SinθCosθ (4.22)

σxy(x, y, τ) = (σrr(r, τ)− σθθ(r, τ))SinθCosθ + σrθ(r, τ)
(

Cos2θ − Sin2θ
)

(4.23)

Bearing in mind that for a plane strain problem, the shear strain, ϵrθ = 0 and thus the shear

stress,σrθ = 2Gεrθ = 0. Thus (4.21) - (4.23) reduces to:
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σxx(x, y, τ) = σrr(r, τ)Cos
2θ + σθθ(r, τ)Sin

2θ (4.24)

σyy(x, y, τ) = σrr(r, τ)Sin
2θ + σθθ(r, τ)Cos

2θ (4.25)

σxy(x, y, τ) = (σrr(r, τ)− σθθ(r, τ))SinθCosθ (4.26)

After some elementary algebra, the induced horizontal normal stress in Cartesian coordinates,

in the x− direction at the őeld point (x, y) due to the injector is given by:

σxx(x, y, τ),inj =
Qoη

4π(k/µ)

[

(y − y1)
2 − (x− x1)

2

(y − y1)2 + (x− x1)2

(

1− exp(ψ1)

ψ1

)

− E1(ψ1)

]

(4.27)

Where we have used ψ1 = (y−y1)
2+(x−x1)

2

τ ,

Following similar approach, we can write the expression for the induced horizontal normal

stress in the x− direction at the őeld point due to the producer (−Qo) as

σxx(x, y, τ),prod = − Qoη

4π(k/µ)

[

(y − y2)
2 − (x− x2)

2

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)

− E1(ψ2)

]

(4.28)

Where we have used ψ2 = (y−y2)
2+(x−x2)

2

τ

Similarly, we can obtain the induced horizontal normal stresses due to the injector and the

producer in the y − direction following the same approach as above.

These stresses are given as:

σyy(x, y, τ),inj =
Qoη

4π(k/µ)

[

(y − y1)
2 − (x− x1)

2

(y − y1)2 + (x− x1)2

(

1− exp (ψ1)

ψ1

)

+ E1(ψ1)

]

(4.29)

σyy(x, y, τ),prod = − Qoη

4π(k/µ)

[

(y − y2)
2 − (x− x2)

2

(y − y2)2 + (x− x2)2

(

1− exp (ψ2)

ψ2

)

+ E1(ψ2)

]

(4.30)

The induced shear stresses in the xy − plane for the injector and producer is given as

σxy(x, y, τ),inj = − Qoη

4π(k/µ)
·
[

2(x− x1)(y − y1)

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)]

(4.31)
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σxy(x, y, τ),prod =
Qoη

4π(k/µ)
·
[

2(x− x2)(y − y2)

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)]

(4.32)

Thus the total induced stresses felt at the őeld point, (due to injection and pumping) is a

superposition of the both induced stresses from the injector and producer wells.

Thus, resultant induced horizontal stresses in the x− and y − directions are given as:

σxx(x, y, τ)ind =
Qoη

4π(k/µ)

[

(y − y1)
2 − (x− x1)

2

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)

− E1(ψ1)

− (y − y2)
2 − (x− x2)

2

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)

+ E1(ψ2)

]

(4.33)

σyy(x, y, τ)ind = − Qoη

4π(k/µ)

[

(y − y1)
2 − (x− x1)

2

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)

+ E1(ψ1)

− (y − y2)
2 − (x− x2)

2

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)

− E1(ψ2)

]

(4.34)

The resultant shear stress in the xy − plane at the őeld point is given as

σxy(x, y, τ)ind = − Qoη

4π(k/µ)

[

2(x− x1)(y − y1)

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)

− 2(x− x2)(y − y2)

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)]

(4.35)

By introducing a characteristic stress deőned by

σ∗ =
Qoη

4π(k/µ)
(4.36)

We can express the induced stresses in their dimensionless forms by normalizing the induced

stresses with the characteristic stress. These normalized stresses will be referred to as stress

functions , 𭟋xx,𭟋yy and 𭟋xy for induced horizontal normal stresses in x − direction andy −

direction, and the induced shear stress in xy − plane respectively.

Thus

𭟋xx(x, y, τ) =

[

(y − y1)
2 − (x− x1)

2

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)

− E1(ψ1)

− (y − y2)
2 − (x− x2)

2

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)

+ E1(ψ2)

]

(4.37)
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𭟋yy(x, y, τ) =

[

− (y − y1)
2 − (x− x1)

2

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)

− E1(ψ1)

+
(y − y2)

2 − (x− x2)
2

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)

+ E1(ψ2)

]

(4.38)

𭟋xy(x, y, τ) =

[

− 2(x− x1)(y − y1)

(y − y1)2 + (x− x1)2

(

1− exp (−ψ1)

ψ1

)

+
2(x− x2)(y − y2)

(y − y2)2 + (x− x2)2

(

1− exp (−ψ2)

ψ2

)]

(4.39)

And the induced stresses can be written as

σxx(x, y, τ)ind = σ∗
𭟋xx(x, y, τ) (4.40)

σyy(x, y, τ)ind = σ∗
𭟋yy(x, yσ∗, τ) (4.41)

σxy(x, y, τ)ind = σ∗
𭟋xy(x, y, τ) (4.42)

Equations (4.37) - (4.42) are the őnal set of equations used by Berchenko et. al [7]. As stated

earlier, these equations were re-derived for reference and completeness purpose.

Following Berchenko et.al, the stress trajectory equations are provided next.

4.2.1.3 Principal Stresses Direction Equations

Prior to fracture propagation, the total state of stress in the medium is the summation of the

far-őeld stresses and induced stresses due to the wells. Noting that the far őeld stresses are

compressive and the induced stresses are tensile, we can write

σxx(x, y, τ) = σxx(x, y, τ)ind + Po + So (4.43)

σyy(x, y, τ) = σyy(x, y, τ)ind + Po − So (4.44)

σxy(x, y, τ) = σxy(x, y, τ)ind (4.45)

The direction of principal stresses can be predicted using the expression
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tan2θp =
2τxy

σxx − σyy
(4.46)

Where θp is the angle the principal stress makes with the positive x − axis. Recalling that

the maximum principal stress is given by

σ1(x, y, τ) =
σyy + σxx

2
+

√

(

σxx − σyy
2

)2

+ σ2
xy (4.47)

Equation (4.46)can be re-written after some elementary algebraic manipulation to give an

expression in terms of the maximum compressive principal stress.

tanθp =
dy

dx
=
σ1 − σxx
σxy

(4.48)

Solving this equation gives the maximum principal stress trajectories.

Following Berchenko’s approach we can deőne the following dimensionless parameters for

proper analysis of the stress trajectories:

Dimensionless far-őeld deviatoric stress, S

S =
So

σ∗
(4.49)

Dimensionless Stress Difference, 𭟋u

𭟋u(x, y, τ,S) =
σxx − σyy

2σ∗ =
1

2
(𭟋xx(x, y, τ)−𭟋yy(x, y, τ)) + S (4.50)

Thus, (4.48) can be written in form of the newly deőned dimensionless parameters as

dy

dx
=

−𭟋u(x, y, τ ;S) +
√

𭟋u(x, y, τ ;S)2 +𭟋xy(x, y, τ)2

𭟋xy(x, y, τ)
= f(x, y, τ ;S) (4.51)

Note that equation (4.51) uses the convention, compressive and tensile stresses are positive

and negative respectively. This expression is slightly different in signs from that provided in

Berchenko et. al equation (15) who used the opposite sign convention. The stress difference

(4.50) is also deőned differently, with a swapping of the position of σxxand σyycompared to

equation (10) in Berchenko. The compressive stress is positive convention was adopted so that

the general convention that fracture propagate parallel to the maximum stress őeld is retained

as against Berchenko work that had the fracture propagating parallel to the minimum principal

stress due to the sign convention they adopted.
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4.2.2 Stress Trajectories Around Wells

Following Berchenko et al., the maximum principal stress trajectories around the injector-

producer system are examined. The differential equation (4.51) is solved numerically using

the computational software, Mathematica and the corresponding plots generated. It should be

noted that the distance between the wells in these plots have been normalized (see (4.13)) and

as such the spatial distances are dimensionless.

Figure 4.2 shows 1 injector - 1 producer system for various values of τ and S. The fracture

predicted path is indicated by the magenta line The following qualitative observations can be

made from the stress őeld plots:

1. At very early times, the maximum principal stress őeld is relatively unperturbed for large

values of the dimensionless deviatoric stress parameter, S− the ratio of the far-őeld devia-

toric stress, So, to the characteristic stress, σ∗ , which is a function of the rock properties

as well as the ŕow rate.

2. As injection and production continues for some extended time, we notice appreciable per-

turbation of the stress őeld around the wells. This perturbation is more pronounced at

smaller values S .

3. An łattraction basinž is developed around the injector at longer times, while the producer

develops a repulsive zone. A fracture propagating within the attraction zone may end up

in the injector well.

4. At values of S > 1, the fracture is deviated but does not end up in the injector. χ

Berchenko et. al deőned the dimensionless toughness parameter as χ = KIc/(σ
∗
√
lo), where

KIc is the rock’s toughness,lo is the initial fracture half length before propagation and σ∗ is

the characteristic stress. χ is a measure of the ratio of the net pressure in the fracture to the

characteristic stress σ∗.They showed that as long as χ is small (say less than 0.1 as shown in őgure

4.3(a)), the stress trajectory does produce a very good estimate for the fracture propagation

path by comparing the stress trajectory prediction with the full-scale numerical modeling of the

fracture propagation path. They also stated that as long as the χ is small, fracture deviation

and attraction is primarily controlled by two dimensionless groups, S = So/σ
∗ which is the

ratio of the far őeld stress deviator and the characteristic stress, σ∗ and dimensionless time,

τ = 4ct/L2. In the general case when the dimensionless toughness parameter is not small,

the solution depends on eight dimensionless parameters in all and a full numerical fracture

propagation modeling must be pursued to predict the fracture path.
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Figure 4.2: Maximum principal stress trajectories around an injector-producer system at various
values of τ and S

In the next section, a new perturbation parameter and a dimensionless toughness parameter

modiőer, Υ which when incorporated into the standard stress trajectory equation, could help ap-

proximate the actual fracture path without recourse to a full numerical modeling of the fracture
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propagation. This implies that the fracture path, perhaps, may be controlled by three dimen-

sionless parameters instead of eight, that is, the two dimensionless groups earlier described, S

and τ , and a new parameter which is a dimensionless toughness parameter modiőer, Υ.

4.2.3 The Modiőed Stress Trajectory Equation

Here we introduce the dimensionless toughness parameter modiőer, Υ. Berchenko provided the

following expression for the dimensionless toughness parameter χ

χ =
KIc√
loσ∗

(4.52)

where KIc is the poroelastic media toughness, lo is the initial fracture length prior to propa-

gation and σ∗ is the characteristic stress as deőned previously.

The dimensionless toughness parameter modiőer, Υ is given by

Υ = Exp (−ϑ√χ) (4.53)

where ϑ is the dimensionless toughness őtting parameter . Equation (4.53) was obtained by

őtting the dimensionless toughness parameter values of the full numerical solution by Berchenko

and Detournay to a scale ranging from 0 to 1 using an exponential function. For the Berchenko-

Detournay problem considered, the dimensionless toughness őtting parameter, ϑ was determined

to be ≈ 0.2539.

By incorporating the modiőed dimensionless toughness parameter into the maximum princi-

pal stress direction equation, we can approximate the fracture path for any value of toughness,

without a recourse to full scale fracture propagation modeling.

Thus a modiőed principal stress trajectory equation that can provide an approximate fracture

path is given by

dy

dx
= Υ

σ1 − σxx
σxy

(4.54)

It is worth noting that the value of Υ ranges from 0 to 1. When Υ → 0, which implies high

dimensionless toughness values, the stress trajectory is less perturbed and thus the fracture tend

to continue on a straight ahead course. When Υ → 1, the stress trajectory equation tends to

the standard principal stress trajectory equation which produces good fracture path estimates

for small toughness values.

A plot showing the variation of predicted fracture path for an injector-producer system at

τ = 1 and S = 0.5 for various values of the modiőed dimensionless toughness parameter, Υ is

shown in Figure 4.3(b). The red and blue dots indicates the injector and producer respectively.
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(a)

(b)

(c )
(d)

Figure 4.3: Approximated fracture paths at S = 0.5 for various values τand χ or Υ:(a) From
Fig. 12, Berchenko et. al [7] comparing numerical fracture path prediction (dotted curves) and
the stress trajectory (continuous line) for S = 0.5 at τ = 1 (χ = 0.1, 1, 10, 100) (b) Predicted
fracture path for various values of Υ at τ = 1 and S = 0.5 . Υ values were calculated using
χ = 0.1, 1, 10, 100 from Berchenko et. al [7] (c)-(d) Predicted fracture path, S = 0.5 at various
times τ = 0.01, 0.1, 1, 10, 100 for Υ = 1 and Υ = 0.5 respectively.
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The fracture tip is represented by the black dot and it is at the point (−3, 0). The lines ema-

nating from this point are the predicted stress trajectory that the propagating fracture would

follow for the various toughness values using the modiőed stress trajectory equation (4.54). A

visual comparison of 4.3(b) and Berchenko’s numerical solution as shown in 4.3(a) shows great

similarity. The Υ values used in the plot are calculated using (4.53) with χ = 0.1, 1, 10, 100 as

used in Berchenko’s paper. While it was intended that a comparison with a numerical solution

will be carried out, unfortunately, that piece of exercise will not be captured in this thesis but

will be carried out and published in a paper at a future date.

Figure 4.3(c) shows various predicted fracture path for a fracture whose tip is at the point

(−3, 0) for various times when Υ = 1 and S = 0.5. Note that Υ = 1 is synonymous with zero

toughness and as such gives same plot as the standard maximum principal stress trajectory

equation. As expected, we observe the fracture path to continue on a straight course at early

times (τ = 0.01) and gradually deviated as injection and production continues. At times greater

than τ = 1, the fracture get ends up in the injector well. Similarly, Figure 4.3(d) shows various

predicted fracture path for a fracture whose tip is at the point (−3, 0) for various times when

Υ = 0.5 and S = 0.5. We observe that although the fracture gets deviated at late times, the

fracture does not end up in the injector well because the inŕuence of the fracture toughness is

greater than the induced poroelastic stress changes.

In conclusion, the Berchenko-Detournay problem was revisited with additional stress trajec-

tory plots provided to give pictorial view of the inŕuence of the various dimensionless groups

namely, S and τ . A new dimensionless toughness parameter modiőer and a modiőed max-

imum principal stress direction equation were introduced with the goal of predicting fracture

propagation path without explicitly modeling the fracture propagation.
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Chapter 5

Stress Field Around a Fractured

Producer Well

5.1 Introduction

The majority of wells, in recent years, used for production purposes are hydraulically fractured.

The advancement in fracturing technologies in recent times have inŕuenced many oil and gas őeld

operators to conclude that older generation wells which are mostly vertical wells, may have been

understimulated and as such they could be good candidates for refracturing in order to recover

stranded hydrocarbon reserve. One major factor operators seek to understand is the stress

state in a reservoir after it has been producing for some extended period of time. Of particular

interest is the stress őeld re-orientation and possible principal stresses reversals (switching of the

directions of the principal stresses around the fracture). Should a stress reversal occur, a new

refracture will propagate perpendicular to the old fracture, thereby increasing the likelihood of

the new fracture contacting less depleted segments of the reservoir.

In this chapter, the equations and solutions for the induced stress őelds around a producer well

are developed. The induced stress őelds solutions were derived using previous transient pressure

solutions by Sarvaramini and Garagash[47]. Stress trajectories are employed to visualize the

stress perturbations as well as the extent of stress reorientation. The variation of the extent of

the orthogonal segment of the theoretical refracture length as well as the conditions for which

such stress reversals take place are presented. The problem solved here is modeled in 2D plane

strain.
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Figure 5.1: A fractured producer well in a non-hydrostatic poroelastic medium

5.2 Problem Description

We consider an unpropped fractured producer well ŕowing at a constant rate −Qo in a poroelastic

reservoir with ambient an pore pressure po. The fracture, of length 2L perpendicular to the

minimum compressive far őeld stress Po − So, where Po is the mean stress and So is the stress

deviator at inőnity. Here we take the compressive stresses as positive. The poroelastic medium

is homogeneous and the crack itself is modeled in plane strain (inőnite height). The fracture is

highly conductive to ŕuid compared to the formation. Fluid ŕow in the fracture is not modeled.

This is a reasonable assumption for an unpropped producer well because the crack volume is

small compared to the leak-in volume and the ŕuid pressure in the fracture is less than the

pressure required to advance the crack.

A schematic of the problem description is given in őgure 5.1.

5.2.1 Governing Equations and Boundary Integral Representation

To determined the induced stresses around the fracture due to ŕuid production, we need to őrst

quantify the transient pressure őeld around the fracture. This can be achieved by solving the

pore pressure diffusion equation using the concept of distributed sources over the fracture locus.

We recall the pore pressure diffusion equation in a poroelastic medium in the absence of ŕuid

body forces is given by [16]

∂p

∂t
− κM∇2p = −αM ∂ε

∂t
+Mγ (5.1)

Where γ is the source density, κ = k/µ is the mobility coefficient, k is the intrinsic matrix

permeability, µ is the dynamic ŕuid viscosity, M is the Biot’s Modulus, α is Biot’s coefficient

and ϵ is the volumetric strain.

As stated in chapter 4, for an irrotational displacement őeld in an inőnite domain, the pore
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pressure and displacement change at inőnity is zero, thus under such condition, the solid coupling

term varnishes [16, 60] . Thus, the pore pressure diffusion equation uncouples and for a plane

strain problem, (5.1) reduces to

∂p

∂t
− c∇2p =

γ

S
(5.2)

The point source solution to (5.2) subject to a source density, γ = gδ(r − r
′

)δ(t − t
′

) , has

been given by Carslaw and Jaeger [14]:

psi(R, t) =
g(r

′

, t′)

4πcS(t− t′)
exp

(

− |r − r
′ |2

4c(t− t′)

)

(5.3)

with |r− r
′ |2 = (X −X

′

)2 +(Y −Y
′

)2 , X and Y are the spatial coordinates of an arbitrary

őeld point while X
′

and Y
′

are the coordinate of the point source, g is the strength of the Dirac

delta function and psi is the instantaneous ŕuid source solution to (5.2).

We can obtain an expression for the pore pressure őeld around the crack by distributing the

instantaneous sources psi(X, t) over the crack length (−L ≤ X
′ ≤ L, Y

′

= 0). Integrating in

space and time gives the boundary integral equation for the pressure őeld [47].

p(X,Y, t)− po =

t
ˆ

0

L̂

−L

g(X
′

, t
′

)

4πcS(t− t′)
exp

(

− (X −X
′

)2 + Y 2

4c(t− t′)

)

dX
′

dt
′

(5.4)

where po is the formation pore pressure and g takes on the meaning of ŕuid leak-in rate (rate

at which ŕuid ŕow into the fracture).

To obtain the full solution for (5.4), the volume balance expression that relates the ŕuid

leak-in rate,g to the overall ŕowrate must be analyzed.

The volume balance equation is given as

Total ŕuid produced,V (t) = Total ŕuid leak-in,Vleak−in (5.5)

Equation (5.5) assumes that the crack volume is negligible which is a good approximation

for unpropped cracks around a well as those encountered in a hydrocarbon reservoirs.

Solving (5.4) together with (5.5) for the leak-in rate, g, will enable the formulation of the

expressions required to model the induced stress őeld around the fracture.

5.3 Transient Pressure Drop in the Fracture

The pressure transient and leak-in solutions described in this section is attributed to Sarvaramini

and Garagash[47] who derived the relevant transient and asymptotic solutions for the injector

well. Only a sign change is required to model similar parameters in the production case. Their
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solution is however reproduced here as it forms the foundation for the induced stresses solution

later constructed.

5.3.1 Auxiliary Problem: Step Pressure Drop in a Crack

Following Detournay and Cheng[23] and Sarvaramini and Garagash[47], the solution to (5.4) for

a crack at Y = Y
′

= 0, |X ′ | < L can be facilitated by őrst solving an auxiliary problem in which

the crack is assumed to be at a constant pressure and the crack is then subjected to a sudden

step pressure decrease of magnitude p(X, t)− po = −∆p.

We can deőne the following dimensionless parameters to aid the transformation of (5.4) to a

non-dimensional form;

x =
X

L
, y =

Y

L
, τ =

4ct

L2
, ψ(X

′

, τ
′

) =
g(X

′

, t
′

)L

4cS∆p
(5.6)

Equation (5.4) can now be written in dimensionless as

−1 =
1

π

τ̂

0

1
ˆ

−1

ψ(x
′

, τ
′

)
1

τ − τ ′
exp

(

−|x− x
′ |

τ − τ ′

)

dx
′

dτ
′

(5.7)

Applying Laplace Transform to (5.7) produces

−1

s
=

2

π

1
ˆ

−1

ψ(x
′

, s)Ko

(

2
√
s|x− x

′ |
)

dx
′

(5.8)

where Ko is the modiőed Bessel function of the second kind, s is the Laplace transform

parameter and ψ(x
′

, s) is the Laplace image of ψ(x′, τ ′).

The numerical solution to (5.8) is obtained in the Laplace space using boundary element

approach [40] and subsequently inverted to the time domain using the Stehfest algorithm[56]

(see chapter 3 and Appendix B for details). The small and large time asymptotes of equation

(5.8) has been provided by Sarvaramini and Garagash[47] for the injection case with only a

sign change required for the production case. Figure (5.2) shows the numerical solution (dotted

plots) as well as the small and large time asymptotes (line plots) of the dimensionless leak-in

parameter, ψ(x
′

, τ) after Sarvaramini and Garagash [47].

5.3.2 Cummulative Leak-In Volume Into The Crack

Following Sarvaramini and Garagash [47], the leak-in volume due to the auxiliary problem is

given by

V aux
leak−in(t) = −L2SΦ(4ct/L2) (5.9)
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(a) (b)

Figure 5.2: Numerical solution for the normalized leak-in rate in the auxiliary problem compared
to (a) the small time and (b) large time times asymptotes after [47]

where Φ(τ) is the normalized cumulative leak-in volume given by the expression

Φ(τ) =

ˆ τ

0

ˆ 1

−1

ψ(x, τ)dxdτ (5.10)

The small and large time asymptotes of the normalized leak-in volume for the injector case has

been obtained by Sarvaramini and Garagash [47] and Detournay and Cheng[22]. The Producer

case is obtained simply by a change of sign of the dimensionless leak-in, ψ(x, τ) in the solution

given in [47] .

5.3.3 Transient Pressure Drop in the Crack Due to Constant Produc-

tion Rate

Following Sarvaramini and Garagash [47] and Detournay and Cheng[22], the fracture responses

such as the transient depressurization and induced stresses due to production can be obtained

from the auxiliary solution using the Duhamel’s principle. For a transient pressure drop, p = p(t),

a fracture response F , can be obtained by convolution such that

F(X,Y, t) =

ˆ t

0

Faux(X,Y, t− t
′

)
dp

dt′
dt′ (5.11)

where Faux is the fracture response in the auxiliary problem. Applying (5.11) to the volume

balance (5.5),

−Q0t =

ˆ t

0

V aux
leak−in(t− t

′

)
dp

dt′
dt′ (5.12)

Where V (t) = −Q0t, t ≥ 0, and −Q0 is the constant production rate per unit length. Using

(5.9) and (5.11) we can write

−Q0t = −L2S

ˆ t

0

Φ

(

4c(t− t′)

L2

)

dp

dt′
dt′ (5.13)
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5.4 Induced Stresses Around A Fractured Producer Due to

Constant Fluid Production

In this section, the expressions for the induced stresses around a fractured producer with a

constant production rate using the corresponding solution for the transient depressurization in

section 5.3 is developed.

First, we formulate expressions for the induced stresses in the auxiliary problem of a step

pressure decrease using the instantaneous ŕuid source Green’s functions for poroelastic stresses

[16].

σaux
ij (X,Y, t) =

1

π

η

S

ˆ t

0

ˆ L

−L

gaux(X
′

, t
′

)
r2

[

(δij − 2r,ir,j)
(

1− e−φ2
)

− 2 (δij − r,ir,j)φ
2e−φ2

]

dx′dt′

(5.18)

where gaux(X, t) is the leak-in rate solution in the auxiliary problem, given in the normalized

form (5.6) and in őgure5.2, φ2 = r2

4c(t−t′) , r = |X−X
′| =

√

(X −X ′)2 + Y 2,r,i = ∂r
∂Xi

=

Xi−X′

i

r ; X,X′ are spacial coordinates vectors, i and j ranges from 1 to 2 .

The induced stresses due to continuous production of ŕuid at a constant rate, −Qo can be

obtained using the Duhamel’s principle (5.11), such that

σind
ij (X,Y, t) =

ˆ t

0

σaux
ij (X,Y, t− t

′

)
dp

dt′
dt′ (5.19)

where p(t) is the corresponding transient solution for the pressure in the crack as provided

in section 5.3, Figure 5.3. Since the transient pressure solution has previously being obtained in

the Laplace space in (5.16), it is convenient to transform (5.19) into the Laplace space before

inverting back to time domain.

We can re-write (5.19) in dimensionless form after taking its Laplace transform. Recalling

that Π = (p− po)/p
∗ = (4cS(p− po)/Qo) and deőning ˆ̄σind

ij = σ̂ind
ij /σ∗, equation (5.19) becomes

ˆ̄σind
ij (x, y, s) = σ̂aux

ij (x, y, s)sΠ̂(s) (5.20)

Where σ∗, is the characteristic stress given by

σ∗ = ηp∗ =
ηQo

4cS
(5.21)

and η, is the poroelastic stress coefficient given by
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η =
α(1− 2υ)

2(1− υ)
(5.22)

The components of σ̂aux
ij (x, y, s) in Laplace space are given in Appendix B. Theˆsigniőes the

Laplace transform of the parameter under the hat.

Inverting (5.20) back into the time domain using Stehfest algorithm gives the required di-

mensionless induced stresses in the medium due to constant rate of volumetric production. The

obtained results can then be used to model the stress őeld around the fractured producer.

Figure 5.4(a) - (b) shows the evolution of the normalized induced normal stresses, σ̄ind
xx =

σind
xx /σ

∗ and σ̄ind
yy = σind

yy /σ
∗ with time along the along the crack centerline (x = 0, |y| < 10).

We notice that σ̄ind
yy stays tensile while σ̄ind

xx switches sign from tensile to compressive and back

to tensile at early times. At large times, σ̄ind
xx remains tensile. 5.4(c)-(d) shows the evolution

of the normalized induced shear stresses, σ̄ind
xy along lines x = −1 and x = 1 respectively. We

note that σind
xy is zero at these points when y = 0. 5.4(e), shows the magnitude of σ̄ind

xx and

σ̄ind
yy increase with time with their large time asymptote at the middle of the crack, x = y = 0.

5.4(f) shows the induced stress difference between the horizontal normal stresses. We note that

at around τ ≈ 10, the stress difference reaches a maximum in the middle of the crack. A look

at őgure 5.3 shows that the production well transitioned into a pseudo steady state at about

τ ≳ 10. It is therefore not surprising to see a similar behaviour in the induced stress őeld as

both pore pressure and stresses are usually coupled in a reservoir system. The magnitude of

asymptotic induced dimensionless stress difference was computed to be 2/π. The derivation of

the asymptotic expression is found in Appendix B. Although the magnitude of these horizontal

stresses change as production continues, the difference in their values at large times remains

constant.

5.5 Modeling Stress Trajectories Around a Producer Well

In this section, the stress trajectories around a fractured producer well in a non-hydrostatic stress

őeld is examined. Using the induced stress results obtained in section 5.4, the maximum principal

stress trajectories can be constructed following Berchenko and Detournay [8] approach. It should

be noted that Berchenko et. al considered the stress trajectories around a pair of unfractured

producer-injector system while Siebrits et al [53] considered both unbounded (inőnite height)

and bounded fractured producer well. Here, a fractured producer well in plane strain (inőnite

height) is studied as done by Siebrits et al [53] . The main contribution here is to quantify

the extent of stress reorientation based on production time and far-őeld stress deviator as well

as provide explanation for the seemingly discrepancies between őeld measurement of refracture

azimuth and predicted path.
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5.5.1 Stress Trajectory Equation

We can use the induced stresses to quantify the perturbed principal stress directions due to the

production activity and generate the maximum principal stress őeld trajectories around such

the fracture as follows:

We consider the fractured well as shown in Figure (5.1), the total state of stress in the

medium prior to well refracturing is the summation of far-őeld stresses and the induced stresses

which are given by

σxx(x, y, τ) = σind
xx (x, y, τ) + Po + So (5.23)

σyy(x, y, τ) = σind
yy (x, y, τ) + Po − So (5.24)

σxy(x, y, τ) = σind
xy (x, y, τ) (5.25)

wherePo and So are the far őeld mean stress and the far-őeld deviatoric stress respectively.

The induced stress components σind
xx (x, y, τ), σind

yy (x, y, τ) and σind
xy (x, y, τ) are obtained by in-

verting (5.20) back to time domain.

As done in chapter 4, sub-subsection 4.2.1.3, we can write the equation for the maximum

principal stress őeld trajectory using the following dimensionless parameters;

Dimensionless far-őeld deviatoric stress, S

S =
So

σ∗
(5.26)

Dimensionless Stress Difference, 𭟋u

𭟋u(x, y, τ,S) =
σxx − σyy

2σ∗ =
1

2

(

σ̄ind
xx (x, y, τ)− σ̄ind

yy (x, y, τ)
)

+ S (5.27)

The maximum principal stress equation is given by

dy

dx
=

−𭟋u(x, y, τ ;S) +
√

𭟋u(x, y, τ ;S)2 + σ̄ind
xy (x, y, τ)2

σ̄ind
xy (x, y, τ)

(5.28)

5.5.2 Stress-reversal Around the Producer Well

Figure 5.5(a)-(i) shows the maximum principal stress trajectories around the fractured producer

well for dimensionless time τ = 0.01, 1, 10 and for varying stress deviator, S = 0.35, 0.2, 0.1. The

stress őeld is most perturbed as S → 0 (isotropic) and the opposite is observed with increasing
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value of S. We also note that the stress őeld is increasingly perturbed with increasing production

time, τ . A 90ore-orientation (the stress reversal of the maximum and the minimum principal

stresses directions) is not observed in all plots even at higher production times because there are

certain conditions that need must be met for such a reversal to occur. It is well established that

ŕuid production leads to overall decrease in the total reservoir (horizontal) stresses [28, 63, 1].

From 5.4(a)-(b) we observe that the magnitude of induced horizontal stresses, σ̄ind
xx and σ̄ind

yy

are not uniform with time and distance from the fracture − that is , the magnitude of σ̄ind
xx is

increasing at a faster rate than σ̄ind
yy . This implies the total horizontal stress, in the direction of

the maximum principal stress, σxx given by (5.23), is reducing at a faster rate than σyy given

by (5.24). If production continues and the stress perturbation region grows, a time comes when

σxx becomes smaller than σyy in the neighborhood of the fracture, thereby causing a reversal

of the principal stress őeld around the fracture [28, 63, 1]. This reversal however is within an

elliptical circumference around the fracture and it is bounded by the isotropic points - points

where both the minimum and the maximum horizontal stresses are equal and shear stress is

zero. These points form a locus along the y − axis and it’s evolving length is denoted as lr as

shown in Figure 5.1. A refracture, theoretically speaking, is therefore expected to propagate

perpendicular to the initial fracture until it reaches the boundary of the stress reversal region

(delineated on the y−axis by isotropic points) after which the refracture is expected to re-orient

itself gradually to align once again parallel to the initial fracture. The potential refracture length

extent is dependent on both production time and the far-őeld stress deviator [53].

Figure 5.6(a) shows the evolution of the theoretical orthogonal segment of the refracture

half-length, lr, with dimensionless time for S = 0.01. We observed that for a purely poroelastic

consideration in an inőnite medium, this length (lr), approaches a maximum value of ≈ 0.577

from τ ≳ 10 as shown by the plateau of the curve in the őgure. This limiting value of lr for

a medium whose stress state is nearly isotropic, is in agreement with previous investigation by

Siebrits et al [53] who considered a bounded fracture height and gave the asymptotic value for

lr as 0.58 of the initial fracture half length, L.

A plot of the variation of lr with the dimensionless stress deviator,S is shown in őgure 5.6(b)

for τ = 10. It is observed that from S ≳ 0.31, no stress reversal (90-degree re-orientation) is

observed anywhere along the crack, though the stress őeld is still being perturbed at intermediate

to large times. This observation can have signiőcant implications in refracturing practice. In

many hydraulic fracturing modeling, it is often assumed that the far-őeld horizontal stress state

in the reservoir is nearly isotropic, that is S ≈ 0. With this assumption, one would expect

that during a refracture exercise, the new fracture should propagate orthogonal to the initial

fracture at least at the initial stage before realigning itself parallel to the old fracture. Many őeld
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observations however seems to suggest a wide range of initial refracture angles (some published

data put the angle at between 0 − 90 degrees using tiltmeter data [63, 52, 45, 42]). A couple

of plausible explanations could be provided for this variance. From őgure 5.6(b) we observe

that there will be no 90-degree re-orientation for S ≳ 0.31 irrespective of production time.

The dimensionless parameter, S, which is a function of the far-őeld stress deviator, So may

actually be signiőcant, contrary to the common assumption that the compressive stresses in the

medium is nearly uniform both in the x and y directions (i.e S ≈ 0). Such assumption may

be oversimplifying and might be helpful to have accurate in-situ stress measurements prior to

placing wells or attempting refracturing. Another explanation is that the refracture may have

indeed be initiated in an orthogonal direction but as shown in őgure 5.6(b), that the orthogonal

refracture length may be too small for a tiltmeter to capture its orientation, bearing in mind

that tiltmeter resolution degrades the farther its distance from the fracture. In őeld practice,

tiltmeters are placed usually in a monitoring or offset well which are often several hundreds of

feet away or at the surface (several thousands of feet from the fracture).

The deviation of őeld observation of initial refracture angle from the theoretical 90o orien-

tation may also be due to other factors such as the fracture bounding layer properties, crack

toughness and natural fractures (discontinuities) in the medium [53].

Note that we have only considered the purely poroelastic case due to constant production rate

(in an inőnite medium) . While the extent of the 90ore-orientation at the center of the crack, lr is

expected to change when mechanical effects (propped cracks) as well as constrained crack height

are considered as discussed by Siebrits et al [53], it is however noteworthy that a plane strain

approximation gave reasonably accurate results (for, lr and the optimum time to refracture)

compared to the bounded model in the mechanical-poroelastic case but with less computational

requirements. The optimal time to refracture is when the stress reversal region around the

fracture is maximum. The extent of the reversal however is dependent on the deviatoric stress in

the medium prior to production. This in turn affects the optimal time to refracture the medium.

5.6 Conclusion

In this work, the stress re-orientation problem around an unpropped fractured producer well was

revisited. A detailed mathematical formulation of the stress state and solutions were obtained

in Laplace space and inverted back to time. The key contributions for this work are as follows:

The orthogonal segment of the theoretical refracture length, lr proőles were generated as

a function of time and dimensionless far-őeld deviator, S. The refracture length proőle as a

function of S has not been previously reported in literature to the best of my knowledge.

Stress reorientation is observed even at very early times around the producer well for a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Stress trajectories around a fractured producer well at various S values at τ =
0.01, 1, 10: (a) - (c) S = 0.35 (d) - (f) S = 0.2, (g) - (i) S = 0.1
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Chapter 6

Conclusions and Recommendations

6.1 Summary of Work and Contributions

This study examines two problems within the poroelastic framework.

The őrst problem focused on determining the induced stresses around an injector-producer

pair and the possible path of propagation of a fracture initially equidistant between the two

wells. Stress functions for quantifying the induced stresses were derived and stress trajectories

were generated to describe the stress state around the wells. The major parameters inŕuencing

the potential path of propagation were highlighted and a new parameter was introduced into

the stress trajectory equation to aid in estimating the fracture path without recourse to a full

scale fracture propagation modeling.

The second problem considers a fractured producer and the potential path a refracture of

such well will follow. This was studied using the stress trajectory equation after solving for the

pore pressure and stress őelds. The stress őeld re-orientation around the fractured producer

and the conditions under which a complete reversal of the principal stress directions can occur

was also studied. The major factors inŕuencing the extent of an orthogonal refracture were

identiőed. The proőle of the refracture length as a function of time and dimensionless deviatoric

stress were generated. The asymptotic expression for the dimensionless stress difference between

the induced horizontal stresses at large times was also developed.

The major contributions of this study are as follows:

• For the Berchenko-Detournay problem, a new dimensionless toughness expression was sug-

gested to approximate the effect of fracture toughness on the direction of a propagating

fracture. The regular stress trajectory equation when modiőed with this expression gives

approximate fracture propagation path even when the toughness is not small. The new

expression makes it possible to use the stress trajectory to provide an estimate to the
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fracture path without resorting to a full-ŕedged fracture propagation modeling.

• For the fractured producer well, a proőle showing the variation of the theoretical refracture

length with the dimensionless far-őeld stress deviator was developed. Such proőle can

provide a lower bound estimate of the expected orthogonal refracture length while planning

a refracturing operation.

• A long-time asymptotic expression for the difference between the induced horizontal stresses

was developed for the fractured well problem. This stress difference places a limit on the

extent of the refracture length.

6.2 Recommendations

The following areas are suggested for further study

• The applicability of the new dimensionless toughness expression to other fracture propaga-

tion problems should be studied. Such study should also consider if this type of expression is

problem speciőc or can be generalized. Extensive comparison between this adhoc approach

to fracture path prediction and full scale numerical modeling for different propagation sce-

narios should be studied to determine its extent of application and limitations.

• The inŕuence of proppants in the fracture should be studied as it will introduce mechanical

effects into the induced stresses, stress reversal envelope and the theoretical refracture

length. The variation of the refracture length with respect to time and the far őeld stress

deviator should also be studied when proppants are present.

• A full scale numerical modeling of actual refracture path and the stress trajectory estima-

tion should be considered for the fractured producer case. In addition, incorporating the

modiőed dimensionless toughness expression and similar variants can be further explored

to assess applicability.
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Appendix A: Poroelastic Constants

The expressions for the the poroelastic constants described in chapter 3 are provided below

v =
3K − 2G

2(3K +G)
(1)

vu =
3Ku − 2G

2(3Ku +G)
(2)

B =
3(vu − ν)

α(1− 2v)(1 + vu)
(3)

M =
2G(vu − v)

α2(1− 2vu)(1− 2v)
(4)

η =
α(1− 2v)

2(1− v)
(5)

S =
(1− vu)(1− 2ν)

M(1− v)(1− 2vu)
(6)
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Appendix B

B.1 Numerical Solution to Auxiliary problem

I have adopted the Boundary Element Method approach to solve the integral equation ((5.8)) .

First we rewrite the equation in approximate form by discretizing the straight fracture into N

boundary elements or segments (N = 100 in the code), using N + 1 Chebyshev nodes. Source

densities are distributed and collocated at the mid-point of each element. Also, the source

densities are taken to be constant on each element.

Equation ((5.8)) can be written in its discretized form as

−1

s
=

2

π

N
∑

j=1

ij

G
j

ψ(x′, s) (7)

Where
ij

G is the inŕuence coefficient matrix given by

ij

G =

ˆ

Γj

Ko

(

2
√
s|ξi − ξ

′

j |
)

dΓ (8)

and

dΓ =
lj
2
dε (9)

lj is the length of element j.

The values for the integral expression (8) for the coefficient matrix is obtained using the

standard Gaussian quadrature scheme. The Gaussian integration is performed over the interval

−1 ≤ ξ
′ ≤ 1.

Given a functionf(ε) to be integrated over the interval −1 ≤ ϵ ≤ 1, we can write

1
ˆ

−1

f(ε)dε ≈
n
∑

k=1

wkf(εk) (10)

where n is the number of integration points (Gauss points), wk and εk are the weights and

abscissas of the Gaussian quadrature of order n = 10 (in the code). Consider an element j

over which the integration will be carried out. Its endpoints in a global coordinate system (ξ, η)

with origin (0, 0) are described by (ξj , ηj) and (ξj+1, ηj+1). We can relate the global coordinates

onto a local system of coordinate (ε, 0), on the integration interval, [−1,+1] using the following

coordinate transformation:

ξ
′

(ε) =
ξ
′

j+1 + ξ
′

j

2
+
ξ
′

j+1 − ξ
′

j

lj
ε (11)
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η
′

(ε) =
η

′

j+1 + η
′

j

2
+
η

′

j+1 − η
′

j

lj
ε, (12)

Where

lj =
√

(ξ′(εk)− ξ
′

j)
2 + (η(εk)− ηj)2 (13)

is the length of element j.

Equation (8) produces a N×N matrices upon discretization.
j

ψ(x′, s)are vectors of dimension

N . While system of N | linear algebraic equations are produced with N number of unknowns

which can be solved to recover ψ(x′, s).

B.2 Auxiliary Induced Stresses

The components of the induced stresses due to the auxiliary problem in equation (5.20) are given

as follows:

σ̂aux
yy (x, y, s) =

1

π

ˆ 1

−1

ψaux(x
′

, s)

sr2

[

(x− x′)2 − y2

r2
− 4s(x− x′)2K0(2

√
sr2)

−
2((x− x′)2 − y2)

√
sr2K1

(

2
√
sr2
)

r2



 dx′ (14)

σ̂aux
xx (x, y, s) =

1

π

ˆ 1

−1

ψaux(x
′

, s)

sr2

[

y2 − (x− x′)2

r2
− 4sy2K0(2

√
sr2)

−
2(y2 − (x− x′)2)

√
sr2K1

(

2
√
sr2
)

r2



 dx′ (15)

σ̂aux
xy (x, y, s) =

1

π

ˆ 1

−1

ψaux(x
′

, s)

sr2

[

−2
y(x− x′)

r2
+ 4sy(x− x′)K0(2

√
sr2)

+
4(y(x− x′))

√
sr2K1

(

2
√
sr2
)

r2



 dx′ (16)

Π̂(s) =
1

πs

(

ln
(s

4

)

+ 2γ
)

(17)

Where r =
√

(x− x′)2 + y2

B.3Asymptotic Induced deviatoric Stress Derivation

The induced stresses due to constant rate of production is given by
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σind
ij (x, y, t) =

ˆ t

0

σaux
ij (x, y, t− t

′

)
dp

dt′
dt′ (18)

Taking Laplace transform of (18), we get

ˆ̄σind
ij (x, y, s) = σ̂aux

ij (x, y, s)sΠ̂(s) (19)

where the components of σ̂aux
ij (x, y, s) are provided in Appendix B.2

The large time expression for the leak in rate ψaux(x
′

, s) for the auxiliary problem has been

provided by Sarvaramini and Garagash [47] as

ψaux(x
′

, s) = − 1√
1− x′2

1

s(ln(s/4) + 2γ)
(20)

and r =
√

(x− x′)2 + y2

Using the Asymptotic expressions for the modiőed Bessel functions for small argument z =

2
√
sr2

K0(z) = −γ + ln(2/z) (21)

and

K1 =
1

z
+
z

4
(−1 + 2γ − 2ln(2/z)) (22)

Along the crack plane, y = 0

Thus, substituting (20), (21) and (22) into equations (14) - (16), we obtain the asymptotic

expressions for the auxiliary induced stresses along the crack as

σ̂aux
xx,asym(x, s) =

1

2s(ln(s/4) + 2γ)

(

−2 + 4γ + ln
(

s(x− 1)2
)

+ ln
(

s(x+ 1)2
))

(23)

σ̂aux
yy,asym(x, s) =

1

2s(ln(s/4) + 2γ)

(

2 + 4γ + ln
(

s(x− 1)2
)

+ ln
(

s(x+ 1)2
))

(24)

σ̂aux
xy,asym(x, s) = 0 (25)

Thus, the asymptotic expressions for the induced stresses along the crack due to continuous

production is obtained by substituting (23), (23) and (24) into (19).

σ̂ind
xx,asym(x, s) =

1

2πs

(

−2 + 4γ + ln
(

s(x− 1)2
)

+ ln
(

s(x+ 1)2
))

(26)
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σ̂ind
yy,asym(x, s) =

1

2πs

(

2 + 4γ + ln
(

s(x− 1)2
)

+ ln
(

s(x+ 1)2
))

(27)

Thus, the asymptotic induced deviatoric stress along the crack is

∆σ = σ̂ind
xx,asym(x, s)− σ̂ind

yy,asym(x, s)) (28)

∆σ = − 2

πs
(29)

Inverting (29) back to time domain gives

∆σ = − 2

π
≈ −0.6366 (30)
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