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Abstract

In the realm of safeguarding real networks against malicious activities, Intrusion De-

tection System (IDS) assumes a critical role. Despite the advancements brought

about by machine learning and deep learning in enhancing its performance, IDS is

still vulnerable to adversarial samples stemming from Generative Adversarial Net-

work (GAN). IDSGAN is one of the most effective attacking schemes that are based

on GAN. In this thesis, we propose a novel anti-IDSGAN method, Sophon IDS (S-

IDS), which transmits deceptive information to IDSGAN-based attackers in order to

disrupt their training process, ultimately mitigating the effectiveness of IDSGAN-

based attacks. Technically, the deceptive information is generated by flipping the

benign/malicious labels of network flows. In our research, we compared the perfor-

mance of a series of label-flipping strategies. Our experimental results indicate that

the ‘DVT-U-01’ strategy leads to the highest detection rate for IDSGAN-based net-

work flows. In addition, we found that RNN-based S-IDS outperforms LR-based and

MLP-based S-IDS.
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Chapter 1

Introduction

1.1 Intrusion Detection System

In the real world, network systems are vulnerable to massive attacks, such as denial of

service (DoS) and malware. To prevent these attacks, many strategies are employed,

and the intrusion detection system (IDS) is one of them. In most cases, IDS functions

as software that monitors traffic flows. Once a flow is detected as malicious, the

remaining flow packets will not be delivered to the server, ensuring the server can

still work properly despite receiving only a few packets. As the volume of network

traffic expands rapidly, the demand for IDS increases as well.

The first-generation IDS detects threats based on signatures, hence the name

signature-based IDS. In cybersecurity, a signature refers to a specific feature of a traffic

flow. The IDS stores all known malicious traffic signatures in its database. If the IDS

finds a match between the signature of a new traffic flow and any in its database, it

will reject the flow. However, the IDS has to update its database frequently to detect

all the malicious traffic flows. With the increasing types of attacks, it may struggle

to identify new attacks with utmost precision.

Another type of IDS is the anomaly-based IDS. Unlike the signature-based IDS,

it identifies normal traffic by following certain rules or employing heuristic methods.

If the traffic flow cannot be identified, it will be marked as anomalous, and all related

activities will be denied. Also, it does not rely on highly specific signatures or require

frequent updates.

Due to the rapidly increasing demands of modern network infrastructures, the

flows among them have become more frequent. Additionally, as the complexity and

diversity of these networks continue to grow, their vulnerabilities also increase. The

traditional signature-based IDS and human-updated anomaly-based IDS are no longer

able to maintain high performance. As a result, researchers are turning their attention

to machine learning (ML) and deep learning (DL) technologies as they can find the
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Figure 1.1: An example of using FGSM to generate adversarial sample based on
GoogLeNet [1] [2]. Only a tiny well-designed noise can influence the prediction

regulations from the big dataset and ultimately build the models with the impressive

performance.

1.2 Adversarial Samples for Machine Learning

While ML models can achieve impressive performance in classification tasks with large

datasets, achieving one hundred percent accuracy remains elusive. In certain cases,

these models may even perform worse than humans. Consequently, some researchers

have recognized the potential to create artificial samples to exploit vulnerabilities in

the model’s defences.

Adversarial samples are one example of such artificially crafted data points. They

do not originate from randomness but are derived from existing samples. By incorpo-

rating well-structured noise into the samples, their predictions differ from what the AI

model would typically predict. For instance, the Fast Gradient Sign Method (FGSM)

is a well-known framework used to generate such adversarial samples [1]. FGSM

leverages the gradients of the AI model to compute another vector. By applying only

a small perturbation using this vector to the sample, the prediction can significantly

deviate from the original, as illustrated in Figure 1.1. Therefore, understanding and

addressing these adversarial vulnerabilities in ML models are crucial for enhancing

their robustness and real-world applicability.

Defending models can be categorized into two groups based on the level of in-

formation required: white-box models and black-box models. White-box models are
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completely transparent to external users, allowing access to all operations and re-

turned values. However, this transparency also makes them vulnerable to attacks like

FGSM, which relies on accessing the model’s gradients. On the other hand, black-box

models only reveal the results of sample inputs, providing limited information com-

pared to white-box models. As a result, generating efficient adversarial samples to

compromise black-box models becomes exceptionally challenging due to the scarcity

of detailed information.

1.3 Generative Adversarial Networks and IDS

Among all the attacks related with adversarial samples, the Generative Adversarial

Network (GAN) has earned significant attention in recent years [3]. GAN describes a

competition with two players: generator and discriminator. The task for the generator

is to generate the samples that the discriminator is not able to tell whether they are

from the original dataset or the generated dataset. For each round, both the generator

and discriminator can increase their performance thanks to the information from the

opponent. In the end, given a random noise, the generator is able to generate a new

sample that the discriminator cannot give a clear prediction. In other words, the

generator can establish a brand new dataset which approximates the original one.

After the GAN is introduced, many new types of GAN models are raised [4][5][6].

Reserach on applying GANs in Intrusion Detection System (IDS) primarily falls

into two categories. The first involves using GAN to generate the adversarial samples

to attack the IDS. Attackers firstly use the existing samples to probe the IDS and then

build the dataset. Thereafter, a GAN-based framework is used to train the generator

and discriminator repeatedly based on the dataset. While the second category works

in the opposite way. It takes use of the adversarial samples from the GAN-based

attacks. These samples operate as the data augmentation to increase the detection

rate against the adversarial malicious samples.

In fact, these two types of efforts have distinct goals, leading to an ongoing cycle

of competition. Attackers continually devise new adversarial malicious samples, while

defenders can leverage these samples to fortify their IDSs. No matter which side gains

improvement, the other side could find the approach to counter it. Therefore, as only

using GAN as the augmentation is not a efficient method in a long term, we expect
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to explore a new strategy to defend the GAN-based adversarial samples.

1.4 Major Contributions

In our study, we present a novel framework named Sophon IDS (S-IDS), designed

to counter adversarial malicious samples generated by GAN-based attackers. Unlike

other strategies, S-IDS aims for providing the misleading information to the GAN-

based attacks during the training process. It is expected to lead to the failure of

generating effective adversarial samples. The contribution of this paper are summa-

rized as follows.

Firstly, we propose the framework of S-IDS. Through an in-depth analysis of IDS-

GAN, an widely-known GAN-based schemes, we find that misleading information can

influence GAN model training. As GAN-based attacks largely rely on the information

from the black-box IDS, the deceived information has the negative impact on model

training. Thus, when the training is finished, GAN-based attackers struggle to create

effective adversarial malicious samples, thus failing to deceive the original IDS.

Secondly, we devise an algorithm for training S-IDS, leveraging a well-trained

IDS by altering the labels of selected samples. To explore all possible scenarios,

we configure several parameters that influence the flipping process. We design two

functions to calculate the distance value of a sample and a flag to decide the priority

of these samples. Meanwhile, we control the number and type of the selected samples

by introducing the noise ratio and another side flag. With the combination of these

parameters, we then apply the algorithm for selecting the samples and train our

S-IDS.

Finally, we carry out simulations to evaluate the performance of S-IDS. We con-

sider three ML models: Multilayer Perceptron (MLP), Recurrent Neural Network

(RNN), and Logistic Regression (LR). Additionally, we develop an IDSGAN frame-

work to serve as the attacker. We evaluate the detection rates of the original IDS

and several variants of S-IDS based on different parameter configurations. Our ex-

perimental results indicate that S-IDS consistently outperforms the original IDS in

countering IDSGAN attacks. Notably, the RNN-based S-IDS employing the ‘DVT-

U-01’ strategy with ω = 0.8 demonstrates the best performance.



5

1.5 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we present some related

techonologies regarding the machine learning and deep learning, the history of IDS

development, several GAN models with their applications and the adversarial attacks

against the IDS. In Chapter 3, we introduce the S-IDS, including the theoretical anal-

ysis, essential assumptions and the algorithm behind. In Chapter 4, we will present

the testbed of our evaluation and the preprocession of the dataset CICIDS2017. Then,

we show the experiment results comparing S-IDSs under different configurations and

IDS using the MLP, RNN and LR models. In Chapter 5, we make a conclusion of the

whole thesis paper. Moreover, we present some interesting findings during the whole

evaluation and give some ideas for the future research.



Chapter 2

Related Work

2.1 Machine Learning and Deep Learning

Machine learning (ML) is a part of artifical intelligence (AI) research that focuses

on algorithms. By training on datasets, the ML model can imitate human actions

and make predictions for new samples. Depending on whether labels for the dataset

are required, ML algorithms are divided into two categories: supervised learning and

unsupervised learning.

In supervised learning, the algorithm uses labeled datasets to train the model

for accurate data classification or outcome prediction. Based on the specific tasks

of classification and value prediction, supervised learning models are further catego-

rized into classification models and regression models. Common supervised learning

algorithms include Logistic Regression (LR), Support Vector Machines (SVM), Naive

Bayes (NB), Decision Tree (DT) and Neural Networks (NN). On the other hand, un-

supervised learning algorithms do not require labeled datasets; instead, they discover

patterns within the dataset. They are particularly useful when clear patterns are

not readily apparent. Therefore, these algorithms primarily focus on solving clus-

tering problems. Traditional clustering algorithms include k-means clustering and

hierarchical clustering.

In practical scenarios, annotating datasets with labels demands a substantial in-

vestment of time and resources. Due to the scarcity of labeled samples and the abun-

dance of unlabeled ones, researchers have delved into the concept of semi-supervised

learning (SSL) as a potential solution. The primary objective of SSL is to enhance

accuracy when compared to algorithms that rely solely on the labeled data. Nev-

ertheless, for SSL to yield favorable outcomes, the dataset must adhere to critical

assumptions, including the self-training assumption and clustering assumption. No-

table SSL algorithms encompass co-training and self-learning techniques.

6
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While ML models have exhibited commendable performance, they face a chal-

lenge of limited model size as the volume of data grows substantially. NN models

offer a potential solution in this context, as they can significantly scale by increasing

the number of neurons or layers. Consequently, researchers are directing their focus

towards NN to address this concern. Within the realm of deep learning (DL) mod-

els, diverse features exist across various layers, propagation algorithms, and neuron

designs. These factors contribute to the versatility and effectiveness of deep learning

models.

Figure 2.1: An example of Multilayer Perceptron (MLP) network. It consists of
input layer, hidden layers and output layer. Each layer is fully connected to the
nearby layers.

The simplest deep learning model is the Multilayer Perceptron (MLP), extensively

employed for classification and regression tasks. As depicted in Figure 2.1, the MLP

comprises three types of layers: the input layer, hidden layers, and the output layer,

with each layer being fully connected to its adjacent layer. The input and output

layers facilitate communication with the user. Typically, the number of neurons in

the input layer equals the number of features in the dataset being processed. In

the output layer, the number of neurons varies based on the task at hand. For

regression problems, the output layer generates specific values, and the number of

neurons corresponds to these values. Conversely, in classification tasks, the output

layer produces probabilities for each class, and thus, its size aligns with the number
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of unique classes in the dataset. For binary classification, some researchers opt for a

single neuron, using a threshold to determine the final class.

The performance of the hidden layers significantly hinges on their design. Users

can adjust the number of hidden layers or the number of neurons within them. How-

ever, as the depth and width of the hidden layers increase, so does the number of

parameters in the model. A surplus of parameters can lead to overfitting, making it

crucial to strike a balance and appropriately configure the MLP model for optimal

results.

The Recurrent Neural Network (RNN) is another type of deep learning model

that includes a special recurrent layer, as illustrated in Figure 2.2. In the recurrent

layer, the output is determined by the equations shown in Eq. (2.1) and (2.2). Here,

V , U , and W represent the parameters connecting the layers, while f and g are

the activation functions. The outputs Ht and Ht−1 correspond to the hidden layer’s

output at time t and the previous time step t−1, respectively. As we can observe, the

current hidden layer output Ht is influenced not only by the current input but also

by the previous output Ht−1. This characteristic enables the RNN to leverage past

information to generate subsequent results, making it suitable for problems where the

input order is critical.

The capacity of RNN to retain information about the input sequence’s order

makes it particularly effective in various natural language processing (NLP) tasks.

In NLP, the prediction of a sentence often relies not only on the words used and

their frequencies but also on the sequence in which they appear. As a result, RNN is

extensively employed in NLP research. Building upon RNN designs, other models like

Long Short-Term Memory (LSTM) have been developed by researchers and widely

applied to NLP tasks due to their ability to capture long-term dependencies effectively.

Ot = g(V ∗Ht) (2.1)

Ht = f(U ∗ It +R ∗Ht−1) (2.2)

The Convolutional Neural Network (CNN) model is another type of deep learning

model, and its major specialty lies in its convolutional layer. This layer performs

convolutional calculations on higher-dimensional inputs, effectively reducing their di-

mensions. The primary objective of this process is to strengthen the connections
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OI H

R

Input Layer Hidden Layer Output Layer

Recurrent Layer

U V

Figure 2.2: The simple design of recurrent neural network. The output of hidden
layer also relies on the previous outputs.

Figure 2.3: The design of the AlexNet. The convoluntional layer is between the first
two blocks.

between a value and other nearby values within the input data. Furthermore, to

minimize the input size, CNNs also incorporate pooling layers. These layers employ

different types of pooling to replace small matrices within the input and combine

them to form a new matrix. The utilization of convolutional layers empowers CNN

models to excel in image classification problems. For instance, Krizhevsky et al. [7]

constructed a deep convolutional neural network, shown in Figure 2.3, and trained it

on the ImageNet dataset. This model, now known as AlexNet, exhibited exceptional

performance among all the participants at that time.

2.2 Evolution of Intrusion Detection System

The inception of signature-based Intrusion Detection Systems (IDS) dates back to

1987 when D.E. Denning published the first work in this area [8]. Denning’s paper
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described a real-time IDS built upon detecting abnormal patterns in system records.

This independent IDS model transcends specific system and application environments.

For a significant duration, Denning’s work served as a reference for subsequent pub-

lications [9][10]. Over time, the simplicity of signature-based IDS struggled to cope

with the rapid data growth, leading researchers to explore anomaly-based IDSs while

also introducing advancements in signature-based approaches. For example, Li et al.

[11] presented a signature-based IDS built on collaborative blockchain technology,

demonstrating strong performance even amidst the era of data explosion.

With the evolution of machine learning technology, anomaly-based IDSs have

emerged as powerful tools due to their performance and advantages. The progress of

these IDSs owes much to the valuable contribution of cybersecurity research datasets.

Several renowned datasets have played a pivotal role in advancing IDS research. The

KDD CUP 99 dataset, introduced in 1999 by University of California researchers,

features 41 attributes and encompasses attack types such as Denial of Service (DoS),

User to Root (U2R), Remote to Local (R2L), and probe activities. Subsequently, the

NSL-KDD dataset was introduced as an improved version, addressing redundancy

by eliminating duplicate records [12]. In recent times, the Canadian Institute of Cy-

bersecurity developed the CICIDS2017 and CSE-CIC-IDS2018 datasets [13], which

incorporate network profiles, offering more comprehensive features and attack types.

Foundational datasets like KDD CUP 99 and NSL-KDD serve as cornerstones for

most IDS research. However, other datasets such as those from DARPA [14], Ky-

oto University [15] and CDX [16] also play crucial roles in the field. These diverse

datasets significantly contribute to the development and evaluation of IDS solutions,

enabling researchers to explore various scenarios and challenges within the cyberse-

curity domain.

Eskin et al. [17] introduced a geometric framework for unsupervised anomaly-

based detection. This framework involves mapping data features to a designated

feature space, often a vector space, using predetermined kernels. Anomalies are iden-

tified in sparse regions within this feature space. This framework was tested on

the KDD CUP 99 dataset using three unsupervised learning algorithms: clustering,

K-nearest neighbors, and SVM, achieving an optimal detection rate of 98 percent.

Meanwhile, Jiang et al. [18] enhanced the nearest-neighbor algorithm and developed
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a cluster-based approach for detection, showcasing improved performance over [17]

with linear time complexity. Meng applied SVM and DT algorithms to intrusion de-

tection for each attack type in the KDD CUP 99 dataset [19]. With the exception of

the U2R attack due to limited records, detection rates for all other types exceeded 95

percent. Additionally, Choudhury and Bhowal [20] tested models including NB, LR

and Random Forest (RF) on the NSL-KDD dataset [12], demonstrating that these

ML models generally perform well in intrusion detection.

With advancements in hardware and deep learning technologies, the integration

of deep learning models into IDSs has gained popularity. Ding and Zhai developed

a CNN-based IDS architecture, utilizing three one-dimensional convolutional layers

to extract features from raw data records [21]. Extracted features were then passed

through multiple dense layers for classification. The CNN’s output layer incorpo-

rated a softmax function, accommodating various attack classes within the NSL-

KDD dataset [12]. A comprehensive comparison between their CNN and four other

ML/DL algorithms, including RF, SVM, MLP and LSTM, was conducted. The find-

ings highlighted the CNN’s superior performance, with enhanced detection accuracy

and a reduced false positive rate compared to other algorithms. In the realm of

software-defined networks (SDNs), Tang et al. [22] developed an anomaly-based IDS

using a deep RNN. This innovative RNN, constructed with Gate Recurrent Units

(GRUs), formed a GRU-RNN. The GRU-RNN’s performance surpassed conventional

RNNs and standard deep neural networks (DNNs), achieving a remarkable 89 per-

cent detection accuracy on the NSL-KDD dataset [12], despite utilizing only six raw

features.

2.3 Generative Adversarial Network

The Generative Adversarial Network (GAN) was introduced by Goodfellow et al.

[3] in 2014. The research proposed two Multi-Layer Perceptron (MLP) models: the

generator G and the discriminator D. The generator is trained to learn the data

distribution of the original dataset, while the discriminator is designed to detect

whether a sample comes from the original dataset.

Suppose the data X follows the distribution pdata. To enable the generator to learn

a distribution pg of data X, the researchers first define a noise input pz(z) and use it
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to generate output samples denoted as G(z). Simultaneously, the outputs D(x) is a

probability indicating whether x comes from G instead of following the distribution

pdata. During each iteration, both the generator and the discriminator update their

parameters based on Eq. (2.3) and (2.4) respectively, where θg and θd represent the

parameters of G and the D.

▽θd

1

m

m∑︂
i=1

[logD(xi) + log(1−D(G(zi)))] (2.3)

▽θg

1

m

m∑︂
i=1

[log(1−D(G(zi)))] (2.4)

The primary objective of G is to maximize the probability that D cannot suc-

cessfully distinguish between the generated data and the real data. Conversely, D is

trained to avoid being deceived by the generator and accurately differentiate between

real and generated samples. This dynamic interaction leads to a minimax game, as

represented in Eq. (2.5). Goodfellow et al. [3] demonstrated that when the training

process converges to global optimality, the generator’s learned distribution pg matches

the original data distribution pdata. In other words, G successfully learns the under-

lying data distribution, while D achieves a detection accuracy of approximately 50

percent, reflecting its inability to differentiate between real and generated data.

While GAN has demonstrated its efficacy in generating adversarial samples, the

original GAN design faces several existing issues. To make it applicable to a broader

range of scenarios and tasks, many researchers have made modifications and developed

enhanced frameworks.

One such modification is the introduction of the conditional GAN (CGAN), pro-

posed by Mirza and Osindero [5]. In their paper, they incorporate the labels of the

dataset into the training process, transforming the GAN into a supervised learning

model. Unlike GAN, the CGAN’s discriminator (D) predicts not only the quality of

the generated sample but also the likelihood of its label. Therefore, the CGAN’s ul-

timate objective differs slightly from the GAN shown in Eq. (2.6), where y represents

the discriminative function result. Consequently, given a specific label, CGAN is able

to generate samples of it.



13

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.5)

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x | y)] + Ez∼pz(z)[log(1−D(G(z | y)))] (2.6)

Meanwhile, Arjovsky and Bottou [4] conducted extensive research and analysis on

this issue and introduced the Wasserstein GAN (WGAN). In [3], the loss function

relies on the Jensen-Shannon (JS) divergence, which involves two Kullback-Leibler

(KL) divergences as shown in Eq. (2.7) and (2.8), with Pg and Pr representing two

distributions on the dataset and Pm being their average. Despite its good perfor-

mance, the traditional GAN’s optimization process does not always converge, leading

to potential issues of model collapse. To address this challenge, Martin Arjovsky

introduced the earth mover’s distance (EMD) in Eq. (2.10) as a replacement for the

JS divergence. This innovation led to the development of WGAN. Later, he further

presented the WGAN-GP in his paper [23], which includes a gradient penalty in the

loss function to overcome some challenges encountered during WGAN training. In

addition to these two enhanced models, there are many other GAN-based models,

such as Deep Convolutional GAN (DCGAN) [6], StyleGAN [24] and CycleGAN [25].

These models show better performances in their particular tasks.

With the exceptional performance of GANs and their various enhanced iterations,

a plethora of models and datasets have emerged. Jin et al. [26] analyzed the challenges

encountered during their GAN training and successfully stabilized and improved the

model’s quality. They then utilized this model to generate anime characters, mak-

ing it available on their website. Subsequently, numerous anime enthusiasts adopted

their model, resulting in the creation of several open-source projects, such as the

‘pokeGAN’ project, which specializes in generating ‘Pokemon’ characters. Another

notable example is the ‘pix2pix’ model [27]. Operating on the principles of Con-

ditional Adversarial Networks, ‘pix2pix’ offers a versatile tool for various image-to-

image tasks. These tasks include translating black and white photos into colored

images, as well as transforming images from day to night. Additionally, the intro-

duction of BigGAN marked another milestone in enhanced GAN models. Trained at

a resolution of 128x128 using the ImageNet dataset [28], this new model achieved an

impressive Inception Score of 166.5, surpassing the previous best score of 52.52.
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KL(Pr ∥ Pg) =

∫︂
log(

Pr(x)

Pg(x)
Pr(x)dµ(x)) (2.7)

JS(Pr ∥ Pg) = KL(Pr ∥ Pm) +KL(Pg ∥ Pm) (2.8)

Pm = (Pr + Pg)/2 (2.9)

EMD(Pr,Pg) = inf
γϵΠ(Pr,Pg)

E(x,y)∼γ[∥ x− y ∥] (2.10)

min
G

max
D

V (D,G) = Ex∼pdata(x)EMD[D(x)] + Ez∼pz(z)EMD[(1−D(G(z)))] (2.11)

2.4 White-box and Black-box Attacks

The attacks against the IDS are grouped into white-box attacks and black-box at-

tacks. In [29], Wang employed multiple algorithms, including Jacobian-based Saliency

Map Attack (JSMA) [30] and FGSM, to generate adversarial samples for the white-

box attacks. The results demonstrated that these adversarial samples exhibited a

lower detection rate by IDS, which is reasonable. However, the practical effective-

ness of applying these algorithms in real-world attacks remains questionable, as it is

challenging to completely evade the IDS and gather all necessary information from

it. Therefore, most research focus on approaches in the black-box attacks.

GAN-based attacks are increasingly likely to be applied, particularly due to their

ability to target black-box IDS. In a noteworthy research effort, Lin et al. [31] in-

troduced the IDSGAN framework. They employed the WGAN design to train the

generator and discriminator based on feedback from a black-box IDS, utilizing the

NSL-KDD dataset [12]. During the evaluation process, they observed that a signif-

icant portion of the adversarial samples generated by IDSGAN went undetected by

many types of IDS. Chauhan and Shah Heydari [32] applied the similar framework on

CICIDS2017 dataset. They used the GAN to generate the polymorphic adversarial

DDoS samples by changing the attack profile. Their results indicate that defensive

systems are still vulnerable to the continuous updating of attacking profile, even if

these defensive systems use the incremental learning. Kumar and Sinha [33] instead

used the Wasserstein Conditional GAN (WCGAN) and boost it by a XGBoost Clas-

sifier. They compared the WCGAN framework with other GAN variants framework

on NSL-KDD, UNSW-NB15 and BoT-IoT dataset. In their evaluation, the results
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show that the CWGAN performs the best among all the GAN variants and it has a

reasonable improvements in XGBoost Classifier but not expected performance on the

RF and SVM.

Thanks to the availability of adversarial samples from GANs, scientists are ac-

tively exploring two different approaches to enhance IDS performance. One approach

involves increasing the number of malicious samples in the training set. By incorpo-

rating these adversarial samples during the training process, the IDS becomes more

adept at handling limitations and drawbacks, leading to an improved detection rate

for the test set. Msika et al. [34] proposed SIGMA that leverages new adversarial

samples to enhance the IDS against new attacks. The cycle consists of three steps:

generating the samples by GAN and metaheuristics, calculating the detection rate of

new samples and training IDS with these samples. After two cycles, the new IDS can

already have a more than 99% detection rate. Lee and Park [35] used the GAN to

generate the new attacking samples to eliminate the data imbalance. Their results

indicate that the RF model trained with the balanced dataset perform better than

that trained with original imbalanced dataset. Meanwhile, they also show that their

strategy implementing new samples perform better than the other widely used ones.

The other approach is to integrate GANs directly into the training process, pro-

viding additional feedback to increase the IDS’s ability to detect adversarial malicious

samples. de Araujo-Filho et al. [36] proposed a GAN-based IDS using temporal con-

volutional networks and self-attention to detect the attacks. This new IDS is designed

for the edge servers. Their experiments show that the IDS meets the requirements of

detection rate and time cost. Meanwhile, it is more accurate and faster than some

well-known GAN-based IDSs [37][38].

In conclusion, the application of GANs in cybersecurity resembles a cat-mouse

game. Attackers continuously generate new adversarial samples, which can be used

to test IDS defenses. For instance, frameworks like DIGFuPAS [39] and DIGFuPAS-

2 [40] were developed to generate adversarial samples with high chances of evading

detection. However, once these samples are used as an augmentation dataset for

IDS training, their effectiveness in deceiving the IDS diminishes. Nevertheless, if the

DIGFuPAS training begins again on an updated IDS, the new adversarial samples

remain valid. This result is also found in [32]. This continuous cycle of attack
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Figure 2.4: The idea of the honeypot. It is used for attracting attacks in the network
and reporting these data to the server to help it build the defence.

and defense makes it challenging to predict which side will ultimately prevail. The

ongoing dynamic between attackers and IDS researchers demonstrates the complexity

of addressing adversarial threats in cybersecurity.

2.5 Honeypot

In addition to active defense using IDS, honeypots serve as a valuable second-layer

defense [41]. The fundamental concept is depicted in Figure 2.4. Unlike IDS which

aims to prevent attacks, the purpose of a honeypot is to attract attackers and lure

them to interact with it. Once an attack is detected, the honeypot collects data

and periodically reports recent malicious activities to the actual server, hidden in the

protected network. These gathered data allow the server to develop a more robust

defense system tailored to combat specific attack patterns. Additionally, honeypots

can incorporate technologies to track the IP information of malicious flows, enabling

the server to proactively block flows from the same sources before any detection.

Honeypots should be designed to appear vulnerable in specific aspects, such as the

firewall and system, to entice potential attackers. However, they should not be en-

tirely transparent. Despite their controlled environment, honeypots can still pose risks

if compromised, potentially affecting other devices, including the real server. Thus,
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striking the right balance between setting vulnerabilities and maintaining control is

crucial. By strategically utilizing honeypots as part of a comprehensive defense strat-

egy, organizations can gather valuable intelligence about potential threats, strengthen

their security posture, and enhance their overall cybersecurity resilience.

In contemporary research, the integration of honeypots with IDS has proven to

enhance overall performance. Muhammet and Resul introduced a Honeypot-based

Intrusion Detection and Prevention System (IDPS) [42]. This system offers real-time

visualization of network traffic on servers through animation and, importantly, can

identify zero-day attacks through intrusion detection configuration. Another note-

worthy example is the Honeypot TB-IDS, which presents a deception trace-back

model [43]. Positioned within network intrusion deceptions, it monitors incoming

traffic and continually assesses data routes. The process involves capturing incoming

traffic and collecting pertinent information. Upon detecting an intruder, this informa-

tion is sent to the honeypot, enabling the establishment of a mitigation point, leading

to the subsequent blocking of all packets from the identified intruder. Mokube and

Adams introduced an intrusion detection module built upon honeypot technology,

incorporating the innovative IP Traceback technique [44]. This module, augmented

by mobile agents, possesses the ability for distributed detection and response. Partic-

ularly noteworthy is the module’s inherent flexibility, allowing for seamless expansion

and dynamic configuration of the entire detection framework. Leveraging honeypot

technology, this module excels in tracing intrusion sources to their fullest extent.



Chapter 3

S-IDS: A Misinformation-based Method

3.1 Overview of S-IDS

In the novel ‘The Three-Body Problem’, the author introduces a remarkable micro-

computer known as ‘sophon’, designed with a size equivalent to that of a particle. Its

primary role is to replace standard particles in collision experiments, skillfully follow-

ing pre-planned paths to deceive and manipulate the final experimental outcomes.

Inspired by this intriguing concept, we design an intelligent IDS named Sophon IDS

(S-IDS), as it draws significant inspiration from the concept of ‘sophon’. Our design

centers around constructing an intelligent model that disrupts the training process of

IDSGAN.

IDSGAN
Attacker

Honeypot S-IDS

Figure 3.1: The framework of the Sophon IDS during the IDSGAN training. The
honeypot is placed to attract the IDSGAN attacks and the S-IDS sends back the
feedbacks so that the performace of IDSGAN drops.

Firstly, we introduce the framework of attacking process in Figure 3.1. A honeypot

is put here to attract the malicious flows. Between the honeypot and the attacker, we

put the S-IDS instead of the normal IDS to give the intelligent responses. The S-IDS

only sends response to the GAN-based attacks like IDSGAN, while we remain using

IDS on the real server. In addition, we will have a GAN detection model identifying

whether the framework is under GAN-based attacks. If the traffic is marked as GAN-

based attack, it will go through the S-IDS. Otherwise, it passes through the IDS in

the normal way.

Indeed, there is a simpler method to counter GAN-based attacks. When we detect

GAN-based attacks occurring, thanks to the GAN detection report, we can adopt an

18
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approach where the server immediately blocks all connections from the attackers.

This means that no feedback is provided to the attackers. Without information from

the IDS, attackers are unable to train their models. In this method, the system’s

performance relies solely on the accuracy of detecting GAN-based attack features,

rather than determining whether the traffic is malicious or not.

While this approach is straightforward and effectively prevents attacks, it also

has a drawback. Attackers become aware of their attacks being thwarted since they

receive no response. This prompts them to explore new attack strategies to bypass

the defenses. For instance, they might seek advanced methods to generate flows that

differ from typical GAN-based ones. If the defense mechanism is eventually compro-

mised, the entire system becomes vulnerable. On the other hand, the S-IDS operates

differently. Instead of merely blocking connections, it strategically provides deceptive

feedback. This feedback is carefully designed to mislead attackers during their model

training. From the attacker’s perspective, they gain insights into which packets are

accepted and which are rejected, but they remain oblivious to the deception. As the

attacker’s training progresses, their adversarial samples might not always be valid,

and they remain unaware of this fact. The GAN detection model continues to function

as expected. In a broader sense, even if the detection is not perfectly accurate, the

IDS can still achieve a higher detection rate for these adversarial samples compared

to the original adversarial samples.

3.2 Assumptions

Before delving into the specific design within this framework, several fundamental

assumptions need to be addressed in our research.

Firstly, we assume that IDSGAN attackers have access to feedback from the server.

This enables the GAN to discern predictions based on the feedback conditions. If no

feedback is received, or a packet containing a ‘connection refused’ content is returned,

we consider the packet flow as malicious. Otherwise, if the feedback indicates that

the IDS believes the flow is normal, the packet is treated as normal. For most types of

malicious traffic, the attackers typically disregard the payload in the returned packet.

As a result, we assume that we can provide feedback of normal prediction by including

irrelevant information as payload when the S-IDS predicts it as normal. Conversely,
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for normal flows predicted as malicious by the S-IDS, we send a packet with an error

code.

Furthermore, an essential concern is how to construct the dataset. In reality, most

black-box IDSs are developed using private datasets, while attackers create separate

datasets based on previous experience and feedback from servers. To simplify the

problem, we assume that the IDS and S-IDS share the same dataset with the IDSGAN.

Even if our S-IDS can access the dataset labels, we presume that the attackers also

possess the ability to know the true labels.

Lastly, we assume that all flow information generated from generator G is valid.

In cases where some feature values may be invalid, we adjust them to the closest valid

values.

By establishing these basic assumptions, we can proceed with the subsequent

details and evaluation of our design.

3.3 Details of IDSGAN

Figure 3.2: The framework of IDSGAN based on WGAN.

Before delving into the specific algorithm designs, it is crucial to consider the

reasons why the S-IDS can help increase the detection rate against adversarial samples

generated by the IDSGAN [31]. The entire evaluation framework of IDSGAN is

depicted in Figure 3.2. To achieve its objectives, IDSGAN creates two MLP models:

generator G and discriminator D. IDSGAN’s primary goal is to generate adversarial

samples while preserving the malicious features of the original samples. To achieve
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this, G is limited to modifying only the non-functional features, which have less

significance in the network. As a result, G takes the combination of non-functional

features of malicious flows and latent noise vectors as input, while D receives the

output of G and predicts whether the adversarial sample can be detected.

For G, the loss function is defined in Eq. (3.1), where Smal represents the original

malicious flows, nf denotes the non-functional features, and N stands for the latent

noise vector. On the other hand, the loss function of D is defined in Eq. (3.2), where

Bnormal and Bmal represent the normal and malicious traffic records marked by the

black-box IDS, respectively.

The underlying principle of IDSGAN is to ensure that D cannot differentiate be-

tween malicious and normal samples based on the feedback received from the black-

box IDS. By adhering to this principle, IDSGAN strives to create undetectable ad-

versarial samples while maintaining the malicious features of the original samples.

LG = Enf∈Smal,ND(G(nf,N)) (3.1)

LD = Es∈Bnormal
D(s)− Es∈Bmal

D(s) (3.2)

During the training process, IDSGAN undertakes two major steps. Firstly, G

generates adversarial malicious traffic using the existing malicious samples Smal and

updates its parameters according to Eq. (3.1). Subsequently, both the black-box IDS

and D provide predictions for the adversarial and normal samples, and D updates its

parameters using Eq. (3.2). These steps are repeated iteratively until the detection

rate for the adversarial samples converges. At this point, the outputs of D for adver-

sarial samples become indistinguishable from benign samples, while the outputs of D

for the two types of samples classified by the black-box IDS are nearly identical.

In conclusion, the primary method to interfere with IDSGAN training, aside from

blocking feedback, is to inject fraud information into Eq. (3.1) and (3.2). However,

given that we have assumed that IDSGAN knows the true labels of samples, the only

feasible modifications we can make are to Bnormal and Bmal. In essence, we need to

modify the feedback, or more directly, the IDS itself, in order to disrupt the training

process of IDSGAN effectively.



22

3.4 Details of MLP-based and RNN-based IDS

Before proceeding with our evaluations, the first step is to train a well-performing IDS.

For this purpose, we choose two types of deep learning models: MLP and RNN. After

conducting various tests, we present the final designs of our MLP and RNN models

in Table 3.1 and Table 3.2, respectively. Additionally, to facilitate comparison, we

include the LR model in the final tests, using the default configuration.

Table 3.1: Multilayer Perceptron IDS layers

Operation Input Dimension Output Dimension Activation

Linear input dim input dim/2 ReLU
Linear input dim/2 input dim/2 ReLU
Linear input dim/2 input dim/2 ReLU
Linear input dim/2 output dim Sigmoid

Table 3.2: Recurrent Neural Network IDS layers

Operation Input Dimension Output Dimension Activation

Recurrent Layer input dim hidden dim None
Linear hidden dim input dim/2 None
Linear input dim/2 output dim Sigmoid

3.5 IDSGAN Training

For the G model, rather than adding noise directly to the original sample, we generate

a vector of length 8, denoted as N = (n1, n2, . . . , n8), following a normal distribution.

This vector serves as the random noise appended to the end of the original sample.

Consequently, the final input for the G model is represented as shown in Eq. (3.3).

xg−input = (xnf , N) (3.3)

Then, for the D and S-IDS, we need to restore those functional features back and

get the final adversarial sample in Eq. (3.4).

xadv = (xf , G(xg−input)) (3.4)
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The model descriptions for our G and D are provided in Table 3.3 and Table 3.4,

respectively. During each epoch of the training process, the parameters of G and D

are updated according to Eq. (3.1) and (3.2), respectively.

Table 3.3: Model details of Generator

Operation Input Dimension Output Dimension Activation

Linear input dim input dim*2 ReLU
Linear input dim*2 input dim*2 ReLU
Linear input dim*2 input dim ReLU
Linear input dim input dim/2 ReLU
Linear input dim/2 output dim Mixed

Table 3.4: Model details of Discriminator

Operation Input Dimension Output Dimension Activation

Linear input dim input dim*2 LeakyReLU
Linear input dim*2 input dim*2 LeakyReLU
Linear input dim*2 input dim LeakyReLU
Linear input dim input dim/2 LeakyReLU
Linear input dim/2 output dim None

There are two important clarifications to make. Firstly, the activation layer of the

output layer in G is mixed. Since G generates continuous values, while some features

are discrete, we use a threshold of 0.5 to set these features to either 0 or 1. For the

remaining features, we use the LeakyReLU activation function.

The other issue pertains to the reasonability of the G’s output. In the beginning,

as the parameters are randomly initialized, the output for some features could be in

a wide range, such as [-100, 100]. Although the update of G and D remains linear,

these extreme values cannot be directly used for IDS detection. Hence, during the

evaluation phase, we clamp these values using Eq. (3.5), where min(i) and max(i)

represent the minimum and maximum values for feature i, respectively.

By addressing these issues, we ensure that the G and D models are appropriately

adjusted during the training and evaluation phases, optimizing their performance for

IDS detection.
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xadv
i ∈ [min(i),max(i)] i ∈ nf (3.5)

3.6 Details of S-IDS

3.6.1 Training of S-IDS

Algorithm 1 Training of S-IDS

Require:

xs, ys, S-IDS;

Ensure:

Initialize that S-IDS equals with IDS;

1: while S-IDS has not converged do

S-IDS.update(xs, ys)

2: end while

3: return S-IDS

After selecting the modified samples, the next step is to build the S-IDS. We

propose the process in Algorithm 1. It updates the S-IDS based on the original

IDS. In this method, a batch containing all the modified samples is created, and a

large learning rate is used to update the model. This approach takes advantage of the

concept of catastrophic forgetting observed in ML models. When the model is trained

with new samples, its performance on old samples may decrease. By incorporating

the modified samples and updating the model with a large learning rate, the S-IDS

can potentially exhibit a greater difference from the original IDS.

3.6.2 Key Parameters of S-IDS

Before we discuss the exact algorithm, we firstly introduce some parameters in it.

The specific algorithm may work differently due to these parameters. The meanings

of these symbols and classifications are in Table 3.5. Now, we will give the reasons

setting these parameters.

Actually, there are several ways to select the samples. As the S-IDS model we

build is a binary-classification model, we can modify both labels or only one specific
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Table 3.5: Definitions of Parameters

Group Symbol Definition

S ∈ {s0, s1, s01}
s0 Only change samples from malicious to benign
s1 Only change samples from benign to malicious
s01 Change samples with both labels

P ∈ {U,D} U Larger value has the priority in selection
D Smaller value has the priority in selection

TV ∈ {DVT,DASOS} DVT Distance between IDS value to threshold
DASOS Distance between adversarial sample and original sample

ω ∈ (0, 1) The percentage of selected samples

label. The different choices could have different impacts on the S-IDS performance,

such as the recall and F1-score. We would like to determine which kind of S-IDS can

have the best effect. Therefore, we use the side flag S to control the changed labels,

and the number of modified samples is controlled by argument ω.

Furthermore, in order to find the most appropriate samples, we need to rely on

some result. As mentioned above, the IDS prediction loss and the distance between

adversarial samples and original samples are the possible ones. Thus, we define two

transformed value TV functions, and the functions are defined in Eq. (3.6) and (3.7).

The parameter t represents the threshold, and its value depends on different IDS

designs. For the ‘sigmoid’ activation, it is 0.5, while for ‘tanh’, it is 0. For the

DASOS function, we use the Euclidean Distance. Meanwhile, whether a large value

or a small value is needed could lead to different scenarios. Therefore, we set the

priority flag P to select the relevant samples.

DVT(x) = |IDS(x)− t| (3.6)

DASOS(x) =

⌜⃓⃓⎷ n∑︂
i=1

(xadv
i − xi)2 (3.7)

3.6.3 Label Flipping in S-IDS

As mentioned above, we have a S flag and parameter ω controlling the number of

samples selected. Given the imbalance of the dataset and the number of malicious

samples are less than the benign samples, we use the former to calculate the number of

modified samples of each label. Meanwhile, due to the S flag, we have the modified
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samples of each label n0 and n1 shown in Eq. (3.8) and (3.9). With the number

limitations, we can go on to the final algorithm of our flipping design.

n = len(Xmal) ∗ ω (3.8)

(n0, n1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n, n) S = s

(0, n) S = s0

(n, 0) S = s1

(3.9)

Suppose we have the training set X and its real labels yreal. We clone another

labels ynoise recording the new labels we have modifying. If we have modify it into

another label, we cannot do any operations to this sample any longer. In order

to make the models inaccurate, we first need to classify all the samples into two

groups for the two label ‘benign’ and ‘malicious’. For each sample in each group, the

prediction result, the real label and the new label is same. If not, as discussed in

previous sections, we think modifying this label can lead to the model behave more

accurate. That is to say, for the samples xI0 and xI1 , they meet the requirements

that:

xI0 = {xi|IDS(xi) ≤ t, yireal = 0, yinoise = 0} (3.10)

xI1 = {xi|IDS(xi) > t, yireal = 1, yinoise = 1} (3.11)

where t is the threshold for the IDS. As mentioned in the DVT function, it is

based on the design of the IDS.

After selecting and grouping these samples, we use the heap select algorithm,

which has lower complexity, to choose a subset of the available samples xi0 and xi1

based on n0, n1 and the priority flag P . After modifying labels of those samples, we

can then continue the S-IDS training. In conclusion, we can present our final flipping

algorithm as shown in Algorithm 2.

3.7 Further Discussions

In fact, there are more analysis on the choices designing the algorithm. Given the

limitations of the section, we put the related analysis in the following contents.
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Algorithm 2 Label Flipping in S-IDS

Require:

X, yreal, ynoise, IDS, n0, n1,TV, P ;

Ensure:

IDS is able to give probability value;

The S-IDS has the same layers as IDS;

n0, n1 ≥ 0;

1: Initialize the S-IDS using IDS parameters;

2: y = S-IDS(X);

3: XI0 = TV(Select(y, yreal, 0));

4: XI1 = TV(Select(y, yreal, 1));

5: X i0 = HeapSelect(XI0 , n0, P );

6: X i1 = HeapSelect(XI1 , n1, P );

7: yi0noise = 1, yi1noise = 0;

8: S-IDS.train(X i0∪i1 , yi0∪i1noise);

3.7.1 Sample Modification in Machine Learning

To modify the feedback from a Machine Learning (ML) model, the direct approach

is changing the configuration of the model itself. The ML model is constructed based

on the dataset, and in binary-classification tasks, the model functions as a boundary

between different labels. Any modifications to the dataset will also alter the boundary

of the model. As illustrated in Figure 3.3, simply changing the labels of the samples

marked in light green and light red can shift the boundary from f(x) to f
′
(x), while

both boundaries still exhibit similar characteristics. For instance, the general behavior

of y declining as x rises is retained in both cases. If we desire our model to behave

differently from the original one, we must consider the fundamental principles that

underlie the model. Merely changing labels may not be sufficient to achieve the

desired shift in behavior. Instead, we need to delve into the model’s architecture, loss

function, or other aspects to effectuate significant changes in its behavior.

Looking back to the training process of ML models, the way it updates the model

parameters is by calculating the training loss from the last iteration. The loss cal-

culation is up to the specific algorithm selected for the ML model. As final goal for
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Figure 3.3: An example of dataset. Green and red dots stand for the two types of
sample and it creates the classification boundary f(x). If we modify the labels of the
samples with light color, the boundary will be changed to f

′
(x) in the optimal result.

the model is minimizing the error of prediction, or the model loss, for each iteration,

we will update the parameters in the model based on the derivation inside the loss

function. In most cases, With the loss and learning rate ϵ, the parameters θ will be

updated as shown in Eq. (3.12), where L(θt) is the loss for model for the epoch t.

θt+1 = θt + ϵ ∗ ▽L(θt) (3.12)

Suppose we have already a well-trained model M and the parameters θ using the

dataset D. Now we modify some labels and get another dataset D
′
. Meanwhile, we

clone another model M
′
and the corresponding parameters θ

′
. If the training epoch

goes, then for the next loss calculation, the loss result could be different. If the loss of

model M
′
is no more than M , as M has already been converged, M

′
is also converged

at this moment, which means the update for M
′
stops at this moment. Eventually,

M ≈ M
′
. In the other side, if the loss of model M

′
is much larger than M , the

new model could be not in convergence. Therefore, the model will continue updating

based on the loss for each epoch. In the end, θ ̸= θ
′
. Meanwhile, as the loss is larger,
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in order to be converged, the model has to follow some false labels, which means it is

less accurate.

However, in some cases, even if the loss increases, the converged model M
′
is still

likely to share the same accuracy with M . That is due to the inproper increase in loss.

Even the parameters θi varies, the original dataset still follows the distribution in the

parameters and eventually, the final performance remains unchanged. Therefore, in

order to have the final M i unlike M as much as possible, we need to maximize the

artificial loss we add into the model. Then, there are two questions to be solved.

The first one is what kind of samples are under consideration. Given the prediction

from the model and its original label in the dataset, there are two groups: samples

predicted right and samples predict wrong. For the former group samples, as the

original model gives them right predictions, they will be predicted wrong in the new

dataset and contribute loss to the model. On the other hand, for the latter group

samples, the loss will decrease after modifying them. In conclusion, we choose the

former group samples.

The other one is about the priority of samples. Even if samples are in the same

group, the loss contribution of them is different. In some regression loss function,

the result is a continuous one. For some samples, the loss of them is large while for

the rest, the loss is low. Apparently, we should consider the samples that have larger

loss, as it can reshape the θ
′
in a big step. However, in ML theory, not everything

should seek for ultimation. The way training the ML model is to seek for a balance

point. Possibly, there is a time or selection when not everything selected for the best

can have a highest performance. But in anyway, using different priorities could help

us find the best solution to it.

3.7.2 Features of Adversarial Samples

To create well-designed adversarial samples, the goal is to identify weaknesses in the

ML model and make the smallest possible modifications to the input while still causing

misclassification. As illustrated in Figures 3.4 and 3.5, consider the original normal

sample x represented by the green dot. The black dot denotes the adversarial sample

generated based on the modified boundary f
′
(x). In this case, the adversarial sample

will lead to a different prediction from x according to f
′
(x), while it does not influence



30

f(x), as shown by the red dot. The key to successful adversarial sample generation

lies in finding the right balance between perturbation and closeness to the decision

boundary. A carefully crafted adversarial sample can effectively expose vulnerabilities

in the ML model without drastically altering the input’s original characteristics.
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Normal
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Figure 3.4: An example of adversarial sample generation in a linear model. By
changing the boundary, the adversarial sample in black can only invade the new one
but the sample in red is expected.

For D, the loss depends on the predicted labels of IDS for both adversarial and

benign samples. If the S-IDS has a significant discrepancy with IDS, it can create a

substantial impact on D. Similarly, the update of G is based on D’s performance in

detecting adversarial samples. If G behaves differently, D will follow suit. Addition-

ally, since D takes the output of G as input, any changes in the training dataset of

D can have further unpredictable effects.

Considering the above factors, we can modify the samples whose predicted and

true labels are the same to increase the ML model loss, which is in line with the

S-IDS’s objective. To determine which samples have a considerable impact on G

and D training, we propose a simple hypothesis that this impact is related to the

distance between the original sample and the adversarial sample. Both positive and

negative correlations between this distance and the impact are considered in our tests

to account for different possibilities.
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Figure 3.5: An example of adversarial sample generation in a ellipse boundary. By
expanding the boundary, the adversarial sample in black can only invade the new one
but the sample in red is expected.

3.7.3 Sample Selection Process

Given the samples selected, we have two ways to change the labels of these samples

and the update the S-IDS. The first one is modifying them many times. In this way,

we only select some of the samples and update our model each time until no samples

are left. The other way is modifying them in just one time. In the end, we only select

the second way based on the following analysis.

The first reason is about the data distribution. When we modify some samples,

we can let S-IDS reshape another data distribution p
′

data, and most of the modified

samples will be closer to it than the original one. However, when we modify another

group of samples, they are from p
′

data, and S-IDS forms another data distribution

p
′′

data. When we look back at the first series of modified samples, they could be

farther from p
′′

data than p
′

data. That means p
′′

data could partially bounce back to the

pdata. In addition, for the rest groups of samples, the changes are not quite under

control. When the numbers of modified samples are the same, modifying in one time

creates a larger gap than modifying in several times.

The other reason is not enough loss. When modifying in several times, the noise

ratio in each time is divided in the same number. For the small group of samples,
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even if we select the best ones, the loss it contributes to the S-IDS is quite small. It

is hard for the S-IDS to sacrifice the right results to decrease the loss. In the end,

the model is changed in a small degree. Although we repeat it several times, the

modification is still less than in only one time but all available samples, just like the

distance principal shown in Eq. (3.13).

D(v⃗0, v⃗f ) ≥ D(v⃗0, v⃗n) (3.13)

D(v⃗, v⃗f ) =
n∑︂

i=1

D(v⃗i−1, v⃗i) (3.14)



Chapter 4

Performance Evaluation

In this chapter, we will present a comprehensive overview of the evaluations conducted

during this research. Firstly, we introduce the evaluation setup, which includes the

introuduction and preprocessing steps of the CICIDS2017 dataset [13] and details

about the simulation environment. Next, we showcase the performances of our IDSs

and the IDSGAN attacks under various configurations. Finally, we conduct multi-

ple comparison experiments to assess the effectiveness of the Sophon IDS (S-IDS)

framework in response to IDSGAN attacks.

4.1 CICIDS2017: A Comprehensive Dataset for IDS Studies

4.1.1 Overview of CICIDS2017

Figure 4.1: The testbed architecture in CICIDS2017. It includes the Victim-Network
and Attack-Network, both of which contain all the necessary equipments and systems.

Sharafaldin et al. [13] proposed a new dataset called CICIDS2017. They em-

ployed a testbed architecture, as shown in Figure 4.1, to collect real-world traffic.

Unlike previous datasets, CICIDS2017 includes all the essential equipment present in

the Victim-Network. Additionally, they utilize the B-Profile system [45] to generate

33
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benign traffic across multiple protocols. During a 5-day data capture of real-world

traffic, they collected a substantial number of flows and analyzed the results using

CICFlowMeter to extract relevant features. This dataset encompasses both benign

traffic and a wide range of up-to-date attacks, such as denial of service (DoS), port

scan, and infiltration. The number of samples for each attack type is shown in Ta-

ble 4.1. Based on this dataset, they trained several IDSs and provided the top feature

weights for each type of attack.

Table 4.1: Number of each type of traffic in CICIDS2017

Type of Traffic Number

Benign 2273097
DoS Hulk 231073
PortScan 158930
DDoS 128027
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS Slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web Attack: Brute Force 1507
Web Attack: XSS 652
Web Attack: Brute Force 36
Web Attack: Sql Injection 21
Heartbleed 11

4.1.2 Preprossing

In addition to the samples with bengin labels, we choose four types of attacks: DDoS,

DoS Hulk, DoS GoldenEye and portscan as they are the types having the top 4

numbers. We mark all these four types as malicious so than we transform the task

from the multi-classification into binary-classification.

Even if Sharafaldin et al. [13] provides the comma-seperated values (CSV) files

of the dataset, the feature values are still not in a completely useful format in ML

models and we need to do some preprocessing. In the first step, we have to remove

those samples whose feature values are incomplete or invalid, which helps us in the
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following training. Then, we will handle the features in the dataset. The features are

classified into three major groups: categorical features xcat, continuous features xcon

and flags xflag.

Firstly, for the continuous features, we scale the them into a range of 0 and 1.

Suppose the values of one sample and the whole dataset of the feature i are xi and

Xi. We use the mini-max scale to get the new feature value x̄i in Eq. (4.1). However,

some reasonable values are still outside the [0,1] range, as in fact the valid range is

larger than that in this dataset. Nevertheless, we do not use the theoretical minimum

and maximum values to do the scaling because most new values are very small, which

does no help to the training.

x̄i =
xi −min(Xi)

max(Xi)−min(Xi)
i ∈ con (4.1)

Since we cannot apply Eq. (4.1) to the categorical values xcat, a different approach

is required. For categorical features with a large number of values, such as IP ad-

dresses and ports, we opt to remove them from the dataset, as they make minimal

contributions to the detection task. Conversely, for categorical features with only a

small number of unique values, we use dummy variable encoding. In this method,

if a feature has n possible values, the size of the vector representing this feature is

log n, significantly reducing the dimensionality compared to one-hot encoding. We

represent the encoded values of these categorical features as xev.

To simplify the training process, we reorder these features in Eq. (4.2) so that the

models can easily select and concatenate different features. Subsequently, we split

the samples into a training set and a test set in a 7:3 ratio. Both the training set

and the test set are utilized during the IDS and S-IDS training phases, while only the

training set is employed in IDSGAN training.

x̄ = (x̄con, xflag, xev) (4.2)

4.1.3 Functional and Non-functional Features

As mentioned earlier, the IDSGAN framework only permits modification of the non-

functional features. Following the training process, we also need to separate the
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Table 4.2: Feature weight for the each label

Type of traffic Feature Weight

Benign

B.Packet Len Min 0.0479
Subflow F.Bytes 0.0007
Total Len F.Packets 0.0004
F.Packet Len Mean 0.0002

DoS Hulk

B.Packet Len Std 0.2028
B.Packet Len Min 0.1277
Flow Duration 0.0431
Flow IAT Std 0.0227

PortScan
Init Win F.Bytes 0.0083
B.Packets/s 0.0032
PSH Flag Count 0.0009

DDoS

B.Packet Len Std 0.1728
Avg Packet Size 0.0162
Flow Duration 0.0137
Flow IAT Std 0.0086

DDoS GoldenEye

B.Packet Len Std 0.1585
Flow IAT Min 0.0317
Fwd IAT Min 0.0257
Flow IAT Mean 0.0214

functional features from the rest. According to [13], we can obtain the weight for

each feature contributing to the decision of a certain type of traffic, as shown in

Table 4.2. We select all the features listed in this table as the functional features,

while the remaining features are considered non-functional features.

4.2 Evaluation Setup

The entire evaluation consists of two main parts. The first part involves the training

of IDSGAN, where we employ the framework shown in Figure 3.1 to simulate real-

world attacking scenarios. The second part is the performance test for S-IDS under

the trained IDSGAN, utilizing the framework depicted in Figure 4.2. During this

evaluation, we utilize all the samples from the test set, and the IDSGAN will reshape

these samples to generate the corresponding adversarial samples.
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Since the S-IDS is solely responsible for sending fraudulent information, we ap-

ply the original IDS to identify the adversarial samples. We collect the number of

malicious and benign traffic instances for these malicious samples and calculate the

detection rate (DR) accordingly. To account for the potential influence of random

factors on performance, we repeat the tests 5 times.

Test Set IDSGAN

Malicious
Samples

Adversarial
Samples

Malicious

Benign

IDS

Detection
Rate

Figure 4.2: The testbed architecture in testing performance of S-IDS. Note that the
effect of S-IDS is inside the IDSGAN framework.

4.3 Performance of IDS and IDSGAN

We have built four IDS models using the MLP, RNN and LR algorithms and compare

the confusion matrix of them. As shown in the Figure 4.3, the MLP model is most

accurate in both the benign samples and malicious samples. The RNNmodel performs

the second and the LR model has the worst accuracy.

Next, we proceed to compare the performances of the IDSGAN framework on

attacking the four IDS models mentioned earlier. For each original malicious sample,

we utilize the corresponding adversarial sample generated by the IDSGAN’s generator

and assess the detection rates in these four IDS models.

As shown in Figure 4.4, the average detection rates for the original malicious

samples of the IDSs in MLP, RNN and LR models are 97.7%, 95.7% and 90.3%,

respectively. However, the average detection rates for the adversarial samples are

only 8.7%, 17.0% and 21.4%, respectively. The comparison clearly demonstrates that

the IDSGAN is capable of generating adversarial samples that largely go undetected

by the IDS. This performance variation is evident across the different IDS model

types, with the best results achieved for the MLP model and the worst for the LR

model. Additionally, we observe that the performance of IDS in LR models is not
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as strong as that of the MLP and RNN. Clearly, the simple ML models struggle to

handle this dataset effectively.

Then, We focus on the MLP and RNN models. The MLP-based IDS exhibits a

higher detection rate for the original malicious samples compared to the RNN-based

IDS, with the latter being approximately 2 percent lower. However, the average

detection rate of the RNN-based IDS is about 8 percent higher than that of the

MLP-based IDS when considering adversarial samples. Although these results might

suggest that MLP is better at detecting original malicious samples while RNN is

better at detecting adversarial samples, it is essential to note that even the RNN-

based IDS cannot defend against the IDSGAN attacks.
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Figure 4.5: The loss of generator and discriminator during the IDSGAN training on
MLP-based IDS.

Now, we record the loss values during the IDSGAN training. We take the training

process on the MLP-based IDS as an example, and the results are shown in Figure 4.5.

From the start, both the generator and discriminator show significant absolute loss

values, and as the training progresses, these values gradually converge to zero. As

discussed in the last chapter, this moment indicates that the adversarial samples

generated by the generator are nearly successful, while the discriminator struggles to
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distinguish between the benign and malicious samples from the black-box IDS.

4.4 Performance of S-IDS

In this section, we evaluate the performance of our S-IDS. To identify the best S-

IDS configuration, we apply all possible combinations of the parameters mentioned

in the last chapter. For this evaluation, we specifically choose ω ∈ {0.3, . . . , 0.9}. To
facilitate comparison among all the potential strategies, we label them with different

name-tags as shown in Table 4.3. To mitigate random bias to some extent, we repeat

the tests 5 times and present the average results in the graphs. The values of ω are

represented on the x-axis, while the average detection rates (DR) are plotted on the

y-axis. Additionally, we include the detection rate of the random selection strategy

as a reference for comparison.

Table 4.3: Name tag of all possible scenarios

Parameters
DASOS DASOS DVT DVT
P = U P = D P = U P = D

S = s0 DASOS-U-0 DASOS-D-0 DVT-U-0 DVT-D-0
S = s1 DASOS-U-1 DASOS-D-1 DVT-U-1 DVT-D-1
S = s01 DASOS-U-01 DASOS-D-01 DVT-U-01 DVT-D-01

Firstly, we will compare the performance of these strategies under the RNN model.

The results are shown in Figures 4.6 and 4.7.

As evident from these figures, in most cases, the detection rate rises as ω increases.

Now, we compare the results shown in these two figures.

Firstly, we compare the results of the DASOS function in Figure 4.6. Here, we

observe that as ω increases, the average detection rate generally rises. Depending on

the specific strategy, the peak value appears at different ω values. For instance, the

‘DASOS-D-1’ strategy reaches a peak value of 47.1% at ω = 0.8, while the ‘DASOS-

U-1’ strategy peaks at 46.8% at ω = 0.6. Overall, the average detection rate shows

significant improvement, but it is still comparable to or worse than the random se-

lection strategy.

Next, we examine the results of the DVT function in Figure 4.7. Similarly, the

average detection rates generally increase with ω, and the peak value varies depending

on the strategy. However, unlike the DASOS function, all the DVT-based strategies
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Figure 4.6: RNN(DASOS) - The average detection rate under diffrent ω using DASOS
as the TV function in RNN models
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outperform the random selection. Among them, the ‘DVT-U-01’ strategy achieves

the highest peak value of 59.4% at ω = 0.7. On closer examination, we find that for

the peak value, the U flag performs better than the D flag for s1 and s01, but shows

the opposite trend for s0. Furthermore, the S flag indicates that s01 consistently

performs the best, followed by s1.

Now we will compare the performance of these strategies under the MLP model.

The results are shown in Figures 4.8 and 4.9.
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Figure 4.8: MLP(DASOS) - The average detection rate under diffrent ω using DASOS
as the TV function in MLP models

In Figure 4.8, the results of the DASOS function show minimal variation from the

random selection strategy. The largest difference is only about 1 percent, observed in

the ‘DASOS-U-01’ strategy at ω = 0.9. Similarly, in Figure 4.9, we find comparable

findings, with the ‘DVT-U-01’ strategy achieving the best result, peaking at 16.5%

when ω = 0.8. The performance of the U flag is superior to the D flag, but the

difference is not as pronounced as observed in the RNN models. The s01 flag remains

the optimal choice.

Then, we also do comparison in LR models and the results are shown in Fig-

ures 4.10 and 4.11.
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Figure 4.9: MLP(DVT) - The average detection rate under diffrent ω using DVT as
the TV function in MLP models
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Figure 4.10: LR(DASOS) - The average detection rate under diffrent ω using DASOS
as the TV function in LR models
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Figure 4.11: LR(DVT) - The average detection rate under diffrent ω using DVT as
the TV function in LR models

Indeed, we can gather valuable insights regarding LR models from the results

presented in Figure 4.10. The average detection rate consistently increases as ω

increases. Unlike the other two models, there is a significant leap between ω = 0.8

and ω = 0.9, with the largest difference being about 5 percent, in contrast to the

other leaps which are less than 1 percent. Moreover, similar to the MLP models,

the DASOS function does not show significant improvements compared to random

selection. Furthermore, the results exhibit the same trend as in MLP models. The

highest average detection rate of 42.5% is achieved by the ‘DVT-U-01’ strategy at

ω = 0.8. To achieve good performance, it is essential to use the U flag and the s01

flag, with improvements of 3 percent and 5 percent, respectively.

Among all the results obtained from these three valid models, we can draw some

conclusions. Firstly, the DASOS function does not demonstrate significant improve-

ments in sample selection. Although the results are better than those without S-IDS,

random selection can still compete with these strategies. On the other hand, the

DVT function proves to be highly effective during the evaluation and consistently

outperforms other approaches. It remains the best option, particularly when ω takes
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on larger values, leading to the best results. Among the DVT function choices, the U

flag and s01 are the optimal options. The U flag introduces more loss to the model for

one sample, while s01 contributes more samples. Consequently, S-IDS built based on

these choices exhibits the most significant difference from the IDS, thereby effectively

interfering with the training of IDSGAN.

Furthermore, among these three models, the RNN-based S-IDS exhibits the most

substantial increase in detection rate, ranging from 17.0% to a maximum of 59.3%.

On the other hand, the LR-based and MLP-based S-IDS provide increases of up to

21.1% and 7.8%, respectively. This observation suggests that our framework appears

to be particularly suitable for RNN models.

4.5 Performance of S-IDS Variants
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Figure 4.12: The detection rate of cross-model framework. A-B means using A as the
IDS model and B as S-IDS model

In the last section, we made the assumption that the S-IDS and IDS share the

same ML models. However, this may not always be the most optimal arrangement.

To explore the best design, we employ the cross-model framework, where the IDS



46

and S-IDS use different models. For instance, we can build our IDS using the MLP

model, while employing another RNN model to function as the S-IDS. In this part,

we compare the LR, RNN, and MLP models as part of the cross-model evaluation, as

depicted in Figure 4.12. Given the results obtained in the previous section, we select

the trained S-IDS using the ‘DVT-U-01’ strategy and set ω ∈ {0.3, . . . , 0.9} for this

comparison.

Based on these results, we can draw some possible conclusions. For all types of

IDS, the RNN model appears to be the best choice for the S-IDS. In the MLP-RNN

framework, the detection rate reaches its highest value of 18.4% at ω = 0.9. However,

at lower values of ω, sometimes using LR models can yield better detection rates.

In the LR-RNN framework, it consistently performs the best, achieving the highest

detection rate of 45.6%, while the LR-LR framework only reaches 42.5%. Moreover,

the RNN-RNN framework remains the best among all combinations, exhibiting the

highest detection rate of 59.4%.



Chapter 5

Conclusion and Future Work

In this chapter, we will give our conclusions based on the results and analysis in

the last chapter. Then, we will present more interesting findings during the whole

evaluation and raise some possible future work.

5.1 Conclusion

In this paper, we introduce a new framework, using the Sophon IDS (S-IDS) to mislead

the GAN training. In order to build the S-IDS, we present a simple strategy where

we train the S-IDS by modifying the labels of some samples. Besides, we introduce

some parameters in this strategy, including the distance definition, priority, selected

labels and the noise percentage. By comparing the performances among them, we can

choose the optimal parameters building the S-IDS. To evaluate it, we simulate the

process of IDSGAN attacks on these S-IDSs and the original IDS. Three different ML

models, Multilayer Perceptron (MLP), Recurrent Neural Network (RNN) and Logistic

Regression (LR), are selected in the IDS and S-IDS training. The results demonstrate

that the best S-IDS can significantly increase the detection rate in various scenarios:

from 8.7% to 16.5% for the MLP model, 17.0% to 59.4% for the RNN model and

21.4% to 42.5% for the LR model. Furthermore, we investigate the performance of

S-IDS when IDS and S-IDS adopt different ML models (e.g. RNN and MLP are

adopted by IDS and S-IDS, respectively). Our experimental results indicate that

S-IDS leads to the highest detection rate when RNN is employed by both IDS and

S-IDS.

5.2 Future Work

Although we have shown that the S-IDS is able to increase the detection rate of

the adversarial samples, there are also some existing issues not solved during our

47
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Figure 5.1: The relationship between detection rate and the statistics of S-IDS. The
yellow node is the IDS as a comparison.

evaluation. We will discuss them in this part and give our new idea of the enhancement

of either the S-IDS or IDSGAN.

5.2.1 S-IDS Statistics and Detection Rate

In the previous tests, we compared the relationship between the detection rate and the

corresponding models and parameters. However, it is crucial to understand that the

part that directly influences the GAN training is the S-IDS, even though it is trained

based on these variables. Therefore, we need to investigate if there exists a functional

relationship between the S-IDS statistics and the final detection rates. While we

have mentioned that the S-IDS should be distinct from the IDS, it remains unclear

which statistics would be the most promising. After conducting the evaluation, we

select some of the trained S-IDS from the past tests and choose accuracy, precision,

recall, and F1-score as the statistics of the S-IDS. We then plot these data points in

Figures 5.1 and 5.2.

The results for the MLP-based S-IDS indicate that we need to minimize the four



49

0.4 0.6 0.8
Accuracy

20

30

40

50

60

DR
(%

)

0.4 0.6 0.8 1.0
Precision

20

30

40

50

60

DR
(%

)

0.4 0.6 0.8 1.0
Recall

20

30

40

50

60

DR
(%

)

0.4 0.6 0.8
F1-Score

20

30

40

50

60

DR
(%

)

Figure 5.2: The relationship between detection rate and the statistics of S-IDS. The
yellow node is the IDS as a comparison.

statistics as much as possible to achieve the best performance. However, the RNN-

based S-IDS shows a different pattern. Here, the detection rate increases as the recall

rises, while the accuracy and precision should be maintained around 0.5. At present,

we do not have a clear understanding of why these two models exhibit such differences

in behavior. However, understanding these differences is crucial if we aim to build an

optimal framework.

Further investigation and analysis are necessary to uncover the underlying reasons

for the contrasting behavior between MLP and RNN-based S-IDS. Once we under-

stand these reasons, we can better design and optimize the framework for achieving

the most effective performance.

5.2.2 Overtraining of IDSGAN

During the IDSGAN training, we employ a stop timing strategy based on the con-

vergence of the detection rate. However, it is worth noting that the output of the
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generator network, G, changes as the IDSGAN trains. As the training nears comple-

tion, the output becomes significantly smaller. To gain insights into the regulations

during the IDSGAN training within the SophonIDS framework, built from the ‘DVT-

U-01’ strategy with ω = 0.9, we collect information on the loss, the detection rate

of adversarial samples, and the index of G output as given in Eq. (5.1). Here, N

represents the number of all continuous non-functional features, and n represents the

number of samples. To handle cases where a feature has a value of 0, we replace it

with 10−30 instead. We present the trends for the MLP, RNN, and LR models in

Figures 5.3 and 5.4.

index =

∑︁n
i=1

∑︁N
j=1 logG(xj

i )

n ∗N
(5.1)
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Figure 5.3: The trend of value index and detection rate as epoch increases in training
dataset. The solid line is the index while the dashed line is the detection rate.

From the figures, we observe that the loss and the index of the output are both

decreasing in all three models (MLP, RNN, and LR). Comparing the index of the

original samples (-2) with the final G output, it becomes evident that the output

is indeed very small. Although the flow is still valid, it is not the desired one. For

attackers, the objective is to maintain traffic similar to the original, keeping functional

features unchanged while controlling non-functional features within a common and
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Figure 5.4: The trend of value index and loss as epoch increases in training dataset.
The solid line is the index while the dashed line is the loss.

wide range. For instance, they might choose to stop the GAN training when index ∈
[−5,−1]. As indicated by the figure, when the epoch reaches 10, the loss is already

low, and the value of the index is within a reasonable range, even though the detection

rate has not yet converged. However, there is no standard criterion for judging the

validity of adversarial samples, making it challenging to determine the exact timing.

Another option is to use the Adaptive Fast Gradient Sign Method (Ada-FGSM)

as shown in Eq. (5.2). Instead of using the output of G directly, we multiply it by

a small value ϵ and add it to the original sample, similar to how the FGSM works.

However, this approach requires another loss function to update the parameters as

well.

xadv = x+ ϵ ∗G(x) (5.2)

5.2.3 Further Variants of S-IDS

In this paper, we raise the concept of the S-IDS. To simplify the issue, we modify

some labels of the dataset and train the model. Actually, this S-IDS is still a machine

learning model while it does not have to be. To find out more possibilities, we analyse
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the loss of generator and discriminator during the whole training process of IDSGAN.

As the analysis is only a hypothesis, we put this part to the appendix.

In conclusion, the choices of S-IDS can be diverse, as long as the model can

interfere Bnormal and Bmal. We can use the S-IDS mentioned in the previous chapters,

or the simple models from decision tree and random forest. Meanwhile, we can

combine the advantages of different ML models to enhance the IDS design. For

example, as MLP has the higher detecion rate of original malicious samples while

RNN performs better in adversarial samples, we can update our IDS in Eq. (5.3). As

long as either of the model predicts the flow as malicious, it will not be accepted.

However, such design is in sacrifice of the error for the benign traffic.

xmal ∈ {x|IDSRNN(x) == mal or IDSMLP(x) == mal} (5.3)

In addition to those static models, we can also use dynamic models. The S-

IDS can be updated using incremental learnings as it can learn more from the new

samples [46]. Another option is that the fraud feedback is related to the number of

each class in the previous predictions in order to control the percentage of Bnormal

and Bmal in one batch.

Meanwhile, the algorithm in the previous chapter is one example in the S-IDS

framework. It is designed for the IDSGAN attacks as it can interfere the Bnormal

and Bmal in the loss function. However, many new attacking frameworks emerge and

they have other special features, such as loss functions and training processes. In

order to apply the concept of S-IDS to defend a specific attacking framework or in

a different dataset, a new algorithm should be designed accordingly. Moreover, it is

not guaranteed that S-IDS can be applied to every scenario. Possibly, no algorithm

could have a reasonable performance for a certain task. In conclusion, we still need

more research on the scenario and the algorithm before applying the S-IDS into the

reality defence.

5.2.4 In-depth Theoretical and Practical Verification

In the methodology chapter, we provided an analysis of why S-IDS can help increase

the detection rate for adversarial malicious samples, and we presented our label mod-

ification algorithm based on this analysis. However, we acknowledge that we cannot
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claim with certainty that this is the optimal strategy. The complexity of machine

learning algorithms makes it challenging to understand every detail inside them. To

make it more practical and convincing, further research is needed.

One crucial area of research is the mathematical derivation of the modification

rule. This could involve considering moments and samples for modification or ex-

ploring other factors not mentioned in this paper. By delving deeper into the mathe-

matical aspects, we can gain a better understanding of the modification process and

potentially enhance the framework’s performance.

Furthermore, our evaluation was conducted on the CICIDS2017 dataset in this

paper. It is essential to verify the framework’s effectiveness on other datasets, such as

NSL-KDD [12] and CSE-CIC-IDS2018 [13]. Additionally, exploring other domains,

such as image identification datasets like MNIST-10 and ImageNet, could be valuable.

By providing fraud feedback, the framework may pose challenges for attackers trying

to generate adversarial samples and learn the data distribution. Our S-IDS framework

can also be targeted for areas besides IDSGAN attacks in the anomaly-based IDS. It

can be extended to the hybrid IDS, or other attacking strategies on IDS, or even not

in the cybersecurity. It is believed to have a wide usage.

5.2.5 Measures Against Label Cleaning

In this framework, we use the S-IDS to interfere the IDSGAN attacks. A success-

ful fraud information is to make the others believe what they get is the right one.

Actually, we can always give the feedback of ‘malicious’ to the IDSGAN, it can also

prevent the training. But that is easily detected by the attacker and they realize

they are fooled. Therefore, we expect our S-IDS can give the feedbacks that still

follow a possible data distribution and it would be better if the attacker is hard to

know whether they are deceived. There are many papers that raise some algorithms

cleaning the wrong labels in the dataset and most of them perform well [47] [48]. In

our evaluation, we do not need to test whether our flipped dataset can be detected

by these algorithms as the attackers actually do not know the existence of S-IDS.

However, if this framework is already known, it is likely that they do a pre-attack.

Based on the feedback, they can have a dataset and use label cleaning algorithms to

find the wrong labels. After this, they could train their own IDS and train in a local
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environment. In this way, our framework turns useless. Therefore, in order to avoid

this, the S-IDS should also have the ability to resist the label cleaning.



Appendix A

An In-depth Analysis of the Loss of IDSGAN

Now, let us transform the loss function in IDSGAN. Given the black-box IDS model

B, dataset X and the true labels y, we define the following two sets: Ymal = {Xi|yi =
1, i ∈ N} and Ynormal = {Xi|yi = 0, i ∈ N}. Also, x̄ is the transformed genera-

tor input vector of sample x and Gt(x̄) represents the adversarial sample for x. E
represents the average function. According to the IDSGAN paper, we can have the

generator (G) loss LG and the adversarial samples A:

A = {G(x̄)|x ∈ Ymal}

LG = Ex∈AD(x)

During one batch, we can have a combination set C and two sets from IDS model

B:

C = Ynormal ∪ A

Bmal = {x|x ∈ C,B(x) = 1}

Bnormal = {x|x ∈ C,B(x) = 0}

According to the loss function of discriminator D in IDSGAN, we can have two

parts and the final loss LD as:

LN
D = Ex∈Mnormal

D(x)

LM
D = Ex∈Mmal

D(x)

LD = LN
D − LM

D

Now, we define the following four sets:

55
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P n
a = {x|x ∈ A,B(x) = 0}

P n
n = {x|x ∈ Ynormal, B(x) = 0}

Pm
a = {x|x ∈ A,B(x) = 1}

Pm
n = {x|x ∈ Ynormal, B(x) = 1}

Meanwhile, we introduce two statistics and the new loss:

Rn
a =

len(P n
a )

len(P n
n ) + len(P n

a )

Rm
a =

len(Pm
a )

len(Pm
n ) + len(Pm

a )

LO
D = Ex∈Ynormal

D(x)
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Figure A.1: (a) The curve of each loss during the training. (b) The curve of each rate
during the training.

We take MLP-based IDS as the example. The curves for the above factors are

shown in Figures A.1 and A.2. In the beginning of the training, LM
D is almost at zero
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while LN
D has the large absolute value. Meanwhile, LG is nearly twice the value of

LN
D . As we can see from the figure of rates, Rn

a is close to 0.5, which means half of

the normal samples predicted by black-box IDS are from the original normal samples

and the rest are from the adversarial samples. However, Rm
a is zero. That is to say,

no adversarial samples are predicted as malicious. Then we analyse the curve for LO
D

shown in Figure A.2. The average outputs of original normal samples are at zero.

That explains why LM
D is almost at zero.

Now, we analyse how it helps us build the S-IDS. Firstly, We transform the defi-

nition of loss in Dt as:

LN
D =

len(P n
a )

len(P n
n ) + len(P n

a )
∗ Ex∈Pn

a
D(x) +

len(P n
n )

len(P n
n ) + len(P n

a )
∗ Ex∈Pn

n
D(x)

LM
D =

len(Pm
a )

len(Pm
n ) + len(Pm

a )
∗ Ex∈Pm

a
D(x) +

len(Pm
n )

len(Pm
n ) + len(Pm

a )
∗ Ex∈Pm

n
D(x)

By using the previous variables, we then simplify them into:
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LN
D = Rn

a ∗ Ex∈Pn
a
D(x) + (1−Rn

a) ∗ Ex∈Pn
n
D(x)

LM
D = Rm

a ∗ Ex∈Pm
a
D(x) + (1−Rm

a ) ∗ Ex∈Pm
n
D(x)

As shown in Figures A.1 and A.2, LO
D is almost at zero while LG has the larger

absolute value, we can omit the effect of the normal samples in original dataset.

Meanwhile, if we suppose Ex∈Pm
a
D(x) ≈ Ex∈Pn

a
D(x) ≈ LG, then we can have:

LD ≈ (Rn
a −Rm

a ) ∗ LG

Now we find out that the LD is proportional to Rn
a − Rm

a . If we can try to keep

|Rn
a −Rm

a | in a small value for the beginning epochs, we can minimize the LD as well.

That is to say, D has less ability to learn from this epoch and improves itself. Even

if G can update the parameters, we have already break their cross-learning process.

D cannot give a updated output for the adversarial samples in the new epoch and G

is not able to update in the proper way.

In our algorithm, we actually decrease the value of P n
n /P

m
n and eventually decrease

|Rn
a − Rm

a |. In fact, for the ML models, as long as we can decrease the accuracy, the

detection rate of adversarial samples will rise. This also explains why MLP-based

model has the best accuracy but the worst detection rate of adversarial samples from

IDSGAN.

Ideally, if we can control |Rn
a−Rm

a | around 0, the performance should be much bet-

ter. We may need another strategy to build the S-IDS by collecting the characteristics

of adversarial samples.
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[47] Mélanie Bernhardt, Daniel C Castro, Ryutaro Tanno, Anton Schwaighofer,
Kerem C Tezcan, Miguel Monteiro, Shruthi Bannur, Matthew P Lungren, Aditya
Nori, Ben Glocker, et al. Active label cleaning for improved dataset quality under
resource constraints. Nature communications, 13(1):1161, 2022.

[48] Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and Andrea Passerini.
Interactive label cleaning with example-based explanations. Advances in Neural
Information Processing Systems, 34:12966–12977, 2021.


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Intrusion Detection System
	Adversarial Samples for Machine Learning
	Generative Adversarial Networks and IDS
	Major Contributions
	Thesis Outline

	Related Work
	Machine Learning and Deep Learning
	Evolution of Intrusion Detection System
	Generative Adversarial Network
	White-box and Black-box Attacks
	Honeypot

	S-IDS: A Misinformation-based Method
	Overview of S-IDS
	Assumptions
	Details of IDSGAN
	Details of MLP-based and RNN-based IDS
	IDSGAN Training
	Details of S-IDS
	Training of S-IDS
	Key Parameters of S-IDS
	Label Flipping in S-IDS

	Further Discussions
	Sample Modification in Machine Learning
	Features of Adversarial Samples
	Sample Selection Process


	Performance Evaluation
	CICIDS2017: A Comprehensive Dataset for IDS Studies
	Overview of CICIDS2017
	Preprossing
	Functional and Non-functional Features

	Evaluation Setup
	Performance of IDS and IDSGAN
	Performance of S-IDS
	Performance of S-IDS Variants

	Conclusion and Future Work
	Conclusion
	Future Work
	S-IDS Statistics and Detection Rate
	Overtraining of IDSGAN
	Further Variants of S-IDS
	In-depth Theoretical and Practical Verification
	Measures Against Label Cleaning


	An In-depth Analysis of the Loss of IDSGAN
	Bibliography

