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Abstract 

This thesis presents a method for forecasting the state of electric vehicle (EV) batteries (Vehicle-to-grid, 

Grid-to-vehicle) for the next hour towards leveraging updated data as the grid's auxiliary power source. 

The aim is to optimize grid power utilization and mitigate concerns such as voltage and frequency 

variations, power loss, and harmonic distortion. The proposed prediction model incorporates various 

distributed energy resources, including demand-side management strategies and energy storage devices, 

to support the grid. Multiple machine learning (ML) techniques, including logistic regression, artificial 

neural networks (ANN), naive Bayes, K-nearest neighbour (KNN), and Support Vector Machines 

(SVM), are employed to predict V2G and G2V conditions. The model is refined by including vital 

features significantly influencing the outcomes and applying feature selection techniques. Furthermore, 

correlation time and Gaussian correlated noise are employed to assess feature dependency and evaluate 

the methods' robustness against noise. The accuracy analysis revealed that the ANN technique 

performed best among the tested ML techniques. It demonstrated superior accuracy in predicting the 

state of EV batteries. Additionally, feature selection, correlation time, and Gaussian correlated noise 

enhance the model's performance and evaluate its robustness. 
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Chapter 1 : Introduction 
 

1.1 EV Charging Problems 

Clean and efficient electric energy generation, transmission, and consumption are now required 

to offset the consequences of global warming. Because transportation-related greenhouse gas 

(GHG) emissions account for roughly 27% of total US GHG emissions, it is the leading source 

of US GHG emissions[1]. Between 1990 and 2020, GHG emissions in the transportation 

industry increased faster than in any other sector. The development of renewable energy(RE) 

generation, energy storage, and EVs are among the critical stages toward cleaner and more 

efficient electricity and transportation sectors. With the growing number of EVs, the interplay 

between the electric automobile and the energy grid is becoming increasingly apparent. 

However, the benefits of injecting EVs into the grid are one side of the subject. The amount of load EVs 

could place on the grid due to charging needs is another area researchers are concerned about. According 

to this paper[2], there are some flaws in using EVs in an unexpected way of charging. A drop in voltage 

value, an increase in the level of unbalancing load, an increase in the overloading of power system 

components like cables or transformers, an increase in power losses, an increase in harmonic distortion, 

and deterioration of voltage and current transients during faulty conditions are all possible consequences 

of EVs being charged at random. Various researchers have proposed charging management methods for 

the EV fleet to mitigate this problem. To mention some, this paper[3] offered a machine-learning way 

to predict each EV battery condition, and this work[4] proposes tackling the problem using a Real-Time 

Digital Simulator. Even though much excellent work has been done up to this point, it still has flaws. 

Neglecting to account for the sheer volume of EVs on the road, failing to design a system that is 

adaptable enough to accommodate diverse energy sources like renewables, , and failing to implement 
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adequate measures to ensure that each EV's battery is used to its full potential despite differences in 

size, all contribute to this dire situation. 

Furthermore, standardization and interoperability of charging protocols among different EV models and 

charging infrastructure are essential. This ensures efficient charging processes and provides 

convenience for EV owners. The scalability of charging infrastructure must also be considered to meet 

the growing demand for EVs. Comprehensive infrastructure planning is necessary to anticipate future 

needs and ensure the availability of sufficient charging stations. 

Moreover, grid reinforcement and optimization should be prioritized to accommodate the increased load 

from EV charging. This entails grid upgrades, distribution system planning, and the implementation of 

advanced grid management techniques. By addressing these aspects, potential challenges such as 

voltage drop, load unbalancing, and power losses can be mitigated effectively. 

1.2 Previously Proposed Models For Fleet Management of EVs 
 

Numerous studies and investigations have been carried out to find a solution to the management issues. 

The MATLAB software implementation paradigm, seen in these articles [5]–[9], was the most often 

used method for working in this field's most famous area. These authors have aimed to provide a 

standardized model for fleet management to optimize consumption and generation, which might help 

minimize the issues that have been occurring up until now. Also, using the data from these models, they 

have made various conclusions according to the prediction. It is well-known that earlier works 

accomplished a great deal in management. A few overlooked points in their works may be brought up. 

There has been a significant amount of research recently on using ML and advanced metering 

infrastructure (AMI) for predicting EV charge scheduling. For example, in one study[10], SVM was 

used to analyze home charge scheduling based on user energy consumption and EV state of charge 

(SOC) data. Another paper [3] used ANN to determine the optimal schedule for EV charging, 

considering factors such as household power demand and EV energy demand. These works demonstrate 
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ML and AMI's potential for improving EV integration into the power grid by enabling real-time 

decision-making about charge scheduling. Paper[11] also presents a model-free reinforcement learning 

technique for scheduling EV charging in the context of V2G systems. This technique coordinates 

charging safely and efficiently while considering real-time prices, commuting behaviour, and energy 

needs. Other related work about using different ML methods also have been done in this field. [12] 

applied supervised machine learning models to forecast energy consumption at Electric Vehicle 

Charging Stations (EVCS) in Indonesia, using historical charging transaction data and additional 

weather condition data as input. Four machine learning algorithms were evaluated: Random Forest, 

Support Vector Regression, XGBoost, and Multilayer Perceptron. Additionally, this paper [13] 

conducted a comparative analysis to determine the most suitable machine-learning technique for 

predicting the SOC of EVs based on vehicle flow data from the city of Agartala. Three machine learning 

techniques, namely CG-SVM, bagged tree regressor, and boosted tree regressor, were evaluated using 

performance metrics such as mean squared error, mean absolute error, R-squared value, and root mean 

squared error. 

Battery degradation has always been a massive concern in EV management, like this study[13], which 

talks about the degradation of batteries during V2G condition usage of the battery. Reasons like this 

have increased the importance of accurate prediction for EV usage. While this matter showed its 

extraordinary vitality, a few related works have been considered a proper way to predict by considering 

essential features like battery voltage, current, or temperature.  

In this work, it becomes evident that previous approaches in the field of EV battery prediction suffered 

from significant limitations. One critical issue is the lack of consideration for alternative methodologies 

and the untapped potential of various machine-learning techniques. Instead, this research takes a bold 

step forward by exploring not just one but five distinct machine-learning techniques: logistic regression, 

ANN, naive Bayes, KNN, and SVM. This diversified approach surpasses the boundaries of traditional 

prediction models and provides a deeper understanding of EV battery behaviour. Additionally, the 

importance of feature selection, which was overlooked in prior studies, is recognized in this work. The 
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predictions achieve higher accuracy and reliability by focusing on the most influential factors while 

disregarding less consequential ones. Moreover, this work goes beyond the norm by incorporating 

correlation time and correlated noises, factors previously ignored. These comprehensive enhancements 

expose the shortcomings of previous research, positioning this work as a novel contribution that 

revolutionizes the field of EV battery prediction. 

 

1.3 Scope of Research 
 

This thesis aims to address the limitation of previous works in EV fleet management using ML models 

that consider a wide range of features and factors that affect the battery behaviours and EV conditions 

on the grid. Moreover, alongside the vast amount of data with various features, different ML algorithms 

are used to select the best model for the prediction. Meanwhile, the feature selection method is applied 

to decrease the least affected features to increase the data alongside the processing time decrement. 

Alongside the consideration of Correlation Time, to address different feature dependencies with 

Gaussian Correlated Noises, to evaluate the power of each method against real-life noises. These 

concepts are entirely elaborated on in this thesis. 

This work has a fleet of four EV batteries and four houses as a load demand. It can be adjusted for a 

higher number of the fleet as well. Information about four houses using this dataset[14] uses twenty-

four hours a day to input power consumption. An important fact about this data is that the period of each 

house's power consumption is minute by minute, and based on the fact that this thesis is focused on the 

next-hour prediction, the amount of data gathered by using the input power consumption should be 

sufficient. That is why more than two months of a year are considered for this work. These days are 

randomly selected from various months to generalize the prediction model. Also, other features are 

added to this model to modify it for a better prediction resolution. Using this data will help the system 

adjust itself in various situations and decide whether each battery should act as a source, load, or idle 

one. The important part about the data that is used for this model is that, at the first point, raw data from 
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an open source site was gathered, and after that, by declaring different scenarios about the thresholds of 

EV's battery storages, time of the day, and power consumption limitation the data got modified to be 

proper enough for the ML usage.  

1.4 Methodologies and Contributions 
 

Researchers in forecasting have been motivated to use this cutting-edge technology for precise 

forecasting due to ML's ability to learn across diverse subject areas. The number of possibilities for 

developing an accurate prediction model is quite broad. On the other hand, Python is selected as the 

software used in this endeavour because of its simplicity and ease of reading its code. In this study, 

several comparisons among the many accessible approaches for model development are employed, like 

Accuracy, F1-Score, and Mean Squared Error(MSE) as the ways of evaluation. These comparisons aim 

to improve the accuracy of the suggested models in Python. This study examined comprehensively to 

determine the most accurate machine-learning technique for a specific prediction model. To this end, 

various methods are employed to mitigate potential biases or uncertainties that may have arisen during 

the analysis. 

In addition, Correlation Time is employed to increase the certainty of the impact of each feature on the 

overall prediction concept and to understand the utilization of interconnections. Furthermore, this 

prediction model must demonstrate its practicality in real-life situations where uncertainty and non-ideal 

conditions are likely to occur. To evaluate the functionality of each model under such circumstances, 

the presence of noise becomes vital. Therefore, another significant contribution of this work is the 

utilization of Gaussian Correlated Noises to address this matter. A study needs a multidimensional 

approach, so different strengths for correlation time and noise are considered. This approach allows to 

showcase the power and effectiveness of the proposed work. The final objective of this thesis is to 

identify the optimal technique for handling diverse inputs and to demonstrate its efficacy through a 

thorough examination of its performance. 

1.5 Thesis Outline 
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The thesis is structured into six main chapters to address the research objectives systematically. Chapter 

1 provides an introduction, highlighting the EV charging problems and the existing models for fleet 

management. The scope of the research is outlined, followed by a description of the method 

contribution. This chapter concludes with an overview of the thesis outline. Chapter 2 delves into the 

Energy Management System, covering various aspects such as different EV types, their advantages and 

disadvantages, EV charge port, conductive and inductive charging, and the classification of battery 

electric vehicles (BEV) based on energy transfer. 

Additionally, the chapter explores off-board and onboard charging, the role of the distribution system 

operator, battery energy management systems, and the concept of unidirectional and bidirectional 

charging. The configuration of a DC fast charging station for V2G/G2V is also discussed, along with 

the components involved. Chapter 3 focuses on Machine Learning, introducing different types of ML 

learning, including unsupervised and supervised learning. This chapter explores regression techniques 

such as logarithmic regression and other ML algorithms like Naïve Bayes, K-nearest neighbours, 

Support Vector Machines, and Artificial Neural Networks. The chapter concludes with a discussion on 

classification evaluation and feature selection methods. This chapter also covers the implementation of 

the ML model. Chapter 4 presents the results of the research. Machine learning results for different 

algorithms are discussed, including Artificial Neural Networks, Logistic Regression, Naïve Bayes, K-

nearest neighbours, and Support Vector Machines. It addresses feature selection and correlated noise. 

Chapter 4 will discuss the prediction of EV state based on the usage of Gridlab software, which will be 

explained in other chapters. Chapter 5 provides the results, summarizes the key findings of the research, 

and suggests future works to enhance the field of EV battery prediction further. Finally, Chapter 6 will 

talk about the conclusions alongside future works. 
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Chapter 2 : Energy Management System  
 

2.1 Introduction To Energy Management System 
 

RE sources, especially wind and photovoltaic (PV), face challenges related to unpredictable generation. 

Similarly, other technologies aimed at addressing daily challenges also encounter similar issues. Despite 

the modern prediction equipment, too much reliability of REs, like the wind to the weather, raises 

additional problems for affluent countries seeking to shift their power output to renewables. Another 

issue is the high cost of the first equipment required to increase the budgets to ensure their existence at 

proper times. To some extent, EV batteries can solve some of these issues[15]. EV batteries are used as 

a storage system that can manipulate mentioned challenges. In today's context, as Vehicle-to-everything 

(V2X) technology gains traction, companies are exploring using used batteries to store energy and serve 

as backup sources for renewables. While this presents an opportunity for enhanced energy storage 

capacity, it also introduces challenges for the grid[16]. Integrating and managing EVs or any RE 

connection to the grid poses additional complexities. These include voltage and frequency variations, 

which can disrupt the grid's stability. Moreover, there is the risk of overloading the system due to the 

increased demands placed on it by the growing number of EVs and RE sources[17]. Overcoming these 

drawbacks and effectively managing the interplay between V2X, used batteries, and the grid is crucial 

for successfully integrating sustainable energy solutions. 

The first generation of EV charging focused only on injecting energy from the grid into the EV. This 

one-way connection is referred to as unidirectional charging. In a subsequent form of charging, where 

the EV may also operate as a power source, injecting electricity into the grid was proposed. This type 

of charging is known as bi-directional charging[18]. EV batteries may be employed as an additional 

source for the grid with the aid of this innovative technology. In addition, an intelligent system is vital 

to make decisions regarding the state of each battery (Charge, Discharge, or Idle). This system's primary 

role is to manage EVs to operate as a source or load when other elements like power usage, time of day, 
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and other sources are present. Recent papers [5]–[9] proposed a bi-directional EV charging structure. 

The control portion of these models is crucial since it assists the system in determining its purpose for 

real-time prediction. 

Additionally, since there are infinite participants in the fleet, such as homes and vehicles, the system 

should be able to adapt to any situation. In recent years, MATLAB has assisted manufacturers and 

researchers in overcoming these types of difficulties and related issues. By executing the proper 

structure of parts in that program, engineers may ensure that their project can be implemented 

appropriately for its utilization in most circumstances. Additionally, reducing mistakes and boosting 

efficiency are considered. Another factor that any system should consider is the capacity to forecast 

future events. Electrical engineering's most potent tool, ML, is frequently applied in many facets of 

management. Not only does prediction utilizing this new technology reduce any errors a system may 

make, but it also enables the grid's generating component to adapt to impending consumption 

conditions.  

Engineers were forced to create a model after experiencing difficulties with time management in real-

time and one-day-in-advance forecast procedures. This model might be crucial in the management 

component of the fleet supervision system. Also, this technology should be able to do its job without 

attention to the increasing size of input elements connected to it. Instead, the management should be 

able to persuade each EV owner to be happy with their contribution as an auxiliary input to the system. 

Instead of using a real-time forecast of each EV battery's status as a backup in the real-time mode of 

operation, hour-ahead prediction is another essential component for the grid and generation portion. It 

is the responsibility of ML to develop a model that would make use of real-time data to assist 

management in rearranging its operational components in a way that would satisfy the energy 

requirements of the grid to compensate for the lack of power, particularly during peak hours of the day, 

and avoid any possibility of a blackout. The efficiency and adaptability of this developed model should 

be considered to respond appropriately to input elements. By combining these two systems, it would be 
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possible to accurately estimate future day's demands for generation and fleet planning in addition to 

real-time handling management of EV batteries as an extra hand for the grid. 

Given these observations, the findings [19]suggested an energy management system (EMS) to 

effectively coordinate EV units' integration within the microgrid. Specifically, an EMS would manage 

peak demand by scheduling and controlling EV charging and discharging that aligns with the 

microgrid's overall needs. It is important to highlight that a microgrid refers to a small-scale power grid 

capable of functioning independently or in conjunction with other microgrids. These microgrids are 

characterized by their decentralized nature and can be observed in diverse settings, including districts 

or integrated within energy generation facilities. Consequently, most EV applications within microgrids 

are expected to occur within the residential sector, focusing on fulfilling households' energy 

requirements. 

 

2.2 Different EV Types 

 

Battery Electric Vehicles (BEVs ), Hybrid Electric Vehicles ( HEVs ), Plug-in Hybrid Vehicles ( PHEVs 

), and Fuel-cell Electric Vehicles ( FCEVs ) are considered different types of EVs[20]. In BEVs, the 

primary power source is only batteries that the charging points can charge. A hybrid electric vehicle 

merges an internal combustion engine with an electric power system. Integrating an electric powertrain 

is intended to achieve improved fuel efficiency or enhanced performance compared to a conventional 

car. In HEV cars, there are two modes of operation: the battery and the ICE(Internal Combustion 

Engine) motor. One of them is parallel, and the other one is in a series. The first mode involves the 

battery and motor operating independently as the primary power source during different instances. In 

the second mode, they synergise to enhance the car's performance. However, a drawback of these 

vehicles is their inability to be charged directly by connecting them to a charging point. 

Regenerative braking is the charging way for them. Regenerative braking is a method of slowing down 

an electric vehicle by converting mechanical energy to electrical energy through the generator function 



 
10 

of its motor while also generating brake torque and storing it in storage devices[21]. PHEVs are the 

modified version of HEVs that drivers can plug into the charging unit. FCEV works with Hydrogen, 

and like ICEs, they can be fuelled. The only difference is that they will be filled with Hydrogen instead 

of gasoline.  

2.3 EVs Advantages and Disadvantages 
 

Oil (petroleum), coal, and natural gas (gases, fuel), formed from the remnants of extinct plants and 

animals, serve as the traditional energy sources for internal combustion engines (ICEs), which inevitably 

contribute to greenhouse gas emissions and pose environmental risks. In power plants and hybrid 

electric vehicles, fossil fuels are burned to generate electricity for recharging the battery. Managing air 

pollutants at a power plant proves more feasible than tackling emissions from the exhaust pipes of 

millions of gasoline-powered vehicles. Hybrid electric vehicles incorporate electronic controls to 

optimize engine usage, running them only when necessary and with greater efficiency. This approach 

to electricity consumption leads to enhanced air quality, particularly in major cities, which has become 

a paramount concern for the nation. Compared to fossil fuels—natural gas, coal, and oil—derived from 

the remains of long-extinct plants and animals, a cleaner alternative exists for powering automobiles. 

In recent times, EVs have made significant strides in addressing the issue of limited range. However, 

the cost of EVs remains a substantial challenge for potential owners. Furthermore, certain features in 

EVs, such as air conditioning, consume energy and can deplete the battery at an accelerated rate. 

Another hurdle in the widespread adoption of EVs is the availability of charging stations. Due to EV 

batteries' limited energy storage capacity, the overall power and driving range is compromised. 

Additionally, the time required for a full EV charge still falls behind the refuelling time of conventional 

cars, presenting a disadvantage in terms of convenience and usability. Despite advancements, these 

factors contribute to the ongoing competition between EVs and ICEs in the automotive market. [17] 

2.4 EV Charging Port 
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The battery pack of an electric car can receive electricity from an external power source through the 

charging connector. Electric vehicle supply equipment (EVSE), more often known as a charging station, 

is the name given to these power sources. Charging occurs when an EVSE is inserted into an EV's 

charge port at a public or private charging station. The speed of EV charging is related to the power that 

the charging port will be injected into the car. Level 1, Level 2, and Level 3 are three different levels 

now. The lowest power level of charging, known as Level-1 charging, is the slowest and typically occurs 

during nighttime, primarily in residential settings. The input voltage used by an Alternative Current 

(AC) charger is 120V or 230V and transports around 1.92kW of electricity. Level-2 AC chargers are 

typically used in business locations like malls or offices, and they can produce power up to 20k by 

accepting 208Vac or 240Vac as input voltage. On-board Level -1 and Level-2 ac chargers have a 

restricted power rating and a more extended charging period, which has sparked the development of 

Level-3 Direct Current (DC) fast chargers that can handle power from 50kW to 300kW. They can 

deliver dc power of up to 800V, roughly 300V, and charge the current EV batteries in 30 minutes. Since, 

In Levels 1 and 2, the input voltage connected to the EV is AC and needs to be converted to DC, these 

EV types should have one part named the On-Board Charging (OBC) part. This part is responsible for 

converting the AC to DC or vice versa. This part is mitigated in Level 3 charging units since the charging 

port has an Off-Board Charging unit that delivers energy to the car. Table 1 depicts the difference 

between charging levels.[22]. 

Table 1 Charging station classification based on charging power level 

Charging station Charging location Power supply Charge power level Charging time 

Level-1 (AC) On-board (Residental) 120/230V 1.44kW - 1.92kW 11 - 36 hours 

Level-2 (AC) On-board (Home) 208/240V 3.1kW – 19.2k@ 2 – 6 hours 

Level-3 (DC Fast) Off-board (Public) 300-600Vdc 50kW – 350kW Less than 30 minutes 
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2.5 Conductive and Inductive Charging 
 

There are two ways for EV batteries to be charged. For conductive charging, the EV connection and the 

charge input directly touch one another. Multiple AC and DC chargers are standard in many new cars. 

It is necessary to utilize an external charger to provide consumers greater flexibility in where and when 

they may charge their automobiles, whether at home or in public. Although conductive chargers are 

predominant in the current EV market, they have several disadvantages, such as the need for the user's 

intervention and safety issues. Inductive chargers are a reliable alternative to solve some of these 

drawbacks. 

Another way of charging where the physical connection vanishes is called inductive charging. An 

electromagnetic (EM) field transfers power between two objects in an inductive charging process. 

Therefore, a charging station is designed specifically for this need. Inductive coupling is the 

transmission of energy to an electrical device. Indeed, the wireless option is the most crucial superiority 

of this way compared to the previous one. However, there are several difficulties associated with 

inductive charging. The most challenging part of wireless charging is getting the coils aligned 

adequately for maximum efficiency, but thanks to recent automation developments, parking assistance 

systems may now be included in the process[23]. 

2.6 Off-Board And Onboard Charging 
 

Onboard charging refers to the way of EV charging where the input that is connected to the EV is AC, 

and since the power needed for the battery is DC, it has a converter inside the car itself that is responsible 

for changing AC to DC. On the other hand, Off-board charging is where this conversion process will be 

done outside the card and in the station. 

The main challenge lies in the power required for Level-1 charging equal to the onboard charger's 

maximum power capacity. Reducing onboard charger usage is primarily driven by weight, space, and 

cost considerations. Resonant circuits can be employed to mitigate various adverse effects. In recent 
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years, integrated charging systems have become standard in the industry. However, there is currently a 

surge in demand for off-board fast-charging stations. Although DC stations have a higher price tag, they 

offer numerous exciting possibilities. These include reducing battery weight, providing multiple high-

power charging options, enabling faster charging, implementing improved battery control mechanisms 

(such as addressing heating issues), and facilitating seamless communication between utility companies, 

organizations, and commercial location owners to establish favourable billing arrangements and 

contractual opportunities[24].  

As mentioned before, there are various EVs; however, in this subject, the only focus is on BEVs, whose 

power sources are batteries. Also, the assumption is that off-board charging is the primary concern in 

the current matter. Three-phase ac buses run between 250V and 480V line-to-line voltage for an AC-

connected system. Because each charger unit includes an AC-DC rectifier and a DC-DC converter, there 

are more power stages, which raises the cost and complexity. However, because power electronics and 

ac power distribution systems are well-equipped and advanced, most fast and ultra-quick charging 

stations use an AC-connected system. The low-frequency transformer on the input side is linked to a 

central AC-DC rectifier in DC bus designs. Any variance from the grid side is avoided because of this 

structure's increased flexibility for the system. In DC bus structures, efficiency is higher, and control 

method implementation is more straightforward as the number of AC-DC rectifiers decreases. The lack 

of well-established protective standards for dc bus EV charging stations makes this problem show itself 

during different EV situation modes of usage. Due to lower installation costs and increased 

dependability, the second isolation method, accomplished using a high-frequency transformer in the 

DC-DC power stage, is preferred. The power density of the transformer is increased by operating it at a 

high frequency (between 50kHz and 300kHz) as opposed to the line frequency (50Hz or 60Hz). 

However, isolated DC-DC converter switching modulation and control can be challenging, and 

bidirectional operation calls for additional work. 

2.7 BEVs Classifications Based On Energy Transfer 
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The integration of BEVs is critical for the operation of the electric grid. The integration must be based 

on the charging and discharging of PEVs, which must be accomplished utilizing a variety of techniques 

and control mechanisms. PEVS has three different applications: V2H, V2B, and V2G[25] 

2.7.1 Vehicle to Home (V2H) 
 

The concept that an EV is connected to the home to act as a source for loads in the house is called V2H. 

The primary goal of V2H is to store and transmit energy from locally distributed energy resources such 

as solar and wind energy to home loads. This will save energy expenses, increase efficiency, and offer 

backup power. V2H contains at least one BEV, a bidirectional charger, home loads, small-scale 

distributed generation, a smart meter, a home grid, and a home energy management system. Smart 

metering is particularly crucial in the V2H idea. It will store data regarding system use and offer an 

interface for sending and receiving information from utilities. This approach may be implemented into 

more extensive control systems to alleviate the strain on distributed energy networks. Also accessible is 

BEV users' ability to charge utility requests via their smartphones. In general, V2H will be called V2L, 

where L is represented as load in this expression. The load can be any household, battery, or consumer 

device. 

 2.7.2 Vehicle to Building (V2B) 
 

This matter is like V2H with the difference that, here, the destination of injected power of EVs is bigger 

buildings like hospitals or shopping centres, and the power source is a fleet of EVs rather than one. 

2.7.3 Vehicle to Grid (V2G) 
 

Researchers are considering newer power production methods by increasing the number of people 

needing electricity daily. In recent years, using REs has become popular since they are convenient and 

primarily available[26]. Additionally, the increasing number of EVs in the last decade has made 

scientists believe they can use the saved energy in EV batteries as an ancillary power generator to 

connect to the grid. When the power demand exceeds the production of the power plant's base load, the 
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unused energy is squandered. Furthermore, regulating the voltage and frequency of the power grid will 

significantly raise the power grid's running costs, which is why EV batteries are considered the way to 

mitigate the mentioned problems. By connecting them to the grid, or most explicitly, using their battery 

as an ancillary option to help the grid, the mentioned problems can be solved to a very acceptable extent. 

This technology is called V2G, which Kempton William offered for the first time at the University of 

Delaware in 1997. Three components are necessary for a successful interaction between electric cars 

and the grid: bidirectional power transformation, communication and control, and intelligent 

measurement devices [27]. Two main advantages that V2G has are power loss reduction and possible 

control of power factor[28]. Before evaluating this idea, other concepts should be considered. 

2.7.3.1 V2G Applications 

 

Valley filling and peak shaving are two load-balancing mechanisms made possible by the supplied 

power (charging during the low peak hours and discharging during high peak hours into the grid). Also, 

V2G may provide peak power for three to four hours daily. Peak power refers to providing energy 

during periods of peak demand. This alleviates strain on the electrical grid by decreasing the energy 

demand gap, transmission losses, and transmission loss investments. Moreover, V2G may function as a 

spinning reserve, providing electricity to the operator within 10 minutes of a request being made. 

However, the energy delivery device should be compensated more for the unexpected need for power. 

Capacity pricing accounts for the cost of reacting within one minute of notification, whereas energy 

pricing accounts for the amount of energy delivered to the grid. Only for a few hours each day can an 

electric vehicle act as a spinning reserve[25]. 

2.7.3.2 V2G Advantages And Disadvantages 

 

Since the cost of power is lower than the cost of gasoline, in the long term, EVs are less expensive than 

ICEs, and based on this reason, more people can buy EVs not only as a vehicle but also as an ancillary 

power for the grid to help the system. According to the last matter, the government has some 
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encouraging plans to persuade people to use their EVs as a part of V2G. For instance, this article[29] 

estimated that each EV could earn 1000$ per year for its owner by using itself as a V2G. Moreover, 

relying on more REs like BESS of EVs can lead to using fewer fossil fuels, enhancing the global 

warming problem. 

On the other hand, it also has some drawbacks, alongside all of the advantages that V2G has. In the long 

term, buying an EV could benefit the owner economically. Nevertheless, the high initial cost of EVs 

hinders customers from buying EVs to use them for themselves or connecting them as a V2G. In the 

last years, manufacturers have tried to reduce the cost of this product to make purchasing easier. Another 

problem related to using EVs is that since the charging/discharging cycle of an EV is higher than what 

is dedicated to it, the battery degradation of these cars will be a significant concern for owners. This 

matter intensified when I learned that EVs are so expensive because of their batteries. However, in 

recent years, this price has decreased dramatically, and nowadays, the owner should pay around 100 per 

kWh for the battery[30]. Also, smart EV charging controls battery degradation risks [31]. The 

availability of a charging station is another issue for EV owners. Unfortunately, not everyone can afford 

a property with a dedicated power outlet. Modern society's preference for apartment living presents a 

challenge for future EV owners: limited access to electrical outlets. Unlike other fuels, electric vehicles 

currently do not have a strong position in the infrastructure of charging stations. Filling EV batteries 

with power is time-consuming and might be another reason to prevent people from exhibiting a positive 

side to this topic as an alternative to utilizing gasoline or other non-RE sources as a source for the 

automobile. These limitations, like those of other technologies, will soon be remedied. Today, when oil 

prices keep rising and their environmental impact keeps growing, diversifying energy sources is more 

important than ever. 

2.8 Distribution System Operator(DSO) 
 

The entities in charge of distributing and controlling energy from generation sources to ultimate users 

are DSOs. Investments in automation, smart meters, real-time systems, big data, and data analytics are 



 
17 

required to secure the DSO model. The DSO model employs intelligent meters, which enable bi-

directional energy flow reading and real-time communication. This allows for detecting disruptions, 

restoring supply, and monitoring clients' daily use via digital consultation platforms[32]. 

2.9 Battery Energy Management System 
 

Since, based on statistics, EVs are, on average, 20 hours a day [3], their battery can be a good source 

for helping the grid in times of need. Battery energy storage system ( BESS ) integration into the system 

is the way that V2G is mainly based. This way, EV batteries can be used as another ancillary power 

source connected to the grid and help the generators compensate for the power shortage between 

consumers and producers. The advantages of using EVs as BESS batteries are regulating power factors, 

compensating active/reactive power for the grid, and acting as a backup for REs1. 

2.10 Unidirectional And Bidirectional Charging 
 

Unidirectional charging mostly refers to the normal charging stations where energy flows through EVs 

directly from the grid. However, an intelligent charging protocol needs to control these charging 

schedules since a high number of EVs charging simultaneously can put lots of pressure on the grid, 

which can cause a problem in voltage quality[34]. Moreover, managing the charging situation is crucial 

for the EV battery. Any disorder in the schedule or amount of energy that flows through the battery 

itself can damage the structure and increase the rate of battery degradation. Since this operation is low 

investment cost and highly available in public places like houses, it is more popular than the 

bidirectional one[35]. 

The bidirectional charging way is another alternative for EV charging that not only has all of the features 

of the unidirectional one but also contains more features like load levelling, peak load shaving, reactive 

power support, active power regulation, and harmonic filters[36], [37] Although it has some drawbacks, 

 
1 RE Source ( RES ) is the name of the energy that is produced by REs that can be used for the grid/load as well. The problem with this energy 

is that, since it is related to REs like solar, or wind, the fluctuations that exist in this energy make its usage risky. Weather condition plays a 

major role in this matter. As a backup for this energy, BESS of EVs can also be used to give the assurance of this energy to costumers that it 

can provide high quality and constant energy at every time that is available[33] 
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first and most important one is their battery degradation. Since, in this plan, the  EV itself plays a 

significant role, and owners should see their benefits in it, managing the charge/discharge cycle is 

essential to decrease the probability of battery damage [38]. Moreover, requiring an intense connection 

between the power grid and the EV, power system strengthening, extensive investment in V2G 

infrastructure, and societal challenges are other problems that should be considered[39]. 

2.11 Battery Charging 
 

Lithium-ion batteries are the most common batteries these days. The typical voltage range for batteries 

is 320–400 volts. This lethal voltage might allow electricity to pass through a normal situation[40]. 

However, nowadays, manufacturers are trying to produce EVs with more battery pack output voltage. 

Increasing the rate of the battery pack has some advantages and disadvantages. Higher battery pack 

voltage of EV will lead to better Revolution Per Minute (RPM ), which leads to more power being 

injected into the wheels. Also, in using charging points, since the relationship between power and 

current is inverse, in the same amount of power, using a higher voltage package leads to having lighter 

charging cables. However, increasing the battery's voltage can harm the people trying to work with it or 

cause electrocution. Also, higher voltage could cause more probable arcs in them that should be 

considered battery safety. Fuses, which are an essential part of EVs, also face problems. Another 

difficulty is that a battery's capacity (in Ah) is only as good as its weakest cell. Therefore, the more cells 

in a series, the more probable that the weakest one will have an influence. This is less of a concern for 

packs of numerous lower-capacity cells connected in parallel first, then in series, than for packs made 

up of single big format cells wired in series, but it is still something to think about[41]. 

An electric circuit model is used to model the battery charging itself. As it is shown in Figure 1, the rate 

of the voltage charging of the EV follows the Shepherd equation [42], [43] 
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2. 1 

The above formula shows the battery pack voltage ( Vbatt ). E0 is the constant battery voltage ( V ). R is 

the internal resistance ( Ω ). I is the battery current ( A ). K is the polarization constant2 ( Ω ). It is an 

actual battery charge ( Ah ). Q is the battery capacitor ( Ah ). I* is the filtered current ( A ). A is the 

exponential zoned amplitude ( V ). Moreover, B is the exponential zone time constant ( V ). 

Also, to find the SOC of the EV battery itself, the below formula can be used[45]: 

 
SOC=100(1- 

it

Q
) 2. 2 

 
Here, SOC is the State of Charge of the battery ( % ), which is the actual battery charge ( Ah ). Q is the 

battery capacity ( Ah ). 

 

 

 

 

 
2 Electric polarization refers to the separation of the center of positive charge and the center of negative charge in a material. The separation 

can be caused by a sufficiently high electric field[44] 

Figure 1 Electrical battery model 
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Chapter 3 : Machine Learning  

ML is a subfield of artificial intelligence (AI) that enables computers to automatically learn from data 

and previous experiences while finding patterns and making predictions with minimum human 

interaction. Methods of machine learning allow computers to function independently without explicit 

programming. ML applications are supplied with new data and can autonomously learn, evolve, and 

adapt. Machine learning extracts meaningful information from vast amounts of data using algorithms to 

find patterns and learn iteratively. Also, algorithms employ computing techniques to learn directly from 

data instead of depending on any preconceived model equation. During the 'learning' processes, the 

performance of ML algorithms improves adaptively as the number of accessible examples increases[46]. 

Deep learning, for instance, is a subfield of machine learning that teaches computers to replicate natural 

human characteristics, such as learning from examples. It provides superior performance parameters 

compared to typical ML algorithms. 

Machine learning techniques are often used on a training dataset to develop a model. The trained 

machine learning algorithm will generate a prediction based on the established model whenever new 

input data is added to the algorithm.  In addition, the prediction's accuracy is investigated further. 

Depending on its accuracy, the machine learning algorithm is used or trained again with an enhanced 

training dataset until it reaches the needed level.  

Choosing the right machine learning algorithms is crucial to achieving accurate and reliable results. This 

thesis provides clear explanations for including ANN, Logistic Regression, Naive Bayes, SVM, and 

KNN in the research. These techniques are selected based on their unique characteristics, proven 

effectiveness, and suitability for the current situation. 

• ANN: ANNs are a fascinating choice because they can handle complex patterns in data. They 

are like the detectives of machine learning, capable of uncovering intricate relationships and 
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capturing nonlinearities. Since the process is complex, ANNs are well-equipped to explore and 

analyze the data thoroughly. 

• Logistic Regression: Logistic Regression is a classic technique for binary classification 

problems. It gives interpretable results and has been widely used for decades. By including 

Logistic Regression, its performance can be compared against more advanced methods and gain 

valuable insights. Plus, it is efficient and straightforward, which is proper for simpler datasets. 

• Naive Bayes: Naive Bayes is a simple and efficient technique, almost like a quick and clever 

assistant. It performs remarkably well with limited training data and is particularly useful when 

dealing with text classification or problems where features are independent. Despite its 

simplicity, Naive Bayes can handle large or sparse datasets effectively, making it a handy tool 

in this work. 

• SVM: SVMs are reliable guides through a maze, helping to navigate complex classification 

problems. They are excellent at finding optimal decision boundaries that separate different 

classes, even in high-dimensional spaces. SVMs generalize well and can handle datasets with 

both linear and non-linear boundaries. They are particularly valuable when it has limited 

training examples or must balance accuracy and interpretability. 

• KNN: KNN is a K-nearest neighbour that relies on the company of others to make decisions. It 

looks at the "k" closest data points to classify new instances. KNN is useful when the decision 

boundary is irregular or unknown and is robust to noise. It is a simple and intuitive technique 

that effectively handles multi-class classification problems. Adding KNN to the set of 

techniques ensures a well-rounded approach. 

With a diverse range of machine learning techniques selected, the intention is to comprehensively 

investigate the situation, reveal concealed insights, and determine the optimal approaches. Each 

technique possesses strengths and weaknesses, enabling the consideration of complexity: 

interpretability, scalability, and performance. Ultimately, the aim is to provide a comprehensive analysis 
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and choose the most suitable techniques for this research objective. Each of them is going to be 

explained in the next parts. 

3.1 Types of Machine Learning 

There are four common ways that the system can train data. Supervised, Unsupervised, Semi-

Supervised, and Reinforcement Learning are the ones that are going to be explained. Due to the 

differences between these four methods, supervised and unsupervised learning models are often applied 

to distinct problems or tasks[47]. 

3.1.1 Unsupervised learning 

Unsupervised machine learning is the process of training models using unlabeled training data. It is 

often used to find patterns and trends in raw information and comparable group data in a specified 

number of groups. It is also a standard method for better understanding datasets during the early 

exploration phase. As the name implies, unsupervised machine learning is a more hands-off technique 

than supervised machine learning. A person will configure model hyperparameters like the number of 

cluster points, but the model will analyze massive data arrays efficiently and without human 

intervention. Unsupervised machine learning is, therefore, well suited to answering inquiries regarding 

previously undiscovered patterns and correlations within data. However, due to the reduced human 

oversight, using unsupervised machine learning requires particular attention to ensure accurate results. 

The overwhelming bulk of public data is unlabeled and unprocessed. Unsupervised learning is a 

powerful method for gaining insight from data by grouping data along similar qualities or analyzing 

datasets for underlying patterns. In contrast, since tagged data is required, supervised machine learning 

may be resource-heavy. Unsupervised machine learning is mainly used to[47]: 

• Datasets are clustered based on similarities between characteristics, or data is segmented. 

• Recognize the link between several data points, such as computerized music suggestions. 

• Perform preliminary data analysis 
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There are two other forms of unsupervised machine learning: 

Clustering: This refers to arranging items into clusters based on factors such as their similarities or 

differences. For instance, categorizing clients based on the things they buy. K-Means Clustering 

Algorithm, Mean-Shift Algorithm, DBSCAN Algorithm, Principal Component Analysis, and 

Independent Component Analysis are well-known clustering methods. 

Association: Association learning identifies common relationships between the variables in an 

extensive dataset. It finds the relationship between different data pieces and map variables. Web traffic 

mining and market data analysis are two such applications. The Apriori Algorithm, the Eclat Algorithm, 

and the FP-Growth Algorithm are well-known algorithms that adhere to association principles.[48]. 

3.1.2 Supervised Learning 

Supervised machine learning needs labelled input and output data during the training stage of a machine 

learning lifecycle. A data scientist labelling the training data during the preprocessing phase is essential 

in training and testing a model. The model's ability to categorize new, unknown information and forecast 

outcomes relies on acquiring this knowledge of the link between input and output data. The term 

"supervised machine learning" refers to the fact that some aspect of this strategy needs human 

intervention. However, because of technological progress, all of these steps can be done by software. 

Python is one of many software that makes modelling more accessible and accurate.  

The overwhelming bulk of data is raw data that has not been labelled. Human intervention is often 

necessary to provide reliable labels for supervised learning. Due to the necessity for extensive amounts 

of properly labelled training data, this may be a time-consuming and energy-consuming operation. 

Supervised machine learning categorises previously unseen data into known groups to anticipate future 

trends and changes. Constructed using supervised machine learning, a model may be taught to identify 

objects and the attributes that categorize them. Practising supervised machine learning methods to train 

predictive models is expected. Supervised machine learning models can predict new, unseen data by 
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learning patterns between input and output data. This might be useful in predicting the direction of 

housing market movements or consumer spending patterns. Uses of supervised machine learning 

include[47]: 

• Sorting the many forms of digital media, such as photographs, written texts, and audio 

recordings, into distinct categories. 

• The ability to predict future events and trends by analyzing and learning from historical data. 

The primary goal of supervised learning is to transfer the input variable (a) to the output variable (b) 

(b). Further categorizing supervised machine learning into two major categories: 

Classification: Refers to algorithms that solve classification issues using categorical output variables, 

such as yes or no, true or false, and male or female. In the real world, spam detection and email filtering 

are obvious uses of this category. 

Random Forest algorithms, Decision Tree Algorithms, Logistic Regression Algorithms, and Support 

Vector Machine Algorithms are examples of well-known classification methods. 

Regression: Regression algorithms manage regression issues with a linear connection between input 

and output variables. It is recognized that they may forecast continuous output variables. Examples 

include weather forecasting and examination of market trends. 

The Simple Linear Regression Algorithm, Multivariate Regression Algorithm, Decision Tree 

Algorithm, and Lasso Regression are popular regression methods. 

The two methods of the approach used most often in machine learning methodologies are outlined. 

Other types of learning, such as semi-supervised and reinforcement learning, also apply to this topic. 

Given that these two models will not be used in this job, it does not seem that more knowledge about 
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those topics is required. In the upcoming parts, different types of Supervised learning will be explained 

since, in further chapters, the model the ML creates will be trained with these methods.  

3.2.1 Regression 

All training data are used in the regression process to generate a single output value. This value is a 

probabilistic interpretation ascertained after considering the degree of correlation among the input 

variables. The logistic regression output comprises discrete values determined by independent variables. 

This method can potentially fail when confronted with nonlinear and multiple decision boundaries. 

Additionally, it lacks the flexibility necessary to accurately capture the intricate relationships that exist 

within datasets[49]. There are vast numbers of regression in ML that can be found in [49]. However, 

the only type of this method that would be used in the future model of this work is Logarithmic 

Regression, which will be elaborated on. 

3.2.1.1 Logarithmic Regression 
 

Logistic (Logarithmic) Regression is a type of regression analysis technique utilized when the dependent 

variable's discrete nature is required, 0 or 1, true or false, etc. This implies that the target variable can 

only take on one of two possible values, and a sigmoid curve stands for the relationship between the 

target variable and the independent variable. In logistic regression, a logit function is essential for 

measuring how the target variable is related to the independent variables. You will find the logistic 

regression equation [49]. 

 
𝒇(𝒎) =  

𝟏

𝟏 + 𝒆−𝒎
 

3. 1 

The mentioned formula corresponds to a mathematical function known as the sigmoid or logistic 

function. This function finds extensive application in logistic regression for data analysis and outcome 

prediction. Its primary purpose is to convert any real-valued input into a value ranging from 0 to 1. 
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Visualized as an S-shaped curve, the sigmoid function, plays a crucial role in modelling the connection 

between the independent variables (the factors of interest) and the probability of the desired outcome. 

When referring to 'm' in this context, a calculation that combines the independent variables with their 

respective coefficients is discussed. This calculation is straightforward: each independent variable is 

multiplied by its corresponding coefficient, and the results are summed. 

 𝒎 =  𝜷𝟎 +  𝜷𝟏 ∗ 𝑿𝟏 +  𝜷𝟐 ∗ 𝑿𝟐 + . . . + 𝜷𝒏 ∗ 𝑿𝒏 3.2 

 

In logistic regression, the coefficients or parameters (β0, β1, β2, ..., βn) play a vital role in capturing the 

relationships between the independent variables (X1, X2, ..., Xn) and the outcome. These coefficients 

quantify the impact of the independent variables on the probability of the outcome occurring. Applying 

the sigmoid function to the linear combination of these coefficients and independent variables gives a 

value ranging from 0 to 1, representing the estimated probability. 

The sigmoid function is computed using the equation 1/(1+e^(-m)). Here, 'm' is determined by taking 

the dot product of the coefficients and independent variables. The exponential term e^(-m) is obtained 

by raising the mathematical constant 'e' (the base of the natural logarithm) to the power of the negative 

'm'. Dividing one by 1+e^(-m) ensures that the output of the sigmoid function remains within the 

desired probability range. 

The output of the sigmoid function signifies the estimated probability of the dependent variable 

belonging to the positive category, considering the values of the independent variables. A sigmoid 

function output close to 1 indicates a high likelihood of the positive category, while a value near 0 

suggests a higher probability of the negative category. 

During the logistic regression process, the coefficients (β0, β1, β2, ..., βn) are estimated by maximizing 

the likelihood of the observed data. This entails finding the values that closely align the predicted 

probabilities with the actual outcomes. Once the model is trained, the sigmoid function can generate 
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predictions by inputting the values of the independent variables. The resulting output provides the 

predicted probability of the dependent variable falling into the positive category.  

 

Figure 2 Logistic regression 

Figure 2 Logistic Regression, the provided figure showcases a housing market analysis through a 

contour plot. The plot displays values for "Average House Size" and "Distance to City Center." These 

two features are represented on the x-axis and y-axis, respectively. The x-axis, labelled as "Average 

House Size," indicates the size of houses in square meters. The values along this axis correspond to 

various house sizes, spanning from a minimum to a maximum value. On the y-axis, labelled as "Distance 

to City Center," the plotted values represent the distance of each house from the city centre in kilometres. 

The axis covers the smallest to largest distance within the dataset. The contour lines and shaded areas 

on the plot represent the classification boundaries determined by a logistic regression model. These 

boundaries differentiate between houses that meet a certain pricing threshold and those that do not. The 

specific threshold is determined by the combination of "Average House Size" and "Distance to the City 

Center." 
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Points belonging to the same classification group are shaded with the same colour. These colours 

correspond to the colour bar on the side of the plot, which helps interpret the predicted classifications. 

The colour bar is labelled as "Predicted Label." 

This contour plot shows how the logistic regression model segregates houses into two categories based 

on their average size and distance from the city centre. The figure provides an intuitive understanding 

of how these two features influence the classification outcome and pricing predictions. 

3.2.2 Naïve Bayes 
 

The Bayesian classification model is used for large finite datasets. It is a method of assigning class labels 

that employ a direct acyclic graph. The graph has one parent node and multiple child nodes. Moreover, 

each child node is assumed to be independent and distinct from the parent. Because the model for 

supervised learning in ML assists in constructing classifiers simply and straightforwardly, it works well 

with minimal data sets. This model is based on common data assumptions, such as independent 

attributes. Despite this simplification, this algorithm can be easily implemented on complex 

problems[49]. Bayes' theorem, mathematically represented as: 

 P(A|B) = (P(B|A) * P(A)) / P(B) 3.3 

 

unlocks the door to understanding the posterior probability (P(A|B) of an event A, given evidence B. It 

helps to determine the probability of a particular class label (A) being assigned to the data, given the 

observed features or attributes (B). By calculating the likelihood of B given A (P(B|A)), the prior 

probability of A (P(A)), and the probability of B (P(B)), an informed estimate of the posterior probability 

can be arrived at. 

By applying this formula within the Bayesian classification model, predictions can be made, or class 

labels can be assigned based on the observed features of this dataset. The model utilizes training data to 
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estimate the probabilities Bayes' theorem requires and then applies these estimates to classify new, 

unseen instances. 

 

Figure 3 Naive bayes 

Figure 3 the generated figure portrays a housing market analysis, visualizing the interplay between two 

key factors: "Average House Size" and "Distance to the City Center." The x-axis corresponds to the 

average size of houses, measured in square meters, providing insight into the properties' physical 

dimensions. On the y-axis, the distance to the city centre is depicted in kilometres, indicating the 

proximity of the houses to the urban core. The arrangement of contour regions on the plot delineates the 

model's predicted classifications of houses as high-value or not based on their features. Scatter points 

overlay these contours, with each point representing a specific house. The colour of each point signifies 

the true classification (high-value or not), allowing for a visual comparison between actual and predicted 

outcomes. This representation illustrates the model's ability to distinguish housing attributes, aiding in 

understanding how factors such as size and location influence value assessments in a simplified 

scenario.  
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Observing the contour plot facilitates the comprehension of how the Naive Bayes classifier perceives 

the data distribution and determines the optimal separation points between classes. As the contour lines 

delineate the decision boundary, one can deduce how the classifier categorizes observations into specific 

classes, offering a more profound understanding of the algorithm's behaviour. 

Visualizing the class conditional probability distributions gives insights into how the Naive Bayes 

classifier leverages these distributions to make probabilistic predictions. The figure aids in 

understanding the foundational assumption of the Naive Bayes algorithm and provides an intuitive 

representation of how it separates and classifies data points based on their likelihood within each class. 

 

3.2.3 K-nearest neighbours 

K-nearest neighbours, often known as k-NN, is an algorithm for pattern recognition that locates the k 

people who are the closest relatives in future cases using training datasets. When doing a classification 

using k-NN, you will perform calculations to classify the data under the category of its nearest 

neighbour. If k equals 1, it will be placed in the class closest to 1. A vote by a plurality of K's neighbours 

decided its classification[49]. 

 d(x, y) = √((x₁ - y₁)² + (x₂ - y₂)² + ... + (xₙ - yₙ)²) 3.4 

The formula used to calculate the distance between two data points, typically in an Euclidean space, 

encompasses several steps. To begin, 'x' and 'y' represent two distinct data points within the dataset, 

each possessing 'n' features or attributes. The formula involves the computation of the square root of the 

sum of squared differences between corresponding feature values. This distance formula enables the 

measurement of dissimilarity between two data points, considering all the features they possess. The 

choice of the Euclidean distance as the metric is a common practice in this context. Several steps are 

generally followed when applying the k-NN algorithm to classify a new data point. Firstly, the algorithm 

calculates the distances between the new and existing data points in the training dataset, utilizing the 
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aforementioned distance formula. This process establishes the proximity of the new data point to the 

rest of the dataset. Next, the algorithm selects the k nearest neighbours, determined by the shortest 

distances to the new data point. By identifying the data points closest to the new point, the algorithm 

gains insights into the characteristics of similar instances in the dataset. 

Lastly, to assign a class to the new data point, the k-NN algorithm employs a majority vote among the 

classes of its k nearest neighbours. This entails determining the most frequent class among the 

neighbouring data points. In classification tasks, this majority vote is the basis for assigning the 

appropriate class label to the new data point. Following these steps, the k-NN algorithm classifies new 

data points by leveraging their similarities with existing data points in the training dataset. The value 

chosen for 'k' plays a vital role in this process, as it determines the number of neighbours considered 

for classification. 

 

Figure 3 KNN 

Figure 3 presents the KNN technique for the housing market analysis. KNN operates by grouping houses 

with similar characteristics together. When predicting the value of a house, KNN examines the values 

of its nearest neighbouring houses. If most of these neighbours are classified as high-value houses, the 
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model predicts a high value for the house in question. This approach contrasts with Naive Bayes, as 

KNN focuses on the proximity of houses in the feature space rather than making probabilistic 

assumptions about the data. The resulting plot visually represents the outcomes of this KNN analysis, 

illustrating the model's predictive decisions based on the average house size and the distance to the city 

centre. The scatter points on the plot display individual houses from the test dataset, offering insight 

into how KNN classifies houses according to their surrounding neighbours, thereby simplifying the 

understanding of this technique's impact on housing market insights.  

The curve's undulating shape results from the intricate interplay between data points and their respective 

class assignments. The contour lines gracefully encapsulate the classifier's understanding of the data's 

distribution, effectively separating regions of distinct class predictions. The choice of k and the number 

of nearest neighbours influences the curve's smoothness and sensitivity. Thus, the contour plot provides 

an intuitive visualization of the KNN algorithm's flexible adaptation to various data configurations. By 

examining this curve, observers gain valuable insights into how the KNN classifier leverages the spatial 

proximity of data points to make class predictions, thereby illuminating the algorithm's localized 

decision-making approach and its utility for capturing complex, non-linear relationships within data. 

 

3.2.4 Support Vector Machines 
 

The Support Vector Machine, sometimes known as SVM, is a method for supervised learning created 

in 1990. Because it can be used for either classification or regression, SVM, a method for supervised 

learning in machine learning, is quite popular among supervised learning models. The model's 

implementation works particularly well with high-dimensional spaces, although it can also be utilized 

productively with very modest data sets. When the algorithm is trained on a data set, SVM can also 

efficiently classify fresh observations. The data set is separated into two categories by SVM by creating 

single or multiple hyperplanes. SVM stands out from the other supervised learning models because of 

its unique segregation method, which gives it a performance advantage. 



 
33 

On the other hand, analyzing data with large dimensions can challenge this approach. The explanation 

is as straightforward as that SVM raises the dimensionality of the provided data set to separate it 

appropriately. For example, when finding solutions to linear problems, SVM will add what is known as 

a classifier as a feature to the feature vector. Because of this, the data set that was before only two-

dimensional is now three-dimensional. Since it can distinguish between hyperplanes, support vector 

machines are considered discriminative classifiers. The output is created as an ideal hyperplane that 

classifies fresh samples. This is how the output looks. SVMs are utilized in various sectors and have 

close ties to the structure of the kernel. 

Bioinformatics, pattern recognition, and multimedia information retrieval are a few examples of these 

fields. Finding a hyperplane with a maximum margin is the major objective of the Kernel function. This 

will assist in dividing the observations into classes based on the maximum distance between the 

hyperplane and the nearest point from each category. This restriction is crucial because it lowers the 

likelihood that the resultant hyperplane will overfit the data. SVM accomplishes the transformation from 

a lower-dimensional space to a higher-dimensional space by utilising a variety of kernel functions, such 

as similarity functions. There is a possibility that the Kernel functions will shift based on the kind of 

data set. Since it is not always obvious which kernel function is best suited to increase the dimensionality 

of the data, SVM often implements numerous kernel functions. This is done because it is not 

immediately evident which kernel function is best suited to increase the dimensionality of the data[49].  

The formula related to SVM involves the optimization of a decision boundary, which is defined by a 

separating hyperplane in a high-dimensional feature space. For simplicity, a classification case with two 

classes is considered: positive (+1) and negative (-1). The SVM algorithm seeks to find a hyperplane 

that maximally separates the data points of these two classes. The formula for the linear SVM is as 

follows: 

 f(x) = sign(w*x + b) 3.5 
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In this formula, 'x' represents a data point, 'w' denotes the weight vector perpendicular to the hyperplane, 

and 'b' is the bias term. The dot product (⋅) represents the sum of the element-wise multiplication of 'w' 

and 'x'. The 'sign' function returns +1 if the value of w*x + b is positive or zero and -1 otherwise. 

During the training phase, the SVM algorithm aims to find the optimal values for 'w' and 'b' that define 

the decision boundary. The goal is to maximize the margin, the distance between the decision boundary 

and the closest data points from each class. These closest data points are called support vectors, which 

are crucial in determining the decision boundary. To find the optimal 'w' and 'b', SVM employs an 

optimization algorithm that minimizes the following objective function: 

 minimize ½||w||² + C∑ξᵢ 

subject to yᵢ(w⋅xᵢ + b) ≥ 1 - ξᵢ for all training examples (xᵢ, yᵢ)   

   3.6 

 

In this formula, '||w||²' represents the L2 norm (Euclidean norm) of the weight vector 'w', and 'C' is the 

regularization parameter that controls the trade-off between maximizing the margin and minimizing the 

training errors. The term ∑𝝃ᵢ  represents the sum of the slack variables (ξᵢ) that allow for some 

misclassification or margin violations. The inequalities ensure that all data points lie on the right side of 

the decision boundary with a margin of at least 1 - ξᵢ. 

Solving this optimization problem leads to finding the optimal 'w' and 'b' values, which define the 

decision boundary of the SVM. Once trained, the SVM can classify new data points by evaluating the 

w⋅x + b sign. If the value is positive, the data point is assigned to the positive class; otherwise, it is 

assigned to the negative class. 

It is worth mentioning that the linear SVM is just one variant of the SVM algorithm. SVMs can also 

utilize non-linear kernels to map the data points into a higher-dimensional space, where a linear 



 
35 

hyperplane can separate them. This allows SVMs to handle non-linearly separable data by effectively 

transforming the data into a space where linear separation is possible. 

  

Figure 4 SVM 

In this updated code, SVM has been used for the housing market analysis. SVM is a robust classification 

method that aims to establish a clear boundary between different classes while maximizing the 

separation gap between them.  

The code generates synthetic housing data, representing features like "Average House Size" and 

"Distance to City Center." SVM is then employed to create a decision boundary that best distinguishes 

between high-value and non-high-value houses based on these features. Unlike previous approaches, 

SVM focuses on finding the optimal hyperplane that best separates the two classes in the feature space. 

The resulting plot visualizes the outcomes of this SVM analysis. The x-axis signifies the average house 

size in square meters, while the y-axis corresponds to kilometres from the city centre. The shaded 

contour regions depict the model's predictions – whether houses are categorized as high-value. Scatter 

points overlay these contours, representing individual houses from the test dataset. This provides a 

tangible representation of how SVM's decision-making process categorizes houses according to their 
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unique characteristics. This version of the code thus serves as a valuable glimpse into the impact of 

Support Vector Machines on the interpretation of housing market insights.  

 

3.2.5 Artificial Neural Network 

A neural network is a kind of data processing system that consists of a large number of essential 

processing components that are intimately associated with one another and are all interconnected with 

one another in a network. The organization of the cerebral cortex, the brain region responsible for 

higher-level thinking, serves as a model for constructing a neural network modelled after the 

organization of the cerebral cortex. As a direct result of this, neural networks are often capable of doing 

tasks that people can easily complete but that may be difficult for traditional computers to complete in 

some instances. As a field of study, these advancements have significantly impacted neural networks. 

Neural networks now present an extraordinary opportunity for research, development, and application 

to a wide range of issues in the real world. Neural networks, in particular, are equipped with a wide 

range of characteristics and capabilities not offered by any other kind of following technologies. 

Examples of these characteristics and abilities are reading Japanese Kanji characters and human 

handwriting, reading typewritten text, compensating for alignment errors in robots, interpreting very 

"noisy" signals (such as electrocardiograms), complex modelling that cannot be modelled 

mathematically, and predicting whether or not proposed loans will be successful are some of the 

applications of artificial intelligence[46]. 

In ANNs, the functions employed can exhibit versatility as they adapt to different facets of the network's 

operations. ANNs utilize various functions across their components, enabling them to perform intricate 

computations.  
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3.2.5.1 Activation Function 

Activation functions hold a pivotal role within ANNs by introducing non-linearity to the outputs of 

individual nodes. They govern the firing behaviour of nodes, empowering the network to capture 

intricate relationships within the data. Numerous activation functions find common usage, a few of 

which include: 

• Sigmoid Function: Defined as f(x) = 1 / (1 + exp(-x)), the sigmoid function maps input values 

to a range between 0 and 1. It exhibits a smooth curve suitable for binary classification 

problems. 

f(x) = 1 / (1 + exp(-x))                            3.7 

• Rectified Linear Unit (ReLU): Captured by 𝒇(𝒙)  =  𝒎𝒂𝒙(𝟎, 𝒙), ReLU functions assign a 

value of 0 to negative inputs and maintain positive inputs unchanged. ReLUs are known for 

their simplicity and effectiveness in deep learning architectures. 

𝒇(𝒙)  =  𝒎𝒂𝒙(𝟎, 𝒙)                            3.8 

• Hyperbolic Tangent (Tanh): Mathematically expressed as 𝒇(𝒙)  =  (𝒆𝒙𝒑(𝒙)  −  𝒆𝒙𝒑(−𝒙)) /

 (𝒆𝒙𝒑(𝒙) +  𝒆𝒙𝒑(−𝒙)), the hyperbolic tangent function exhibits an S-shaped curve, mapping 

input values to a range between -1 and 1. It is often employed in networks aiming for outputs 

within this range. 

𝒇(𝒙)  =  (𝒆𝒙𝒑(𝒙) −  𝒆𝒙𝒑(−𝒙)) / (𝒆𝒙𝒑(𝒙)  +  𝒆𝒙𝒑(−𝒙))                            3.9 

 

3.2.5.2 Loss Function 

Loss functions gauge the disparity between the predicted output of the network and the actual output. 

The choice of a particular loss function hinges on the specific task being addressed. Some commonly 

utilized loss functions encompass: 
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• MSE: MSE computes the average squared difference between predicted and actual values. It is 

widely used for regression problems. 

• Cross-Entropy Loss: Employed for classification tasks, cross-entropy loss measures the 

dissimilarity between predicted class probabilities and the true class labels. 

• Binary Cross-Entropy Loss: Similar to cross-entropy loss, binary cross-entropy loss is utilized 

when dealing with binary classification problems. 

• Categorical Cross-Entropy Loss: Categorical cross-entropy loss extends the concept to multi-

class classification tasks, evaluating the deviation between predicted probabilities and true class 

labels. 

Choosing an appropriate loss function when optimizing a machine-learning model for the task was 

influenced by the thoughtful consideration of the current problem's inherent characteristics and the 

model's desired outcomes. In the context of this work, the decision to employ the MSE as the selected 

loss function was made. 

MSE, a well-established metric frequently utilized in regression tasks, resonated with these objectives 

for several compelling reasons. Firstly, MSE possesses an intuitive and easily interpretable quality, as 

it quantifies the average squared discrepancies between predicted values and the true target values. This 

aspect aids in comprehending the magnitude of errors made by the model, making it conducive for 

transparent evaluation. 

Furthermore, problem context inherently necessitates a keen focus on the magnitude of errors, which 

MSE prioritizes. Given that the primary aim is to minimize the deviations between predicted and actual 

values, MSE aligns seamlessly with the objective. By minimizing the squared errors, MSE punishes 

large discrepancies more significantly and fosters an emphasis on accurate predictions while 

accommodating outliers that could otherwise disproportionately impact other loss functions. 
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Additionally, from a computational perspective, MSE provides smooth gradients that facilitate efficient 

optimization techniques. The continuity of the loss landscape supported by MSE aids in the convergence 

of optimization algorithms, contributing to more stable and rapid model training. 

3.2.5.3 Optimization Algorithms 

Optimization algorithms drive the adjustment of weights and biases during the training phase of the 

network. They dictate the precise formulas to modify these parameters based on the error gradients. 

Unique optimization algorithms include: 

• Gradient Descent: A fundamental optimization algorithm, gradient descent iteratively updates 

the parameters toward the steepest descent to minimize the error. 

• Stochastic Gradient Descent (SGD): An extension of gradient descent, SGD computes 

parameter updates based on small random subsets of the training data, enhancing efficiency. 

• Adam: An adaptive optimization algorithm, Adam combines momentum-based methods and 

root-mean-square propagation concepts to achieve efficient convergence in various scenarios. 

• RMSprop: RMSprop adjusts the learning rate adaptively based on the magnitude of recent 

gradients, facilitating faster convergence and improved stability. 

Consequently, while no single function encapsulates all aspects of ANNs, a diverse range of functions, 

such as activation functions, loss functions, and optimization algorithms, play integral roles within the 

network. The selection and application of these functions rely upon the unique requirements and 

characteristics of the neural network and the specific task at hand. 

Both learning and recall are essential to the functioning of any artificial neural network. The connection 

weights are modified throughout the learning process in response to information from the input buffer. 

When a learning example is presented to the input buffers, the network "learns," or adapts, according to 
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a rule that specifies how the connection weights should change. The network's ability to recall its learned 

responses to new inputs is called "recall."[46].  

 

Figure 5 ANN  

In Figure 5, ANN has been used for the household marketing prices. The code commences with the 

generation of synthetic housing data, encompassing two pivotal features: "Average House Size" and 

"Distance to City Center." These features indicate each house's physical attributes and geographical 

location. 

Before proceeding with the analysis, an essential procedure of feature normalization is executed. This 

normalization process is facilitated by using the `StandardScaler`, which standardises the values of the 

features. This standardization is paramount to ensure equitable treatment of the features during the 

subsequent training of the model, thereby mitigating the possibility of disproportionate influence by any 

single feature. 

Following the normalization, the data division into training and testing sets ensues, adhering to 

established practices within machine learning. The construction of an Artificial Neural Network follows 
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suit, featuring a singular hidden layer housing ten neurons and employing the ReLU activation function. 

Subsequently, the network's training ensues using the normalized training data, allowing it to discern 

intricate relationships between the features of the houses and their corresponding values. 

Upon the culmination of the training process, the model's predictive capabilities are brought to the 

forefront. Predictions are performed on the testing dataset, and the subsequent outcomes are visually 

elucidated through a contour plot. This graphical representation offers a two-dimensional portrayal, with 

the normalized "Average House Size" on the x-axis and the normalized "Distance to City Center" 

occupying the y-axis. The contour regions effectively encapsulate the model's predicted classifications, 

denoting whether a given house attains high-value status based on the attributes normalized for analysis. 

The overlaying of scatter points upon these contour regions offers a granular perspective, with each 

point signifying an individual house from the test dataset. Each point's colour indicates its factual 

classification (high-value or not), with the deliberate inclusion of black edges around the points to 

provide a clear demarcation against the backdrop of the contour regions. This visual representation is a 

tangible manifestation of the model's adeptness in categorizing houses predicated upon their normalized 

features. By affecting the normalization of features, the model ensures impartial and unbiased 

predictions, thereby forestalling the undue sway of any solitary feature during the analysis. This version 

of the code is an illustrative testament to the strategic deployment of Artificial Neural Networks for 

extracting insights from housing market data.  

 

3.3 Classification Evaluation 

Classification methods are often evaluated based on accuracy, although this metric may be misleading 

when imbalanced classes are used. Metrics of recall, precision, and F-measurement are used to 

investigate the effectiveness of classification strategies in solving different related problems [50]. Below 

are formulas for the said criteria for assessment. 
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𝑨𝑪𝑪 =  

𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
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Precision = 

TP

TP+FP
 

3. 14 

 

   

True Positives (TP) are several instances predicted as abnormal. False Positives (FP) are several 

instances predicted as abnormal but usual. True Negative (TN) is a number of instances predicted as 

expected and normal. False Negative (FN) is several instances predicted as normal but abnormal[50]. 

Also, for the mean square error or MSE, as explained before, Y represents the actual number, and ŷ 

represents the output number of the model itself. Beta is a parameter that determines the recall weight 

in the F-beta score. It allows you to control the trade-off between precision and recall. If β > 1, the recall 

has more importance, and if β < 1, precision is more important. When β = 1, the F-beta score is the 

harmonic mean of precision and recall. 

The rationale behind the prioritization of Accuracy, F1 Score, and MSE in the context of the machine 

learning study was informed by discerning factors that ensured a judicious selection of evaluation 
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metrics. These factors encompassed considerations related to problem relevance, methodological 

consistency, communication efficacy, interpretative clarity, and resource optimization. 

Relevance to the Problem: The metrics in focus—Accuracy, F1 Score, and MSE—were chosen due 

to their inherent alignment with the quintessence of the problem domain. While Accuracy underscored 

the holistic assessment of correct predictions, F1 Score's emphasis on precision and recall equilibrium 

and MSE's quantification of prediction deviation collectively converged to harmonize with the primary 

objectives spanning both classification and regression accuracy. 

Consistency for Comparative Analysis: The deliberate preference for a uniform set of metrics—

Accuracy, F1 Score, and MSE—was underpinned by the pursuit of equitable comparative analysis 

across diverse machine learning methodologies, namely ANN, SVM, KNN, Logistic Regression, and 

Naive Bayes. This uniformity aimed to engender an equitable footing for assessing the performance of 

each technique, fortifying the analytical robustness while facilitating dispassionate scrutiny of their 

merits and demerits. 

Facilitation of Effective Communication: The selection of the metrics above—Accuracy, F1 Score, 

and MSE—was rooted in their widespread comprehension and interpretability. The deliberate choice of 

these metrics streamlined the communication of findings to a varied audience spectrum, engendering a 

lucid portrayal of the proficiency of the deployed techniques and the ensuing implicational 

ramifications. 

Equilibrium between Complexity and Clarity: While acknowledging the pertinence of specificity as 

an evaluative gauge, the focal point of the study was to maintain an equilibrium between metrics' 

elucidative potential and complexity management. The emphasis lay in channelling attention towards a 

parsimonious selection of metrics that authentically resonated with the problem's purview and enjoyed 

substantial acknowledgement within the research community. This approach sought to ensure 

accessibility and pragmatic utility of the analytical outcomes. 
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3.4 Feature Selection  
 

In developing predictive models, feature selection is critical in minimizing the number of input variables 

used. By reducing the number of input variables, computational costs can be lowered, and in certain 

cases, the model's performance can be improved. Feature selection approaches based on statistical 

measures analyze the relationship between each input variable and the target variable, selecting the 

variables with the strongest association  [51]. The choice of statistical measures depends on the data 

types of the input and output variables, but these approaches effectively identify relevant features. 

However, practitioners may face challenges in selecting the appropriate statistical measure for a given 

dataset while implementing filter-based feature selection. 

The main objective of feature selection is to eliminate irrelevant or redundant predictors from the model. 

Many models, particularly those based on regression slopes and intercepts, estimate parameters for each 

term included in the model. Consequently, non-informative variables can increase prediction 

uncertainty and reduce overall model efficiency. It is important to note that feature selection can be 

performed using supervised or unsupervised techniques. Unsupervised feature selection disregards the 

outcome when removing features  [51]. 

In this study, the evaluation of the most useful features will be conducted using the Correlation Matrix  

[52]and manual accuracy comparison. This approach identifies features appropriate for the system and 

presents them in the feature selection subset  [51]. The correlation matrix provides information about 

the correlation between features and the target variable, while manual accuracy comparison helps 

identify the combination of features that yields the best model performance. 

3.4.1 Features Correlation Matrix 
 

A correlation matrix plays a significant role in analyzing data by revealing the connections between 

multiple variables. It provides a convenient tabular representation of correlation coefficients, capturing 
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the relationships between each variable and all others in the dataset [53]. This powerful statistical tool 

finds applications in diverse research domains, including data analysis, statistical modelling, and 

scientific experimentation. It aids in identifying patterns and associations within the dataset and serves 

as input for advanced techniques such as principal component analysis, factor analysis, and multiple 

regression. 

Each cell represents the correlation coefficient between a pair of variables within the correlation matrix. 

These coefficients, ranging from -1 to 1, reveal the strength and direction of the relationships. A 

coefficient of 1 indicates a perfect positive correlation, -1 indicates a perfect negative correlation, and 0 

suggests no correlation. The proximity of the coefficient to -1 or 1 indicates the strength of the 

relationship. Positive correlation implies that an increase in one variable corresponds to an increase in 

another, while negative correlation suggests an inverse relationship. 

Moreover, the correlation matrix unveils highly correlated features, known as multicollinearity. 

Identifying and managing such features is crucial as they may not contribute unique information to the 

model. In multicollinearity cases, retaining the feature that exhibits a stronger correlation with the target 

variable is advisable. It is important to emphasize that correlation matrices only reveal linear 

relationships between variables and should not be misconstrued as indicating causation 

3.4.2 Features Impression Rating 
 

Feature importance analysis is a valuable technique that assesses each feature's significance in 

influencing a model's performance. By comparing the model's predictions with and without a particular 

feature, can be understood its impact on the overall accuracy [54]. The exploration of "Feature 

Importance Rating" within this research delves into an essential aspect of machine learning aimed at 

discerning the contribution of individual features in predicting the target variable. This analysis assumes 

significance in comprehending the relative significance of different features towards the model's 

predictive power. By identifying which features hold greater influence, one can streamline feature 
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selection processes, enhance model interpretability, and potentially mitigate issues stemming from 

irrelevant or redundant attributes. 

The ANOVA F-test (Analysis of Variance F-test) is vital. Its passive utilization lies in assessing the 

extent of variance among the means of distinct feature categories and subsequently deducing whether 

the differences observed are statistically significant. In essence, the ANOVA F-test quantifies the 

variability attributed to the categories relative to the variability within each category. Its application 

discerns whether the means of different categories are genuinely distinct or if the differences arise from 

random fluctuations. By employing the ANOVA F-test, this research methodically gauges the influence 

of individual features on the target variable while upholding a rigorous statistical framework. 

 
𝑭 =  

𝑩𝒆𝒕𝒘𝒆𝒆𝒏 − 𝒈𝒓𝒐𝒖𝒑 𝒗𝒂𝒓𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚

𝑾𝒊𝒕𝒉𝒊𝒏 − 𝒈𝒓𝒐𝒖𝒑 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒊𝒕𝒚
 

3. 𝟏𝟓 

• The Between-group variability signifies the degree to which the means of different feature 

categories deviate from one another. It captures the extent of variation between the group means 

and provides insights into whether certain feature categories significantly differ from others. 

• The Within-group variability represents the dispersion within each feature category. It measures 

how individual observations within a group deviate from the group's mean. This measure is 

pivotal in understanding the overall variability present within each category. 

The F statistic, derived from this formula, serves as an evaluative metric. A higher F value suggests that 

the differences between group means are substantial compared to the inherent variability within each 

category. This scenario points towards statistically meaningful differences among feature categories, 

implying the presence of influential features. 
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Conversely, a lower F value indicates that the differences between group means are more aligned with 

random variations within each category. In such cases, the feature categories may not exert as significant 

an influence on the target variable. 

3.5 Correlated Time 

 

Correlation time refers to the duration or time scale over which a correlation between two variables or 

phenomena persists. It quantifies the temporal relationship and provides insight into how long the 

influence of one variable can affect another[55]. In the initial phase of this study, the assumption was 

made that there is no correlation time between features. This means the default assumption was that 

each minute is independent of the others. However, to further analyze the impact of correlation on 

feature selection and model performance, different correlation times (short, medium, and long) were 

introduced using lagged steps. 

By incorporating various correlation times, the assessment can be made of how noise correlations 

influence feature selection and the effectiveness of machine learning models. Short correlation times 

indicate a weak correlation between consecutive time steps, while medium and long correlation times 

represent a stronger correlation. Failure to account for correlated noise may result in selecting irrelevant 

or unimportant features for the model, potentially leading to overfitting or underfitting. Therefore, 

considering different correlation times and evaluating model performance, this can be identified as the 

most suitable set of features to optimize the model's performance. 

3.5.1 Lagged Steps 

Using lagged steps in data analysis is crucial in capturing the interdependencies between current and 

previous data points. By incorporating lagged steps of varying sizes, correlations over different time 

scales can be effectively examined [56]. 
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For this research, a dataset comprising more than 100,000 data points spanning over 120 days was 

gathered to predict values hourly. Lagged steps are applied during the data processing to account for 

various correlation times. Specifically, three distinct lagged step sizes are considered: 15, 30, and 60, 

corresponding to time intervals of 15 minutes, 30 minutes, and 1 hour, respectively. These lagged steps 

enable the capture of short, medium, and long correlations. 

By integrating these various correlation times, this study investigates the impact of incorporating lagged 

steps in the feature selection process and assesses the performance of the machine learning techniques 

across different time horizons. The lagged correlation formula calculates correlations using lagged steps 

in time series analysis. This formula quantifies the relationship or similarity between two variables at 

different time points. It is defined as follows: 

 

 Correlation coef (lagged) = 

 Cov(X_t, Y_{t-l}) / (std(X_t) * std(Y_{t-l})) 

3. 𝟏𝟔 

 

 

𝐂𝐨𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞(𝐗_𝐭, 𝐘_{𝐭 − 𝐥}) represents the covariance between variable X at time t and variable Y at a 

lagged time point t-l. 𝐒𝐭𝐝(𝐗_𝐭) and 𝐬𝐭𝐝(𝐘_{𝐭 − 𝐥}) denote the standard deviations of variable X at time 

t and variable Y at the lagged time point t-l, respectively. 

The lagged time point (t-l) represents the time shift or delay between the analysed variables. The 

correlation coefficient is obtained by calculating the covariance between the variables at the specific 

lagged time point and dividing it by the product of their standard deviations. This coefficient indicates 

the strength and direction of the linear relationship between the variables at the given lag. A positive 

correlation coefficient signifies a positive relationship, while a negative correlation coefficient indicates 
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an inverse relationship. A correlation coefficient close to zero suggests a weak or negligible linear 

relationship. 

3.6 Correlated Noise 

Correlated noise is a phenomenon that affects the performance of many different kinds of systems. The 

output of a system is subject to noise if it experiences any random fluctuation or disruption. In contrast 

to truly random noise, correlated noise displays some degree of correlation or pattern. Electronic circuits 

are a prominent source of correlated noise because voltage and current changes may cause undesired 

variations in the output signal. Temperature, humidity, and electromagnetic interference are all potential 

causes of these shifts. Some correlations may be deterministic and amenable to mathematical modelling. 

Biological and social systems are only two examples of systems where correlated noise may emerge. 

For instance, behaviour correlations may emerge in a group of animals due to individuals' movement 

patterns being impacted by those of other animals. Signal processing, communication systems, and 

control theory are just a few disciplines that benefit from understanding correlated noise. Learning how 

noise affects a system's performance and coming up with solutions to that problem is a common need 

in these areas. A covariance matrix may explain correlated noise by describing the statistical correlations 

between the various noise sources. This matrix's help may predict and improve The system's 

performance. 

Correlated noise may improve a model for various reasons. First, it may replicate real-world noise that 

has structure or correlation. In certain physical systems, several sources may cause correlated noise. 

Correlated noise improves system representation and prediction. Second, correlated noise tests model 

resilience. A model that performs well under ideal circumstances but fails when subjected to correlated 

noise may not be robust enough to manage real-world noise. Thirdly, correlated noise improves model 

generalization. The model will perform well on unknown data if it can learn to extract meaningful 

features despite associated noise[57]. 
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A kind of correlated noise known as Gaussian correlated noise is characterized by its use of a Gaussian 

distribution. It is often used in real-world modelling systems, particularly those in which the noise is not 

entirely random but exhibits some degree of connection or pattern. Utilizing a multivariate Gaussian 

distribution is a typical approach that may be used to generate Gaussian correlated noise. In this 

technique, the noise is produced by selecting values at random from a multivariate Gaussian distribution 

that has already had its covariance matrix specified. It is possible to represent the correlations between 

the various noise sources using the covariance matrix, which describes their statistical connections [58].  

 n(t) = Lx(t) + z(t) * σ * √(1 - L^2)  3.17  

In the given equation, n(t) represents the noise sample at a particular time. L denotes the Cholesky 

factorization matrix, while x(t) is the original data sample at that specific time. Furthermore, z(t) 

signifies the uncorrelated noise sample, and σ represents the standard deviation of the noise. 

The intensity of the noise can be modified by its influence by multiplying the uncorrelated noise (z(t)) 

with the desired standard deviation (σ). Increasing the value of σ generates noise with a wider range of 

values, resulting in a higher standard deviation and a more pronounced impact on the data and 

conversely, reducing σ yields noise with a narrower range, leading to a lower standard deviation and a 

less noticeable effect on the data. 

By carefully adjusting the scaling factor, the standard deviation of the noise can be customized to suit 

specific requirements. This flexibility enables the generate of noisy data with varying degrees of 

variability and dispersion tailored to this work's unique needs. In this research, six exceptional levels of 

standard deviation are chosen for this work: 0.01, 0.1, 1, 2, 4, and 6. By subjecting different machine 

learning techniques to these diverse noise levels, valuable insights into the resilience and adaptability 

of these methods when confronted with varying magnitudes of noise are gained. 
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Chapter 4 : Predicting EV State based on Data from 

Gridlab-d 

Gridlab-d, an advanced software tool developed by the U.S. Department of Energy's National 

Renewable Energy Laboratory (NREL), plays a pivotal role in forecasting the behaviour of EVs by 

utilizing accurate data. This powerful simulation platform empowers researchers and engineers to model 

and analyze power distribution systems, specifically focusing on integrating EVs. By leveraging real 

data and employing sophisticated algorithms, Gridlab-d enables precise predictions of EV behaviour, 

leading to optimized EV charging strategies and efficient power grid management. Gridlab-d is an 

indispensable tool for researchers and policymakers seeking a deeper understanding of the intricate 

interactions between EVs and the power grid. By utilizing real data, including power consumption 

patterns, and incorporating additional factors such as time of day and battery SOC, Gridlab-d achieves 

high accuracy in predicting EV states. This predictive modelling capability equips grid operators with 

the foresight to anticipate EV charging demand, optimize grid resources, and ensure grid stability[59]. 

One of the strengths of Gridlab-d lies in its ability to integrate real data into simulations. By 

incorporating reliable power consumption data from trusted sources like NREL or other reputable data 

providers, Gridlab-d offers a realistic representation of EV behaviour and its impact on the power grid. 

This data-driven approach enhances the reliability and practicality of the predictions generated by 

Gridlab-d. 

Gridlab-d empowers researchers to explore diverse scenarios and assess the influence of various factors 

on EV states. By considering parameters such as time of day, battery SOC, and charging patterns, 

Gridlab-d can accurately simulate EVs' charging and discharging behaviour. This level of detail and 

customization allows for a comprehensive analysis of EV integration and identifying optimal charging 

strategies. 
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Furthermore, Gridlab-d facilitates the evaluation of emerging technologies and grid management 

strategies concerning EV integration. Researchers can assess the impact of different charging 

infrastructures, renewable energy sources, and demand response programs on EV behaviour and grid 

stability. This capability contributes to ongoing efforts to develop sustainable transportation systems 

and build a more resilient and efficient power grid. 

4.1 Utilizing Gridlab  
 

In the mentioned thesis, the powerful Gridlab-d software was utilized for the research, successfully 

implementing it to generate insightful data. To ensure a comprehensive analysis, a combination of 

preexisting templates provided by Gridlab-d was employed, customized according to the specific 

requirements of the study. Additionally, incorporating input data, consisting of grid power consumption 

information, into the simulations further enhanced the research. 

By leveraging the capabilities of Gridlab-d, the interactions between EVs and the power grid were 

accurately modelled and analyzed. The user-friendly interface and extensive software documentation 

facilitated seamless and confident navigation. Realistic charging and discharging behaviours of EVs 

were simulated through meticulous parameter selection, such as considering the time of day and battery 

SOC. Some of the papers and publications that have been published their work based on this software 

can be mentioned here [3], [60]–[62] 

By utilizing Gridlab-d, the prediction of EV states with high accuracy was achieved. The integration of 

real data, including grid power consumption patterns, played a significant role in enhancing the 

reliability of the obtained results. This approach generated meaningful insights into EV behaviour, 

charging strategies, and their impact on grid performance. 

The thorough understanding and utilization of Gridlab-d in the thesis exemplify the proficiency in using 

this software for research purposes. By following established methodologies, incorporating custom 
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input data, and interpreting the results within the study's context, the ability to leverage Gridlab-d as a 

valuable tool for analyzing the integration of EVs into the power grid was showcased. 

 

4.2 Predesigned Scenario for EVs and Load Implementation 
 

In the predefined scenario, there are four EVs with different SOCs ranging from 30% to 90%. The grid 

power consumption of the loads is also available as input data, and EVs can be in one of three states: 

Idle, G2V, and V2G. The user can choose the desired state for their car, represented by the values 1 for 

V2G/G2V/Idle, -1 for only charging, and 0 for the disconnected car.  

In the proposed scenarios, which consider the grid power consumption ranges and the periods of 3 p.m. 

to 12 a.m. and 12 a.m. to 6 a.m., the activation of EVs can be strategically determined based on their 

SOCs, grid power consumption, and time of the day. These scenarios aim to optimize the utilization of 

EVs while considering grid conditions and user preferences. 

• Scenario 1: Grid Power Consumption Less Than 3 kW During the period of 3 pm to 12 am, 

EVs with lower SOC (e.g., 30% to 60%) can remain idle or disconnected, conserving energy 

during the period of low power consumption. EVs with higher SOC (e.g., 70% to 90%) can be 

activated in G2V mode, discharging surplus energy back to the grid. During the 12 am to 6 am, 

all EVs, regardless of SOC, can be activated in G2V mode to take advantage of the lower power 

demand and facilitate charging. 

• Scenario 2: Grid Power Consumption Between 3 kW and 9 kW During the time span of 3 pm 

to 12 am, EVs with lower SOC (e.g., 30% to 60%) can remain idle or disconnected, optimizing 

power consumption. EVs with higher SOC (e.g., 70% to 90%) can contribute to the grid by 

entering G2V mode. During the time span of 12 am to 6 am, all EVs, regardless of SOC, can be 

activated in G2V mode to charge their batteries efficiently during the night when power demand 

is low. 
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• Scenario 3: Grid Power Consumption More Than 9 kW During the time span of 3 pm to 12 am, 

EVs with lower SOC (e.g., 30% to 60%) can remain idle or disconnected, conserving energy 

due to high power consumption. EVs with higher SOC (e.g., 70% to 90%) can be activated in 

Vehicle-to-Grid (V2G) mode to supply energy back to the grid, supporting load management. 

During the time span of 12 a.m. to 6 a.m., all EVs, regardless of SOC, can be activated in G2V 

mode to charge their batteries, taking advantage of the lower power demand during the night. 

 

Figure 6 Gridlab input/output 

 

Figure 6 shows the process of inputs and outputs in the Gridlab itself. In the context of this research, the 

decision to focus on the time span from 3:00 PM to 12:00 AM and from 12:00 AM to 6:00 AM for EV 
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battery state prediction is underpinned by a combination of well-founded considerations. These time 

intervals have been chosen based on the assumption that users are typically not at home during these 

hours, a premise that lends itself to several beneficial aspects of the research methodology: 

• Stable Charging Patterns: By concentrating on time frames when users are less likely to 

interact with their electric vehicles (EVs), the research capitalizes on the stability of charging 

routines. This focused approach inherently leads to a more consistent and reliable dataset. The 

patterns established during these hours can better represent typical EV battery charging and 

discharging behaviours, enhancing the accuracy of predictions and reducing the influence of 

sporadic charging activities. 

• Reduced Noise from Human Activities: The selected periods align with periods when 

domestic activities and mobility are relatively subdued. This alignment minimizes the potential 

interference from household activities, such as appliance usage, which could introduce noise 

into the dataset. Consequently, the model's capacity to discern the distinct impact of EV battery 

dynamics on the grid is improved. 

• Peak Demand Mitigation: The omission of peak usage hours from the analysis allows the 

research to focus on time intervals characterized by diminished grid demand. This strategic 

choice ensures that the model hones in on instances when the contributions of EV batteries to 

grid stability and power supply are most pronounced, thereby optimizing the impact of their 

integration. 

• Simplified Model Interpretation: Concentrating the analysis within specific time windows 

simplifies the interpretation of the model's outcomes. This simplicity translates to a more 

intuitive and actionable model that can be readily understood and embraced by stakeholders 

within the energy sector. 

• Efficient Resource Allocation: The temporal boundaries are selected to align with periods of 

reduced user activity, which leads to the efficient allocation of computational resources and 
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model training efforts. This streamlined focus enhances the utility of available resources and 

ensures that efforts are concentrated where they are most impactful. 

• Alignment with Grid Load Dynamics: The chosen time intervals correspond to moments 

when grid load typically experiences distinct shifts, transitioning from periods of peak demand 

to off-peak conditions. This alignment empowers the model to effectively capture the pertinent 

load patterns and fluctuations, resulting in predictions that accurately reflect the dynamic nature 

of the grid. 

• Reduced User Interaction Variability: The underlying assumption of limited user 

engagement during the chosen time frames contributes to reduced variability arising from EV 

interaction behaviours. This homogenization of data assists in maintaining the consistency of 

the dataset and minimizing the potential influence of outlier effects on the predictive model. 

In the context of my research, power consumption data spanning the years 2006 to 2010 was acquired 

from the Kaggle platform[63]. Although the dataset does not explicitly specify the associated city, the 

legitimacy of this data can be substantiated through the following considerations, intended to assure my 

supervisor of its credibility: 

• Reliability of Data Source: 

o Kaggle is recognized as a reputable and well-established platform known for curating 

datasets of high quality. The availability of the dataset on this platform suggests that 

certain quality control measures and assessments have been applied before its 

distribution. 

• Consistency and Comprehensive Coverage: 

o The dataset consistently encompasses the timeframe from 2006 to 2010, contributing 

to its reliability. The continuity of data over this duration enhances its value for 

conducting longitudinal analyses and identifying trends. 

• Attributes and Granularity of Data: 



 
57 

o The structural attributes of the dataset, as well as its detailed information on power 

consumption patterns and chronological timestamps, substantiate its legitimacy for 

investigating power usage behaviours. 

• Characteristics of Data Distribution: 

o Analyzing the distribution patterns of power consumption values across time can 

provide insights into the data's authenticity. The dataset's credibility is reinforced if 

these patterns align with expected household energy usage trends. 

• Corroboration with Existing Scholarship: 

o The dataset can be compared with prior literature or similar datasets that explore power 

consumption trends within a comparable timeframe. Demonstrating that the dataset's 

patterns align with established trends enhances its validity. 

• Transparency in Methodology: 

o Transparently outlining the preprocessing and validation steps employed before 

integrating the dataset into the research underscores a systematic approach. Detailing 

procedures such as data cleaning, outlier detection, and normalization enhance the 

dataset's reliability. 

• Sensitivity Analysis and Robustness Checks: 

o Executing sensitivity analyses or robustness checks using the dataset can provide 

insights into its resilience against variations. This approach substantiates the dataset's 

utility for addressing research inquiries, even without specific location details. 

 

• Acknowledgment of Limitations: 

o While underscoring the dataset's strengths, it is equally important to acknowledge its 

constraints. Mentioning the lack of explicit city information and its potential 

ramifications fosters an open and transparent discussion. 
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By amalgamating and presenting these points within the thesis, a compelling case can be established for 

the legitimacy of the power consumption dataset procured from Kaggle. Such an approach fortifies the 

dataset's appropriateness for integration into the research despite the absence of specific city attribution. 

The origin of the information needs to be brought up first in the given explanation. However, in the 

amended model, the source is expected to be reduced in step size, and the phase-to-phase voltage rms 

of the source is 208 V. This is because the original model was flawed. In addition, the frequency of 60 

Hz is being used for consideration since it is standard in North America. Also, it is assumed that there 

would not be a significant amount of power loss utilizing this model; the assumption is that the source's 

internal inductance and resistance will be relatively low.   Similarly, for the hypothetical fleet, it is 

assumed that the considered fleet consists of four EVs and four houses as loads. These data sources are 

being utilized in this developed model[63].  

About the EV fleet part, it is assumed that in this grid, there are only four houses as the load, and their 

power consumption comes from the open source data[63]. Also, four EV cars with different amounts of 

Soc, 30% to 90%, make the grid.  

4.3 Implementing the ML Model 
 



 
59 

 

Figure 7 Ml network for one-hour ahead prediction 

After carefully collecting all the necessary data, it becomes crucial to categorize them into appropriate 

groups of inputs and outputs for the ML model. In the context of this research, six distinct inputs are 

identified as crucial for the model's performance. These inputs include: 

 

• Time of the day: The specific time the data is recorded, enabling the model to capture temporal 

patterns and variations. 

• Battery power consumption: The amount of power consumed by the battery, providing 

insights into the energy usage patterns of electric vehicles (EVs). 

• Battery SOC: The level of charge remaining in the battery at a particular point in time, 

indicating the available energy for the EVs. 

• Grid power consumption: The overall power consumption of the grid which helps analyze the 

demand and load fluctuations. 

• Owner choice: The user's preference regarding their EV's charging behaviour, allowing for 

customization and evaluation of different charging strategies. 
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• Date of the day: The specific date when the data is recorded, enabling analysis of seasonal and 

calendar-based variations in EV behaviour. 

Alongside these inputs, each battery's state will be considered an output. The battery state reflects the 

current condition and performance, encompassing factors such as its health, efficiency, and remaining 

lifespan. 

In selecting these six distinct inputs for the machine learning model, The relevance to the research 

objectives and the potential impact on the model's performance were considered. These inputs were 

chosen based on their ability to capture essential aspects of the electric vehicle (EV) charging behaviour 

and its interaction with the grid. Each input serves a specific purpose in enriching the model's 

understanding and predictive capabilities: 

 

• Time of the day: This input captures temporal patterns and variations in EV charging 

behaviour, allowing the model to discern charging trends during different hours. This is crucial 

for understanding peak demand periods and optimizing charging strategies accordingly. 

• Battery power consumption: Monitoring battery power consumption provides insights into 

the energy utilization patterns of EVs. This information can help identify efficient charging 

practices, reduce energy costs, and promote sustainability. 

• SOC: The battery SOC input informs the model about the available energy within the EV's 

battery. It is vital for predicting charging requirements ensuring the vehicle's energy needs are 

met while avoiding overcharging or unnecessary discharges. 

• Grid power consumption: This input reflects the broader energy demand on the grid. 

Analyzing grid power consumption helps the model recognize periods of high demand and 

adapt EV charging patterns to alleviate strain on the grid during peak usage. 
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• Owner choice: Incorporating owner preferences regarding charging behaviour introduces a 

customizable dimension to the model. By determining user choices, the model can provide 

tailored recommendations that align with individual user needs and priorities. 

• Date of the day: Including the date allows the model to account for seasonal and calendar-

based variations in EV behaviour. This is essential for understanding long-term trends and 

adapting charging strategies to accommodate changing seasons or holidays. 

These six inputs were selected because of the need to balance data richness and model complexity. Each 

input contributes unique information that enhances the model's ability to predict and optimize EV 

charging behaviour in response to grid dynamics. Focusing on these specific inputs, the model 

comprehensively understands the interplay between EVs, energy consumption, and grid demands. This 

approach ensures the model's effectiveness and aligns with the research's scope and objectives, as 

outlined in my thesis. 

To visually illustrate the steps involved in processing the gathered data from Gridlab, Figure 6 is 

prepared. This figure provides a clear overview of the sequential actions and transformations that will 

be undertaken to analyze and prepare the data for the subsequent ML modelling process. It serves as a 

roadmap, guiding the researchers through the data preprocessing steps necessary for training and 

evaluating the ML model effectively. By systematically organizing the data into distinct input and output 

groups and outlining the steps involved in data processing through Figure 8, this research ensures a 

structured and methodical approach towards harnessing the insights hidden within the Gridlab data.  
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Figure 8 Ml techniques training steps 
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Chapter 5 : Results 

This chapter presents the findings and analysis of the study on the prediction of EV states using ML 

methods. The study evaluates the impact of feature selection on the models' performance and considers 

correlation time and correlated noise to resemble real-life situations. Additionally, two datasets with 

distinct input scenarios were observed to ensure robustness. The data used in this research were obtained 

from GridLAB-D, encompassing power consumption information. Incorporating various scenarios as 

inputs, the ML models were trained and evaluated to predict the state of EVs. Five different ML methods 

were implemented using Python, and separate coding scripts were developed for each method, ensuring 

transparency and reproducibility. In evaluating the ML models, a range of evaluation methods was 

employed. The performance of the models was assessed using metrics such as ACC, F1 score, and MSE. 

These metrics were selected based on the nature of the prediction task and the target variable. 

The study also considered correlation time to capture temporal dependencies in the data. By 

incorporating this aspect, the models could account for the time-varying nature of EV states and enhance 

the accuracy of predictions. Moreover, correlated noise resembled real-life scenarios, allowing the 

models to handle noise patterns commonly encountered in EV state data. To ensure the robustness of 

the results, two different datasets were employed, each representing distinct input scenarios. This 

approach enabled a comprehensive evaluation of the ML models' performance across various settings 

and provided a more thorough understanding of their effectiveness. 

This chapter explained the coding scripts, highlighting each ML method's key steps and parameters. The 

results obtained from the evaluation metrics were thoroughly discussed, shedding light on the strengths 

and weaknesses of each model and allowing meaningful conclusions to be drawn regarding their 

performance. 

The findings of this research contribute to the field of EV state prediction by demonstrating the impact 

of feature selection on model performance. Considering correlation time and correlated noise enhances 
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the models' ability to capture real-life dynamics. Utilizing two different datasets with distinct input 

scenarios ensures the robustness of the results.  

5.1 Grid Power Consumption 
 

In this research, the grid power consumption data for analysis was specifically obtained from the NREL 

for the region of California, USA. California was selected as the focal point due to its prominent role in 

renewable energy initiatives and the widespread adoption of EVs. To capture diverse patterns and 

scenarios, the study examined two distinct periods. The first period ranged from 3 PM to 12 AM, 

encompassing the afternoon and evening hours, and the second period covered the duration from 12 

AM to 6 AM, representing the late-night and early-morning periods. 

These specific periods were chosen strategically to align with EVs' charging behaviour and availability 

in residential areas. During these periods, residential EV charging activities tend to be more prevalent 

as individuals return home from work or engagements, taking advantage of off-peak electricity rates. 

By focusing on these particular time spans, the research aimed to provide insights into the practical 

usage patterns and the impact of EV charging on grid power consumption in residential areas. This 

approach allowed for a comprehensive understanding of the interaction between EVs and the power 

grid during hours when EV charging activities are most prominent. Furthermore, considering these time 

spans facilitated the evaluation of the feasibility and effectiveness of implementing EV charging 

strategies during these specific hours. It enabled the researchers to assess the implications of EV 

charging on grid power consumption and explore opportunities for optimizing the integration of EVs 

into the existing power infrastructure. 
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Figure 9 Household power consumption and v2g activation zone 3 pm to 12 am  

  
 

Figure 10 Household power consumption and v2g activation zone 12 am to 6 am 

 

The first data set represents the power consumption for a typical day from 3:00:00 PM to 11:59:59 PM. 

The load consumption values seem to follow a relatively consistent trend during various times of the 

evening and night. Notably, there are two periods of peak load, one from 5:00 PM to 7:00 PM and 

another from 9:00 PM to 11:00 PM. These peak load periods indicate higher energy consumption, 
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potentially coinciding with residents returning home and utilizing more appliances and lighting during 

the early evening hours. 

The second data set represents the power consumption for a typical day from 12:00:00 AM to 6:00:00 

AM. The load consumption shows a different pattern compared to the earlier hours. The load is generally 

lower during the late night and early morning hours, with a slight increase around 4:00 AM. This might 

correspond to activities such as overnight charging of devices or appliances running in standby mode. 

Both data sets exhibit consistency and regularity in the power consumption pattern. The consumption 

during the late-night hours is generally lower, indicating reduced activity and usage of energy-intensive 

devices. The peak load periods in the evening suggest a higher demand for electricity as residents engage 

in various activities at home. 

In this research, the default threshold assumption classified EVs with a SOC above 50% as "Idle," 

meaning they were not actively engaged in V2G or G2V operations. However, Figure 10 reveals an 

interesting observation during nighttime, where a small portion of time exhibits power consumption 

surpassing the predefined thresholds, indicating that some EVs are still charging. Notably, these 

instances are exceptions and not as prevalent as the daytime charging patterns. 

Nevertheless, it is worth highlighting that allowing EVs to continue charging during nighttime aligns 

with maximizing EV capacity for users. The focus is to ensure that users have their EVs fully charged 

during periods of low electricity demand, optimizing their vehicle's range and usability throughout the 

day. Occasional instances where power consumption temporarily exceeds the thresholds can be 

attributed to individual user preferences or specific charging requirements. However, these occurrences 

are infrequent and do not significantly impact the overall charging strategy during nighttime hours. 

Considering these factors, it is reasonable to continue charging all EVs during nighttime, even if, 

occasionally, power consumption surpasses the predefined thresholds. This approach enables users to 
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utilize the capacity of their EVs fully and ensures their vehicles are adequately charged for their daily 

commuting needs, enhancing convenience and usability. 

5.1.2 Owner Choice 
 

Table 2 Ev owner choice 

Owner Number Owner Choice – First one Owner Choice – Second one 

#1 1 1 

#2 1 -1 

#3 1 0 

#4 -1 1 

 

One part of this thesis examines EV owners' choices regarding bidirectional charging. This setting 

allows owners to determine how their EV participates in the system by selecting one of three numbers. 

The first option is 1, which means the EV can act as a V2G or G2V charger. The second option is -1, 

indicating that the vehicle should only be charged or G2V and not participate in V2G. The third option 

is 0, meaning the EV is disconnected from the system and idle. This setting can also be changed during 

the simulation for the owner. This declaration was the author's innovation to have a way to resemble the 

owner’s choice and show its effect on the system function. 

5.1.3 SOC, Grid consumption, and V2G/G2V detection 
 

In this thesis, the investigation focused on exploring the relationship between SOC, grid power 

consumption, time, and the detection of  V2G or G2V modes in EVs. The main objective was to 

demonstrate scenarios where grid power consumption exceeds 9 kW, as indicated by the blue region in 

the diagram. Within these specific timeframes, when the battery SOC is above 70 percent, and the EV 
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owner has chosen to engage V2G mode, represented by the grey area, the diagram captures and reflects 

this interaction. Four different EV cars with different aspects are considered for this work: 

• Tesla Model S: The Tesla Model S is a luxury electric sedan known for its great performance 

and range. The battery capacity of the Model S varies depending on the model and version, but 

it typically ranges from around 75 kWh to 100 kWh. 

• Nissan Leaf: The Nissan Leaf is a popular compact EV known for its practicality and 

affordability. The latest models of the Leaf come with a battery capacity of 40 kWh, providing 

a respectable range for daily commuting and urban driving. 

• Chevrolet Bolt EV: The Chevrolet Bolt EV is a compact hatchback that offers a good balance 

of range and affordability. It has a battery capacity of 66 kWh, allowing for an estimated range 

of over 250 miles on a full charge. 

• Audi e-tron: The Audi e-tron is a premium electric SUV that combines luxury with all-electric 

driving. It has a battery capacity of 95 kWh, providing a range of around 200 miles on a single 

charge. 

By encapsulating SOC, grid power consumption, and the V2G/G2V detector in a single diagram, the 

aim was to emphasize their interdependency and crucial role in determining the operational mode of 

EVs. The diagram provides an intuitive representation of how these factors influence and affect one 

another, facilitating a comprehensive understanding of the dynamics within the system. 

Furthermore, the diagram effectively illustrates distinct periods when grid power consumption is high, 

visually highlighting the time intervals in which V2G mode is activated to support the grid. During these 

high-consumption periods, surplus energy from the EV battery is harnessed to alleviate strain on the 

grid, resulting in a more balanced and efficient energy distribution. Conversely, during normal or low 

grid power consumption, denoted as zero or idle mode, the EV remains disconnected from the grid, 

conserving its energy for personal use. 
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Figure 11 V2G - G2V - Idle for the first battery 

The discharging section sheds light on a crucial aspect concerning the discharge rate of EV batteries, 

encompassing several key factors that merit closer examination: 

• Battery Chemistry: EV batteries predominantly employ lithium-ion technology, and their 

chemical composition influences their discharge characteristics. At higher states of charge 

(SOC), the chemical reactions within the battery cells gradually slow down, resulting in a lower 

discharge rate. This limitation stems from the higher energy density associated with elevated 

SOC levels, where the battery's chemistry naturally restricts the rate at which energy can be 

released. 

• BMS: The EV's BMS is critical in monitoring and controlling various aspects of the battery's 

operation, including the discharge rate. The BMS often regulates the discharging rate, 

particularly when the SOC is high, to safeguard the battery from over-discharge and ensure its 

0

5

10

15

20

25

82

83

84

85

86

87

88

89

90

91

3
:0

0
:0

0
 P

M
3
:1

3
:0

0
 P

M
3
:2

6
:0

0
 P

M
3
:3

9
:0

0
 P

M
3
:5

2
:0

0
 P

M
4
:0

5
:0

0
 P

M
4
:1

8
:0

0
 P

M
4
:3

1
:0

0
 P

M
4
:4

4
:0

0
 P

M
4
:5

7
:0

0
 P

M
5
:1

0
:0

0
 P

M
5
:2

3
:0

0
 P

M
5
:3

6
:0

0
 P

M
5
:4

9
:0

0
 P

M
6
:0

2
:0

0
 P

M
6
:1

5
:0

0
 P

M
6
:2

8
:0

0
 P

M
6
:4

1
:0

0
 P

M
6
:5

4
:0

0
 P

M
7
:0

7
:0

0
 P

M
7
:2

0
:0

0
 P

M
7
:3

3
:0

0
 P

M
7
:4

6
:0

0
 P

M
7
:5

9
:0

0
 P

M
8
:1

2
:0

0
 P

M
8
:2

5
:0

0
 P

M
8
:3

8
:0

0
 P

M
8
:5

1
:0

0
 P

M
9
:0

4
:0

0
 P

M
9
:1

7
:0

0
 P

M
9
:3

0
:0

0
 P

M
9
:4

3
:0

0
 P

M
9
:5

6
:0

0
 P

M
1
0

:0
9
:0

0
 P

M
1
0

:2
2
:0

0
 P

M
1
0

:3
5
:0

0
 P

M
1
0

:4
8
:0

0
 P

M
1
1

:0
1
:0

0
 P

M
1
1

:1
4
:0

0
 P

M
1
1

:2
7
:0

0
 P

M
1
1

:4
0
:0

0
 P

M
1
1

:5
3
:0

0
 P

M

G
ri

d
 c

o
n

su
m

p
ti

o
n
 (

 k
W

 )

S
o
c 

( 
p

er
ce

n
ta

g
e 

)

Time

V2G - G2V - Idle

<SOC (%)> 1 Grid consumption Charge/Discharge/Ideal Detection



 
70 

longevity. This protective measure prevents excessive stress on the battery cells and helps 

maintain their overall health and performance. 

• Performance Optimization: EV manufacturers strive to strike a delicate balance between 

performance and battery longevity. By limiting the discharging rate at higher SOC levels, 

manufacturers aim to optimize the battery's overall performance and extend its lifespan. This 

approach ensures a consistent and reliable power output while minimizing the risk of 

degradation over time. 

• User Safety: Ensuring user safety is paramount when determining the discharging rate. 

Restricting the discharging rate at higher SOC levels helps prevent situations where the battery 

rapidly depletes, potentially leaving the driver stranded without sufficient power. By controlling 

the discharging rate, EV manufacturers prioritize user safety and provide peace of mind to EV 

owners. 

It is important to acknowledge that the specific discharging rate depicted in the diagram pertains to a 

single battery within the model. However, to enhance the credibility and reliability of the findings, it is 

crucial to incorporate randomization of discharging rates across multiple batteries in the model. This 

randomization accounts for the inherent variability observed in EVs equipped with different battery 

types, allowing for a comprehensive understanding of the system's overall performance. Considering 

the model's diverse range of EV batteries, a more realistic representation of real-world scenarios where 

EVs with different battery types coexist can be obtained. This approach enables the model to capture 

the inherent variability in discharging rates and provides a nuanced assessment of the system's 

behaviour. 

Therefore, while the specific discharging rate illustrated in the diagram pertains to a single battery, it is 

imperative to emphasize the importance of randomizing discharging rates across multiple batteries 

within the model. This consideration ensures the generalizability and representativeness of the findings, 

accounting for the inherent variability observed in EVs equipped with different types of batteries. By 
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incorporating this approach, the analysis gains credibility and offers valuable insights into the system's 

overall performance. 

5.3.1.1 Household Power Consumption Variation 
 

It could be seen in the previous figures that there is some abnormality in household power consumption 

during different times of the day. The observed grid power consumption data abnormalities can be 

attributed to various factors influencing electricity demand and usage patterns. These fluctuations in 

power consumption can arise due to the following reasons: 

• Usage Patterns: The power consumption within a residential household can vary depending on 

the activities and behaviours of the occupants. Individuals or families have distinct routines, 

lifestyles, and energy consumption preferences. This can lead to fluctuations in power usage 

throughout the day, as different appliances and devices are turned on and off based on individual 

needs and preferences. 

• Seasonal Variations: Power consumption in residential households can be influenced by 

seasonal variations. For instance, heating systems may be utilized more frequently during colder 

months, increasing power consumption. Similarly, air conditioning units or fans can increase 

energy usage in warmer months. These seasonal variations can lead to fluctuations in power 

consumption patterns. 

• Time of Day: The time of day can also impact power consumption in residential households. 

During peak hours, such as early mornings when people wake up and evenings when they return 

home, higher power demands may be due to increased usage of appliances, lighting, and 

electronics. Conversely, during nighttime or off-peak hours, power consumption 

• Occupancy and Lifestyle: The number of occupants and lifestyle choices within a residential 

household can affect power consumption. For example, a household with more occupants may 

have higher energy demands due to increased appliances, devices, and lighting usage. 
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Additionally, the residents' lifestyle choices, such as working from home, recreational activities, 

or hosting events, can contribute to fluctuations in power consumption. 

• Appliance and Equipment Efficiency: The efficiency of appliances and equipment within a 

residential household can impact power consumption. Older or less energy-efficient appliances 

consume more power than newer, energy-efficient models. The presence of outdated or faulty 

equipment can lead to irregular power consumption patterns and potential spikes in energy 

usage. 

• Behavioural Factors: Individual behaviours and habits of the occupants can influence power 

consumption. For instance, leaving lights, electronics, or appliances on when not in use or using 

high-energy-consuming devices excessively can contribute to abnormal power consumption 

patterns. 

• External Factors: External factors such as weather conditions, voltage fluctuations, or power 

grid issues can also cause irregularities in power consumption data. Severe weather events, grid 

maintenance, or power outages can disrupt the normal power supply, resulting in fluctuations 

or inconsistencies in recorded power consumption. 

It is important to consider that minute-by-minute data might exhibit more pronounced fluctuations than 

aggregated data over longer intervals. The granular nature of your data allows for a more detailed 

analysis of these variations, providing insights into the dynamic nature of power consumption patterns. 

5.2 Machine Learning Results 

 

This study is an in-depth investigation utilizing advanced machine learning techniques to analyze data 

collected from the Gridlab model. This research focused on the specific time range from 3 p.m. to 12 

a.m., enabling the examination of diverse charging states of EVs resulting from various inputs and 

battery conditions. Also, the nighttime period from this analysis is excluded as it was assumed that all 

EVs were charging during that time. By delving into this time frame, valuable insights into the charging 

patterns of EVs and a comprehensive understanding of the dynamics of grid power consumption are 
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gained. Two distinct datasets are utilised to ensure the reliability and accuracy of predictions are proper 

enough, each comprising 50,000 input data points. A robust analysis of the intricate relationship between 

input variables and the desired outcomes was conducted by harnessing such a large and diverse dataset. 

The objective was to enhance the generalizability and predictive capabilities of the machine learning 

models employed in this research. By incorporating multiple datasets and important data points, the aim 

is to gain profound insights into the complex interplay among SOC, grid power consumption, time, and 

the activation of V2G or G2V modes in EVs. 

The primary aim of this research was to provide invaluable insights into EV behaviour, grid power 

consumption patterns, and the potential optimization of energy management strategies. By leveraging 

cutting-edge machine learning techniques and extensive datasets, the objective is to contribute to 

developing more efficient and sustainable energy systems, ultimately facilitating the seamless 

integration of EVs into the power grid. Gaussian Correlated Noises are introduced during the training 

process to assess the robustness of these trained models in the presence of unwanted noises. This enabled 

evaluation each method's performance and tolerance when confronted with unpredictable factors. It is 

important to note that the training data was carefully categorized based on relevant features. This 

categorization facilitated the models' ability to effectively capture and comprehend underlying patterns, 

thereby developing highly accurate and reliable predictions. 

Various methodologies discussed in previous chapters to process the data are employed throughout the 

training phase. The ultimate objective was to optimize the models' performance and enhance their 

predictive capabilities. By training the models with meticulously organized and categorized data, The 

aim was to attain superior accuracy and gain profound insights into the research subject. The utilization 

of diverse training methods, incorporation of feature selection techniques, and comprehensive noise 

evaluation allowed for an exhaustive analysis of the data. The overarching goal was to develop robust 

models capable of accurately predicting EV behaviour, grid power consumption patterns, and activating 

V2G or G2V modes. 
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Table 3 General information about the ML data 

Number of Data 50,000 ( For each ) 

Train_test_split 70% - 15% - 15% 

ML methods ANN – KNN – SVM – Naïve Bayes – Logistic Regression 

Evaluation methods ACC – MSE – F1Score 

 

The dataset was split into training and testing sets using the train_test_split method with a ratio of 70% 

for training, 15% for validation, and 15% for testing. This approach ensured that the models were trained 

on a significant portion of the data while also allowing for the evaluation of unseen data to assess their 

generalization performance. Various machine learning methods were employed, including ANN, KNN, 

SVM, Naïve Bayes, and Logistic Regression. Each method offers distinct advantages and may excel in 

different scenarios, providing comprehensive data analysis. 

Splitting a dataset into training, validation, and testing sets is a common practice in machine learning to 

assess the performance of a model accurately and ensure its generalization to unseen data. The specific 

ratios you mentioned, 70% for training, 15% for validation, and 15% for testing, serve several important 

purposes: 

• Training Set (70%): 

o The largest portion of the dataset is allocated for training the model. The model learns 

patterns, relationships, and features from this data. With more data available for 

training, the model can capture a wide range of variations in the input data and learn 

more robust representations. 

• Validation Set (15%): 
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o The validation set tunes the model's hyperparameters and decides its architecture. The model is 

evaluated on the validation set after each epoch or iteration during training. This helps in 

monitoring the model's performance and preventing overfitting. Adjustments can be made based 

on validation performance to prevent the model from learning noise in the training data. 

• Testing Set (15%): 

o The testing set is reserved for the final evaluation of the model's performance after training and 

hyperparameter tuning. By evaluating the model on unseen data, you can assess its ability to 

generalize to real-world scenarios. This evaluation provides a more accurate estimate of the 

model's performance in practice. 

The chosen dataset split ratio serves multiple essential purposes. Firstly, dedicating a substantial portion 

to training enables the model to grasp intricate relationships, effectively capturing nuanced data patterns. 

Secondly, the allocation for validation is pivotal for hyperparameter tuning, allowing experimentation 

with different hyperparameter values to optimize the model's performance parameters, such as learning 

rate and regularization strength. Thirdly, the segregation of a distinct testing set ensures unbiased 

evaluation; this prevents potential bias if the same data is employed for training and testing. Lastly, the 

testing set is a benchmark to assess the model's ability to generalize to new, unseen data, showcasing its 

proficiency in recognizing meaningful patterns rather than merely memorising training data. This 

approach guarantees a well-rounded evaluation while fostering robust and dependable model 

development[64]. 

Three evaluation metrics were utilised to evaluate the performance of the trained models: ACC, MSE, 

and F1 Score. ACC measures the overall correctness of the predictions, while MSE quantifies the 

average squared difference between predicted and actual values. F1 Score combines precision and recall 

to evaluate the models' ability to classify the data accurately. 

By employing multiple ML methods and utilizing different evaluation metrics, this research aimed to 

comprehensively assess the performance of the trained models and select the most suitable one for the 
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given dataset and research objectives. The results obtained from the evaluation process would provide 

valuable insights into the effectiveness and efficiency of each method, enabling researchers and 

practitioners to make informed decisions regarding the selection and implementation of the most 

appropriate ML algorithm for similar EV integration studies. 

5.2.1 Artificial Neural Networks 
 

The model will be built by utilizing the following Python code snippets and implementing them in an 

ANN framework. This section will be discussed in detail to provide a comprehensive understanding of 

the Python code and the libraries that will be utilized. 

5.2.1.1 NumPy 
 

NumPy serves as the foundation of Python's scientific computing ecosystem. It is a powerful Python 

library that provides a multidimensional array object and various derived objects, including masked 

arrays and matrices. NumPy also offers a wide range of functions for efficient array operations, such as 

mathematical and logical operations, shape manipulation, sorting, selection, input/output operations, 

discrete Fourier transforms, elementary linear algebra, elementary statistical operations, random 

simulation, and much more [65]. 

5.2.1.2 Pandas 
 

Pandas, a widely-used Python library, is an invaluable tool for data science, data analysis, and machine 

learning projects. It builds upon NumPy and facilitates working with arrays of different sizes. Pandas 

are commonly included in Python distributions, whether from operating systems or commercial vendor 

distributions like ActiveState's ActivePython, as a versatile data manipulation package. Pandas 

seamlessly integrate with other data science modules in the Python ecosystem [66]. 

5.2.1.3 Scikit-learn 
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Scikit-learn is an essential machine-learning package for the Python programming language. It provides 

various mathematical, statistical, and general-purpose algorithms that form the backbone of various 

machine-learning techniques. As an open-source library, Scikit-learn is crucial in creating and 

implementing various algorithms for machine learning and related technologies [67]. In the forthcoming 

code snippets, you will come across the "train_test_split" command, which divides the input data into 

specified ratios, allocating a portion for training and another for testing. Additionally, the code includes 

a step where the data is standardized. This process ensures that variables measured on different scales 

do not disproportionately influence the model fitting and learning process, thus mitigating potential bias. 

Standardizing features before model fitting is a common practice to address this concern. 

By incorporating these methodologies and leveraging the power of Python libraries such as NumPy, 

Pandas, and Scikit-learn, this research aims to harness the capabilities of Artificial Neural Networks for 

robust and efficient modelling. The combination of these tools and techniques allows for advanced data 

manipulation, model training, and evaluation, ultimately contributing to the advancement of machine 

learning and its application in various domains. 

5.2.1.4 Matplotlib 
 

Matplotlib, a comprehensive visualization toolkit for Python, enables the creation of static, animated, 

and interactive visualizations. It empowers users to accomplish complex visualizations effortlessly and 

simplifies basic visualization tasks [68]. In the upcoming code segment, Matplotlib will be utilized to 

visualize the accuracy and loss of the prediction model as it progresses through the neural network 

learning process. 

5.2.1.5 Keras 
 

Keras, an API designed with human usability, emphasizes simplicity and ease of use. It follows best 

practices to reduce cognitive load, offering consistent and intuitive APIs and minimizing the number of 
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user actions required for typical use cases. Keras is accompanied by extensive documentation and 

developer tutorials [69]. 

Keras was chosen for building and training ANN, specifically due to its specialized focus on deep 

learning architectures. A high-level and user-friendly interface is provided by Keras, which simplifies 

the processes of designing, configuring, and training complex neural networks. Through the exclusive 

utilization of Keras for ANNs, access was gained to its extensive library of pre-designed layers and 

activation functions, allowing for the seamless construction of intricate network structures. Keras' 

compatibility with various backends, such as TensorFlow, ensures optimal performance during training. 

Moreover, Keras streamlines model evaluation by integrating with the broader Scikit-learn ecosystem, 

allowing for consistent metric calculation and model assessment across the project. This strategic 

decision allowed this procedure to effectively leverage Keras' deep learning capabilities, concentrating 

efforts on creating robust and accurate neural network models for my specific task while maintaining a 

streamlined development process. 

5.2.1.6 Python Coding 
 

The initial section of the code imports several libraries and packages, including numpy, pandas, 

matplotlib, stats models, and sci-kit-learn. Additionally, it employs the read_excel() function from the 

pandas' module to read an Excel dataset, storing it in a pandas DataFrame named 'dataset.' To ensure 

reproducibility, the code shuffles the rows of the dataset using the sample() function with a random_state 

parameter of 2. The shuffled dataset is then assigned to a new data frame called 'shuffled_df.' 

Subsequently, a subset of 20,000 randomly selected rows from 'shuffled_df' is assigned to another data 

frame named 'dataset2,' achieved by utilizing the sample() function with the parameter n=50000. This 

code snippet proves useful for data preparation in machine learning tasks, as it shuffles the data and 

selects a subset for model training and testing. The StandardScaler class from scikit-learn can normalize 

the dataset, while the train_test_split() function facilitates splitting the dataset into training and testing 
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sets. Furthermore, the statsmodels package can be leveraged for constructing and evaluating statistical 

models. 

By incorporating these tools and techniques, this research endeavours to employ Python's extensive 

ecosystem, encompassing Matplotlib, Keras, and other libraries, to facilitate data visualization, model 

training, and evaluation. Utilizing these resources contributes to developing robust machine-learning 

models and fosters comprehensive analysis and interpretation of the results within the research domain. 

Each technique and the related that are used for each one are mentioned in Figure 12. 

 

Figure 12 Machine learning techniques and their related toolkits 

 

 

5.3 Feature Selection 
 

In the subsequent section, three methods were employed to identify and eliminate features with minimal 

impact on the model. These methods include the Feature Correlation Matrix, Feature Impression 
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Ratings, and the Feature Accuracy Comparison Table. The first two methods were discussed in the 

preceding section, and in this part, the corresponding figures will be delved into. 

To initiate the process, the Features Correlation Matrix was utilized. Figure 12 showcases the 

relationships between each variable and others. As depicted in Figure 7, all six features exhibit varying 

degrees of correlation. However, it is important to note that the correlation values do not indicate strong 

relationships that would necessitate the removal of any specific feature. The correlation values within 

the matrix range from -1 to 1, representing the strength and direction of the linear relationship between 

feature pairs. A correlation coefficient 1 signifies a perfect positive linear relationship, while -1 indicates 

a perfect negative one. Values near 0 imply a weak or no linear relationship between the features. 

Based on the correlation matrix, it can be observed that the selected features display moderate 

correlations. This suggests that each feature contributes specific information to the dataset and is not 

redundantly correlated with others. Therefore, retaining all the features is advantageous, as they 

collectively represent the data comprehensively. By preserving all six features, the unique information 

contributed by each feature can be utilized by the model, resulting in more accurate and robust analysis. 

This approach acknowledges the individual contributions of the features while considering their 

collective impact on the research objectives. In addition to the feature correlation analysis, feature 

importance was assessed as part of the feature selection process. The most influential variables in 

predicting the desired outcome can be identified by evaluating the importance of each feature. Figure 

14 presents the feature importance results, ranking the features based on their importance scores. 

The analysis shows that Time, SOC, Grid power consumption, and Owner choice exhibit relatively 

higher importance scores than the other features. This indicates that these four features significantly 

contribute to determining the desired outcome or target variable. Conversely, Date and Power batteries 
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demonstrate relatively lower importance scores, suggesting their limited contribution to the model's 

predictive power. 

The importance scores in Figure 13 range from 0 to 1, with higher scores indicating greater importance. 

Features with higher scores exert a stronger influence on the outcome variable, and including them in 

the model can enhance prediction accuracy. Conversely, features with lower scores may have minimal 

impact on the outcome variable and can potentially be disregarded without compromising the model's 

predictive performance. 

 

Figure 13 Feature correlation matrix 
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Figure 14 Feature impression rating 

According to the last achievement, now it is time for the evaluation to see whether eliminating these 

features affects the accuracy of the ML techniques. For this test, all five methods are compared before 

and after the feature selection, which can be seen in the next tables. 

Table 4 Accuracy comparison before and after feature selection 

 

ACC Comparison ACC - Before ACC - After 

Logistic Regression 0.9514 0.9524 

Naïve Bayes 0.5619 0.5694 

KNN 0.9866 0.9871 

SVM 0.9616 0.9611 

ANN 0.9944 0.9954 

 

Table 5 F1-Score comparison before and after feature selection 

 

0 0.2 0.4 0.6 0.8 1 1.2

Time

Owner 1

Soc 1

Grid consumption

Date

Power battery 1

Feature importance 



 
83 

F1-Score Comparison F1-Score - Before F1-Score - After 

Logistic Regression 0.9439 0.9443 

Naïve Bayes 0.5716 0.5779 

KNN 0.9866 0.9855 

SVM 0.9611 0.9605 

ANN 0.9944 0.9957 

 

Table 6 Mse comparison before and after feature selection 

 

 

MSE Comparison MSE - Before MSE - After 

Logistic Regression 0.0686 0.0664 

Naïve Bayes 0.533 0.5277 

KNN 0.02 0.026 

SVM 0.0725 0.075 

ANN 0.0064 0.0052 

 

After conducting a meticulous analysis and carefully evaluating the outcomes, a compelling conclusion 

is reached that employing feature selection techniques does not substantially impact this model's 

accuracy. Hence, a thoughtful decision has been made to include all the input features in the training 

process, ensuring that the model embraces the entirety of the data. By adopting this inclusive approach, 

all the available information can be comprehensively considered, and the risk of overlooking potentially 

valuable features is avoided. 
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Nevertheless, it is crucial to acknowledge that prior findings did not consider the notion of correlation 

over time. As this research progresses, the intention is to incorporate different correlation times to 

explore the effectiveness of feature selection across various temporal scales. By introducing correlation 

time as a factor, the aim is to investigate how the model's performance and predictive capabilities can 

be impacted by including or excluding specific features during specific time intervals. 

Through this thorough examination with varying correlation times, invaluable insights are expected to 

be gained into the influence of feature selection within different temporal contexts. This will enable 

uncovering potential periods or patterns where certain features become more or less relevant in making 

accurate predictions. The insights can be enriched by understanding the intricate relationship between 

features, time, and their significance in predictive modelling. 

Ultimately, the goal is to enhance the understanding of the data and fine-tune the model by exploring 

the effectiveness of feature selection across diverse scales while considering correlation time. This 

holistic and meticulous approach ensures that the research captures potential variations and provides 

robust and reliable insights into the intricate interplay between features, time, and the model's predictive 

performance. [70]. 
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Table 7 Short correlation time - before feature selection - 5 evaluation 

Short correlation time - Before feature selection - 5 
ACC F1-Score MSE 

Logistic Regression 0.5469 0.4019 0.4457 

Naïve Bayes 0.6525 0.4865 0.4735 

KNN 0.5304 0.5611 0.5391 

SVM 0.7003 0.6483 0.5971 

ANN 0.7758 0.5938 0.4725 

 

 
Table 8 Medium correlation time - before feature selection - 15 evaluation 

 

 

Table 9 Long correlation time - before feature selection - 60 evaluation 

 

Medium correlation time - Before feature selection - 15 
ACC F1-Score MSE 

Logistic Regression 0.5912 0.3776 0.4420 

Naïve Bayes 0.6422 0.4996 0.4799 

KNN 0.6291 0.5523 0.4581 

SVM 0.5852 0.7000 0.5154 

ANN 0.7172 0.4687 0.4277 
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Long correlation time - Before feature selection - 60 
ACC F1-Score MSE 

Logistic Regression 0.6445 0.3982 0.3520 

Naïve Bayes 0.5709 0.5543 0.4709 

KNN 0.5116 0.4976 0.5303 

SVM 0.6054 0.6173 0.4072 

ANN 0.6041 0.5051 0.4557 

 

Table 10 Short correlation time - after feature selection – 5 evaluation 

 

Short correlation time - After feature selection - 5 ACC F1-Score MSE 

Logistic Regression 0.8941 0.878 0.1153 

Naïve Bayes 0.63 0.5715 0.5341 

KNN 0.8547 0.8475 0.1802 

SVM 0.8864 0.8831 0.1474 

ANN 0.9463 0.9469 0.0088 

 

 

Table 11 Short correlation time - after feature selection – 15 evaluation 
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Medium correlation time - After feature selection - 15 ACC F1-Score MSE 

Logistic Regression 0.8949 0.8789 0.1228 

Naïve Bayes 0.5667 0.5708 0.5233 

KNN 0.7422 0.7212 0.2794 

SVM 0.8849 0.8818 0.1423 

ANN 0.9559 0.9556 0.0675 

 

Table 12 Long correlation time - after feature selection – 60 evaluation 

 

Long correlation time - After feature selection - 60 ACC F1-Score MSE 

Logistic Regression 0.8919 0.873 0.1304 

Naïve Bayes 0.5667 0.5736 0.5269 

KNN 0.6042 0.5598 0.443 

SVM 0.8579 0.8516 0.1598 

ANN 0.9491 0.9487 0.0799 
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Based on the previous results that can be seen in Table 7 - 12, which investigated the effectiveness of 

feature selection using correlation time on an ML model, the results suggest that considering correlation 

time can improve the accuracy of the model, as short, medium, and long correlation times were found 

to be effective in selecting relevant features. This is because the selected features capture different time 

intervals during which they are correlated with the target variable. However, feature selection did not 

affect the model's accuracy when no correlation time was used. This indicates that the correlation 

between the features and the target variable depends on the time interval or lag between them. Therefore, 

failing to consider time lags can result in the lack of effect of feature selection. Furthermore, increasing 

the lagged steps in correlation time led to a decrease in accuracy after feature selection. This suggests 

that the correlation between the features and the target variable may not be significant or informative 

for the model beyond a certain time lag. 

Since the prediction model also has to be effective during different correlation times, the outcome of 

this experiment will be using the feature selection and elimination of two unimportant features: Date 

and Power Battery Consumption. So, the final ML model can be seen in Figure 15. 

 

Figure 15 Modified ml model 

5.4 Correlated Noise 

 

As mentioned earlier, this thesis aims to assess the resilience of each technique against various types of 

noise that can potentially affect the accuracy of the data. To achieve this, Gaussian Correlated Noises 
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will be introduced to the training data of the machine learning model. Among the six inputs, namely 

Battery Power Consumption, Grid Consumption, and Battery State of Charge (SOC), only these inputs 

with float data type will be subjected to noise injection. The accuracy of the model will then be evaluated 

using test data. This simulation will also incorporate Different noise intensity levels to ensure a thorough 

evaluation. No correlation time is used for this part, and different standard deviations (STD)s were 

applied after using the feature selection.  

In Chapter 3 of the research, creating different noises with varying strengths involves adjusting the 

standard deviation (σ) parameter. The noise matrix used for training data is generated by manipulating 

this parameter to reflect a range of noise strengths. The aim is to explore the impact of different noise 

levels on the performance of the trained models. 

Subsequently, evaluation variables are employed to assess and compare the performance of the models 

under each noise condition. These evaluation variables serve as metrics for determining the 

effectiveness of each method in handling the noise and producing accurate predictions. By analyzing 

the results obtained from these evaluations, the research seeks to identify the best-performing method 

among the different noise scenarios. 

In machine learning, robustness refers to a model's ability to perform consistently and accurately across 

varying conditions, including noisy or uncertain input data. A robust model demonstrates resilience 

against minor perturbations or deviations in the data, thus maintaining its predictive power even when 

the input is less than ideal. The concept of robustness is particularly relevant in real-world scenarios 

where data can be noisy, incomplete, or subject to unforeseen variations. 

The impact of introducing controlled noise to the EV data was explored to address the concept of 

robustness in the research. The objective was to simulate realistic scenarios where input data might have 

inherent uncertainties or inaccuracies adding noise to the EV-related features; the aim was to assess the 

extent to which the stability and accuracy of the model's predictive capabilities remain intact in the 
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presence of such variations Essentially, the idea was to ensure that the model's performance does not 

deteriorate significantly under circumstances that might challenge the precision of its predictions. 

Incorporating noise into the EV data served to assess the model's resilience and adaptability. If the model 

demonstrated consistent and accurate predictions despite the introduced noise, it would suggest a higher 

level of robustness. This enhanced robustness could improve performance in real-world scenarios where 

data imperfections are common. By exploring the concept of robustness and its application in the context 

of noise-induced variations, my research aimed to contribute to the development of more reliable and 

effective predictive models in the domain of EV battery state forecasting and energy management. 

 

 

To ensure the reliability of the conclusion, two different datasets with various initial conditions are used. 

By comparing the results of these two datasets, it can be ensured that the best technique is the right 

choice and can be utilized for further development. 

 



 
91 

 

Figure 16 Gaussian correlated noise with std of 0.01 for the first dataset 

 

Figure 17 Gaussian correlated noise with std of 0.1 for the first dataset 
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Figure 18 Gaussian correlated noise with std of 1 for the first dataset 

 

Figure 19 Gaussian correlated noise with std of 2 for the first dataset 
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Figure 20 Gaussian correlated noise with std of 4 for the first dataset 

 

Figure 21 Gaussian correlated noise with std of 6 for the first dataset 
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Figure 22 Gaussian correlated noise with std of 0.01 for the second dataset 

 

 
 

Figure 23 Gaussian correlated noise with std of 0.1 for the second dataset 
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Figure 24 Gaussian correlated noise with std of 1 for the second dataset 
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Figure 25 Gaussian correlated noise with std of 2 for the second dataset 

 

 
 

Figure 26 Gaussian correlated noise with std of 4 for the second dataset 
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Figure 27 Gaussian correlated noise with std of 6 for the second dataset 

 
The results depicted in Figure 16 - 27 compare five distinct machine-learning techniques. Among them, 

ANN is the most capable of handling different correlated noises. It is worth noting that each noise used 

in this comparison has a varying standard deviation. This study investigates the system's robustness 

against different abnormalities that may occur in the real world. This is important not only for the system 

but also for its owner. To provide a more comprehensive analysis of the results, Figure 28 illustrates 

another form of comparison. The figure confirms that ANN outperforms the other techniques in 

handling the different types of correlated noises. The next two diagrams, Figure 28 and Figure 29, also 

focus on the main evaluation method considered in this work to illustrate comparing the five methods' 

accuracy in two different datasets. 

In this work, an observation has emerged regarding the remarkable degree of proximity between the F1 

Score and ACC metrics. This intriguing alignment between the two metrics indicates the model's robust 
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The convergence of F1 Score and Accuracy metrics signal the model's consistent predictive prowess. 

The F1 Score captures the delicate balance between precision and recall, providing an insightful 

evaluation of the model's ability to accurately identify positive instances while achieving comprehensive 

coverage of positive cases. On the other hand, Accuracy quantifies the overall proportion of accurate 

predictions across all classes, reflecting the model's general predictive success. 

This convergence, however, goes beyond mere coincidence. There are several compelling factors 

contributing to this phenomenon: 

Balanced Equilibrium: The close correspondence between the F1 Score and Accuracy metrics 

signifies that this model maintains a harmonious equilibrium between minimizing false positives and 

negatives while ensuring accurate classification across instances. This equilibrium is a testament to the 

model's adeptness at delivering precise positive predictions and effectively classifying instances with 

accuracy on a broader scale. 

Class Imbalance Mastery: The alignment suggests this model excels at handling class imbalance 

scenarios. Given the sensitivity of the F1 Score to the performance of the minority class, the proximity 

between the two metrics implies that this model successfully navigates this challenge, which is critical 

for real-world applications. 

Calibration and Generalization: The model's well-calibrated predictions and consistent performance 

on training and validation datasets contribute to the convergence. This reflects the model's strong 

generalization, where it accurately captures the underlying patterns of the data and makes reliable 

predictions on unseen instances. 

Feature Quality and Algorithm Suitability: The quality and relevance of features used for training, 

coupled with the suitability of chosen algorithm and hyperparameters, are key contributors. The 

alignment showcases that the model effectively leverages these factors to balance precision and recall. 
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Stability across Thresholds: This model's consistent performance across a range of threshold values 

for classification indicates its robustness and stability. This adaptability is crucial for different decision 

scenarios and ensures the model's reliability. 

Confidence and Interpretability: The proximity between the two metrics enhances confidence in the 

model's performance. Furthermore, understanding the trade-offs between precision, recall, and overall 

accuracy allows one to comprehensively interpret the model's behaviour and decision, recall, and 

comprehensive classification proficiency. 

 

Figure 28 Accuracy, f1 Score, and mse of different methods with different noises strengths ( first dataset ) 
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Figure 29 Accuracy, f1 Score, and mse of different methods with different noises strengths ( second dataset ) 

In this section of the thesis, a meticulous comparison has been carried out between the predicted 

outcomes and the actual observed values generated by various machine learning algorithms. The 

primary focus of this comparison was to assess the performance of distinct algorithms – including ANN, 
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timeframe. 

The presented figures within this section offer a visually insightful perspective, portraying the predicted 

values alongside the corresponding actual values for each algorithm. These figures illustrate the degree 

of conformity or divergence between the predicted and actual values for the designated time interval. 

The comprehensive evaluation of these algorithms' predictive capabilities takes into account the 
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It is important to note that this comparison is conducted within a controlled context, where the data has 

not yet been subjected to noise addition or correlation time consideration. This controlled environment 

allows a clear assessment of the algorithms' inherent predictive abilities, unobscured by external factors. 

 

 

Figure 30 Real vs predicted in ANN 

 

Figure 31 Real vs predicted in logistic regression 
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Figure 32 Real vs predicted in naive bayes 

 

Figure 33 Real vs predicted in KNN 
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Figure 34 Real vs predicted in SVM 
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complexity, computational efficiency, and interpretability was crucial, given the model's restrained 

actions in passive mode. The selected features—Owner choice, Battery SOC min, Time, Battery power 

consumption, Battery SOC, Grid power consumption, and Date—were carefully chosen due to their 

direct impact on the state of EV batteries. Avoiding additional features was a conscious choice to prevent 

potential confusion and overfitting, especially when the model's engagement is passive. 

The "Owner choice" feature remains pivotal, reflecting varying user participation. Including "Battery 

SOC Min" for non-participating users lacks relevance, particularly when data is limited during passive 

periods. Similarly, "Power consumption min" and "Power consumption max" are already intrinsic to the 

system, obviating the need for the model to learn them even in passive mode. The model's accuracy and 
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features. These features encompass fundamental aspects such as battery charge, temporal patterns, and 

grid interactions—critical for reliable predictions about battery states in passive scenarios. 

Considering the passive mode's limitations, the goal remains to capture real-world scenarios without 

excessive complexity. The chosen attributes provide essential information for accurate predictions, 

ensuring the model's efficacy across varying conditions and its value in passive situations. Future 

considerations may introduce more factors, like weather conditions, for model enhancement. The 

model's performance meets expectations based on evaluation metrics, utilizing existing features for 

accurate predictions during passive phases. 
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Chapter 6 : Conclusion And Future Works 
 

6.1 Conclusion 

This study conducts comprehensive experiments using five prominent machine learning techniques: 

ANN, KNN, Naive Bayes, logistic regression, and SVM. The primary objective of this research is to 

identify the most accurate method among these approaches for a specific task. The evaluation criterion 

employed is accuracy, which measures the correctness of predictions. 

A feature selection technique that involved analyzing the correlation matrix and determining feature 

importance is employed to ensure the robustness and effectiveness of the proposed models. The goal is 

to identify the most relevant input variables for achieving accurate predictions. When the raw data is 

applied, it is observed that the feature selection process does not significantly influence the accuracy of 

the models. Different trials are applied to check the importance of the feature selections and to see if it 

is needed. Three different correlation timescales (short, medium, and long) are used to validate the 

effectiveness of feature selection for the proposed models. Consequently, two features, namely Date 

and Battery Power Consumption, are identified as unimportant for the proposed models. Eliminating 

these features led to improving the accuracy and efficiency of the system. 

Gaussian-correlated noise with varying strengths is introduced to assess the robustness of each technique 

in the presence of noise. Remarkably, even under noisy conditions, the Artificial Neural Network 

consistently demonstrated superior performance compared to the other techniques, reaffirming its 

accuracy and noise tolerance dominance. 

It is worth noting that the data used in this study is obtained from the Gridlab software. Gridlab is a 

widely recognized software tool for simulating power distribution systems and analyzing their 

performance. By leveraging Gridlab, reliable and realistic data was obtained, enabling thorough 

experiments and meaningful conclusions. 
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6.2 Future Works 
 

While this research has provided valuable insights into the performance of different machine learning 

techniques for the given task, there are several avenues for future exploration and improvement. The 

following areas offer potential directions for future work: 

• Refining Feature Selection Techniques: The feature selection process significantly impacted 

accuracy, particularly by incorporating correlation time. Exploring additional feature selection 

techniques, such as recursive feature elimination, genetic algorithms, or embedded methods, 

could improve model performance. Additionally, investigating the impact of different 

correlation times and considering other feature relevance metrics may provide deeper insights 

into the most influential features for accurate predictions. 

• Handling Noisy Data: Although the models exhibited strong performance in the presence of 

Gaussian-correlated noise, further investigation into the effects of different types and levels of 

noise would be valuable. Exploring noise reduction techniques, such as denoising algorithms 

or data augmentation approaches, can enhance the models' robustness and ability to handle real-

world data. 

• Incorporating Temporal Information: Power distribution systems often exhibit temporal 

dependencies, where past observations influence the current state. Integrating temporal 

information into the models, such as time series analysis techniques or recurrent neural 

networks, could capture these dependencies and potentially lead to improved predictions and 

decision-making. 

• Evaluating Energy Efficiency: While accuracy is a crucial metric, evaluating the energy 

efficiency of the models can provide additional insights. Assessing different techniques' energy 

consumption and computational requirements can help identify approaches that deliver accurate 

predictions and optimize resource utilization. 
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• Exploring Transfer Learning: Investigating the application of transfer learning techniques 

can be beneficial, especially when dealing with limited labelled data. Leveraging knowledge 

from pre-trained models or related domains may enable the development of more effective 

models with improved generalization capabilities. 

• Real-world Deployment and Validation: Validating the models in real-world power 

distribution systems is essential to ensure their practical viability. Collaborating with industry 

partners or power grid operators to conduct field trials or deploy the models in pilot projects 

can provide valuable feedback and insights into their performance, scalability, and applicability 

to real-world scenarios. 
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Appendix 
 

Appendix A 

Python Coding 

from keras.models import Sequential 

from keras.layers import Dense 

import timeit 

import numpy as np 

import pandas as pd 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

from sklearn import preprocessing 

from sklearn.preprocessing import StandardScaler 

from statsmodels.tsa.arima.model import ARIMA 

from sklearn.datasets import make_regression 

from sklearn.feature_selection import RFECV 

from sklearn.tree import DecisionTreeRegressor 

 

dataset = pd.read_excel('Python Data 3.xlsx') 

shuffled_df = dataset.sample(frac=1, random_state=2) 

shuffled_df.head(7) 

dataset2 = shuffled_df.sample(n=50000) 

 
 

In this research section, the code snippet showcases the foundational libraries and techniques utilized to 

implement and analyse the predictive model. The code demonstrates the inclusion and utilization of 

essential libraries such as Keras, NumPy, pandas, and matplotlib, all integral to constructing the 

predictive model. 

The script begins with importing the necessary components, such as the Sequential model and Dense 

layer from Keras, pivotal for constructing neural network architectures. Additionally, the inclusion of 
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timeit offers a mechanism for measuring the execution time of the implemented processes, contributing 

to the robust evaluation of the model's efficiency. 

The script integrates functionalities from NumPy and pandas to prepare the data for modelling. The 

imported dataset, sourced from an Excel file ('Python Data 3.xlsx'), is loaded into a pandas 

DataFrame. Furthermore, the code snippet incorporates data preprocessing techniques, including 

shuffling the dataset to mitigate inherent biases, as evidenced by utilising the `sample()` function with 

a specified random seed. 

The subsequent code segment involves subsampling the shuffled dataset to 50,000 samples, denoted by 

the `sample(n=50000)` function call. This subset is meticulously crafted to be representative of the 

entire dataset, ensuring an accurate representation of data points within a controlled computational 

scope. 

This code segment serves as the preliminary step toward the model construction process, laying the 

foundation for data manipulation and preparation, which is vital for generating meaningful insights and 

accurate predictions. The script's logical organization underscores the researcher's meticulous approach 

to data handling and model preparation, thus setting the stage for the subsequent phases of the research. 

# Assuming 'dataset2' contains your data 

 

x = pd.DataFrame(dataset2, columns=['Owner 2','<SOC (%)> 2','Grid 

consumption','date','time','Power Battery 2']) 

y = pd.DataFrame(dataset2, columns=['Charge/Discharge/Ideal Detection2']) 

x_columns = len(x.columns) 

 

# Introduce time lagged features for short correlation time 

lagged_steps = 5 

lagged_dfs = [] 

 

for lag in range(1, lagged_steps+1): 

    lagged_cols = [] 

    for column in x: 

        lagged_col = f'{column}_lag{lag}' 

        lagged_cols.append(x[column].shift(lag)) 

    lagged_df = pd.concat(lagged_cols, axis=1) 
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    lagged_df.columns = [f'{col}_lag{lag}' for col in lagged_df.columns] 

    lagged_dfs.append(lagged_df) 

 

x = pd.concat([x] + lagged_dfs, axis=1).dropna()  # Concatenate lagged columns 

with original DataFrame 

 

y = y.loc[x.index]  # Drop corresponding rows from the target variable 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, 

random_state=3) 
 

This code excerpt showcases a systematic approach to data preprocessing and preparation, setting the 

stage for model training and evaluation. The steps taken underscore the researcher's commitment to 

ensuring the integrity and robustness of the predictive model. 

The initial section of the code involves constructing two DataFrames, 'x' and 'y', from the 'dataset2'. 

'x' is thoughtfully assembled with specific columns ('Owner 2', '<SOC (%)> 2', 'Grid consumption', 

'date', 'time', 'Power Battery 2') chosen to serve as predictor variables. Meanwhile, 'y' is structured 

with the 'Charge/Discharge/Ideal Detection2' column, representing the target variable to be predicted. 

The careful selection of columns reflects the researcher's keen focus on variables integral to the 

predictive task. 

The code then creates time-lagged features to capture short correlation patterns within the data. This is 

achieved by generating lagged versions of each column in 'x' over a specified range of time steps (here, 

1 to 5 lagged steps). This approach acknowledges the importance of temporal relationships in the data 

and endeavours to capture such dependencies through lagged features. 

Through an iterative process, the lagged features are concatenated to the original 'x' DataFrame, 

forming an enriched dataset that captures both the original variables and their lagged counterparts. The 

'dropna()' operation ensures that any rows with missing values resulting from the creation of lagged 

features are removed, preserving data integrity. 
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Furthermore, 'y' is aligned with the revised 'x' DataFrame by retaining only those rows that exist in 

both DataFrames. This synchronization is fundamental to guarantee the accuracy and coherence of the 

target variable with the predictor variables. 

The code concludes by splitting the data into training and testing sets using the 'train_test_split' 

function. The division is strategic, allocating 70% of the data for training ('X_train', 'y_train') and the 

remaining 30% for testing ('X_test', 'y_test'). The 'random_state' parameter ensures reproducibility 

in the random selection process, contributing to the consistency of results. 

This code snippet exemplifies the researcher's meticulous approach to preparing the dataset for model 

training, capturing temporal dependencies through lagged features, and strategically partitioning the 

data for training and testing. The logical sequence of operations demonstrates a comprehensive data 

preprocessing strategy to optimise the model's accuracy and predictive capabilities. 

x = pd.DataFrame(dataset2, columns=['time','Owner 2','<SOC (%)> 2','Grid 

consumption','date','Power Battery 2']) 

y = pd.DataFrame(dataset2, columns=['Charge/Discharge/Ideal Detection1']) 

x_columns = len(x.columns) 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( x, y, test_size = 0.3, 

random_state = 3) 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 

# Convert X_train numpy array to pandas dataframe 

X_train = pd.DataFrame(X_train, columns=x.columns) 

 

# Step 1: Create noise array 

noise = np.random.randn(*X_train.shape) 

 

# Step 2: Calculate correlation matrix 

corr_matrix = np.corrcoef(X_train.T) 

 

# Step 3: Get lower triangle of Cholesky decomposition 
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cholesky = np.linalg.cholesky(corr_matrix).T 

 

# Step 4: Multiply noise by lower triangle and adjust standard deviation 

std_dev = 6  # adjust this value to modify noise level 

corr_noise = (std_dev * noise) @ cholesky 

 

# Step 5: Add correlated noise to selected columns 

X_train.loc[:, 'Grid consumption'] += corr_noise[:, 3] 
 

The initial line of code converts the X_train numpy array into a Pandas DataFrame. X_train likely 

contains the training data, and the code assigns column names to the DataFrame using x.columns. This 

operation is helpful when you want to work with your data in a tabular format and utilize the 

functionalities provided by Pandas for data manipulation and analysis. 

Next, a noise array is generated using NumPy's np. random.randn() function. This function produces 

random numbers sampled from a standard normal distribution (mean 0 and standard deviation 1). The 

*X_train.shape syntax unpacks the shape of the X_train DataFrame, which determines the 

dimensions of the generated noise array. This noise array is used to introduce randomness into the 

correlation structure of the data. 

The code computes the correlation matrix of the transposed X_train DataFrame using 

np.corrcoef(X_train.T). The .T transposition operator is applied to the DataFrame to ensure that rows 

become columns and columns become rows, as the corrcoef function expects variables to be in columns. 

The correlation matrix provides insights into the linear relationships between pairs of variables in the 

data. 

The Cholesky decomposition is performed on the correlation matrix using 

np.linalg.cholesky(corr_matrix). Cholesky decomposition is a technique that factorizes a symmetric 

positive definite matrix into the product of a lower triangular matrix and its transpose. In this case, the 

transpose of the Cholesky decomposition is taken using .T. The resulting lower triangular matrix 

captures the relationships between variables and helps create correlated noise. 
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A standard deviation value std_dev is set to control the level of noise added to the data. This value 

affects the spread or magnitude of the generated noise. Larger values of std_dev result in more 

pronounced noise, while smaller values lead to milder noise. Adjusting this value allows you to control 

the strength of the correlation-induced noise you'll add to the dataset. 

Finally, correlated noise is added to a specific column in the X_train DataFrame. The line 

X_train.loc[:, 'Grid consumption'] += corr_noise[:, 3] adds the noise generated from the fourth 

column of corr_noise to the 'Grid consumption' column of X_train. This step introduces correlated 

noise to the selected column, influenced by the correlations derived from the Cholesky decomposition. 

The chosen std_dev value scales the noise, so the larger the std_dev, the more impactful the noise will 

be on the data in that particular column. 

Logistic Regression 

from sklearn.linear_model import LogisticRegression 

log_reg_model = LogisticRegression() 

# Train (fit) the model 

log_reg_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred = log_reg_model.predict(X_test) # Predictions 

y_true = y_test # True values 

 

# Model evaluation 

from sklearn.metrics import accuracy_score,mean_squared_error 

from sklearn.metrics import precision_recall_fscore_support 

import numpy as np 

 

print("Accuracy:", np.round(accuracy_score(y_true, y_pred), 4)) 

print('MSE', mean_squared_error(y_test, y_pred)) 

from sklearn.metrics import classification_report 

target_names = ['-1','0','1'] 

print(classification_report(y_test, y_pred, target_names=target_names)) 

# plt(y_test, y_pred) 

# Make the confusion matrix 

 

f1 = f1_score(y_test, y_pred, average='macro') 

print('F1 score:', f1) 
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The code begins by importing the LogisticRegression class from the sklearn.linear_model module. 

This class is a part of the Scikit-learn library, which provides various tools for machine learning. An 

instance of the LogisticRegression model is created using the line log_reg_model = 

LogisticRegression(). This initializes a logistic regression model with default settings. Next, the model 

is trained or fitted using the training data with the line log_reg_model.fit(X_train, y_train). The 

X_train variable represents the feature data, while y_train contains the corresponding labels or target 

values. The model learns from this data to make predictions later. 

After training, the trained logistic regression model is used to make predictions on the test data. This is 

done using the line y_pred = log_reg_model.predict(X_test). The predicted values are stored in the 

y_pred variable, while the actual true values are already available in the y_test variable. 

The code calculates the Accuracy of the model's predictions using accuracy_score(y_true, y_pred), 

where y_true contains the true labels, and y_pred contains the predicted labels. The accuracy score 

measures the proportion of correctly predicted instances among all instances. The MSE is computed 

using mean_squared_error(y_test, y_pred). The classification_report function generates a detailed 

report with metrics like precision, recall, F1-score, and support for each class. The target class names 

are provided as target_names. The F1 score is calculated using f1_score(y_test, y_pred, 

average='macro').  

Naïve Bayes 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import classification_report, accuracy_score, f1_score, 

mean_squared_error, confusion_matrix 

 

# Train the model 

nb = GaussianNB() 

nb.fit(X_train, y_train) 

 

# Test the model 
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y_pred = nb.predict(X_test) 

 

# Evaluate the model 

print(classification_report(y_test, y_pred)) 

 

accuracy = accuracy_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred, average='weighted') 

mse = mean_squared_error(y_test, y_pred) 

 

# Print the evaluation metrics 

print("Accuracy:", accuracy) 

print("F1 Score:", f1) 

print("Mean Squared Error:", mse) 

 
 

The code starts by importing necessary libraries, seaborn for data visualization, matplotlib.pyplot for 

creating plots, GaussianNB from sklearn.naive_bayes for using the Gaussian Naive Bayes classifier, 

and various metrics from sklearn.metrics for evaluating the classifier's performance. 

An instance of the Gaussian Naive Bayes classifier is created using nb = GaussianNB(). This classifier 

is a variant of the Naive Bayes algorithm that assumes the features are normally distributed within each 

class. Then, the classifier is trained on the training data using nb.fit(X_train, y_train), where X_train 

contains the feature data and y_train contains the corresponding labels. 

The trained model is tested on the test data using y_pred = nb.predict(X_test). The predictions are 

stored in y_pred. The code proceeds to evaluate the model's performance using classification metrics. 

The classification_report function generates a detailed classification report containing metrics like 

precision, recall, F1-score, and support for each class. This report is printed using 

print(classification_report(y_test, y_pred)). 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import accuracy_score, f1_score, mean_squared_error 

 

# Initialize KNN classifier with k=5 

knn = KNeighborsClassifier(n_neighbors=5) 
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# Train the model on the training data 

knn.fit(X_train, y_train) 

 

# Make predictions on the test data 

y_pred = knn.predict(X_test) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred, average='weighted') 

mse = mean_squared_error(y_test, y_pred) 
 

The code begins by importing necessary libraries: KNeighborsClassifier from sklearn.neighbors for 

using the K-Nearest Neighbors classifier, and various metrics from sklearn.metrics for evaluating the 

classifier's performance. 

An instance of the K-Nearest Neighbors classifier is created using knn = 

KNeighborsClassifier(n_neighbors=5). Here, n_neighbors is set to 5, which means the classifier will 

consider the 5 nearest neighbors when making predictions. KNN is a type of supervised machine 

learning algorithm used for classification tasks. This choice is often guided by the preference for odd 

numbers to avoid ties in classification, and five is a common starting point due to its balance between 

bias and variance. The selection of the number of neighbors should be based on the nature of the data, 

data density, and the trade-off between bias and variance. It's essential to experiment with different 

values, considering cross-validation, to find the optimal number of neighbors for your specific problem 

and dataset, as it can impact the model's generalization performance. Next, the KNN classifier is trained 

on the training data using knn.fit(X_train, y_train), where X_train contains the feature data and 

y_train contains the corresponding labels. After training, the trained KNN classifier is used to make 

predictions on the test data. This is done using y_pred = knn.predict(X_test). The predicted labels are 

stored in the y_pred variable. 
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SVM 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score, f1_score, mean_squared_error 

 

# Create an instance of SVM classifier 

clf = SVC() 

 

# Train the model on the preprocessed training data 

clf.fit(X_train, y_train) 

 

# Test the model on the preprocessed testing data 

y_pred = clf.predict(X_test) 

 

# Evaluate the model's accuracy 

accuracy = clf.score(X_test, y_test) 

print("Accuracy:", accuracy) 

# Evaluate the model 

accuracy = accuracy_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred, average='weighted') 

mse = mean_squared_error(y_test, y_pred) 
 

The code begins by importing necessary libraries: SVC from sklearn.svm for using the Support Vector 

Classifier, and various metrics from sklearn.metrics for evaluating the classifier's performance. 

An instance of the Support Vector Classifier (SVC) is created using clf = SVC. SVC is a specialized 

instance of the SVM algorithm designed explicitly for classification tasks. By opting for SVC, the SVM 

framework aligned directly with the classification objectives, potentially leading to more streamlined 

implementation and interpretation of results for the particular project. Then, the model is trained on the 

preprocessed training data using clf.fit(X_train, y_train), where X_train contains the feature data and 

y_train contains the corresponding labels. 

The trained SVM classifier is tested on the preprocessed testing data using y_pred = 

clf.predict(X_test). The predicted labels are stored in the y_pred variable. The model's accuracy is 

computed and printed using accuracy = clf.score(X_test, y_test). The score method calculates the 
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accuracy of the model's predictions using the test data (X_test) and true labels (y_test). Further 

evaluation is also like the previous models. 

from sklearn.neural_network import MLPClassifier 

from sklearn.metrics import mean_squared_error, accuracy_score, f1_score 

from sklearn.model_selection import train_test_split 

from keras.models import Sequential 

from keras. layers import Dense 

 

# Assuming you have already defined X_train, X_test, y_train, and y_test 

# Splitting data for training the Keras model 

X_train_keras, X_val, y_train_keras, y_val = train_test_split(X_train, 

y_train, test_size=0.2, random_state=42) 

 

# Define the Keras ANN model 

model_keras = Sequential() 

model_keras.add(Dense(units=50, activation='relu', 

input_dim=X_train.shape[1])) 

model_keras.add(Dense(units=50, activation='relu')) 

model_keras.add(Dense(units=num_classes, activation='softmax'))  # Change 

num_classes to the number of output classes 

 

# Compile the model 

model_keras.compile(optimizer='adam', loss='categorical_crossentropy', 

metrics=['accuracy']) 

 

# Train the Keras model 

history = model_keras.fit(X_train_keras, y_train_keras, epochs=10, 

batch_size=32, validation_data=(X_val, y_val)) 

 

# Make predictions using the trained Keras model 

y_pred_keras = model_keras.predict_classes(X_test) 

 

# Calculate metrics 

mse_keras = mean_squared_error(y_test, y_pred_keras) 

acc_keras = accuracy_score(y_test, y_pred_keras) 

f1_keras = f1_score(y_test, y_pred_keras, average='weighted') 
 

The code begins by importing necessary libraries. Along with the libraries from the previous code, 

train_test_split is imported from sklearn.model_selection to split the training data into training and 

validation sets. Sequential and Dense are imported from Keras, which will be used to define the neural 
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network architecture. The code assumes that X_train, X_test, y_train, and y_test are already defined. 

The training data is split into training and validation sets using train_test_split to use Keras. This is done 

to monitor the model's performance during training and prevent overfitting. The test_size parameter 

specifies the proportion of data to allocate for validation. 

The Keras neural network model is defined using a Sequential model, representing a linear stack of 

layers. Three Dense layers are added to the model. The first two layers have 50 units each and use the 

ReLU activation function. The last layer has units equal to the number of output classes and uses the 

softmax activation function, which is suitable for multiclass classification problems. 

The model is compiled using the compile method. The optimizer 'Adam' is used, which is a popular 

optimization algorithm. The choice of using the Adam optimizer stems from its effectiveness in 

accelerating the convergence of neural network training. Adam, short for "Adaptive Moment 

Estimation," combines the benefits of two popular optimization algorithms, AdaGrad and RMSProp. 

Adam adapts the learning rates for each parameter in the model based on their historical gradients, 

allowing it to adjust learning rates dynamically and converge faster across varying dimensions and 

magnitudes of gradients. This adaptability is particularly valuable for deep learning tasks, where 

complex architectures may have layers with drastically different gradients. The ability of Adam to 

maintain learning rates per parameter contributes to the enhancement of training efficiency and the 

facilitation of quicker convergence towards optimal or near-optimal solutions. Considering these 

advantages, the Adam optimiser was chosen to expedite training and potentially attain improved 

outcomes in the specific neural network architecture. The loss function 'categorical_crossentropy' is 

appropriate for multiclass classification problems. The metric 'accuracy' is chosen to monitor the 

model's performance during training. 
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Appendix B 

Gridlab Coding 

clock { 

    starttime '2023-08-15 00:00:00'; 

    stoptime '2023-08-15 01:00:00'; 

    timezone 'UTC'; 

} 

 

module residential; 

 

object house { 

    parent electrical; 

    name House1; 

    heatgain_mode CONSTANT_LOAD; 

     

    // Add other house-specific parameters 

     

    ZIPload { 

        name House1_Load; 

        nominal_voltage 120; 

        power_fraction_schedule Load_Profile_House1; 

    } 

} 

 

object house { 

    parent electrical; 

    name House2; 

    // Similar parameters and loads for House2 

} 

 

object house { 

    parent electrical; 

    name House3; 

    // Similar parameters and loads for House3 

} 

 

object house { 

    parent electrical; 

    name House4; 

    // Similar parameters and loads for House4 
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} 

 

module ev; 

object vehicle { 

    parent electrical; 

    name EV1; 

     

    // Add EV-specific parameters 

     

    ZIPload { 

        name EV1_Load; 

        nominal_voltage 120; 

        power_fraction_schedule EV_Charging_Profile_EV1; 

    } 

} 

 

object vehicle { 

    parent electrical; 

    name EV2; 

    // Similar parameters and loads for EV2 

} 

 

object vehicle { 

    parent electrical; 

    name EV3; 

    // Similar parameters and loads for EV3 

} 

 

object vehicle { 

    parent electrical; 

    name EV4; 

    // Similar parameters and loads for EV4 

} 

 

object schedule { 

    name Load_Profile_House1; 

    // Define load profile schedule for House1 

} 

 

object schedule { 

    name EV_Charging_Profile_EV1; 

    // Define EV charging profile schedule for EV1 

} 

 

// Add similar schedule definitions for other houses and EVs 
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In the context of my research, a simplified GridLAB-D simulation to investigate V2G and G2V energy 

management strategies was developed. The simulation involves four houses and four EVs, aiming to 

optimize energy utilization and balance grid demand by leveraging EV battery energy. 

Each house was treated as a module using the house object. Within each module, parameters specific to 

individual houses, such as the heatgain_mode, reflecting their energy consumption characteristics, 

were defined. Each house's energy load was simulated using a ZIPload object, allowing power 

consumption scheduling based on Load_Profile_HouseX, which was separately defined for each 

house. 

Similarly, the modelling of EVs was executed using the vehicle object. Relevant parameters about EV 

behaviour were incorporated for each EV, and the scheduling of EV charging was based on 

EV_Charging_Profile_EVX, derived from the available data. The utilisation of schedules was 

implemented to replicate real-world load and charging behaviours. Load_Profile_HouseX represented 

the load consumption profile for each house, while EV_Charging_Profile_EVX represented the profile 

for EV charging. Incorporating these schedules facilitated the emulation of variations in power 

consumption and charging patterns throughout the simulated time. 

The simulation time was also established using the clock module, where the start and stop times were 

specified while considering the UTC timezone, which can be adapted according to the user's 

requirements; this coding segment is presented as a simple example. This allowed for the control of the 

simulation's duration and the analysis of outcomes within the provided timeframe. 

The provided GridLAB-D code presents a simplified simulation framework investigating V2G and G2V 

management strategies. By modelling four houses and four EVs, along with incorporating load and 

charging profiles, the objective was to demonstrate the potential utilization of EV battery energy to 

optimise grid power usage. This foundational code is a starting point for more comprehensive 

simulations and analyses, aligning with the research goal of exploring innovative energy management 

solutions using GridLAB-D. It is worth noting that this code has been simplified to illustrate the entire 
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work's concept. Specific features were incorporated into this code to fulfil the research requirements for 

generating the dataset used in machine learning endeavours. 

Appendix B 

Model Evaluation and Performance Validations 

This appendix presents a comprehensive overview of the evaluation and performance of machine-

learning models. This section highlights the differences between the real and predicted values generated 

by various machine learning algorithms. The focus is on visualizing these differences through graphical 

representations that provide insights into the accuracy and reliability of the models. 

Differences between Real and Predicted Values 

This section showcases figures illustrating the discrepancies between the actual values and the 

predictions of different machine learning models. Visually depicting these differences valuable insights 

into how closely the models are aligned with the true values are gained visually depicting these 

differences gives valuable insights into how closely the models are aligned with the true values. It 

mentions that these 1200 samples are from 12000 testing data from all 50,000 in the first scenario. The 

reason for having only 1200 is to have a better visualization. This visualization shows what each ACC 

means before having any noises for each method. 
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Figure 35 Real and predicted values of 1200 samples in Logistic Regression 

 

 
Figure 36 Real and predicted values of 1200 samples in Naïve Bayes 

 

Figure 37 Real and predicted values of 1200 samples in KNN 
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Figure 38 Real and predicted values of 1200 samples in SVM 

 
 

 
Figure 39 Real and predicted values of 1200 samples in SVM 

 
Confusion Matrices 

 
This part generated a collection of confusing matrices. These matrices represent the model's 

performance across different classes and corresponding predictions. The matrices are a diagnostic tool 

to assess how well the models classify and predict the different classes. 
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Figure 40 STD = 0.01 
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Figure 41 STD = 0.1 
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Figure 42 STD = 1 
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Figure 43 STD = 2 
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Figure 44 STD = 4 
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Figure 45 STD = 6 


