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Abstract

Graph polynomials encode graph theoretic information in the form of polynomials.

These polynomials have been of interest for decades, for both graph theoretic insight

and their mathematical properties. This thesis discusses one particular graph polyno-

mial: the degree polynomial. This graph polynomial encodes the degree sequence of a

graph, and has only recently appeared in the literature. We begin by examining basic

properties of the degree polynomial, including some special evaluations. Much of our

focus is on roots of the degree polynomial: we explore how these roots are related

to the roots of polynomials with non-negative integer coefficients, their density, and

how they are impacted by restricting certain graph parameters. The latter leads us

to bounds on the roots in terms of graph order. We also study the roots of degree

polynomials for a few families of graphs, as we are able to say much more about their

roots. Some possible extensions or generalizations of the degree polynomial are also

briefly discussed.

ix



List of Abbreviations and Symbols Used

Notation Description

V (G) The vertex set of a graph G.

E(G) The edge set of a graph G.

G− e The graph G with an edge e removed, that is V (G − e) = V (G) and

E(G− e) = E(G)− {e}.
Gc The graph complement of G.

z The complex conjugate of a complex number z.

Re(z) The real component of a complex number z.

Im(z) The imaginary component of a complex number z.

Z The domain of integers.

Q The field of rational numbers.

R The field of real numbers.

C The field of complex numbers.

Z≥a The integers greater than or equal to an integer a.

Z≥a[x] The polynomials with coefficients that are integers greater than or equal

to an integer a.

Z(F) The set of all roots of polynomials in a family of polynomials F .

D(G; x) The Degree Polynomial of a graph G, with indeterminate x.

D(G) The set of all degree polynomials for graphs in G, a family of graphs.

D The set of all degree polynomials for (simple) graphs.

Dmulti The set of all degree polynomials for multigraphs.

Sn The set of all simple graphs of order n.

x



Acknowledgements

This project would not have been possible without the support of my supervisor,

Dr. Jason Brown, to whom I owe my deepest gratitude. His advice, expertise, and

patience have proved invaluable to keeping me motivated and confident in my work.

I feel extremely fortunate to have worked with such a caring mentor over these past

years.

I also send thanks to my committee members J. Janssen and R. Nowakowski,

for taking the time to read this thesis and providing feedback, and to NSERC for

supporting this research.

Not least, I am thankful for Alyson and my parents. They have continued to

be understanding and encouraging, without which these past years would have been

much more difficult.

xi



Chapter 1

Introduction

1.1 Basic Graph Theory

We begin simply by defining a graph and its variations, as the terminology for graphs

is not universal across the literature.

Definition 1.1. A multigraph G is an ordered pair (V,E) where V = V (G) is a

(possibly empty) finite set whose elements are called vertices, and E = E(G) is a

finite multiset of sets of vertices of size two, called edges. G is called simple if an edge

appears in E at most once, ie. if E is a set. The term graph by default will refer to

a simple multigraph, unless specified otherwise.

A graph with n vertices and m edges (i.e. order n and size m) may be referred to as

an (n,m)-graph. Unless otherwise indicated, n and m will stand for the number of

vertices and edges of a graph under discussion. We shall follow [38] for further graph

theory definitions.

Now we list some well known families of graphs. These graphs will repeatedly

appear and prove useful for certain examples, so it is worth defining them here.

• The empty graph On = ([n], ∅) has vertices [n] = {0, 1, 2, ..., n−1} and no edges.

In other words, On consists of n isolated vertices. See Figure 1.1.

0 1 2 n− 1

Figure 1.1: The empty graph with vertices 0, 1, ..., n− 1.

• The complete graphs Kn = ([n], E) where E = {{i, j} : i < j}. These simple

graphs have n vertices, and every possible edge. See Figure 1.2.

1



2

0

1

2

n− 1

Figure 1.2: The complete graph with vertices 0, 1, ..., n− 1.

• The path graphs Pn = ([n], E), where E = {{i, i + 1} : 0 ≤ i ≤ n − 2}. See

Figure 1.3.

0 1 2 n− 1

Figure 1.3: The path graph with vertices 0, 1, ..., n− 1.

• The cycle graphs Cn = ([n], E), where E = {{i, i+ 1} : i ∈ [n]}. The addition
is taken to be modulo n. See Figure 1.4.

• The star graphs Sn = ([n], E), where E = {{0, i} : 1 ≤ i ≤ n− 1}. See Figure

1.5.

• The complete bipartite graphs Kn,m = ([n + m], E), having edge set

E = {{i, j} : 0 ≤ i ≤ n− 1, n ≤ j ≤ n+m− 1}. See Figure 1.6.

Let G, H be graphs. Unless otherwise stated, we refer to [38] for the following

graph operations. If V (G) and V (H) are disjoint, the graph union G∪H is the graph

with vertex and edge sets
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0

1

2

n− 1

Figure 1.4: The cycle graph with vertices 0, 1, ..., n− 1.

1

2

3

n− 1

0

Figure 1.5: The star graph with vertices 0, 1, ..., n− 1.

V (G ∪H) = V (G) ∪ V (H), E(G ∪H) = E(G) ∪ E(H).

If V (G) and V (H) are not disjoint, simply take disjoint isomorphic copies of G,H.

As an example, consider the path graphs G = P3: G = ({1, 2, 3}, {{1, 2}, {2, 3}}) and
H = P2: H = ({4, 5}, {{4, 5}}). Then G ∪H is the graph with vertices {1, 2, 3, 4, 5}
and edges {{1, 2}, {2, 3}, {4, 5}}. If V (G) and V (H) are disjoint, then the graph join

G+H has vertices and edges given by

V (G+H) = V (G) ∪ V (H),
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n− 1

2

1

0

n+m− 1

n+ 1

n

Figure 1.6: The complete bipartite graph Kn,m.

E(G+H) = E(G) ∪ E(H) ∪ {{g, h} : g ∈ V (G), h ∈ V (H)}.

If V (G) and V (H) are not disjoint, take disjoint copies as was done for the graph

union. The corona [21] G ⊙ H is formed in the following way: first, take |V (G)|
disjoint copies Hv of H. Join each vertex v of G to Hv, and the resulting graph is

G⊙H. The lexicographic product G[H] is the graph where

V (G[H]) = V (G)× V (H),

and

E(G[H]) = {{(g, h), (g′, h′)} : {g, g′} ∈ E(G), or g = g′ and {h, h′} ∈ E(H)}.

The cartesian product G □ H has vertices V (G)× V (H) and edges

E(G □ H) =

{
{(g, h), (g′, h′)} :

{g, g′} ∈ E(G) and h = h′, or

g = g′ and {h, h′} ∈ E(H)

}
.

The tensor product G×H has vertices V (G)× V (H) and edges

E(G×H) = {{(g, h), (g′, h′)} : {g, g′} ∈ E(G) and {h, h′} ∈ E(H)}.
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Figure 1.7: Examples for the above graph operations, taking G = P3 and H = P2.
Top row, left to right: G ∪ H, G + H, G ⊙ H. Bottom row, left to right: G[H],
G □ H, G×H.

See Figure 1.7 for an example of these graph products.

Each operation just outlined is a binary operation of graphs. An important unary

operator of graphs is the graph complement, or simply complement. For a graph G,

its complement, denoted Gc, is the graph with the same vertices as G and with edges

e ∈ E(Gc) if and only if e ̸∈ E(G). In other words, two distinct vertices are adjacent

in Gc if and only if they are not adjacent in G.

For a vertex v of a graph G, the neighbourhood set NG(v) is the set of vertices

NG(v) = {u : {v, u} ∈ E(G)}.

That is, NG(v) is the set of all vertices adjacent to v in G. The degree of v, denoted
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degG(v) (or deg(v) if G is clear by the context), is the number of edges to which

v belongs. If G is simple, then degG(v) = |NG(v)|. The maximum degree across

all vertices we shall denote by ∆(G), or simply ∆. Similarly, the minimum degree

will be denoted by δ(G) or δ. Suppose {v1, ..., vn} are the vertices of G, and that

di = deg(vi). If, without loss of generality, the vertices have been labelled such that

d1 ≥ d2 ≥ · · · ≥ dn, then the sequence d1, d2, ..., dn is called the degree sequence of

G. For example, consider the graph in Figure 1.8. Vertex a has a degree of 4, while

vertex f has degree 0. Furthermore, we have ∆ = 4, δ = 0, and the degree sequence

of the graph is 4, 3, 2, 2, 1, 0.

a

b

c

d

e

f

Figure 1.8: An example graph to illustrate various degree related concepts. This
graph has ∆ = 4, δ = 0, and degree sequence 4, 3, 2, 2, 1, 0.

1.2 Graph Polynomials

Those who study graph polynomials are concerned with special types of polynomials

that encode graph theoretic information about a graph. Some graph polynomials

were motivated by applications of graph theory, and others are simply derived from a

generating function definition. Let us now give a brief overview of some well known

graph polynomials.

A proper vertex colouring of a graph G with x colours is a function c : V (G) →
{1, 2, ..., x} such that if {u, v} ∈ E(G), then c(u) ̸= c(v). The chromatic polynomial

π(G, x) of a graph G is a polynomial in x that counts the number proper vertex
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colourings of G with x colours [18]. If G is an (n,m)-graph, then π(G, x) is a monic

polynomial of degree n, with alternating integer coefficients. Due to a theorem of

Whitney [39], the coefficients of π(G, x) can be expressed in terms of the broken

cycles of G: suppose that b : E(G) → [m] is a fixed bijective map, ie. an ordering of

the edges of G. For any cycle C of G, let e be the edge of C such that b(e) > b(f) for

all other edges f of C. Then C − e is a broken cycle with respect to b [18]. Setting hi

to be the number of spanning subgraphs of G with exactly n − i edges, and having

no broken cycles with respect b, the Broken Cycle Theorem [18] says that

π(G, x) =
n∑

i=1

(−1)n−ihix
i.

In particular, the coefficient on xn−1 is −m, and the coefficient on xn−2 is
(
m
2

)
−n(C3),

where n(C3) is the number of subgraphs of G isomorphic to C3. More information

about G is encoded in the roots of π(G, x): the multiplicity of 0 as a root is the

number of components of G, and the multiplicity of 1 as a root is the number of

blocks [18]. The least positive integer that is not a root is the chromatic number of

G.

Example 1.1. Consider the graph C4, labelled as in Figure 1.9. Before computing the

chromatic polynomial of C4, we define an ordering of the edges: ab < bc < cd < da.

C4 is a cycle, and thus contains only one broken cycle (with respect to our ordering),

namely the subgraph with edges ab, bc, cd. We can now find the coefficients hi for the

chromatic polynomial: there are three spanning subgraphs with three edges that do

not contain the broken cycle (the other spanning subgraph with three edges is precisely

the broken cycle), namely the subgraphs with edge sets {bc, cd, da}, {cd, da, ab}, and
{da, ab, bc}. Hence, h1 = 3. Since the only broken cycle of C4 has three edges, we

need not worry about spanning subgraphs containing a broken cycle for h2, h3, or

h4 as for these coefficients we count subgraphs with fewer than three edges. It is

therefore easy to see that h2 = 6 (every pair of edges forms a spanning subgraph),

h3 = 4, and h4 = 1. Putting this all together, we have

π(C4, x) = (−1)4−4h4x
4 + (−1)4−3h3x

3 + (−1)4−2h2x
2 + (−1)4−1h1x

= x4 − 4x3 + 6x2 − 3x.
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a b

cd

ab

bc

cd

da

Figure 1.9: The graph C4 with labelled vertices and edges.

The reliability polynomial of a graph is useful when studying a graph as a net-

work of communication. For this brief discussion on reliability, we refer to [15]. In

this model vertices are considered to be agents that communicate with each other

through edges, and each edge is independently operational with probability p ∈ [0, 1].

Only operational edges can pass information between agents, and agents are assumed

to be always operational (ie. they cannot fail). There are various notions of graph

reliability, such as two-terminal reliability : for two specified agents a, b, one is con-

cerned with whether or not a and b can communicate, ie. if there is a path between

a and b consisting of all operational edges. This can be naturally extended for k

specified agents. The type of reliability we consider here is all-terminal reliability,

where we wish for all pairs of agents to be able to communicate. That is, the spanning

subgraph with the operational edges contains a spanning tree.

A subset S of the edge set is called a state. Thus a state allows all pairs of agents

to communicate if and only if it contains a spanning tree of the graph, and such a

state is called an operational state. Let Ni be the number of operational states with

i edges. The reliability polynomial is a polynomial in p giving the probability that a

graph has all-terminal communication, and is calculated from the Ni:
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Rel(G, p) =
m∑
i=0

Nip
i(1− p)m−i.

Of particular interest are methods for computing the reliability polynomial (see, for

example, [28], [5], [23]), or properties of its roots [11].

Example 1.2. Consider again the graph C4 from Figure 1.9. C4 has one edge subset

of cardinality 4, namely all the edges, which indeed contains a spanning tree. Thus

N4 = 1. We have N3 = 4, since any three edges of C4 form a spanning tree. Any

subgraph of C4 with two edges is disconnected, so N2 = 0, and similarly N1 = N0 = 0.

Therefore,

Rel(C4, p) = N3p
3(1− p)4−3 +N4p

4(1− p)4−4

= 4p3(1− p) + p4

= 4p3 − 3p4.

The independence polynomial (or independent set polynomial) I(G, x) of a graph

is formed by counting the number of independent sets of each possible size ([25]):

I(G, x) =
n∑

k=0

bk(G)xk.

The coefficients bk(G) are the number of independent sets of G of cardinality k (b0 is

taken to be 1). Thus b1 = n, b2 = |E(Gc)| =
(
n
2

)
−m, and all non-zero coefficients are

positive integers. The degree of I(G, x) is β, the independence number of G. Closely

related to the independence polynomial is the clique polynomial C(G, x): if ak(G) is

the number of cliques of G with order k, then the clique polynomial is

C(G, x) =
n∑

k=0

ak(G)xk.

Since bk(G) = ak(G
c), it is easily seen that I(G, x) = C(Gc, x). As before, the roots

of the independent polynomial are of interest. Such roots are called independence

roots. In [12] it is shown that the modulus of roots of independence polynomials of

graphs of order n and independence number β is bounded by (n/β)β−1 + O(nβ−2).
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A graph is said to be well-covered if all of its maximal independent sets have the

same cardinality [32]. If G is well-covered, then the bound on the moduli of the

independence roots is improved to simply be β [8]. Furthermore, the real roots of

independence polynomials are dense in the set of non-positive real numbers, and the

complex roots are dense in C [9].

Example 1.3. We return to C4 to compute its independence polynomial. It is easily

seen that b4 = b3 = 0, since any subgraph induced by three or four vertices will

contain an edge. For the other coefficients, we have b2 =
(
n
2

)
− m = 6 − 4 = 2,

b1 = n = 4, and b0 = 1 by definition. Thus the independence polynomial of C4 is

I(C4, x) = b2x
2 + b1x+ b0

= 2x2 + 4x+ 1.

Lastly, we mention two other graph polynomials that are generating functions.

First is the domination polynomial : a set of vertices D of a graph G is called a

dominating set if, for any vertex v ∈ V (G), either v ∈ D or v is adjacent to some u ∈
D. In other words, a dominating set is a set of vertices who, collectively, are adjacent

to every other vertex in the graph [24]. Consider the sequence (s0(G), s1(G), ..., sn(G))

where si(G) is the number of dominating sets of G with i vertices. The domination

polynomial Dom(G, x) is the generating function of this sequence ([2]):

Dom(G, x) =
n∑

i=0

si(G)xi.

The lowest degree of a non-zero term of Dom(G, x) has exponent γ(G), the domina-

tion number of G, which is the order of the smallest dominating set of G. Hence γ(G)

is the multiplicity of the root 0 of Dom(G, x). It is conjectured that the coefficients

of Dom(G, x) form a unimodal sequence for all graphs [2], and several families of

graphs are known for which this holds [2, 4]. Recently it was shown that this holds

for almost all graphs [4], and a counterexample has yet to be found.

Example 1.4. For the cycle C4, it is clear that s0 = 0 and s1 = 0 as there is no

universal vertex. We also see that any subset of vertices with at least two vertices

forms a dominating set, hence s2 = 6, s3 = 4, and s4 = 1. Hence,
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Dom(C4, x) = s4x
4 + s3x

3 + s2x
2

= x4 + 4x3 + 6x2.

Another generating function type polynomial is the Wiener polynomial [34]:

W (G, x) =
∑

xdistG(u,v) =

diam(G)∑
i=1

ci(G)xi.

Here, ci(G) is the number of pairs of vertices in G that are distance i apart, and the

first sum is taken over all subsets {u, v} of V of size two. In particular, c1 = m. Hence

W (G, x) is the generating function of the sequence (c1(G), c2(G), ..., cdiam(G)
(G)).

This polynomial is closely related to the Wiener index W (G), first defined by Harry

Wiener [40] for use in chemistry. If D is the distance matrix of G (the matrix whose

(i, j)-th element is the distance from vertex i to vertex j), the Wiener index is de-

fined to be W (G) = (1/2)
∑

i ̸=j Dij [31]. If an alkane (hydrocarbon) molecule is

represented with a graph by having vertices and edges represent atoms and chemical

bonds respectively, then the Wiener index gives insight to the boiling point of that

molecule [31]. Two notable evaluations [34] of the Wiener polynomial are

W (G, 1) =
∑

1 =

(
n

2

)
,

and

W ′(G, 1) =
∑

distG(u, v) = W (G).

Example 1.5. Once again, we will use C4 to illustrate the Wiener polynomial. The

pairs of vertices which are adjacent are {a, b}, {b, c}, {c, d}, and {d, a}. Hence, c1 = 4.

The only remaining pairs of vertices are the corners of C4, or {a, c} and {b, d}, both
of which are distance two apart. Thus c2 = 2, and all other coefficients are zero.

Therefore,

W (C4, x) = c2x
2 + c1x

= 2x2 + 4x.
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1.3 The Roots of Polynomials

In this section we highlight some results concerning the roots of polynomials. This

is a rich area of study, so we will focus on what will be useful for us later on. A

complex number z ∈ C is called a root (or zero) of a polynomial f(x) if f(z) = 0.

Every polynomial we will encounter will be a real polynomial : a polynomial whose

coefficients are all real. Thus it is worth recalling that if z is a non-real root of a real

polynomial f , then the complex conjugate z is also a root of f .

A useful result for counting the number of positive (or negative) roots of a poly-

nomial is Descartes’ Rule of Signs (see, for example, [3]):

Theorem 1.1 (Rule of Signs). If f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 is a real

polynomial, then the number of positive roots (counting multiplicity) of f(x) is equal

to the number of sign changes in consecutive (non-zero) coefficients of f(x), or less

than that amount by an even number.

A corollary is that the number of negative roots of f(x) is found by counting the sign

changes of f(−x). Let us demonstrate this with a few examples.

Example 1.6. Consider the polynomial f(x) = 2x5 − 3x4 − 19x3 + 33x2 + 17x− 30,

shown in Figure 1.10. Quick inspection reveals three changes in sign of the coefficients:

2 → −3, −19 → 33, and 17 → −30. Therefore by the Rule of Signs, f(x) has

three positive roots or just one. In fact f(x) has three positive roots: x = 1, 2, 5/2,

substantiated by Figure 1.10. For the negative roots of f(x), we examine

f(−x) = 2(−x)5 − 3(−x)4 − 19(−x)3 + 33(−x)2 + 17(−x)− 30

= −2x5 − 3x4 + 19x3 + 33x2 − 17x− 30.

There are two changes of sign in the coefficients of f(−x): −3 → 19, and 33 → −17.

Thus f(x) has either two negative roots or none. Figure 1.10 reveals that there are

two negative roots: x = −1,−3.

Example 1.7. Now consider the polynomial g(x) = x4−6x3+9x2−6x+8, as in Figure

1.11. There are four sign changes in the coefficients: 1 → −6, −6 → 9, 9 → −6,

and −6 → 8, so by the Rule of Signs g(x) either has four, two, or zero positive roots.
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Figure 1.10: A portion of the polynomial f(x) = 2x5 − 3x4 − 19x3 +33x2 +17x− 30.
In the case of this polynomial, the number of positive (negative) roots of f(x) is
precisely the number of sign changes in the coefficients of f(x) (f(−x)).

We will use elementary arguments from calculus to deduce the number of positive

roots of g(x), rather than relying on the plot of g(x). First, we eliminate the choice

of having zero positive roots:

g(1) = (1)4 − 6(1)3 + 9(1)2 − 6(1) + 8

= 6

and

g(3) = (3)4 − 6(3)3 + 9(3)2 − 6(3) + 8

= −10.

Therefore, by the Intermediate Value Theorem (IVT), g(x) must have a root in the

interval (1, 3). Furthermore, we now know g(x) has either four or two positive roots.

Consider g′(x) and g′′(x):
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g′(x) = 4x3 − 18x2 + 18x− 6,

g′′(x) = 12x2 − 36x+ 18.

By the Rule of Signs, g′(x) has one or three positive roots. Solving g′′(x) = 0 gives

the two critical points of g′(x):

x1 =
3 +

√
3

2
, x2 =

3−
√
3

2
.

Simple calculation reveals that the value of g′(x) at these critical points is less than

zero:

g′(x1) = 4

(
3 +

√
3

2

)3

− 18

(
3 +

√
3

2

)2

+ 18

(
3 +

√
3

2

)
− 6

=
1

2
(54− 30

√
3)− 9

2
(12− 6

√
3) + 27− 9

√
3− 6

= 3
√
3− 6

< 0,

and

g′(x2) = 4

(
3−

√
3

2

)3

− 18

(
3−

√
3

2

)2

+ 18

(
3−

√
3

2

)
− 6

=
1

2
(54 + 30

√
3)− 9

2
(12 + 6

√
3) + 27 + 9

√
3− 6

= −3
√
3− 6

< 0.

Since each critical point of g′(x) is located below the x-axis, any local maximum of

g′(x) must be below the x-axis. But deg(g′(x)) = 3 and g′(x) has positive leading

coefficient, so we conclude that g′(x) can only have one real, and thus one positive,

root (the only way to have three real roots would be to have a local maximum on

or above the x-axis). Consequently, g(x) has only one critical point for positive x.
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Figure 1.11: A portion of the polynomial g(x) = x4− 6x3+9x2− 6x+8. While there
are four sign changes in the coefficients of g(x), there are only two positive roots.

But g(x) has positive leading coefficient, so g(x) > 0 for all sufficiently large x. Since

g(1) > 0 and g(3) < 0, as x increases along the positive x-axis g(x) initially decreases,

but then must eventually increase without bound. Thus the positive critical point of

g(x) must be a local minimum located at some x > 1. Furthermore, the minimum

must be below the x-axis, as if not we could not have g(x) being negative for any

x > 1. Hence, g(x) has at least two positive roots: one in the interval (1, 3), and

the other in the interval (3,∞). However, there cannot be any more positive roots

since there is only one positive critical point (local minimum). Any other roots would

require g(x) to “bend” in order to touch the x-axis, resulting in additional critical

points. Therefore, g(x) has exactly two positive roots.

Another kind of root counting theorem is Rouché’s Theorem [29], which relates

the number of zeros of two analytic functions inside a region of the complex plane.

Theorem 1.2 (Rouché, [29]). Let P (z) and Q(z) be functions that are analytic on

the interior of a simple, closed Jordan curve C. If P (z) and Q(z) are continuous on

C and |P (z)| < |Q(z)| on C, then P (z) + Q(z) and Q(z) have the same number of

zeros in the interior of C.
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In many cases we may want to bound the roots of a polynomial. The following

theorems give circular bounds to all roots of a polynomial, that need not be a real

polynomial.

Theorem 1.3 (Cauchy, [29]). Let g(z) = c0+c1z+...+cn−1z
n−1+cnz

n be a polynomial

with complex coefficients, cn ̸= 0, and set h(z) = |cn|zn−|cn−1|zn−1−· · ·−|c1|z−|c0|.
Then all the zeros of g(z) lie in the circle |z| ≤ r, where r is the unique positive root

of the equation h(z) = 0.

Example 1.8. Consider the complex coefficient polynomial

g(z) = 8z6 + 8iz4 − 11z3 + 2z2 + (2 + 2
√
3i)z − 3.

Finding all roots of this polynomial would prove difficult, but Cauchy’s bound restricts

the roots to a small domain: let h(z) be the polynomial

h(z) = |8|z6 − |8i|z4 − | − 11|z3 − |2|z2 − |(2 + 2
√
3i)|z − | − 3|

= 8z6 − 8z4 − 11z3 − 2z2 − 4z − 3,

which admits the factorization

h(z) = (2z − 3)(4z5 + 6z4 + 5z3 + 2z2 + 2z + 1).

Thus h(z) has the positive root r = 3
2
, and the modulus of any root of g(z) cannot

exceed 3
2
. See Figure 1.12 for the roots of g(z) and this bound.

Sometimes it may not be ideal to try and find the positive root r of h(z), as even

that could be difficult. However, since the root is unique and h(z) has positive leading

coefficient, if we find some positive value x0 such that h(x0) > 0, then all roots of

g(z) satisfy |z| < x0. Finding such a value x0 only requires testing some reasonable

points, so a strict bound like this can be much easier to obtain.

The following theorem provides a bound which is much easier to compute than

that from Theorem 1.3. However, it is not always as useful, as illustrated in Example

1.9.
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Figure 1.12: The roots of g(z) = 8z6 +8iz4 − 11z3 +2z2 + (2+ 2
√
3i)z− 3 (red), and

the modulus bound |z| ≤ 3
2
on these roots found with Theorem 1.3.

Theorem 1.4 (Cauchy, [29]). Let g(z) = c0+c1z+...+cn−1z
n−1+cnz

n be a polynomial

with complex coefficients, cn ̸= 0. Then any root z of g(z) satisfies

|z| < 1 + max
k≤n−1

{|ck/cn|}.

Example 1.9. Recall the polynomial g(z) from Example 1.8. It is not difficult to

see that maxk≤n−1{|ak/an|} = | − 11/8| = 11/8. Thus all the roots of g(z) lie in the

circle of radius 1 + 11/8 = 19/8. While true, the bound from Theorem 1.3 gives a

much tighter bound on the modulus of the roots.

An advantage of the previous theorems is that they apply to any polynomial with

complex coefficients. However, for specific types of polynomials it may not give a

tight or interesting bound. For polynomials that have real and positive coefficients,

there is the following result.

Theorem 1.5 (Enestrom-Kakeya, [19], [27]). Consider the following real polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 where each ai is positive. Let qk = ak−1/ak,

for 1 ≤ k ≤ n. Then any root z of p(x) satisfies
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Figure 1.13: The roots of the polynomial p(x) (red), and the annulus that bounds
them as determined from Theorem 1.5. The inner radius of the annulus is 1/2, while
the outer radius is 4/3.

min
k

{qk} ≤ |z| ≤ max
k

{qk}.

Example 1.10. Consider the polynomial p(x) = 3x6+2x5+2x4+ 3
2
x3+2x2+x+1.

Then the qk’s are 2/3, 1, 3/4, 4/3, 1/2, and 1. Therefore the roots z of p(x) satisfy

1

2
≤ |z| ≤ 4

3
,

as verified in Figure 1.13.

The next result concerns limits of the roots to polynomials in certain polynomial

sequences. If p1(x), p2(x), ..., or {pt(x)}, is a sequence of polynomials, then z is a limit

of the roots of {pt(x)} if there is a sequence {zt} such that pt(zt) = 0 for each t and

zt → z.

Theorem 1.6 (Beraha-Kahane-Weiss, [6]). Suppose {Pt(x) : t ∈ N} is a sequence of

polynomials having the form
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Pt(x) =
s∑

j=1

αj(x)λj(x)
t

for some functions αj and λj, satisfying the following non-degeneracy condition: there

is no constant ω, with |ω| = 1, such that λi = ωλj for some i ̸= j. Then z is a limit

of zeros for {Pt(x)} if and only if the αj’s, λj’s can be reordered such that at least

one of the following holds:

1. |λ1(z)| > |λj(z)|, 2 ≤ j ≤ s, and α1(z) = 0

2. |λ1(z)| = |λ2(z)| = · · · = |λl(z)| > |λj(z)|, l + 1 ≤ j ≤ s, for some l ≥ 2.

Example 1.11. Consider the sequence of polynomials {Pt(x)}, where

Pt(x) = (x− 1)xt + x(x− 1)t + x2.

These polynomials are quickly seen to be of the correct form to apply Theorem 1.6,

the BKW Theorem. Letting α1(x) = x − 1, α2(x) = x, α3(x) = x2, and λ1(x) = x,

λ2(x) = x− 1, λ3(x) = 1, we have

Pt(x) = α1(x)λ1(x)
t + α2(x)λ2(x)

t + α3(x)λ3(x)
t.

Furthermore, there is no ω with |ω| = 1 such that λi = ωλj for i ̸= j. It is acceptable

to permute the indices of the αj’s and λj’s, as our labelling was arbitrary. To find

the limits of the roots of these polynomials, we check conditions 1) and 2) from the

BKW Theorem (1.6) across all possible index permutations.

Condition 1.

• |z| > |z−1|, |z| > 1, and z−1 = 0. The last equality gives z = 1, which contra-

dicts the inequality |z| > 1. Therefore no complex z satisfies these conditions.

• |z − 1| > |z|, |z − 1| > 1, and z = 0. Since z = 0 contradicts |z − 1| > 1, we

again find no root limits.

• 1 > |z|, 1 > |z − 1|, and z2 = 0. But z2 = 0 implies z = 0, contradicting

1 > |z − 1|. So once again, we obtain no root limits.
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Condition 2.

• |z| = |z − 1| > 1. The equality may be interpreted as being all z that are

equidistant from 0 and 1. That is, all z with real part equal to 1
2
. Therefore

the solutions to these constraints are precisely elements of the set

S1 =

{
z ∈ C : Re(z) =

1

2
, |z| > 1

}
.

• |z − 1| = 1 > |z|. The equality describes the points of a circle in the complex

plane of radius 1, centered at 1. The inequalities 1 > |z| and |z−1| > |z| restrict
solutions to be on the interior of the unit circle, and with real component less

than 1
2
, respectively. Formally, |z−1| = 1 implies z = 1+ eiθ, and z lying inside

the unit circle is equivalent to z having real part equal to 1
2
, which is equivalent

to θ ∈ (2π
3
, 4π

3
). Therefore all z satisfying these constraints are

S2 =

{
z ∈ C : z = 1 + eiθ, θ ∈

(
2π

3
,
4π

3

)}
.

• 1 = |z| > |z − 1|. These constraints are similar to the previous, giving the

following solutions: z must lie on the unit circle, and be interior to the circle of

radius 1 centred at 1 (equivalent to having a real part greater than 1
2
). In other

words, the solutions are

S3 =

{
z ∈ C : z = eiθ, θ ∈

(
−π

3
,
π

3

)}
.

• |z−1| = |z| = 1. There are only two points satisfying this constraint: the points

where the unit circle and circle of radius 1 centered at 1 intersect. Precisely,

these are the points eiπ/3 and e−iπ/3. In fact, these are the points that were

missed by S2 and S3, in the sense that the union S2 ∪ S3 ∪ {eiπ/3, e−iπ/3} forms

a continuous closed curve in the complex plane.

Therefore the limits of the roots of {Pt(x)} are the points S1∪S2∪S3∪{eiπ/3, e−iπ/3}
(see Figure 1.14).
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Figure 1.14: Roots of the polynomials Pt(x) = (x−1)xt+x(x−1)t+x2, for 1 ≤ t ≤ 100
(red). In blue are the limits of these roots found using the BKW Theorem (Theorem
1.6): S1 ∪ S2 ∪ S3 ∪ {eiπ/3, e−iπ/3}.

While powerful, the BKW Theorem suffers limitations. For example, it does

not apply to polynomials Pt(x) whose coefficients depend on t. Polynomials like

this frequently appear when studying graph polynomials, prompting the following

extension of the BKW Theorem to handle the root limits of some of these sequences.

Theorem 1.7 ([10]). Suppose {Pt(x)} is a sequence of analytic functions where

Pt(x) = α1(t;x)λ1(x)
t + α2(t;x)λ2(x)

t

are such that the λi are analytic, non-zero, and λ1 ̸= ωλ2 for some unit constant

ω ∈ C, and the αi have the form

αi(t;x) = tdiqi,di(x) + tdi−1qi,di−1(x) + · · ·+ tqi,1(x) + qi,0(x).

The functions qi,j are assumed to be analytic, and qi,di non-zero. Then z ∈ C is a

limit of the zeros of {Pt(x)} if either of the following hold:
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1. |λ1(z)| > |λ2(z)| and q1,d1(z) = 0, or |λ2(z)| > |λ1(z)| and q2,d2(z) = 0.

2. |λ1(z)| = |λ2(z)| > 0 and at least one of q1,d1(z), q2,d2(z) is non-zero.

Let us give a simple example of an application of this theorem.

Example 1.12. Consider the polynomial sequence {Pt(x)} where

Pt(x) = (tx+ 1)xt + t2(x− 1)t.

Writing Pt(x) in the required form to apply Theorem 1.7, we have λ1(x) = x,

α1(t;x) = tx+1, λ2(x) = x−1, and α2(t;x) = t2. Thus d1 = 1 and q1,1(x) = x, while

d2 = 2 and q2,2(x) = 1. Now it is straightforward to find the limits of the roots, using

Theorem 1.7:

Condition 1.

• |z| > |z − 1| and q1,1(z) = 0. Thus z = 0, contradicting the inequality.

• |z − 1| > |z| and q2,2(z) = 0. This would imply 1 = 0, a clear contradiction.

Condition 2.

• |z| = |z − 1| > 0, and at least one of q1,1(z) and q2,2(z) is non-zero. This is

easily seen to be satisfied by the points z = 1
2
+ ib, b ∈ R.

Therefore, the limits of the roots of {Pt(x)} is the line of points {1
2
+ ib : b ∈ R}

(see Figure 1.15).

Next, we discuss the Hermite-Biehler Theorem (see, for example, [37]). This

theorem concerns polynomials which have all their roots lying in the closed left-half-

plane (LHP). First, some definitions are needed. A polynomial is considered Hurwitz

quasi-stable, or simply stable, if each of its roots lies in the closed LHP. That is, if

Re(z) ≤ 0 for each root z. A polynomial is called standard if it is identically zero, or

its leading coefficient is positive. Let f(x), g(x) be real polynomials only having real

roots, where u1 ≤ · · · ≤ un are the roots of f(x) and v1 ≤ · · · ≤ vm are the roots of
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Figure 1.15: Roots of the polynomials Pt(x) = (tx+ 1)xt + t2(x− 1)t, for 1 ≤ t ≤ 80
(red). In blue are the limits of these roots found using the extension of the BKW
Theorem (Theorem 1.7).

g(x). We say f interlaces g if m = n + 1 and v1 ≤ u1 ≤ v2 ≤ · · · ≤ un ≤ vn+1, or

that f alternates left of g if m = n and u1 ≤ v1 ≤ u2 ≤ · · · ≤ un ≤ vn. In either case,

we say f ≺ g. The following theorem gives necessary and sufficient conditions for a

polynomial to be stable.

Theorem 1.8 (Hermite-Biehler). Let p(x) = pe(x
2) + xpo(x

2) be a real, standard

polynomial. Then p(x) is stable if and only if pe(x), po(x) are standard, have only

non-positive roots, and po(x) ≺ pe(x).

The following examples show how this theorem may be used.

Example 1.13. Consider the polynomial p(x) = x4 + 2x3 + 3x2 + 5x + 1. Does

p(x) have a root in the open right-half-plane (RHP)? First, let us write p(x) =

pe(x
2) + xpo(x

2), so that pe(x) = x2 + 3x + 1 and po(x) = 2x + 5. We immediately

see that both pe(x) and po(x) are standard as they have positive leading coefficient.

Letting v1,2 be the roots of pe(x) and u1 be the root of po(x), we have

v1 =
−3−

√
5

2
, v2 =

−3 +
√
5

2
,
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and u1 = −5/2. Each root is non-positive, and v1 ≤ u1 ≤ v2. Hence, po(x) ≺ pe(x).

Therefore, by the Hermite-Biehler Theorem, all roots of p(x) are located in the closed

LHP, and thus p(x) has no roots in the open RHP. See Figure 1.16 for the location

of the roots.

Example 1.14. Consider the polynomial p(x) = x4 + 2x3 + 2x2 + 7x + 6. Writing

p(x) = pe(x
2)+xpo(x

2), we find pe(x) = x2+2x+6 and po(x) = 2x+7. The only root

of po(x) is non-positive and real, but the roots of pe(x) are −1±i
√
5. Since these roots

are non-real, we cannot say that po(x) ≺ pe(x). Therefore, by the Hermite-Biehler

Theorem, p(x) has roots in the open RHP. Solving for the roots of p(x) reveals it has

the roots (1± i
√
11)/2, which lie in the open RHP. This can be seen in Figure 1.16.

Figure 1.16: Left: the roots of the polynomial p(x) = x4 + 2x3 + 3x2 + 5x+ 1. Each
root lies to the left of the origin, a fact shown with the Hermite-Biehler Theorem.
Right: the roots of the polynomial p(x) = x4 + 2x3 + 2x2 + 7x+ 6. This polynomial
has roots to the right of the origin, as shown with the Hermite-Biehler Theorem.



Chapter 2

The Degree Polynomial

2.1 Definition

We now define the degree polynomial of a graph. Unless otherwise stated, all graphs

considered will be simple. Given an (n,m)-graph G, let ak(G) (or ak) denote the

number of vertices of degree k in G. Furthermore, let δ and ∆ denote the minimum

and maximum degrees of G, respectively. We define the degree polynomial D(G; x) of

G to be the generating function for the sequence (a0(G), a1(G), ..., an−1(G)). In other

words,

D(G; x) ≡
n−1∑
k=0

akx
k =

∆∑
k=δ

akx
k =

∑
v∈V

xdeg(v)

Such a graph polynomial has been previously defined independently by a number of

researchers ([13], [26]). By D and Dmulti we denote the set of degree polynomials for

simple graphs and multigraphs, respectively. If F is a family of graphs, then we use

D(F) to denote the set of all degree polynomials for graphs in F with indeterminate

x. Let us illustrate the definition of this polynomial with some examples.

Example 2.1. In Figure 2.1 we show two graphs, G1 and G2, and their degree

polynomials. G1 contains two vertices each of degree two and three, so its degree

polynomial is D(G1;x) = 2x3 + 2x2. G2 has a vertex of degree four, two vertices of

degree three, and four leaves, and thus D(G2;x) = x4 + 2x3 + 4x.

Example 2.2. There is no additional difficulty even if the graph is disconnected. As

in Figure 2.2, we form the degree polynomial simply by counting degrees across each

component to obtain D(G; x) = x5 + 4x2 + 5x+ 3.

Example 2.3. Sometimes a family of graphs has enough structure to form a general

expression for their degree polynomials. Consider the following family of graphs: let

25
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D(G1;x) = 2x3 + 2x2 D(G2;x) = x4 + 2x3 + 4x

Figure 2.1: The graphs G1, G2, and their degree polynomials.

D(G; x) = x5 + 4x2 + 5x + 3

Figure 2.2: A disconnected graph and its degree polynomial.

G0 = S5. Let G1 be the graph made from adding a leaf to each leaf of G0. In general,

let Gt be the graph formed by adding a leaf to each leaf of Gt−1. Thus Gt has a single

vertex of degree four connected to four distinct paths, each ending in a vertex of

degree one. Each of the four paths contributes t vertices of degree two, and therefore

we find D(Gt;x) = x4 + 4tx2 + 4x.

2.2 Observations

Graph polynomials encode graph theoretic information in the form of a polynomial.

For example, the chromatic polynomial encodes information about the number of ver-

tices and edges, cycles, block number, colourability, etc. [18]. The degree polynomial

encodes precisely the degree sequence of a graph, and hence the same information as

the degree sequence. If d1 ≥ d2 ≥ · · · ≥ dn is the degree sequence of a graph G, then
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Figure 2.3: The graphs G0, G1, and the generalization Gt form the family {Gt}∞t=0.
The degree polynomial of Gt is easily found to be D(Gt;x) = x4 + 4tx2 + 4x.

D(G; x) =
∑n

i=1 x
di . Conversely, if G has degree polynomial D(G; x) =

∑∆
k=δ akx

k

then

∆, ...,∆︸ ︷︷ ︸
a∆

, ..., δ + 1, ..., δ + 1︸ ︷︷ ︸
aδ+1

, δ, ..., δ︸ ︷︷ ︸
aδ

is the degree sequence of G. In the following example we illustrate the lack of graph

theoretic information encoded by degree polynomials/degree sequences.

Example 2.4. The two graphs shown in Figure 2.4 have the same degree polynomial

3x3 + 2x2 + 5x, yet bear different structural properties and are non-isomorphic. The

graph on the left is connected, has a diameter of 5, and is a tree, thus is bipartite and

has no cycles. In contrast, the graph on the right is disconnected, thus has infinite

diameter, has a cycle C3, and has chromatic number 3. Hence, degree polynomials

cannot encode such graph theoretic information.

For the question of whether or not a given polynomial is degree-graphic, that is if

it is the degree polynomial of some graph G, there of course is the necessary condition

that all its coefficients are non-negative integers. Given such a polynomial, we can

extract a sequence of non-negative integers from the coefficients and exponents as

described above. Viewing this sequence as a possible degree sequence, we recall the

Erdös-Gallai theorem which gives the answer to this problem:

Theorem 2.1 (Erdös-Gallai, [14]). A sequence of non-negative integers d1 ≥ · · · ≥ dn
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Figure 2.4: Two graphs having the same degree polynomial 3x3+2x2+5x, and hence
the same degree sequence, that have very different structures. They do not share the
same diameter, chromatic number, cycles, or connectedness.

is graphic (the degree sequence of a finite, simple graph) if and only if the following

hold:

1. d1 + · · ·+ dn is even,

2.

j∑
i=1

di ≤ j(j − 1) +
n∑

i=j+1

min(di, j), for all 1 ≤ j ≤ n.

If we expand our consideration to (multi)graphs, the same question has an answer

due to Hakimi:

Theorem 2.2 (Hakimi, [22]). A sequence of non-negative integers d1 ≥ · · · ≥ dn is

the degree sequence of a multigraph if and only if

1. d1 + · · ·+ dn is even,

2. d1 ≤
n∑

i=2

di, or equivalently d1 ≤
1

2

n∑
i=1

di.
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Below we list some more observations on the degree polynomial. For each of the

following, G is a (n,m)-graph, and H1, H2 are graphs of order n1, n2, respectively.

Observation 2.1. Some facts concerning degree polynomials.

1. D(G; 1) =
∆∑

k=δ

ak = n.

2. D(G;−1) =
∆∑

k even
ak −

∆∑
k odd

ak.

3. D(r)(G; 0) = r!ar, for 0 ≤ r ≤ ∆.

4. D′(G; 1) =
∆∑

k=1

kak = 2m.

5. The multiplicity of the root 0 of D(G; x) is δ.

6. D(Gc;x) = xn−1D(G; 1/x).

7. If G′ is the graph resulting from adding a universal vertex to G, then

D(G′;x) = xn + xD(G; x).

8. If H1, H2 are vertex disjoint graphs, then

D(H1 ∪H2;x) = D(H1;x) +D(H2;x).

What follows are some results about degree polynomials under graph operations

that deserve more attention than just a quick mention.

Proposition 2.3 ([13]). If H1 and H2 are vertex disjoint, then the degree polynomial

of the join H1 +H2 of graphs H1 and H2 is

D(H1 +H2;x) = xn2D(H1;x) + xn1D(H2;x).
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Proof. Recall that V (H1 + H2) = V (H1) ∪ V (H2). Furthermore if u is a vertex

of H1 and v is a vertex of H2, then degH1+H2
(u) = n2 + degH1

(u) and similarly

degH1+H2
(v) = n1 + degH2

(v). Thus,

D(H1 +H2;x) =
∑

w∈V (H1+H2)

xdegH1+H2
(w)

=
∑

w∈V (H1)

xdegH1+H2
(w) +

∑
w∈V (H2)

xdegH1+H2
(w)

=
∑

w∈V (H1)

xn2+degH1
(w) +

∑
w∈V (H2)

xn1+degH2
(w)

= xn2

∑
w∈V (H1)

xdegH1
(w) + xn1

∑
w∈V (H2)

xdegH2
(w)

= xn2D(H1;x) + xn1D(H2;x).

Proposition 2.4 ([13]). The degree polynomial for the corona H1 ⊙ H2 of H1 and

H2 is

D(H1 ⊙H2;x) = xn2D(H1;x) + n1x ·D(H2;x).

Proof. If u is a vertex of H1, then degH1⊙H2
(u) = degH1

(u) + n2. If v is a vertex

belonging to one of the copies of H2 in H1 ⊙ H2, then degH1⊙H2
(v) = degH2

(v) + 1

since each copy of H2 is joined to a single vertex of H1. Hence,

D(H1 ⊙H2;x) =
∑

w∈V (H1⊙H2)

xdegH1⊙H2
(w)

=
∑

w∈V (H1)

xdegH1⊙H2
(w) +

∑
w∈V (H1⊙H2)−V (H1)

xdegH1⊙H2
(w)

=
∑

w∈V (H1)

xdegH1
(w)+n2 +

∑
w∈V (H1⊙H2)−V (H1)

xdegH2
(v)+1

= xn2

∑
w∈V (H1)

xdegH1
(w) + n1

∑
w∈V (H2)

xdegH2
(v)+1

= xn2D(H1;x) + n1x ·D(H2;x).
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Proposition 2.5 ([13]). The degree polynomial of the lexicographic product H1[H2]

is

D(H1[H2];x) = D(H1;x
n2)D(H2;x).

Proof. Recall that two vertices (u, v) and (u′, v′), where u, u′ ∈ V (H1) and v, v′ ∈
V (H2), of H1[H2] are adjacent if and only if {u, u′} ∈ E(H1) or u = u′ and {v, v′} ∈
E(H2). Therefore degH1[H2]((u, v)) = n2degH1

(u) + degH2
(v). Computing the degree

polynomial,

D(H1[H2];x) =
∑

(u,v)∈V (H1[H2])

xdegH1[H2]
((u,v))

=
∑

(u,v)∈V (H1[H2])

xn2degH1
(u)+degH2

(v)

=
∑

(u,v)∈V (H1[H2])

xn2degH1
(u)xdegH2

(v)

=
∑

u∈V (H1)

xn2degH1
(u)

∑
v∈V (H2)

xdegH2
(v)

= D(H1;x
n2)D(H2;x).

Proposition 2.6 ([13]). If H1 and H2 are connected, then the degree polynomial of

their cartesian product is

D(H1 □ H2;x) = D(H1;x)D(H2;x).

Proof. Recall that two vertices (u, v) and (u′, v′), where u, u′ ∈ V (H1) and v, v′ ∈
V (H2), of H1 □ H2 are adjacent if and only if {u, u′} ∈ E(H1) and v = v′ or u = u′

and {v, v′} ∈ E(H2). Thus degH1 □ H2
((u, v)) = degH1

(u) + degH2
(v). Computing the

degree polynomial,
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D(H1 □ H2;x) =
∑

(u,v)∈V (H1 □ H2)

xdegH1 □ H2
((u,v))

=
∑

(u,v)∈V (H1 □ H2)

xdegH1
(u)+degH2

(v)

=
∑

(u,v)∈V (H1 □ H2)

xdegH1
(u)xdegH2

(v)

=
∑

u∈V (H1)

xdegH1
(u)

∑
v∈V (H2)

xdegH2
(v)

= D(H1;x)D(H2;x).

Proposition 2.7 ([13]). If H1 and H2 are connected, then the degree polynomial of

their tensor product is

D(H1 ×H2;x) =
∑

u∈V (H1)

D(H2;x
degH1

(u)) =
∑

v∈V (H2)

D(H1;x
degH2

(v)).

Proof. Recall that the edges of H1 ×H2 are

E(H1 ×H2) = {{(u, v), (u′, v′)} : {u, u′} ∈ E(H1) and {v, v′} ∈ E(H2)}.

Thus degH1×H2
((u, v)) = degH1

(u)degH2
(v), since there are degH1

(u) choices for u′ ad-

jacent to u, and degH2
(v) choices for v′ adjacent to v. Therefore the degree polynomial

is

D(H1 ×H2;x) =
∑

(u,v)∈V (H1×H2)

xdegH1×H2
((u,v))

=
∑

(u,v)∈V (H1×H2)

xdegH1
(u)degH2

(v)

=
∑

u∈V (H1)

∑
v∈V (H2)

(xdegH1
(u))degH2

(v)

=
∑

u∈V (H1)

D(H2;x
degH1

(u)),
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and equivalently

D(H1 ×H2;x) =
∑

(u,v)∈V (H1×H2)

xdegH1
(u)degH2

(v)

=
∑

v∈V (H2)

∑
u∈V (H1)

(xdegH2
(v))degH1

(u)

=
∑

v∈V (H2)

D(H1;x
degH2

(v)).

In addition to the observations made above, we can obtain an alternate statement

of Theorem 2.2. Using the method previously described to extract a sequence of non-

negative integers from a polynomial p(x) ∈ Z≥0[x] and the result of Observation 4, we

can re-express Theorem 2.2 in non-graph theoretic terms and give a characterization

of Dmulti.

Theorem 2.8 (Hakimi, re-expressed). A polynomial p(x) ∈ Z≥0[x] is the degree

polynomial of a multigraph if and only if the following hold:

1. p′(1) is even,

2. deg(p(x)) ≤ p′(1)/2.

In other words, we have

Dmulti = {p(x) ∈ Z≥0[x] : p′(1) is even, and deg(p(x)) ≤ p′(1)/2}.

2.3 Degree Polynomials of Some Families of Graphs

We begin this section by listing general formulas for the degree polynomials of common

graph families.



34

G D(G; x)

On n
Kn nxn−1

k-regular, order n nxk

Pn (n− 2)x2 + 2x
Cn nx2

Sn = K1,n−1 xn−1 + (n− 1)x
Ka,n−a axn−a + (n− a)xa

Table 2.1: Some degree polynomials of graphs.

The above families of graphs present fairly simple degree polynomials, requiring

very little derivation. Below we attempt to show the variety of degree polynomials

by describing particular families of graphs.

Example 2.5. We define the family of graphs {At} recursively as follows: A1 = P2,

A2 = P3, and for At+1, t ≥ 2, connect t leaves to one of the leaf neighbours of the

vertex of highest degree in At (see Figure 2.5). The degree polynomials for these

graphs are thus also recursive:

D(At+1;x) = D(At;x) + xt+1 + (t− 1)x.

Explicitly,

D(At+1;x) = xt+1 + (t− 1)x+ xt + (t− 2)x+ · · ·+ x3 + x+ x2 + 2x

=
t+1∑
j=2

xj + lt+1x,

where lt+1 is the number of leaves of At+1. For t ≥ 2, At+1 has t− 1 more leaves than

At. Thus lt+1 = lt + t− 1, with l1 = l2 = 2. Therefore,

lt+1 = (t− 1) + (t− 2) + · · ·+ 2 + 1 + 2

= t(t− 1)/2 + 2,

or

lt = t(t− 3)/2 + 3.
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Part of what makes these graphs interesting is that their degree polynomials have

no gaps (in the exponents). Additionally, the polynomial D(At;x) =
∑t

j=2 +ltx has

t terms. Thus by choosing large enough t we can find a polynomial that has as many

terms as desired.

2x

x2 + 2x

x3 + x2 + 3x

x4 + x3 + x2 + 5x

Figure 2.5: The first four graphs of the family {At}, from t = 1 to t = 4, and their
degree polynomials.

Example 2.6. Hydrocarbons (alkanes): a tree consisting of degree four vertices (car-

bon) and leaves (hydrogen) (see Figure 2.6). With k carbons and n total atoms (ver-

tices), a hydrocarbon HCk has degree polynomial D(HCk;x) = kx4+(n−k)x. Sum-

ming the degrees, and knowing there are n−1 edges, we have 2(n−1) = 4k+n−k =⇒
n = 3k + 2. Thus D(HCk;x) = kx4 + (2k + 2)x. These polynomials are binomials,

and no matter the graph there are only terms of degree one and four.

Example 2.7. Starting with C2k (k ≥ 2), construct a half-wheel by adding a new

vertex, and connect this new vertex to every other vertex of the cycle. The resulting

degree polynomial is D(G; x) = xk + kx3 + kx2. As k increases, these polynomials

have arbitrarily large gaps in their terms. If k ≥ 4 then D(G; x) will be a trinomial,

and a binomial otherwise.
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4x4 + 10x

5x4 + 12x

Figure 2.6: Two examples of hydrocarbon/alkane graphs. The left hydrocarbon has
four carbon vertices (ten hydrogen), and the rightmost has five (and 12 hydrogen).

2x3 + 3x2 x4 + 4x3 + 4x2

Figure 2.7: Two example half-wheels, using cycles C4 and C8.

Example 2.8. For complete p-partite graphs Ka1,...,ap , set n = a1 + · · · + ap. Then

the degree polynomial is D(Ka1,...,ap ;x) =
∑p

i=1 aix
n−ai . These degree polynomials

have as many terms as unique ai, and can have arbitrary gaps in the terms, that is,

they can be lacunary.

Example 2.9. Consider the family of graphs {Yn}, n ≥ 4 constructed in the fol-

lowing manner: take a complete graph Kn−4, and join to it O2. The current degree

polynomial is (n−4)xn−3+2xn−4. Next, connect a new vertex to the two just added,

changing the polynomial to (n−2)xn−3+x2. Finally, add a universal vertex. We now



37

2x7 + 3x6 + 4x5

x6 + 6x5

Figure 2.8: Two complete p-partite graphs. Left: the complete 3-partite graph K4,2,3.
Right: the complete 4-partite graph K2,2,2,1.

have a graph on n vertices, with degree polynomial D(Yn;x) = xn−1+(n−2)xn−2+x3.

These polynomials will also have an arbitrarily large gap, as n increases.

2x3 + 2x2 x4 + 4x3

x5 + 4x4 + x3

Figure 2.9: The first three graphs from the family {Yn}: Y4, Y5, Y6.

Example 2.10. For n ≥ 2, attach a leaf to a vertex of Kn−1. This graph, which we

will call CLn, has degree polynomialD(CLn;x) = xn−1+(n−2)xn−2+x. This example
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is very similar to the previous, the only difference between the degree polynomials is

the replacement of the x3 term with x.

2x

x2 + 2x x3 + 2x2 + x

x4 + 3x3 + x

Figure 2.10: The four smallest CLn graphs, constructed by attaching a leaf to com-
plete graphs.

Example 2.11. An interesting family of graphs are the anti-regular graphs [1], also

known as quasi-perfect, maximally non-regular, degree anti-regular, or half-complete

([1], [20], [17]): those with n vertices and having n− 1 distinct degrees. Indeed there

cannot be more than n − 1 distinct degrees: if there were n distinct degrees, then

each of 0, 1, ..., n − 1 must appear as the degree of exactly one vertex. Thus there

would simultaneously be a vertex adjacent to all others (degree n − 1) and a vertex

not adjacent to any (degree 0), which is a contradiction.

For a given n ≥ 2, there are precisely two graphs (up to isomorphism) with n− 1

distinct degrees (we refer to [17] for the following): first, the graph Hn, with degrees

1, 2, ..., n − 1. Every degree appears once in the degree sequence, except for ⌊n/2⌋,
which appears twice. Hn can be formed by taking vertices v1, ..., vn, and adding all

edges of the form {vi, vj} such that i + j ≥ n + 1. The other graph has degrees

0, 1, ..., n − 2, and is the graph complement Hc
n of Hn. The degree which appears

twice in the degree sequence in this case is n− 1− ⌊n/2⌋, or ⌊(n− 1)/2⌋:
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• n = 2k : n− 1− ⌊n/2⌋ = 2k − 1− k = k − 1 = n/2− 1 = ⌊(n− 1)/2⌋

• n = 2k + 1 : n− 1− ⌊n/2⌋ = 2k − ⌊k + 1/2⌋ = k = (n− 1)/2 = ⌊(n− 1)/2⌋.

Furthermore, Hc
n can be formed by taking vertices v1, ..., vn and adding edges {vi, vj}

such that i + j > n + 1. Thus we can easily write the degree polynomials for these

graphs:

D(Hn;x) =
n−1∑
1

xi + x⌊n/2⌋

=
x(xn−1 − 1)

x− 1
+ x⌊n/2⌋,

and

D(Hc
n;x) = xn−1D(Hn; 1/x)

=
n−2∑
0

xi + x⌊(n−1)/2⌋

=
xn−1 − 1

x− 1
+ x⌊(n−1)/2⌋.

These polynomials have no gaps, and have only a single term with coefficient greater

than one. This contrasts with many other families of graphs, who have arbitrarily

many vertices with a certain degree. See Figure 2.11 for some examples of anti-regular

graphs and their degree polynomials.

2.4 Outline of the Thesis

So far we have defined the degree polynomial, investigated some of its properties, and

given some examples of computing it. The remainder of the thesis will focus on roots

of degree polynomials, which is the subject of Chapter 3. We will begin by making

some observations on these roots, and provide a characterization of them independent

of graph theoretic constraints. This will allow us to make statements concerning the

density of these roots. We then investigate how roots of degree polynomials depend

on certain graph parameters. In particular, we will give bounds on the roots that
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2x x2 + 2x x3 + 2x2 + x x4 + x3 + 2x2 + x

2

2x+ 1 x2 + 2x+ 1 x3 + 2x2 + x+ 1

Figure 2.11: Examples of anti-regular graphs and their degree polynomials. Top, left
to right: H2, H3, H4, H5. Bottom, left to right: Hc

2, H
c
3, H

c
4, H

c
5.

depend on graph order, and locate them to certain regions of the complex plane.

Chapter 3 concludes with an exploration of roots for some families of graphs. By

narrowing in on families for which their degree polynomials can be explicitly written,

we are able to prove results on the roots specific to those families.

In Chapter 4 we discuss future directions for the study of the degree polynomial.

We mention open problems, conjectures, and ways to generalize the degree poly-

nomial. In particular, a two variable degree polynomial for directed graphs and a

multivariate generalization based on vertex labellings are presented.



Chapter 3

Roots of the Degree Polynomial

3.1 Degree Roots

Possibly the most natural problem concerning polynomials is that of the location of

their roots. The study of roots for degree polynomials is absent in the literature, so

we will explore this topic beginning with the following definition:

Definition 3.1. A complex number z is a degree root if it is the root of a degree

polynomial for some multigraph, that is, if there exists a multigraph G such that

D(G; z) = 0. In this case, we also say that z is a degree root of G. If F is a family of

graphs, the set of all degree roots for graphs in F is Z(D(F)), as per our notation.

To help motivate conjectures and future results, let us examine the behaviour of

degree roots for graphs of low order. Figure 3.1 shows all degree roots for (simple)

graphs from orders two to ten, from which we make the following observations.

• Focusing on the real axis, degree roots appear to be filling up the negative real

axis as the order of graphs increases. Thus we conjecture that degree roots are

dense on the negative real axis.

• Since the coefficients of a degree polynomial are non-negative, there cannot be

a positive root of a degree polynomial. Thus we see no positive roots in any

plot.

• When the order n of graphs is odd, the largest negative root seems to be located

at −(n−1). When n is even, the largest negative root seems to be near −(n−2).

• For orders n ≥ 5, the root of largest modulus seems to be real and never

surpasses a modulus of n− 1. Furthermore, roots on the imaginary axis appear

to never exceed a modulus of
√
n.

41
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• The region surrounding the origin (excluding the negative real axis) that extends

a small distance to the right seems to be filling in very slow. Only seeing roots

up to order ten, it is not clear whether this region will actually fill with roots

or not. On the same note, the real parts of the non-real roots lie within a small

band, only being the approximate interval (−2, 1.5) for graphs of order ten.

Recall that D and Dmulti represent, respectively, the set of degree polynomials for

(simple) graphs and multigraphs. While D ⊆ Dmulti, how are their roots related?

The previous inclusion implies Z(D) ⊂ Z(Dmulti), but is this inclusion strict? Fur-

thermore, since both D and Dmulti are contained in Z≥0[x], the set of polynomials

with non-negative integer coefficients, how does Z(Z≥0[x]) fit into this picture? We

will now answer these questions, beginning with the following folklore lemma.

Lemma 3.1. There exists an r-regular (simple) graph on n vertices if and only if

nr is even, and n ≥ r + 1. It follows that for any r ≥ 1, there are infinitely many

r-regular (simple) graphs.

Proof. ( =⇒ ) This direction is clear since nr = 2m, where m is the number of edges,

and r ≤ n− 1 as the graph is simple.

( ⇐= ) We will show the existence of such a desired regular (simple) graph with the

Erdös-Gallai Theorem. The sequence in question is r, r, ..., r which is of length n.

By the assumption that nr is even, the theorem’s first condition is met. The second

condition requires that

kr ≤ k(k − 1) + (n− k) ·min(k, r)

hold true for all 1 ≤ k ≤ n. We can consider two cases:

Case 1: k ≤ r. Therefore min(k, r) = k, and we have

kr ≤ k(k − 1) + (n− k)k

⇐⇒ kr ≤ nk − k

⇐⇒ r ≤ n− 1,

which is true by assumption.
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Figure 3.1: Degree roots for graphs from orders two to ten. Beginning with order two
in the top left, each plot shows all degree roots for graphs of order n, ending with
order ten in the bottom right.
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Case 2: r < k. This is equivalent to r ≤ k − 1. Since n− k ≥ 0, and r ≤ k − 1 =⇒
kr ≤ k(k − 1), we indeed have kr ≤ k(k − 1) + (n− k)r.

Thus the second condition is met, and it follows that there exists a (simple) graph

with degree sequence r, ..., r, (of length n), ie. there exists a (simple) r-regular graph

on n vertices.

This lemma allows us to show that given a multigraph, there is a process which

creates a (simple) graph while preserving degree roots.

Proposition 3.2. Let M be a multigraph. Then there exists a (simple) graph G for

which D(M ;x) and D(G; x) have precisely the same roots, including multiplicities.

Proof. Let e1, ..., ek be the pairs of vertices of M that are joined with multiple edges.

That is, ei = {vi,1, vi,2} is an unordered pair of vertices being the endpoints of bi ≥ 2

parallel edges. Suppose the pairs are indexed so that b1 ≤ · · · ≤ bk. Let M1, ...,Mbk

be disjoint isomorphic copies of M , and set G = M1 ∪ · · · ∪ Mbk . Thus D(G; x) =

bkD(M ;x). Furthermore, let eji be the copy of the pair ei belonging to Mj. We shall

modify G so that it turns into a simple graph through a sequence of degree-preserving

steps:

1. Take the subgraph of G induced by e11, e
2
1, ..., e

bk
1 , and observe that each vertex

has an induced degree of b1. Remove all edges of this subgraph, and add new

edges in the vertices of the subgraph so that the subgraph is simple and b1-

regular (this can be achieved by Lemma 3.1 since there are 2bk vertices in the

subgraph, and b1 + 1 ≤ 2bk). Each vertex still has an induced degree of b1.

2. Repeat Step 1. with the vertices from e12, ..., e
bk
2 , and making the induced sub-

graph b2-regular.

· · ·

k. Repeat Step 1. with the vertices from e1k, ..., e
bk
k , and making the induced sub-

graph bk-regular.

Since in each step the induced degree of every vertex is preserved, these rewiring

procedures preserve all vertex degrees of G, and hence the degree polynomial D(G; x).

Furthermore, we have eliminated all multi-edges by creating the bi-regular subgraphs
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and thus G is now simple. Since D(G; x) = bkD(M ;x), G and M have precisely the

same degree roots and we are done.

Let us illustrate this proof with an example.

Example 3.1. Consider the multigraph M on the left of Figure 3.2, which has

degree polynomial D(M ;x) = x4 + x3 + x. M has a single edge bundle: there

are 3 edges between vertices u and v. First, we form a graph G that is the disjoint

union of 3 copies of M . Let uj, vj be the copies of vertices u, v in the j’th copy of M

(j = 1, 2, 3). We then modify G by removing all edges in the subgraph induced by

{u1, v1, u2, v2, u3, v3}. This step removes all bundles of edges. Lastly, we add edges

back into this subgraph so that it induces a 3-regular (simple) subgraph. This can be

done in several ways, but here we choose to add edges {uj, vj} (j = 1, 2, 3), {uj, uj′}
(j ̸= j′), and {vj, vj′} (j ̸= j′). The resulting graph G is simple, and has degree

polynomial D(G; x) = 3x4 + 3x3 + 3x = 3D(M ;x). See the right of Figure 3.2 for

this final graph G.

u

v

x4 + x3 + x

v1

u1

v2

u2

v3

u3

3x4 + 3x3 + 3x

Figure 3.2: Left: a multigraph M with D(M ;x) = x4 + x3 + x. Right: a simple
graph G with degree polynomial D(G; x) = 3D(M ;x), formed through the process
described in Proposition 3.2.
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As a corollary, we are able to relate the degree roots of multigraphs to those of

(simple) graphs.

Corollary 3.3. Z(D) = Z(Dmulti).

Proof. The inclusion Z(Dmulti) ⊆ Z(D) follows from Proposition 3.2.

Interestingly, the expansion to multigraphs adds no new degree roots. We will

shortly see how the roots Z(Z≥0[x]) are related. First, however, we need the following

corollary due to our re-expressed version of Hakimi’s Theorem (Theorem 2.8). Recall

that this theorem asserts that a polynomial p(x) ∈ Z≥0[x] is the degree polynomial

of a multigraph if and only if p′(1) is even and deg(p(x)) ≤ p′(1)/2.

Corollary 3.4. If f(x) ∈ Z≥0[x], then 2f(x) ∈ Dmulti.

Proof. Let g(x) = 2f(x). Then as g′(x) = 2f ′(x) and f ′(x) ∈ Z≥0[x] it is easy to see

that 2 | g′(1). Furthermore, we can write g(x) = 2ax∆ + · · · , where a ≥ 1, and thus

g′(1)/2 = a∆+ · · ·

≥ ∆

= deg(g(x)).

Therefore by Theorem 2.8, g(x) ∈ Dmulti.

The above result implies that the roots of polynomials with non-negative integer

coefficients are degree roots for some multigraph, which are degree roots for a (simple)

graph. Thus we also have the following.

Corollary 3.5. Z(D) = Z(Z≥0[x]).

Proof. The forward inclusion Z(D) ⊆ Z(Z≥0[x]) is true by definition, so we need

only to show the other direction. Suppose p(x) ∈ Z≥0[x], and that p(z) = 0 (so

z ∈ Z(Z≥0[x])). Then 2p(z) = 0, and since 2p(x) ∈ Dmulti by Corollary 3.4, we have

z ∈ Z(Dmulti) = Z(D), and we are done.

While Z(D) = Z(Dmulti) = Z(Z≥0[x]) may make it seem that degree roots are not

deserving of investigation beyond examining the roots of Z(Z≥0[x]), the restriction of

certain graph parameters can restrict degree roots. This problem is the concern of a

later section.
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3.2 Density of Degree Roots

In this section we investigate the distribution of degree roots in the complex plane.

In particular, we are interested in the density of degree roots. The density of roots

for other graph polynomials has been studied. For example, see [35] for the density of

chromatic roots. Our approach will make use of the results from the previous section,

in particular Corollary 3.5.

To begin, consider the following set of complex numbers, which contains all ath

roots of all negative rational numbers:

R =

{
ωa

(
p

q

)1/a

: a, p, q ∈ Z≥1, gcd(p, q) = 1, (ωa)
a = −1

}
.

Observe that an element z = ωa (p/q)
1/a ofR is a root of the polynomial qxa+s+pxs ∈

Z≥0[x]. Therefore, z ∈ Z(D) = Z(Z≥0[x]) and hence R ⊆ Z(D). A useful subset of

R for showing density of degree roots is

A =

{
ωa

(
p

q

)
: a, p, q ∈ Z≥1, gcd(p, q) = 1, (ωa)

a = −1

}
,

which is obtained by taking ath roots of negative rational powers −(p/q)a. Before

using A to give a result on the density of degree roots, let us describe how to form

graphs with degree roots belonging to A.

Let s ≥ 2, a ≥ 1 be integers. Take any t graphs Gi that are each s-regular of the

same order n0, and set G′
i = Gi − ei for any edge ei of Gi. Let vi,0 and vi,1 be the

endpoints of ei, so they now have degree s− 1 in G′
i. Similarly, take r graphs Hi that

are (s+a)-regular of the same order na, and set H ′
i = Hi−e′i (e

′
i any edge of Hi). Let

ui,0 and ui,1 be the endpoints of e′i, so they have degree s + a− 1 in H ′
i. Next, form

a new graph F in the following way: start by adding an edge between v1,1 and v2,0.

Then add an edge between v2,1 and v3,0. Continue adding edges between vertices vi−1,1

and vi,0, up to i = t. Repeat this process for ui−1,1 and ui,0, for 2 ≤ i ≤ r. Finally,

add an edge between v1,0 and u1,0, and between vt,1 and ur,1. Figure 3.3 gives a sketch

of this process. The resulting graph F will have order tn0 + rna. Furthermore, we

began with tn0 vertices of degree s from the Gi graphs, and rna vertices of degree

s+a from the Hi graphs. After removing edges, we had t(n0−2) vertices of degree s,

2t vertices of degree s− 1, r(na− 2) vertices of degree s+ a, and 2r vertices of degree
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s+ a− 1. However, adding edges between vertices vi−1,1 and vi,0, ui−1,1 and ui,0, v1,0

and u1,0, and vt,1 and ur,1 increased their degrees back up by 1. Therefore F has tn0

vertices of degree s and rna vertices of degree s + a, thus its degree polynomial is

D(F ;x) = rnax
s+a + tn0x

s.

If p/q is any positive (and without loss of generality, fully reduced) rational num-

ber, observe that if we set t = Lpa/n0 and r = Lqa/na, where L = LCM(n0, na),

then the degree polynomial of F is D(F ;x) = Lqaxs+a +Lpaxs. This polynomial has

s roots at 0, and the remaining roots are the ath roots of −pa/qa, that is, roots of

the form ωap/q where again ωa is any ath root of −1. Therefore, the non-zero degree

roots of F belong to A.

G′
1

v1,0

v1,1

G′
2

v2,0

v2,1

G′
t

vt,0

vt,1

H ′
1

u1,0

u1,1

H ′
2

u2,0

u2,1

H ′
r

ur,0

ur,1

Figure 3.3: Schematic of the construction of the graph F .

We remark that in the construction of F it did not matter which vi,j or uk,l were

connected to each other. As long as each only received one new edge, the degree

polynomial would remain Lqaxs+a + Lpaxs. It is the roots of these polynomials that

gives us the following theorem concerning the density of degree roots.

Theorem 3.6. Degree roots are dense in the complex numbers C, in the non-positive

real axis (−∞, 0], and in the imaginary axis iR.

Proof. To begin, we claim that the set Qodd of odd-numerator rational numbers is

dense in R. We are interested in Qodd for the following reason: consider an ath root of

−1, ωa, as in the set A above. Then the argument of ωa has the form
π
a
+ 2πj

a
= (2j+1)π

a
,

which is precisely π times an element of Qodd. Conversely, if h = 2j+1
a

∈ Qodd, then

πh is the argument of an ath root of −1 since
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(
eiπh
)a

= eiπ(2j+1)

= eiπ

= −1.

To prove our claim, we shall show that between any two real numbers there exists an

element of Qodd. Let x, y ∈ R such that x < y. Since Q is dense in R, there exists a

rational number n
m

in reduced form such that x < n
m

< y. If n is odd, then we are

done. Suppose n is even, so n = 2k. Then m must be odd (otherwise n
m

would not

be reduced). Then observe 0 < y − 2k
m
. As the sequence {1

t
}t→∞ converges to zero,

there exists t ∈ N such that 0 < 1
t
< y − 2k

m
, implying x < 2k

m
< 2k

m
+ 1

t
< y =⇒

x < 2kt+m
mt

< y. But since m is odd, it follows that 2kt+m
mt

∈ Qodd. Hence we have

shown there is an odd-numerator rational number between any two real numbers,

which means Qodd is dense in R.
Now we may continue with the proof that degree roots are dense in C. Let

z = reiθ ∈ C, θ ∈ [0, 2π). We will show there are degree roots arbitrarily close to

z. Let ϵ > 0 be given. We may assume that r > 0, as we have already seen that 0

is a degree root (so of course all balls around 0 contain a degree root). We can also

assume ϵ < r. Choose r′ ∈ Q so that |r − r′| < ϵ, which is possible since Q is dense

in R. Furthermore, let h ∈ Qodd be such that |θ/π − h| < ϵ/π, which can be done

since Qodd is dense in R by our argument above. Notice that θ′ = πh has the form

π(2j + 1)/a, for some a and j. Hence, |θ − θ′| < ϵ and θ′ is the argument of an ath

root of −1 (as shown above). Therefore, z′ = r′eiθ
′ ∈ A has modulus and argument

within ϵ of the modulus and argument of z. Thus we can find degree roots belonging

to the set A arbitrarily close to z, implying A, and consequently the set of all degree

roots, is dense in C.
For the case of density in (−∞, 0], the complex number z would have argument

θ = π. Therefore, to ensure z′ is within ϵ of z we need only to set h = 1, or θ′ = π,

and choose r′ to be within ϵ of r.

For the case density in the imaginary axis iR, we proceed as in the real case except

setting h = 1/2 or 3/2 (and hence θ′ = π/2 or 3π/2), depending on if z is in the

upper or lower half-plane (as these would also be the values of θ).
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3.3 Degree Roots and Graph Parameters

In this section we investigate how restraining certain graph parameters impacts degree

roots, or how degree roots may depend on certain graph parameters. So far we

have seen that, as a whole, degree roots for all graphs are the same as roots for

polynomials with non-negative integer coefficients, and that these roots are dense in

C, (−∞, 0], and iR. We wish to see how these facts may change with the addition

of graph theoretic constraints, and discover any dependence of degree roots on graph

parameters.

3.3.1 Order of Graphs

The simplest of graph parameters is the order, or the number of vertices, n. If n is

fixed, there are only finitely many graphs and thus only finitely many degree roots

which are, of course, bounded. Furthermore, the degrees are naturally bounded since

no degree may exceed n− 1. As early as Figure 3.1 the influence of n on degree roots

could be seen, as the roots were restricted to a finite region that grew as n increased.

We look to better understand this influence and any other dependence of degree roots

on n. Let us start with the following simple result about when −1 is a degree root.

Proposition 3.7. If −1 is a degree root of a graph G with order n, then n is a

multiple of four.

Proof. Recall our observation from Section 2.2 that −1 is a degree root of G if and

only if G has an equal number of even and odd degree vertices. Suppose there are k

of each, so that n = 2k. But we also know that G must have an even number of odd

degree vertices, hence k = 2t for some t. Therefore, n = 4t and we are done.

Conversely, if n = 4t there exists a graph for which −1 is a degree root. One

such graph is formed by taking the disjoint union of t copies of P4, which has degree

polynomial 2x2 + 2x, though this is not the only construction.

Let us now see how restricting n creates a difference between degree roots for

(simple) graphs, multigraphs, and the roots of polynomials with non-negative integer

coefficients. In Figure 3.4, we show a comparison of these roots for n = 4. The left

plot shows degree roots for (simple) graphs for n = 4, the middle shows degree roots



51

of multigraphs for n = 4 and a maximum edge bundle size of 3, and the rightmost

plot shows the roots of all polynomials of Z≥0[x] with sum of coefficients equal to

n = 4 and degree at most 9. Degree polynomials for multigraphs were calculated

from their adjacency matrices found with nauty [30].

While the roots in each plot are distributed in similar shapes, these plots are

strikingly different. The main reason for this is that each plot has a visibly different

number of roots. Unsurprisingly, degree roots for (simple) graphs has the least dense

plot: we are looking at roots to polynomials of Z≥0[x] having a sum of coefficients

equal to 4, degree 3, and also satisfying restraints of being degree-graphic. Having

more roots, the plot for multigraphs shows roots for polynomials in Z≥0[x] with sum

of coefficients equal to 4, degree at most 9 (a vertex has at most 3 neighbours, each

of which having an edge bundle of at most 3 edges), and satisfying weaker degree-

graphic restraints. Removing these weaker graph theoretic restraints produces the

final plot.

Our focus from here on is (simple) graphs. We will now look toward bounding

degree roots in terms of n, since there are only finitely many of them. To find a

modulus bound on degree roots of graphs with order n, the following lemma will be

useful.

Lemma 3.8. Consider the weighted sum B =
∑N

i=1 biyi where y1 ≥ y2 ≥ ... ≥ yN

are real numbers and each bi is a non-negative real number with
∑N

i=1 bi = k. Then

B ≤ ky1.

Proof. Rewrite B in the following way:

B =
N∑
i=1

biyi

= (k − b2 − · · · − bN)y1 + b2y2 + · · ·+ bNyN

= ky1 + b2(y2 − y1) + · · ·+ bN(yN − y1).

Since yi − y1 ≤ 0 for each i, and the bi are non-negative, it is immediately seen that

B ≤ ky1.

We recall Cauchy’s bound (Theorem 1.3) on the modulus of roots of a polynomial

with complex coefficients: every root of a polynomial g(x) = cnx
n + · · ·+ c1x+ c0 of
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Figure 3.4: Top left: degree roots of (simple) graphs for n = 4. Top right: degree
roots of multigraphs of order n = 4, allowing a maximum edge bundle size of 3.
Bottom: roots of polynomials belonging to Z≥0[x] whose sum of coefficients is 4, and
whose degrees are at most 9.



53

degree n ≥ 1 with c0 ̸= 0 has modulus at most r, where r is the unique positive root

of the real polynomial h(x) = |cn|xn − · · · − |c1|x− |c0|. We are now able to prove a

modulus and argument bound on the roots of polynomials with non-negative integer

coefficients.

Proposition 3.9. Let p(x) = a∆x
∆ + · · · + aδx

δ ∈ Z≥0[x] where ∆ > δ and with

a∆, aδ ≥ 1. Suppose that p(1) = a∆ + · · ·+ aδ = n. If z is a root of p(x), then

|z| ≤ max

{
n− a∆
a∆

,
a∆

n− a∆

}
.

Proof. Let c = max
{

n−a∆
a∆

, a∆
n−a∆

}
, and observe that c takes on the value of whichever

of (n−a∆)/a∆, a∆/(n−a∆) is greater than or equal to one. Hence in any case c ≥ 1.

By Theorem 1.3 we have |z| ≤ R, where R is the positive root of

h(x) = a∆x
∆−δ − a∆−1x

∆−δ−1 − · · · − aδ.

Notice that h(0) = −aδ < 0. We now consider two cases:

Case 1: c = (n− a∆)/a∆.

Observe

h(c)

c∆−δ
= a∆ − a∆−1

c
− · · · − aδ

c∆−δ

= a∆ − S,

where S =
∑∆−δ

j=1 a∆−j/c
j. Since c ≥ 1, we have 1/c ≥ 1/c2 ≥ · · · ≥ 1/c∆−δ. By

Lemma 3.8 where we have yi = 1/ci,

S ≤ n− a∆
c

= a∆.

Therefore h(c) = a∆ − S ≥ 0, and since h(0) < 0, by the IVT and Theorem 1.3, we

have R ∈ (0, c].

Case 2: c = a∆/(n− a∆).

We proceed in the same manner as in Case 1, and find

S ≤ n− a∆
c

=
(n− a∆)

2

a∆
.
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However,

(n− a∆)
2

a∆
≤ a∆

⇐⇒ n2 − 2na∆ ≤ 0

⇐⇒ n

2
≤ a∆.

Since we have c = a∆/(n− a∆) ≥ 1, the last inequality is indeed true. Thus S ≤ a∆

and again we have h(c) ≥ 0, so R ∈ (0, c].

In any case on c, we have found R ≤ c. Therefore by Theorem 1.3 |z| ≤ c, as

desired.

Equality is met for this bound when p(x) = a∆x
∆ + a∆−1x

∆−1. Thus we can use

this bound to give another for the degree roots of graphs with fixed order. Recall that

in Figure 3.1 we observed that the degree roots for graphs of fixed order n seemed to

never exceed a modulus of n− 1, and roots that had such a modulus were real. This

modulus bound is in fact true, as stated in the following Corollary which is due to

considering the extreme of Proposition 3.9. For simplicity, we let Sn be the family of

all (simple) graphs of order n.

Corollary 3.10. If z ∈ Z(D(Sn)) is non-zero, then

1

n− 1
≤ |z| ≤ n− 1.

Proof. The upper bound follows directly from Proposition 3.9, when a∆ = 1 or n−1.

The lower bound follows since 1/z also belongs to Z(D(Sn)) (as a degree root to the

graph complement of a graph for which z was a degree root). Thus 1/|z| ≤ n − 1,

and the lower bound is obtained from rearranging.

Let us now consider the extreme of Corollary 3.10, when there is a degree root of

modulus n− 1 (considering graphs of order n). Figure 3.1 seems to suggest that the

only roots of such modulus are real, and only appear when n is odd. The following

propositions address these observations for n ≥ 4, since all degree roots for n = 2 or

n = 3 are already real.
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Proposition 3.11. Let G be a graph of order n ≥ 4, and suppose D(G; x) has a degree

root z, where |z| = n− 1. Then D(G; x) has the form D(G; x) = x∆ + (n− 1)x∆−1,

and in particular z = −(n− 1).

Proof. Let D(G; x) = a∆x
∆+· · ·+aδx

δ (a∆ > 0) be the degree polynomial of G which

has the root z of modulus n−1. Recall Cauchy’s theorem (Theorem 1.4) which states

that all roots of D(G; x) have modulus strictly less than

1 + max
k ̸=∆

{∣∣∣∣ aka∆
∣∣∣∣} = 1 +

maxk ̸=∆{ak}
a∆

.

Since this applies to the root z with modulus n− 1, we must have

n− 2 <
maxk ̸=∆{ak}

a∆
.

This inequality is only satisfied when a∆ = 1 and maxk ̸=∆{ak} = n−1. If maxk ̸=∆{ak}
were any smaller value, the RHS of the above inequality would be at most n− 2 and

thus gives a contradiction. We must also ensure that the sum of the ak’s is equal to

n, so no single coefficient may be greater than n − 1 (if ak = n for some k, then all

other coefficients are zero and therefore D(G; x) is a monomial, having no non-zero

roots). Thus we have a∆ = 1, ak = n − 1 for some k < ∆, and all other coefficients

are zero. This gives D(G; x) the form D(G; x) = x∆ + (n− 1)xk.

Furthermore, since D(G; z) = 0 we must have z∆−k = −(n − 1). As |z| = n − 1,

it follows that ∆− k = 1, or k = ∆− 1. Thus D(G; x) = x∆ + (n− 1)x∆−1, and we

also conclude that z = −(n− 1).

Polynomials of the form x∆ + (n− 1)x∆−1 are not degree-graphic for all values of

n and ∆, however. The next proposition tells us precisely when they are.

Proposition 3.12. A polynomial of the form x∆+(n−1)x∆−1 with n ≥ 4, ∆ ≤ n−1,

is degree-graphic if and only if n is odd and ∆ is even.

Proof. ( =⇒ ) We first prove the forward direction. Since x∆+(n−1)x∆−1 is degree-

graphic, we know that the sum of the degrees must be even (the degree-sum formula).

Hence, ∆ + (n − 1)(∆ − 1) is even, implying ∆ and (n − 1)(∆ − 1) are of the same

parity. If both are odd, then n− 1 and ∆− 1 must also be odd, so that their product

is odd. But here we have a contradiction since ∆ and ∆ − 1 are odd. In the case
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where ∆ and (n− 1)(∆− 1) are both even, we know ∆ − 1 is odd, and hence n− 1

must be even (to ensure (n− 1)(∆− 1) is even). In other words, n is odd. Therefore,

we conclude that ∆ is even and n is odd.

( ⇐= ) Suppose n is odd, so n = 2k + 1 for some k ≥ 2, and also that ∆ is even,

so ∆ = 2d for some 1 ≤ d ≤ k. The potential degree sequence from the polynomial

x∆+(n−1)x∆−1 = x2d+2kx2d−1 is 2d, 2d−1, ..., 2d−1. We will show this sequence is

graphic using the Erdös-Gallai Theorem. First, observe that the sum of the sequence

is 2d + 2k(2d − 1) = 2(d + k(2d − 1)), which is even (2d − 1 ≥ 1). Thus the first

condition is satisfied. The second condition may be expressed as

2d+ (j − 1)(2d− 1) ≤ j(j − 1) + (2k + 1− j) ·min(2d− 1, j),

which simplifies to

2dj + 1 ≤ j2 + (2k + 1− j) ·min(2d− 1, j)

for each j ∈ 1, ..., 2k+ 1. We show this condition holds by considering three cases on

j, in terms of d.

Case 1: j ≤ 2d− 1. Then

2dj+1 ≤ j2 + (2k + 1− j) ·min(2d− 1, j)

⇐⇒ 2dj+1 ≤ 2kj + j

⇐⇒ 1 ≤ j(2(k − d) + 1),

which is indeed true since k − d ≥ 0 and j ≥ 1.

Case 2: j = 2d. In this case the second condition becomes

2d(2d)+1 ≤ (2d)2 + (2k + 1− 2d)(2d− 1)

⇐⇒ 1 ≤ (2k + 1− 2d)(2d− 1),

which is true since 2d− 1 ≥ 1, and d ≤ k so 2k − 2d+ 1 ≥ 1.

Case 3: j ≥ 2d+ 1. The second condition is then
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2dj+1 ≤ j2 + (2k + 1− j) ·min(2d− 1, j)

⇐⇒ 1 ≤ j2 − 2dj + (2k + 1− j)(2d− 1).

But j2 − 2dj ≥ j ≥ 1, 2k + 1− j ≥ 0, and 2d− 1 ≥ 1, so the final inequality is true.

This exhausts all cases for j, and we are done.

Propositions 3.11 and 3.12 confirm our observations of Figure 3.1 previously men-

tioned. In the following example we show some types of graphs that have a degree

root at −(n− 1), for small values of n.

Example 3.2. Let n = 2k + 1, k ≥ 1. One construction of graphs having a degree

root at −(n − 1) is the following: remove a perfect matching from K2k, creating a

graph with degree polynomial 2kx2k−2, and then add a universal vertex. The resulting

graph has degree polynomial x2k+2kx2k−1, with a root at −2k = −(n−1). See Figure

3.5 for some of these graphs.

x2 + 2x x4 + 4x3 x6 + 6x5

Figure 3.5: Three examples of graphs formed from adding a universal vertex to K2k

with a perfect matching removed. These graphs have degree roots at −(n−1), where
n = 2k + 1.

There is also the following family of disconnected graphs: take the disjoint union of

P3 with (n− 3)/2 copies of P2 (see Figure 3.6). These graphs have degree polynomial

x2 + 2x+ 2x(n− 3)/2 = x2 + (n− 1)x, again with a root at −(n− 1).
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n−3
2

Figure 3.6: Construction of disconnected graph with root at −(n−1), made by taking
the union of P3 and copies of P2.

In addition to these constructions, when n = 7 there are four distinct graphs with

degree polynomial x4+6x3 (see Figure 3.7), and when n = 9 there are 28 graphs with

degree polynomial x4 + 8x3 and 20 graphs with polynomial x6 + 8x5 (see Figure 3.8

for examples). All of these graphs have a real degree root at −(n− 1).

We have seen there are real degree roots for graphs of order n with modulus as

large as n − 1. Now we look toward the imaginary axis. It was observed in Figure

3.1 that purely imaginary roots seemed to never exceed a modulus of
√
n. The next

proposition confirms and improves on this observation.

Proposition 3.13. Let z = ir (r ∈ R) be a purely imaginary root of a degree poly-

nomial D(G; x), where G has order n. Then |z| ≤
√
n− 1.

Proof. Let us write D(G; x) = a∆x
∆ + · · ·+ aδx

δ. D(G; ir) = 0 can be written as

i∆
(
a∆r

∆ − a∆−2r
∆−2 + · · ·

)
+ i∆−1

(
a∆−1r

∆−1 − a∆−3r
∆−3 + · · ·

)
= 0,

or simply i∆A + i∆−1B = 0. Therefore, both A and B must be equal to zero. Since

a∆ ≥ 1, there must be another coefficient (ak, for some k) in A that is non-zero. Let

us now consider two cases on the parity of ∆.

Case 1: ∆ = 2k. In this case, we may write A = 0 as



59

Figure 3.7: The four graphs of order n = 7 with degree polynomial x4 + 6x3.

a2kr
2k − a2k−2r

2k−2 + · · · = 0.

Setting s = r2 we have

a2ks
k − a2k−2s

k−1 + · · · = 0,

and thus −s is a root of f(x) = a2kx
k + a2k−2x

k−1 + · · · . Since f(x) has only non-

negative integer coefficients, we apply Proposition 3.9: f(1) ≤ n and 1 ≤ a2k ≤ n−1,

so

|s| = | − s|

≤ max

{
n− a2k
a2k

,
a2k

n− a2k

}
≤ n− 1.

Therefore, |z| = |r| ≤
√
n− 1.

Case 2: ∆− 2k + 1. In this case, we may write A = 0 as

a2k+1r
2k+1 − a2k−1r

2k−1 + · · · = 0.
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Figure 3.8: Left: one of the 28 graphs of order n = 9 with degree polynomial x4+8x3.
Right: one of the 20 graphs of order n = 9 with degree polynomial x6 + 8x5.

Dividing by r and again setting s = r2 we have

a2k+1s
k − a2k−1s

k−1 + · · · = 0,

so−s is a root of g(x) = a2k+1x
k+a2k−1x

k−1+· · · . As above, we can apply Proposition

3.9 to obtain |z| ≤
√
n− 1.

Therefore, in any case, we have |z| ≤
√
n− 1. Note that it is possible that B

is equal to zero because each of its coefficients ck are zero. If B has some non-

zero coefficients, we may proceed as above to reach the same conclusion. The only

difference in this instance is that a∆−1 may not be the leading coefficient of B, so we

would simply write B starting from its leading coefficient.

The following example describes some graphs that have imaginary roots with

largest possible modulus, that is, with modulus
√
n− 1.

Example 3.3. For n ≤ 3, all degree roots are real. Starting at n = 4, we begin to see

purely imaginary degree roots with largest possible modulus: the complete bipartite

graph K1,3 has degree polynomial D(K1,3;x) = x3 + 3x. Thus its degree roots are 0

and ±i
√
3. For n = 5, consider the graph formed by intersecting two copies of K3 on

a single vertex. This graph has degree polynomial x4+4x2, and thus has degree roots

0 (with multiplicity two) and ±2i. For n = 6, make a graph by adding a universal

vertex to C5. The resulting graph has degree polynomial x5+5x3, having degree roots

at 0 (with multiplicity three) and ±i
√
5. Each of these graphs, shown in Figure 3.9,

share a common construction. To make a graph of order n ≥ 4 with degree roots at
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±i
√
n− 1, begin with an (n− 4)-regular graph on n− 1 vertices (this can always be

done since n− 4 ≤ n− 1 and (n− 4)(n− 1) is always even). Then, add a universal

vertex. The graph resulting from this process has a single vertex of degree n− 1, and

n− 1 vertices of degree n− 3. Therefore its degree polynomial is xn−1 + (n− 1)xn−3,

having roots at ±i
√
n− 1.

x3 + 3x x4 + 4x2 x5 + 5x3

Figure 3.9: Three graphs having imaginary degree roots with largest possible modu-
lus.

Another way to form graphs with degree roots at ±i
√
n− 1 is the following, which

works for n ≥ 5. Take two disjoint cycles Cs and Ct, and intersect them on a single

vertex. The resulting graph, as shown in Figure 3.10, will have n = s+ t− 1 vertices

(n ≥ 5 since s, t ≥ 3), one of which has degree 4 while the remaining vertices have

degree 2. Hence, it has degree polynomial x4 + (n− 1)x2 and has the desired degree

roots. Notice that when s = t = 3 this graph is the same as the graph of order 5 from

the previous construction (Figure 3.9, middle).

Each of the graphs described above had a degree polynomial of a particular form:

x∆ + (n− 1)x∆−2. This is, in fact, the only form such degree polynomials can have,

as shown in the following proposition.

Proposition 3.14. Let G be a graph of order n that has an imaginary degree root

with modulus
√
n− 1. Then D(G; x) = x∆ + (n− 1)x∆−2, for some ∆.

Proof. Suppose D(G; x) = a∆x
∆ + · · · + aδx

δ, so a∆, aδ ≥ 1. Since there is a root at

i
√
n− 1, there is also a root at −i

√
n− 1. Thus we can factor D(G; x) as:

a∆x
∆ + · · ·+ aδx

δ = (x2 + (n− 1))(b∆−2x
∆−2 + · · ·+ bδx

δ).
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Cs Ct

Figure 3.10: Two cycles Cs and Ct intersecting on a single vertex. Setting n = s+t−1,
this graph has degree polynomial x4 + (n− 1)x2.

Expanding the product on the right and equating coefficients, we obtain the following

relations:

b∆−2 = a∆,

b∆−3 = a∆−1,

b∆−k−2 + (n− 1)b∆−k = a∆−k, 2 ≤ k ≤ ∆− δ − 2,

(n− 1)bδ+1 = aδ+1,

(n− 1)bδ = aδ.

The first two of these relations tell us b∆−2, b∆−3 ∈ Z≥0, and b∆−2 ≥ 1. Since we

have b∆−4 + (n − 1)b∆−2 = a∆−2, it follows that b∆−4 ∈ Z. Similarly, b∆−5 ∈ Z as

b∆−5 + (n − 1)b∆−3 = a∆−3. This pattern continues for decreasing indices, so from

bδ + (n − 1)bδ+2 = aδ+2 we can conclude bδ ∈ Z. The last relation gives us the

inequality 1 ≤ (n − 1)bδ ≤ n − 1, and therefore bδ = 1. Hence, aδ = n − 1, and the

only other non-zero coefficient of D(G; x) is a∆ = 1 (as the coefficients must sum to

n). Thus D(G; x) = x∆ + (n− 1)xδ, and since there are roots at ±i
√
n− 1, it must

be that δ = ∆− 2.
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3.3.2 Maximum Degree of Graphs

Another graph parameter we may focus on is the maximum degree, or ∆. Fixing ∆

does not limit the number of graphs to a finite amount (for example, even for ∆ = 2

there are infinitely many path graphs), nor bound degree roots: the graphs that are a

disjoint union of C4 with k copies of P2 all have ∆ = 2, yet their degree polynomials

are 4x2 + 2kx which have a root at −k/2 that becomes arbitrarily large in absolute

value as k increases.

Let us begin with a lemma that will allow us to find a bound on the argument of

roots of non-negative real coefficient polynomials, and consequently degree roots.

Lemma 3.15 ([29]). Suppose that wj, 1 ≤ j ≤ p are non-zero complex numbers such

that γ ≤ arg (wj) < γ + π for some real constant γ. Then
∑p

1 wj ̸= 0.

The next result is stated in [16] as being true for polynomials with strictly positive

coefficients. Here, we allow for coefficients to simply be non-negative and give a simple

proof.

Lemma 3.16. Let p(x) = bdx
d + · · · + b1x + b0 be a polynomial with non-negative,

real coefficients, and without loss of generality bd, b0 ̸= 0. If z is a root of p(x), then

|arg (z)| ≥ π

d
.

Proof. Let z = reiθ, r > 0, θ ∈ (−π, π]. Clearly θ ̸= 0, since p(x) has non-negative

coefficients. It suffices to prove the result for 0 < θ ≤ π, due to the symmetry

p(z) = 0 ⇐⇒ p(z) = 0, and arg(z) = −θ. For all j such that bj ̸= 0, let wj = bjr
jeiθj.

Then p(z) = p(reiθ) =
∑

wj = 0. Toward a contradiction, suppose that θ < π/d, so

then 0 < θd < π. But arg(wj) = θj, so for all j such that bj ̸= 0, we have

0 ≤ arg(wj) ≤ θd < π.

Thus by Lemma 3.15,
∑

wj ̸= 0, which is in contradiction to p(z) = 0. Therefore

θ ≥ π/d, and we are done.

As a corollary, we have a lower bound to the argument of non-zero degree roots.
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Corollary 3.17. Let G be a graph with degree polynomial D(G; x) = a∆x
∆+· · ·+aδx

δ

(∆ > δ). If z is a non-zero degree root of G, then

| arg(z)| ≥ π

∆− δ
.

Proof. This follows directly from applying Lemma 3.16 to D(G; x)/xδ.

Furthermore, we can give a lower bound to the arguments of all non-zero degree roots

for graphs of order n.

Corollary 3.18. If z ∈ Z(D(Sn)) is non-zero, then

| arg(z)| ≥ π

n− 2
.

Proof. This follows directly from Corollary 3.17, observing that ∆−δ ≤ n−2 since G

cannot have both a universal vertex (which has degree n− 1) and an isolated vertex.

We can prove a simple result on degree root density for certain families of graphs.

We can show that not all families of graphs have degree roots that are dense in C, as a
necessary condition is that the maximum degrees of graphs in a family is unbounded.

Corollary 3.19. Suppose F is a family of graphs. If sup {∆(G) : G ∈ F} < ∞,

then Z(D(F)) is not dense in C.

Proof. Let M = sup {∆(G) : G ∈ F}, so that M is finite. By Lemma 3.16, any

non-zero z ∈ Z(D(F)) satisfies | arg(z)| ≥ π/M . Therefore the region

{z ∈ C : |z| > 0, | arg(z)| < π/M} ⊂ C

will be free from elements of Z(D(F)), and thus Z(D(F)) cannot be dense in C.
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3.4 Degree Roots for Some Families of Graphs

Here we shall focus on some families of graphs for which we can say much about their

degree roots. We have so far considered degree polynomials more generally, which

leaves many patterns and properties obscured. Dealing with graph families for which

we can write more explicit degree polynomials, we expect to see simpler pictures of

degree roots with identifiable behaviour and properties.

3.4.1 Trees

By a tree, we mean a connected and acyclic graph. While being a large family of

graphs, trees have distinctive structure and properties. It is natural, then, to wonder

how these properties influence the location of degree roots. The degree roots for trees

of orders three through eighteen are shown in Figure 3.11. The roots appear to be

filling in the negative real line, extend along near vertical lines, yet do not extend

far into the right-half-plane (RHP). We also note the apparent lack of non-real roots

inside the unit circle, which is our first point of investigation into the degree roots for

trees.

With evidence of a root-free region of the complex plane, we make the following

conjecture:

Conjecture 1. Trees have no non-real roots inside the unit circle. Consequently, the

degree roots for trees are not dense in C.

Both a proof or a counterexample to this conjecture have eluded us. However, we are

able to provide a partial answer. The Lemma below will be useful.

Lemma 3.20. Let T be a tree with ak vertices of degree k, 1 ≤ k ≤ ∆. Then

a1 = 2 +
∑∆

k=3(k − 2)ak.

Proof. If n =
∑∆

k=1 ak is the order of T , then the degree-sum formula states the sum

of the degrees of T is equal to 2(n− 1). We arrive at our result through some simple

rearranging:
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Figure 3.11: Degree roots for trees of orders three through eighteen.

∆∑
k=1

kak = 2

(
∆∑

k=1

ak − 1

)
∆∑

k=2

kak + a1 = 2
∆∑

k=2

ak + 2a1 − 2

∆∑
k=2

(k − 2)ak + 2 = a1

∆∑
k=3

(k − 2)ak + 2 = a1.

Corollary 3.21. For a tree T with ak vertices of degree k, 1 ≤ k ≤ ∆, it follows that

a1 >
∑∆

k=3 ak.

Lemma 3.20 shows us that we may change the number of vertices of degree two

in a tree (in fact, in any graph) without changing the number of vertices of any other
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degree. Thus for a tree with fixed a1, a3, ..., a∆, we can allow a2 to be any value we

want. Graphically, this corresponds to subdividing the edges of a tree arbitrarily

many times.

The proposition below gives a partial answer to Conjecture 1, stating that trees

with sufficiently few or sufficiently many subdivisions have no non-real degree roots

inside the unit circle. It is still unknown if this is true for any number of subdivisions.

Proposition 3.22. Let T be a tree with degree polynomial D(T ;x) =
∑∆

k=1 akx
k. If

a2 < a1 −
∑∆

k=3 ak or a1 +
∑∆

k=3 ak < a2, then D(T ;x) has no non-real roots inside

the complex unit circle.

Proof. Our proof will make use of Rouché’s Theorem (Theorem 1.2), taking the simple

closed Jordan curve to be the unit circle C = {z : |z| = 1}. Let us first consider

the case when a2 < a1 −
∑∆

k=3 ak, or when
∑∆

k=2 ak < a1. This inequality holds

for at least one value of a2 (a2 = 0) due to Corollary 3.21. Define the polynomials

P (z) = D(T ; z)− a1z, and Q(z) = a1z. Then for z ∈ C, we have

|P (z)| = |D(T ; z)− a1z|

= |
∆∑

k=2

akz
k|

≤
∆∑

k=2

ak|z|k

=
∆∑

k=2

ak.

Furthermore, |Q(z)| = |a1z| = a1 for z ∈ C. Thus for z ∈ C, |P (z)| < |Q(z)| and
so by Rouché’s Theorem, Q(z) and Q(z) + P (z) have the same roots inside the unit

circle. But Q(z) has only one root, z = 0. Thus P (z) + Q(z) = D(T ; z) has exactly

one root inside the unit circle. It is easily seen that this root is also z = 0.

In the second case, we have a1+
∑∆

k=3 ak < a2. Now define P (z) = D(T ; z)−a2z
2

and Q(z) = a2z
2. For z ∈ C,
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|P (z)| = |D(T ; z)− a2z
2|

= |
∆∑

k=3

akz
k + a1z|

≤
∆∑

k=3

ak|z|k + a1|z|

=
∆∑

k=3

ak + a1,

while |Q(z)| = |a2z2| = a2. Therefore |P (z)| < |Q(z)| on C. By Rouché’s Theorem,

Q(z) + P (z) = D(T ; z) has the same number of roots inside the unit circle as Q(z),

which is exactly two (Q(z) has two roots at z = 0). Since we know D(T ; z) has one

root at z = 0, the other root inside the unit circle must be real. Otherwise, it would

have a conjugate root also inside the unit circle.

Now we turn our attention to the real parts of degree roots for trees, asking if

the real parts can be bounded. It is not difficult to show that degree roots for trees

are unbounded along the negative real line. Consider trees with ∆ = 3, that is, trees

which have degree polynomial D(T ;x) = a3x
3 + a2x

2 + (a3 + 2)x (there are a3 + 2

leaves as a result of Lemma 3.20). The roots of these polynomials are simply

0,
−a2 ±

√
a22 − 4a3(a3 + 2)

2a3
.

For sufficiently large a2, these roots are all real. Since

lim
a2→∞

(
−a2 −

√
a22 − 4a3(a3 + 2)

2a3

)
= lim

a2→∞

−a2
a3

= −∞

it is clear that these degree roots are unbounded on the negative real line.

While not having positive real roots, there are degree roots for trees with positive

real part (as seen in Figure 3.11). Thus we might wonder if there is a bound to

the positive real parts of degree roots for trees. To answer this, we make use of the

following Lemma.
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Lemma 3.23 ([7]). Let R > 0 and f(x) ∈ R[x] be a polynomial of degree d with

positive coefficients. Then

1. if d ≥ 4, then for m sufficiently large f(x)+mx has a root with real part greater

than R, and

2. if d ≥ 3, then for l sufficiently large f(x) + l has a root with real part greater

than R.

The original statement of the lemma assumes f(x) has positive coefficients. However,

the result still holds if f(x) is only assumed to have non-negative coefficients. Thus

we are able to apply Lemma 3.23 to degree polynomials and obtain the following.

Proposition 3.24. For any R > 0, there exists a tree with a degree root having real

part greater than R.

Proof. Let R > 0 be given, and fix a tree T with ∆ ≥ 5. Recall that vertices of degree

two can be inserted by subdividing edges without impacting the degrees of any other

vertices. Thus if T ′ is the tree resulting from adding a2 edge subdivisions of T , we

have D(T ′;x) = D(T ;x) + a2x
2. Define

g(x) =
D(T ′;x)

x

=
D(T ;x)

x
+ a2x,

which is a polynomial since the lowest degree term of D(T ;x) has exponent equal to

one. Since deg(D(T ;x)/x)≥ 4, from Lemma 3.23 it follows that for sufficiently large

a2, g(x) and thus D(T ′;x) has a root with real part greater than R.

The above proposition used trees with ∆ ≥ 5 to find roots with arbitrarily large

real part. Plotting the degree roots for trees up to order n = 18 that have ∆ ≤ 4, we

observe that they do not extend far into the RHP (see Figure 3.12). In fact, the real

parts of degree roots for trees with ∆ ≤ 4 do not exceed a value of 1 (and therefore are

bounded to the right) as we shall now argue. For ∆ = 1, the only tree is the path P2

with degree polynomial 2x, and thus the only degree root is at 0. For ∆ = 2, the only
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trees are paths Pn, for n ≥ 3. With degree polynomials D(Pn;x) = (n − 2)x2 + 2x,

the degree roots are 0 and −2/(n− 2), which of course lie in the closed LHP. In the

case of ∆ = 3, recall from above that these trees have the following degree roots:

0, and (−a2 ±
√

a22 − 4a3(a3 + 2))/2a3, where ak is the number of vertices of degree

k. Other than 0, these roots will have negative real part: either the roots are real

and negative, or are non-real and have real part −a2/2a3. Hence, all of these roots

also lie in the (closed) LHP. For the case of ∆ = 4, a tree T has degree polynomial

D(T ;x) = a4x
4 + a3x

3 + a2x
2 + (2a4 + a3 + 2)x (there are 2a4 + a3 + 2 leaves due to

Lemma 3.20). Since there is always a root at 0, we shall remove it for simplicity and

instead consider the polynomial P (x):

P (x) =
D(T ;x)

x

= a4x
3 + a3x

2 + a2x+ (2a4 + a3 + 2).

Notice that P (x) has a root a + ib, where a > 1, if and only if the polynomial

Q(x) = P (x+1) has a root in the RHP. Recall that a polynomial is considered stable

if all of its roots lie in the closed LHP, and the Hermite-Biehler Theorem (Theorem

1.8) which states a polynomial f(x) = feven(x
2) + xfodd(x

2) is stable if and only if

feven(x) and fodd(x) are standard, have only non-positive roots, and fodd(x) ≺ feven(x).

Therefore, after setting Q(x) = Qeven(x
2) + xQodd(x

2), we see that P (x) has a root

with real part greater than 1 if and only if at least one of Qeven(x), Qodd(x) are

non-standard or have some non-positive root, or Qodd(x) ⊀ Qeven(x). First, we must

compute Q(x), Qeven(x), and Qodd(x):

Q(x) = a4(x+ 1)3 + a3(x+ 1)2 + a2(x+ 1) + (2a4 + a3 + 2)

= a4x
3 + (3a4 + a3)x

2 + (3a4 + 2a3 + a2)x+ (3a4 + 2a3 + a2 + 2),

and thus

Qeven(x) = (3a4 + a3)x+ (3a4 + 2a3 + a2 + 2)

and
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Figure 3.12: Degree roots for trees of orders three through eighteen that have ∆ ≤ 4.

Qodd(x) = a4x+ (3a4 + 2a3 + a2).

We quickly see that both Qeven(x) and Qodd(x) are standard, and have only non-

positive roots. If ze is the root of Qeven(x) and zo is the root of Qodd(x), then

ze = −3a4 + 2a3 + a2 + 2

3a4 + a3

and

zo = −3a4 + 2a3 + a2
a4

.

Qodd(x) ⊀ Qeven(x) is now equivalent to the inequality zo > ze. We will now show

that this inequality does not hold for any values of a2, a3, a4. By rearranging the

inequality we have the following:
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zo > ze

⇐⇒ −3a4 + 2a3 + a2
a4

> −3a4 + 2a3 + a2 + 2

3a4 + a3

⇐⇒ (3a4 + a3)(3a4 + 2a3 + a2) < a4(3a4 + 2a3 + a2 + 2),

which after expanding and collecting terms becomes

6a24 + 7a4a3 + 2a4a2 + 2a23 + a3a2 < 2a4.

This inequality implies (since a2, a3 ≥ 0) 6a24 < 2a4, which is a contradiction as

a4 ≥ 1. Therefore there are no values of a2, a3, a4 for which zo > ze. Hence, there is

no P (x) with a root having real part greater than 1, i.e. no tree with ∆ = 4 with

degree root having real part greater than 1.

To conclude this discussion of trees, let us consider trees which have only two

degrees present. This is a subfamily of trees for which we can exactly solve for the

degree roots. For a tree of order at least two that has only two degrees, one of them

must be 1 (ie. the tree must have leaves). The other degree, call it k, takes values in

the set {2, 3, ..., n− 1}. We let Tk,n denote the set of all trees on n vertices that only

have degrees 1 and k (up to isomorphism). The hydrocarbon graphs, or alkane graphs

from Example 2.6, constitute T4,n while path graphs make up T2,n. It is quickly seen

that for some pairs (k, n), Tk,n = ∅. For example, there is no tree with 6 vertices

having degrees 1 and 4. The star K1,4 has 5 vertices, and having an additional vertex

would introduce a degree other than 1 or 4. In [33] all admissible (k, n) pairs, that

is, pairs for which Tk,n ̸= ∅, are characterized:

Theorem 3.25 ([33]). There exists a tree on n vertices whose degrees are only 1 and

k ≥ 2 (ie. Tk,n ̸= ∅) if and only if k − 1 divides n− 2.

Therefore every pair (k, n) for which Tk,n ̸= ∅ has n−2 = (k−1)t, or n = (k−1)t+2,

for some integer t ≥ 1. The form for a degree polynomial of a tree T belonging to

Tk,n is D(T ;x) = (n− l)xk + lx. Summing the degrees, and knowing that T has n− 1

edges, we obtain

2(n− 1) = k(n− l) + l,
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and simplifying yields

l =
kn− 2n+ 2

k − 1
.

Since we must have n = (k − 1)t+ 2 for some t ≥ 1, this further becomes

l =
((k − 1)t+ 2)k − 2((k − 1)t+ 2) + 2

k − 1

= kt− 2(t− 1).

We can then also find

n− l = (k − 1)t+ 2− (kt− 2(t− 1))

= t.

Thus t is the number of vertices of degree k. Putting this all together, the degree

polynomial for a tree T with t vertices of degree k and the remaining vertices being

leaves is

D(T ;x) = txk + [kt− 2(t− 1)]x.

Finding the roots of these polynomials is not difficult: there is a root at x = 0, and

the remaining roots are the (k − 1)th roots of −(k − 2(t− 1)/t) = −l/t. Figure 3.13

shows these roots for 1 ≤ t ≤ 10, and 2 ≤ k ≤ 40. This picture obscures two kinds of

behaviour going on. The first kind is when t is fixed, and k increases (k → ∞). In

this case, the roots have modulus (k − 2(t− 1)/t)
1

k−1 which has the following limit:

lim
k→∞

(
k − 2

t− 1

t

) 1
k−1

= elimk→∞
ln(k−2 t−1

t )
k−1 .

Since by L’Hôpital’s Rule,

lim
k→∞

ln
(
k − 2 t−1

t

)
k − 1

= lim
k→∞

1
k−2 t−1

t

· 1

1

= 0,
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we have

lim
k→∞

(
k − 2

t− 1

t

) 1
k−1

= e0

= 1.

Thus as k increases the modulus of the roots approach 1, and since there are k − 1

roots with arguments being those of the (k − 1)th roots of −1, the roots of D(T ;x)

approach the entire unit circle. Figure 3.14 shows this for t = 4, and 2 ≤ k ≤ 40.

The second kind of behaviour occurs when k is fixed, and t increases (t → ∞). In

this case, we see the limit of the modulus of the roots is

lim
t→∞

(
k − 2

t− 1

t

) 1
k−1

=

(
k − 2 + lim

t→∞

2

t

) 1
k−1

= (k − 2)
1

k−1 .

Since k is fixed, we can say that as t → ∞ the roots approach the points which lie

on the same rays as the (k − 1)th roots of −1, and have a modulus of (k − 2)1/(k−1).

We give an example of this in Figure 3.15, for k = 6. There are five points which

the roots are approaching (other than the always present root at the origin). These

points have modulus (6− 2)1/(6−1) =
5
√
4, and lie on the same rays as the 5th roots of

−1. We also see that the roots approach these points along the rays, and not from

another direction. This is a consequence of k being fixed.

3.4.2 Complete Graphs with a Leaf

Here we investigate the degree roots of the CLn graphs from Example 2.10. The

graph CLn is constructed by attaching a leaf onto any vertex of Kn−1, and has degree

polynomial D(CLn;x) = xn−1 + (n − 2)xn−2 + x. While complete graphs (and any

regular graph) have uninteresting degree polynomials, the simple addition of a leaf

creates degree polynomials with non-trivial roots. We will study these roots in order

to explain the behaviour observed in Figure 3.16, Figure 3.17, and Figure 3.18. Figure

3.16 shows all roots for D(CLn;x), 2 ≤ n ≤ 50. We can observe two things: there are

roots which appear to be spaced out along the negative real line, and there are roots
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Figure 3.13: Roots of D(T ;x) for trees T with t vertices of degree k, and the rest
being leaves, where 1 ≤ t ≤ 10 and 2 ≤ k ≤ 40.

Figure 3.14: Roots of D(T ;x) for trees T with t = 4 vertices of degree k, 2 ≤ k ≤ 40,
and the remaining vertices being leaves.
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Figure 3.15: Roots of D(T ;x) for trees T with t vertices of degree k = 6, for 1 ≤ t ≤
40. There are five non-zero limit points of the roots, which lie on and are approached
along the rays that pass through the 5th roots of −1.

which have modulus close to 1. Figure 3.17 focuses on those roots that are within the

unit circle. It appears that the roots are approaching the entire unit circle from the

inside, save for the roots at the origin and −1. Figure 3.18 focuses on the negative

real line. The roots shown here all seem to be real, and are located near the negative

integers.

Addressing the observation of the real roots, let us first count the negative real

roots. Consider the polynomial D(CLn;−x):

D(CLn;−x) = (−1)n−1xn−1 + (−1)n−2(n− 2)xn−2 − x.

If n is odd, the coefficients have exactly one sign change. Thus D(CLn;x) has exactly

one negative root by the Rule of Signs (Theorem 1.1). If n is even, there are two sign

changes in the coefficients. Thus D(CLn;x) has zero or two negative roots, also by

the Rule of Signs. We shall see there are in fact two negative roots for even n, except

for n = 2 when the degree polynomial is D(CL2;x) = 2x. For n ≥ 4, which is when

D(CLn;x) is a trinomial (and not a binomial), we can locate a large negative root

within an error that vanishes as n → ∞.
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Figure 3.16: All roots of D(CLn;x) for 2 ≤ n ≤ 50.

Figure 3.17: The roots of D(CLn;x) for 2 ≤ n ≤ 50 that are contained in the unit
circle. The roots appear to be converging outward to the unit circle as n increases.



78

Figure 3.18: The roots of D(CLn;x) for 2 ≤ n ≤ 50 on the real line (or at least
seeming to be real).

Proposition 3.26. Consider the graphs CLn, n ≥ 4. For odd n, D(CLn;x) has a

real root in the interval (−(n− 2)− ϵo(n),−(n− 2)) where

ϵo(n) =
1

(n− 2)n−3
.

For even n, D(CLn;x) has a real root in the interval (−(n − 2),−(n − 2) + ϵe(n)],

where

ϵe(n) =
1

(n− 3)n−3
.

Proof. To simplify some calculations, make the change of variables x = (n− 2)y, and

consider the polynomial

f(y) =
1

(n− 2)n−1
D(CLn; (n− 2)y)

= yn−1 + yn−2 +
y

(n− 2)n−2
.
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The roots of f(y) and D(CLn;x) are in one-to-one correspondence via the change of

variables. We first consider when n is odd. We will evaluate f(y) at two points that

give values with opposite sign, and apply the IVT. The first point is y = −1:

f(−1) = (−1)n−1 + (−1)n−2 +
−1

(n− 2)n−2

=
−1

(n− 2)n−2

< 0.

The next point is y = −1− 1/(n− 2)n−2:

f

(
−1− 1

(n− 2)n−2

)
=

(
−1− 1

(n− 2)n−2

)n−1

+

(
−1− 1

(n− 2)n−2

)n−2

+
−1− 1

(n−2)n−2

(n− 2)n−2

= (−1)n−1

(
1 +

1

(n− 2)n−2

)n−1

+ (−1)n−2

(
1 +

1

(n− 2)n−2

)n−2

−
1 + 1

(n−2)n−2

(n− 2)n−2

=

(
1 +

1

(n− 2)n−2

)n−2 [(
1 +

1

(n− 2)n−2

)
− 1

]
−

1 + 1
(n−2)n−2

(n− 2)n−2

=
1 + 1

(n−2)n−2

(n− 2)n−2

[(
1 +

1

(n− 2)n−2

)n−3

− 1

]
> 0

since (1 + 1/(n − 2)n−2)n−3 > 1. Thus by the IVT, f(y) has a root in the interval

(−1 − 1/(n − 2)n−2,−1). Through the change of variables x = (n − 2)y, it is clear

that D(CLn;x) has a root in the interval (−(n − 2) − 1/(n − 2)n−3,−(n − 2)), or

(−(n− 2)− ϵo(n),−(n− 2)).

Similarly, suppose that n is even. We still have that f(−1) = −1/(n− 2)n−2 < 0.

Let us evaluate f(y) at another point, namely y = −1 + 1/(n− 2)(n− 3)n−3:
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f(y) = f

(
−1 +

1

(n− 2)(n− 3)n−3

)
=

(
−1 +

1

(n− 2)(n− 3)n−3

)n−1

+

(
−1 +

1

(n− 2)(n− 3)n−3

)n−2

+
−1 + 1

(n−2)(n−3)n−3

(n− 2)n−2

= −
(
1− 1

(n− 2)(n− 3)n−3

)n−1

+

(
1− 1

(n− 2)(n− 3)n−3

)n−2

−
1− 1

(n−2)(n−3)n−3

(n− 2)n−2

=

(
1− 1

(n− 2)(n− 3)n−3

)n−2 [
−
(
1− 1

(n− 2)(n− 3)n−3

)
+ 1

]
−

1− 1
(n−2)(n−3)n−3

(n− 2)n−2

=

(
1− 1

(n−2)(n−3)n−3

)n−2

(n− 2)(n− 3)n−3
−

1− 1
(n−2)(n−3)n−3

(n− 2)n−2
.

This quantity is non-negative, as

f

(
−1 +

1

(n− 2)(n− 3)n−3

)
≥ 0

⇐⇒

(
1− 1

(n−2)(n−3)n−3

)n−2

(n− 2)(n− 3)n−3
≥

1− 1
(n−2)(n−3)n−3

(n− 2)n−2

⇐⇒
(
1− 1

(n− 2)(n− 3)n−3

)n−3

≥ (n− 3)n−3

(n− 2)n−3

⇐⇒ 1− 1

(n− 2)(n− 3)n−3
≥ n− 3

n− 2

⇐⇒ (n− 2)(n− 3)n−3 − 1 ≥ (n− 3)n−2

⇐⇒ (n− 2)(n− 3)n−3 − 1 ≥ (n− 2)(n− 3)n−3 − (n− 3)n−3

⇐⇒ 1 ≤ (n− 3)n−3,

and this last inequality is indeed true since n ≥ 4. Furthermore, there is equality

if and only if n = 4. Applying the IVT, we conclude that f(y) has a root in the

interval (−1,−1 + 1/(n − 2)(n − 3)n−3). Thus D(CLn;x) has a root in the interval

(−(n− 2),−(n− 2) + 1/(n− 3)n−3), or (−(n− 2),−(n− 2) + ϵe(n)).
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Since we have shown there is at least one negative root when n is even, there

in fact must be two negative roots by what we found above with the Rule of Signs.

Using the IVT, we can quickly find that this root is in the interval [−1, 0). Evaluating

the polynomial g(x) = D(CLn;x)/x (just removing the known root at 0) at these

endpoints, we find

g(0) = (0)n−2 + (n− 2)(0)n−3 + 1

= 1

> 0,

and

g(−1) = (−1)n−2 + (n− 2)(−1)n−3 + 1

= (−1)n−3(−1 + n− 2) + 1

= −(n− 3) + 1

≤ 0,

as n ≥ 4. Therefore D(CLn;x) has a root in [−1, 0) when n is even. In fact, this last

inequality is equality if and only if n = 4, when D(CL4;x) = x3+2x2+x = x(x+1)2.

In this case there is a double root at −1, which is why the half-closed interval is needed

in Proposition 3.26.

We can address the observation of roots converging to the unit circle, from Figure

3.17, with the extended BKW Theorem (Theorem 1.7). Let us examine the limits of

the roots of D(CLn;x), as n → ∞. Since there is always a root at x = 0, we can just

consider the polynomial

gn−3(x) =
D(CLn;x)

x

= xn−2 + (n− 2)xn−3 + 1

= xn−3(x+ n− 2) + 1.
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With a substitution of N = n− 3, gN(x) = xN(x+N +1)+ 1 is in the form to apply

Theorem 1.7 if we let λ1(x) = x, λ2(x) = 1, α1(N ;x) = x+N +1, and α2(N ;x) = 1.

Furthermore, we have p1,1(x) = 1 as the coefficient polynomial on N in α1(N ;x), and

p2,0(x) = 1 as the coefficient polynomial on N in α2(N ;x). Since both p1,1(x) and

p2,0(x) are non-zero, we can rule out using the first condition of Theorem 1.7 to find

the limits. The second condition immediately gives that the limits of gN(x) are the

points z where |λ1(z)| = |λ2(z)|, or where |z| = 1, i.e. the unit circle. Thus the limits

of the roots of D(CLn;x), as n → ∞, are 0 and the unit circle |z| = 1.

We have now verified part of our observation that there are roots of D(CLn;x)

which approach the unit circle from its interior. What we will now show is that for

n ≥ 5, all the roots of D(CLn;x) except for the real root located near −(n− 2) from

Proposition 3.26 are contained within the unit circle. When we say the root located

near −(n− 2), we mean the root inside the interval (−(n− 2)− ϵo(n),−(n− 2)) if n

is odd, or inside the interval (−(n− 2),−(n− 2) + ϵe(n)) if n is even. Furthermore,

the root in this interval is unique. When n is odd, D(CLn;x) has only one negative

root, and thus it must be in the respective interval. When n is even, there are two

negative roots: one is contained in the interval (−(n− 2),−(n− 2) + ϵe(n)), and the

other is contained in the disjoint interval (−1, 0). Thus there is no confusion when

saying the root located near −(n− 2). Let −r be this root, so that r ≈ n− 2. Then

x+ r is a factor of D(CLn;x) and we can write

D(CLn;x) = (x+ r)f(x)

= (x+ r)(bn−2x
n−2 + bn−3x

n−3 + · · ·+ b1x),

where f(x) = bn−2x
n−2 + bn−3x

n−3 + · · · + b1x. Expanding the product on the right

and equating the coefficients with D(CLn;x) = xn−1 + (n − 2)xn−2 + x gives the

following relations:

bn−2 = 1,

bn−3 + rbn−2 = n− 2,

bk + rbk+1 = 0, 1 ≤ k ≤ n− 4,

rb1 = 1.
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Thus from these equations we obtain bn−2 = 1, bn−3 = n−2−r, and bk = (−1)k+11/rk

for 1 ≤ k ≤ n− 4. Hence,

f(x) = xn−2 + (n− 2− r)xn−3 +
n−4∑
k=1

(−1)k+1 1

rk
xk.

We will show f(x) has all its roots interior to the unit circle using Cauchy’s bound

(Theorem 1.3). First, let us remove the root at 0 by dividing by x:

f0(x) =
f(x)

x

= xn−3 + (n− 2− r)xn−4 +
n−4∑
k=1

(−1)k+1 1

rk
xk−1.

To apply Cauchy’s bound, we construct the following polynomial from f0(x) and look

for its (unique) positive root:

g(x) = xn−3 − |n− 2− r|xn−4 −
n−4∑
k=1

1

rk
xk−1.

Evaluating at x = 0 gives g(0) = −1/r < 0. Evaluating at x = 1 gives

g(1) = 1− |n− 2− r| −
n−4∑
k=1

1

rk
,

and we claim that g(1) > 0. Recall from Proposition 3.26 that |n − 2 − r| < ϵo(n)

for odd n, where ϵo(n) = 1/(n − 2)n−3, and for even n, |n − 2 − r| < ϵe(n) where

ϵe(n) = 1/(n−3)n−3. In any case on the parity of n, we have |n−2−r| < 1/(n−3)n−3.

Furthermore, since either −r < −(n − 2) or −r < −(n − 2) + ϵe(n), we also have

1/r < 1/(n− 2− ϵe(n)). These inequalities immediately show

|n− 2− r|+
n−4∑
k=1

1

rk
<

1

(n− 3)n−3
+

n−4∑
k=1

(
1

n− 2− ϵe(n)

)k

. (3.1)

The sum on the RHS can be rewritten as it is a geometric series:

n−4∑
k=1

(
1

n− 2− ϵe(n)

)k

=

(
1

n−2−ϵe(n)

)n−3

− 1

1
n−2−ϵe(n)

− 1
− 1,
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and at this point we make a substitution of N = n− 3 (where N ≥ 2 since n ≥ 5) to

simplify our expressions. Therefore the RHS of (3.1) becomes

1

NN
+

(
1

N+1− 1

NN

)N

− 1

1
N+1− 1

NN
− 1

− 1 =
1

NN
+

(
NN

NN (N+1)−1

)N
− 1

NN

NN (N+1)−1
− 1

− 1

=
1

NN
+

NN2

(NN (N+1)−1)N
− 1

NN−NN (N+1)+1
NN (N+1)−1

− 1

=
1

NN
+

NN2 − (NN(N + 1)− 1)N

(1−NN+1)(NN(N + 1)− 1)N−1
− 1

=
1

NN
+

(NN(N + 1)− 1)N −NN2

(NN+1 − 1)(NN(N + 1)− 1)N−1
− 1

=
1

NN
+

NN(N + 1)− 1

NN+1 − 1

− NN2

(NN+1 − 1)(NN(N + 1)− 1)N−1
− 1

=
1

NN
+

NN

NN+1 − 1

− NN2

(NN+1 − 1)(NN(N + 1)− 1)N−1

=
1

NN
+

1

N − 1
NN

− NN2

(NN+1 − 1)(NN(N + 1)− 1)N−1

<
1

NN
+

1

N − 1
NN

.

Furthermore, each term in the final inequality above is strictly decreasing as N in-

creases. Therefore, since N ≥ 2 we have

1

NN
+

(
1

N+1− 1

NN

)N

− 1

1
N+1− 1

NN
− 1

− 1 <
1

NN
+

1

N − 1
NN

≤ 1

22
+

1

2− 1
22

=
23

28

< 1.



85

By inequality (3.1) it follows that

|n− 2− r|+
n−4∑
k=1

1

rk
< 1,

thus proving g(1) > 0. Since g(0) < 0 and g(1) > 0, by the IVT it follows that g(x)

has its positive root in the interval (0, 1). By Cauchy’s bound, all the roots of f0(x)

(and also f(x)) have modulus less than 1. This completes our argument: that for

n ≥ 5, all roots of D(CLn;x) except for the real root near −(n− 2) is located in the

interior of the unit circle.

3.4.3 Anti-Regular Graphs

Recall the anti-regular graphs from Example 2.11. This family was partitioned into

two sets of graphs: connected and disconnected graphs, which were complementary

to one another (in the graph theoretic sense). Figure 3.19 shows the roots of these

graphs up to order n = 50, separating roots for the connected graphs (top) and

disconnected graphs (bottom). Furthermore, we identify roots for even n with red

and those for odd n with blue. Some immediate observations are: when n is even the

(non-zero) roots appear to be on the unit circle, and not so for odd n. However, the

roots for odd n surround the unit circle and possibly converge to it. No root seems

to exceed a modulus of 2, which occurs for a real root. By examining closely, we can

also notice the reciprocal relationship between the (non-zero) roots of the two plots,

since the graphs giving these degree roots are complements of each other.

We will start investigating these roots by considering the connected graphs. For

a graph of order n ≥ 2, the connected anti-regular graph Hn has degree polynomial

D(Hn;x) =
∑n−1

j=1 x
j + x⌊n/2⌋. However, we may write D(Hn;x) in the form

D(Hn;x) = x

n−2∑
j=0

xj + x⌊n/2⌋

= x
1− xn−1

1− x
+ x⌊n/2⌋,

which holds for all x ̸= 1. Thus the roots of D(Hn;x) are the solutions to the equation

x− xn + x⌊n/2⌋ − x⌊n/2⌋+1 = 0 (3.2)
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Figure 3.19: Degree roots for anti-regular graphs, up to order n = 50. (Top) All roots
of D(Hn;x). (Bottom) All roots of D(Hc

n;x). In each plot, roots for even n are shown
in red, and roots for odd n are shown in blue. Note the property that each root of
the bottom plot is a reciprocal of a non-zero root of the top plot, and vice versa.



87

except x = 1. We now examine the solutions to (3.2) via two cases on n.

Case 1: n = 2k, k ≥ 1. Here, (3.2) simplifies to

x2k + xk+1 − xk − x = 0

or

x(xk − 1)(1 + xk−1) = 0.

Thus the roots of D(H2k;x) are x = 0, the kth roots of unity (except for 1 itself), and

the (k − 1)th roots of −1.

Case 2: n = 2k + 1, k ≥ 1. In this case, (3.2) becomes

x2k+1 + xk+1 − xk − x = 0. (3.3)

These polynomials require numerical techniques to find their solutions. However, we

can deduce some information about them. Of course, there is a root at 0. Recall

Theorem 1.1, The Rule of Signs. Since there is exactly one sign change in the coeffi-

cients, there is exactly one positive solution to (3.3). A quick check verifies that this

solution is x = 1, which is exactly the point we are excluding. This simply confirms

that D(H2k+1;x) has no positive roots, which we know to be true. If we substitute

x → −x, we obtain

−x2k+1 + (−1)k+1xk+1 + (−1)k+1xk + x = 0.

Regardless if k is even or odd, this equation has exactly one sign change and thus has

exactly one positive root. Therefore, equation (3.3), and hence D(H2k+1;x), has ex-

actly one negative root. A quick check rules out −1 from being this root. However, we

can bound this negative root to the interval [−2,−1/2) using the Enestrom-Kakeya

Theorem (Theorem 1.5) and some algebra. Since D(Hn;x) = x
∑n−2

j=0 x
j + x⌊n/2⌋,

D(Hn;x)/x has all positive coefficients. Furthermore, all of these coefficients is 1

except for the coefficient on x⌊n/2⌋−1, which is 2. Thus the minimum ratio of consecu-

tive coefficients is 1/2, while the maximum ratio is 2. By Theorem 1.5, every root of

D(Hn;x)/x (i.e. the non-zero roots of D(Hn;x)) has modulus in the interval [1/2, 2].

This is true of the real and non-real roots, and also holds for even n. For the real root
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in the case of odd n (which we were originally interested in), we can slightly improve

this interval. Evaluating the left hand side of (3.3) at x = −1/2, we obtain

x2k+1 + xk+1 − xk − x =

(
−1

2

)2k+1

+

(
−1

2

)k+1

−
(
−1

2

)k

+
1

2

= −
(
1

2

)2k+1

+ (−1)k+1

((
1

2

)k+1

+

(
1

2

)k
)

+
1

2

=
−1 + (−1)k+1(2k + 2k+1) + 22k

22k+1
.

If k is odd, then this quantity is clearly positive. When k is even, observe

−1 + (−1)k+1(2k + 2k+1) + 22k = −1− (2k + 2k+1) + 22k

= −1 + 2k(2k − 3)

> 0,

since 2k ≥ 4 and 2k − 3 ≥ 1, so 2k(2k − 3) ≥ 4 > 1. Thus in any case, the left hand

side of (3.3) is positive when x = −1/2. Therefore the negative root of equation (3.3)

is actually in the interval [−2,−1/2).

We can also study the limits of degree roots for Hn, as n → ∞, using the BKW

Theorem (Theorem 1.6). The first step in applying the BKW Theorem is writing the

polynomials in the right form. Recall that we can write

(1− x)D(Hn;x) = x(1− xn−1) + (1− x)x⌊n/2⌋.

As before, we shall consider cases on the parity of n.

Case 1: n = 2k, k ≥ 1. Define the polynomial

fk(z) ≡ (1− z)D(H2k; z)

= z(1− z2k−1) + (1− z)zk

= −z2k + (1− z)zk + z.

Other than the root of fk at z = 1, fk(z) and D(H2k; z) have the same roots. Thus

aside from 1, fk(z) will have the same root limits as D(H2k; z). Observe that fk(z) is
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readily in the form to apply the BKW Theorem by setting α1(z) = −1, α2(z) = 1−z,

α3(z) = z, and λ1(z) = z2, λ2(z) = z, and λ3(z) = 1. Thus we can now check the

conditions of the theorem:

Condition 1:

• |z2| > |z|, |z2| > 1, and −1 = 0. The equality immediately gives a contradiction,

so we move on.

• |z| > |z2|, |z| > 1, and 1 − z = 0. The equality gives z = 1, contradicting the

inequalities. So again, we move on.

• 1 > |z2|, 1 > |z|, and z = 0. The point z = 0 satisfies the inequalities, and thus

it is a limit of the roots.

Condition 2:

• |z2| = |z| > 1. No z satisfy these constraints, since the equality implies |z| = 1

or z = 0, contradicting |z| > 1.

• |z| = 1 > |z2|. There are also no z that satisfy these constraints.

• |z2| = 1 > |z|. Again, no z are possible.

• |z2| = |z| = 1. These equalities define precisely the unit circle. Thus every

point on the unit circle is a limit of the roots.

Therefore the limits of the roots for fk(z), and also D(H2k; z) are the unit circle and

the origin, or

C0 = {z ∈ C : z = 0 or |z| = 1}.

Case 2: n = 2k + 1, k ≥ 1. Similar to the first case, define

gk(z) ≡ (1− z)D(H2k+1; z)

= z(1− z2k) + (1− z)zk

= −z2k+1 + (1− z)zk + z.
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Observe that gk(z) is also immediately in the form to apply the BKW Theorem,

by setting α1(z) = −z, α2(z) = 1 − z, α3(z) = z, and λ1(z) = z2, λ2(z) = z,

λ3(z) = 1. The only difference between gk(z) and fk(z) is α1; thus the limits of the

roots will be the same except for possibly those from the constraint |λ1(z)| > |λ2(z)|,
|λ1(z)| > |λ3(z)|, and α1(z) = 0. For fk(z) this gave a contradiction, and for gk(z)

this also gives a contradiction: |z2| > |z|, |z2| > 1, and −z = 0 which implies z = 0,

contradicting the inequalities. Thus the limits of the roots of gk(z) are the same as

fk(z), which overall gives that the limits of the roots of D(Hn; z), as n → ∞, are

simply C0.

For the disconnected anti-regular graphs, we recall that they are precisely the com-

plements of the connected graphs Hn. Using the fact that D(Gc;x) = xn−1D(G; 1/x)

for any graph of order n, we immediately obtain the degree roots of Hc
n as the recip-

rocals of the non-zero degree roots of Hn. In fact, when n = 2k, k ≥ 1, the non-zero

degree roots of H2k and Hc
2k are the same: the non-zero roots of D(H2k;x) are the k

th

roots of unity (except for 1), and the (k−1)th roots of −1. Since the kth roots of unity

have the form z = e2iπj/k, where 0 ≤ j ≤ k − 1, we have z−1 = e−2iπj/k = e2iπ(k−j)/k,

which is simply another kth root of unity. Thus the reciprocals of the kth roots of unity

are exactly the kth roots of unity, simply with different arguments. This is similarly

the case for the (k − 1)th roots of −1. When n = 2k + 1, k ≥ 1, however, H2k+1 and

Hc
2k+1 have different degree roots. This is immediate simply from the fact that H2k+1

has a root with modulus not equal to 1. The negative root of D(H2k+1;x), which we

found to lie in the interval [−2,−1/2), tells us that D(Hc
2k+1;x) has a negative root

in the interval (−2,−1/2]. The limits of the roots of D(Hc
n;x), as n → ∞ are the

reciprocals of the limits for D(Hn;x), and thus are easily seen to be the unit circle

|z| = 1.

3.4.4 Complete p-Partite Graphs

Complete p-partite graphs have degree polynomials that are easy to compute. Recall

from Example 2.8 that the complete p-partite graph Ka1,...,ap has degree polynomial

D(Ka1,...,ap ;x) =

p∑
j=1

ajx
n−aj
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where n =
∑p

1 aj. When p = 2 (i.e. for complete bipartite graphs), the degree poly-

nomial is simply D(Ka1,a2 ;x) = a1x
a2 + a2x

a1 . Assuming, without loss of generality,

that a1 < a2, then the roots of this polynomial are 0 (with multiplicity a1) and the

(a2−a1)
th-roots of −a2/a1. Thus, from here on we assume that p ≥ 3. In this section

we consider the case where the aj’s have the form aj = sj, for some integer s ≥ 1.

In this situation, the degree roots have a particular symmetry as seen in Figure 3.20.

This figure shows the degree roots for four such p-partite graphs, with varying p and

s. The upper left plot shows roots for p = 10 and s = 1. We can observe nine non-zero

roots that are approximately evenly distributed in both directions around a negative

root. That is, there are four roots in both the counterclockwise and counter-clockwise

directions from a negative root, and each root appears to be located after traversing

some fixed angle θ. These roots are also similar in modulus; it is not clear whether

they are actually equal or not. The upper right plot shows the roots for p = 6 and

s = 2. In this case, there are five roots distributed evenly (in the same sense as above)

around two distinct points: one on the imaginary axis in the upper half-plane, and

one on the imaginary axis in the lower half-plane. At this point we can already sense

a pattern: that there are s clusters of roots, where each cluster contains p − 1 roots

distributed approximately evenly (in the angular sense) and have similar modulus,

and the angular centres of these clusters have the same argument as one of the sth

roots of −1. This pattern holds for the bottom plots, where in the left plot p = 8 and

s = 3, and on the right p = s = 4.

Let us now address these observations. Having aj = sj, we can write the degree

polynomial of Ka1,...,ap as follows:

D(Ka1,...,ap ;x) =

p∑
j=1

sjxn−sj

= sxn−ps

p∑
j=1

jx(p−j)s.

Hence there are n − ps roots at zero. Let g(x) =
∑p

j=1 jx
(p−j)s be the polynomial

which has all of the non-zero roots of D(Ka1,...,ap ;x). We can perform a substitution

y = xs to obtain the polynomial
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Figure 3.20: Degree roots for some complete p-partite graphs which have the form
aj = sj for s ≥ 1. Top left: the roots for p = 10, s = 1. Top right: the roots for
p = 6, s = 2. Bottom left: the roots for p = 8, s = 3. Bottom right: the roots for

p = s = 4. In each plot, the blue circle is the circle |x| = (2p+1)
1
ps , which is a bound

on the modulus of the roots that will be discussed later.
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h(y) =

p∑
j=1

jyp−j

= yp−1 + 2yp−2 + · · ·+ (p− 1)y + p.

Thus we are close to confirming one of our observations: for each root z of h(y), we

obtain s roots for D(Ka1,...,ap ;x) which are the sth-roots of z. Thus each of the p− 1

roots of h(y) yields s roots of D(Ka1,...,ap ;x) at equal angles around the origin, and

overall give s “clusters” of roots for the degree polynomial.

To better understand the roots of h(y), let us rewrite h(y) using the geometric

series:

yh(y) =

p∑
j=1

jyp−j+1

= yp + 2yp−1 + · · ·+ (p− 1)y2 + py

and thus

(y − 1)h(y) = yp + yp−1 + · · ·+ y − p

= y
yp − 1

y − 1
− p,

as long as y ̸= 1. Therefore we have, for all y ̸= 1,

h(y) =
y(yp − 1)− p(y − 1)

(y − 1)2
.

Hence the roots of h(y) are the roots of

w(y) = y(yp − 1)− p(y − 1)

= yp+1 − (p+ 1)y + p (3.4)

different from 1. While the roots of w(y) must be found numerically, we can bound

their modulus using the following interesting theorem inspired by physics.
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Theorem 3.27 ([36]). The equation AzN+M +BzM + C = 0, where

A = |A|eiα, B = |B|eiβ, C = |C|eiγ ,

defines two regular polygons SN+M and SN concentric in the complex plane. The

(N +M)-gon SN+M has vertices

(
2N +M

N

∣∣∣∣CA
∣∣∣∣) 1

N+M

ei
γ−α+(2λ+1)π

N+M , λ = 1, ..., N +M.

The N-gon SN has vertices

(
2N +M

N +M

∣∣∣∣BA
∣∣∣∣) 1

N

ei
β−α+(2v+1)π

N , v = 1, ..., N.

If at the vertices of these polygons unit masses are placed, and these masses deter-

mine a force field that is inversely proportional to distance, then the solutions to the

trinomial equation are precisely the equilibrium points of these force fields.

Consider the equilibrium points of the above theorem. No equilibrium point may

be further from the origin than any of the polygon vertices, for at such a location

there would be a non-zero net force. Thus we have the following corollary.

Corollary 3.28. If z is a solution to the equation AzN+M +BzM + C = 0, then

|z| ≤ max

{(
2N +M

N

∣∣∣∣CA
∣∣∣∣) 1

N+M

,

(
2N +M

N +M

∣∣∣∣BA
∣∣∣∣) 1

N

}
.

Applying this to w(y) (3.4), we have M = 1, N = p, A = 1, B = −(p + 1), and

C = p. Substituting, we get

(
2N +M

N

∣∣∣∣CA
∣∣∣∣) 1

N+M

= (2p+ 1)
1

p+1

and

(
2N +M

N +M

∣∣∣∣BA
∣∣∣∣) 1

N

= (2p+ 1)
1
p .

Therefore, any root y of w(y) satisfies

|y| ≤ (2p+ 1)
1
p .
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Since the non-zero roots x of D(Ka1,...,ap ;x) were sth roots of such roots y ̸= 1, it

follows that the non-zero roots x of D(Ka1,...,ap ;x) satisfy

|x| ≤ (2p+ 1)
1
ps .

In each plot of Figure 3.20, the circle |x| = (2p + 1)
1
ps is shown in blue for the

corresponding values of p and s.

We may also examine the limits of the roots of D(Ka1,...,ap ;x) as p → ∞ by

applying the extended BKW theorem (Theorem 1.7) to w(y). First, we rewrite w(y)

and relabel it as wp(y):

wp(y) = y · yp + (p(1− y)− y).

Labelling each part of wp(y) in the notation of Theorem 1.7, we have: λ1(y) = y,

α1(p; y) = y, so d1 = 0 and q1,d1(y) = q1,0 = y. Similarly, λ2(y) = 1, α2(p; y) =

p(1 − y) − y, so d2 = 1 and q2,d2(y) = q2,1(y) = 1 − y. Indeed, λ1 ̸= ωλ2 for any

complex ω such that |ω| = 1, so we are able to apply Theorem 1.7:

Condition 1:

• |λ1(y)| > |λ2(y)| and q1,d1(y) = 0: the inequality implies |y| > 1 while q1,d1(y) =

0 gives y = 0, which is a contradiction.

• |λ1(y)| < |λ2(y)| and q2,d2(y) = 0: the inequality implies |y| < 1 while q2,d2(y) =

0 gives y = 1, which again gives a contradiction.

Condition 2:

• |λ1(y)| = |λ2(y)| > 0, and at least one of q1,d1(y), q2,d2(y) are non-zero: this

gives |y| = 1, and indeed q1,d1(y) = y is non-zero for such y.

From Condition 2, we can conclude that the limits of the roots of wp(y) (or w(y))

as p → ∞ are the points {z ∈ C : |z| = 1}, or simply the complex unit circle.

Consequently, since y = xs, the non-zero roots of D(Ka1,...,ap ;x) have the same limits

as p → ∞.



Chapter 4

Conclusion

4.1 Open Problems

Many questions about degree roots remain unanswered. For instance, there is our

conjecture concerning the degree roots of trees which proposes there are no non-real

degree roots of trees inside the unit circle. In this section we discuss a few open

problems of degree roots.

We did not focus on the degree roots of multigraphs, save only to briefly compare

or contrast them with degree roots of (simple) graphs. Hence, there is much left to

wonder about the degree roots for multigraphs. For example, how do multigraph

degree roots behave when imposing restrictions to n and ∆ as we did for (simple)

graphs? For fixed n, what are some degree roots for multigraphs that aren’t degree

roots for (simple) graphs?

Returning to the degree roots of (simple) graphs, in Theorem 3.6 we saw that

degree roots were dense in the negative real axis. In particular, we observed that

every negative rational number is a degree root of some graph. One question we

may ask is how rational degree roots depend on graph order n. That is, for graphs

of some order n what rational degree roots may we see? Table 4.1 lists all rational

degree roots that appear for some small values of n. Other than seeing some expected

patterns, such as −1 only appearing when n is a multiple of 4 and the appearance of

−(n− 1) as a degree root for odd n, we can make some observations: first, it appears

that every rational degree root −p
q
(in fully reduced form) satisfies (p+ q)|n. We also

notice that for odd n, all rational numbers −n−k
k
, for 1 ≤ k ≤ n seem to be degree

roots. For even n, it appears there are fewer rational roots, and that a (fully reduced)

root −p
q
satisfies p+ q = n

2
.

The rational root theorem tells us that a degree polynomialD(G; x) = a∆x
∆+· · ·+

aδx
δ with rational root −p

q
satisfies q|a∆ and p|aδ. Therefore, (p+ q) ≤ a∆ + aδ ≤ n,

but the divisibility is yet to be proven (or disproven). Our observation for odd n and

96
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n Rational Degree Roots

2 0

3 0, −1
2
, −2

4 0, −1

5 0, −1
4
, −2

3
, −3

2
, −4

6 0, −1
2
, −2

7 0, −1
6
, −2

5
, −3

4
, −4

3
, −5

2
, −6

8 0, −1
3
, −1, −3

Table 4.1: Rational degree roots for graphs of small order.

the roots of the form −n−k
k
, however, can be confirmed. For k = 1, we already know

the existence of the degree root −(n − 1). For odd k ≥ 3, construct the following

graph: take the union of a copy of Ck and (n − k)/2 copies of P2. This graph has

degree polynomial kx2+(n− k)x, having a root at −n−k
k
. For even k, take the graph

that is the union of k/2 copies of P2 and n−k isolated vertices. This graph has degree

polynomial kx + n − k, and thus has a root at −n−k
k
. Thus for all k (1 ≤ k ≤ n),

−n−k
k

is a degree root.

Another area deserving of further study is the bounding of degree roots. Corollary

3.10 bounds the moduli of degree roots for graphs of order n to be at most n − 1.

However, only real roots meet this bound and non-real roots seem to fall quite short

of it (see Figure 4.1). Furthermore, there seems to be a relationship between the

argument of a degree root and its maximum possible modulus: roots with smaller

argument θ ∈ (0, π] seem to have smaller moduli. Here we conjecture a modified

bound to the moduli of degree roots that takes into account this behaviour.

Conjecture 2. If z is a non-zero degree root of a graph of order n with argument

arg(z) = θ ∈ (−π, π], then

|z| ≤ (n− 1)|
θ
π |.

This bound agrees with Corollary 3.10 for real roots (θ = π) and Proposition 3.13

for imaginary roots (θ = ±π/2). Figure 4.1 shows the curve |z| = (n − 1)|
θ
π | along

with the circular bound |z| = n− 1 on plots of degree roots for some small values of

n. This conjecture has been verified for n ≤ 9.



98

Figure 4.1: Degree roots for some small values of n (red). The blue curves show

|z| = n− 1, while the green curves are |z| = (n− 1)|
θ
π |.
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4.2 Generalizations

There are many ways in which to generalize the degree polynomial. Here we present a

few possible generalizations and extensions with some supporting examples that may

motivate future directions of study.

4.2.1 Directed Graphs

Here we give some extensions for directed graphs. A directed graph is an ordered

pair
−→
G = (V,

−→
E ) where V is a set of vertices and

−→
E is a set of ordered pairs of

vertices, called (directed) edges. A (directed) edge (u, v) ∈
−→
E represents a directional

adjacency from vertex u to vertex v (but not vice-versa). If both (u, v) and (v, u)

are present, we may simply consider there to be an undirected edge between u and v

with the understanding that there is adjacency in both directions. See Figure 4.2 for

an example of a directed graph. For a vertex v ∈ V , its out-degree odeg−→
G
(v) is the

number of edges for which v is the first coordinate. Similarly, its in-degree ideg−→
G
(v)

is the number of edges for which v is the second coordinate.

The first way we could extend the degree polynomial is with the following directed

degree polynomial :

DDir(
−→
G ;x, y) =

∑
v∈V

xodeg−→
G
(v)yideg−→G (v).

This directed degree polynomial generalizes the ordinary degree polynomial, since if

G is the underlying undirected graph of
−→
G (formed by replacing directed edges with

undirected edges) then

D(G; x) = DDir(
−→
G ;x, x),

as degG(v) = odeg−→
G
(v) + ideg−→

G
(v).

As an example, consider the directed graph
−→
H from Figure 4.2. Vertex 0 has an

out-degree of 3 and in-degree of 0, so it contributes a term x3. Vertex 2, having an

out-degree and in-degree of 1, contributes a term xy. The terms for the remaining

vertices are found similarly, and thus we find the directed degree polynomial of
−→
H to

be DDir(
−→
H ;x, y) = x3 + y2 + x2y + xy.
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0 1

2 3

Figure 4.2: A directed graph
−→
H .

Another approach to a degree polynomial for directed graphs is based on Laurent

polynomials. A Laurent polynomial with real coefficients L(x) is an element of the

ring R[x, x−1]. That is, L(x) has the form

L(x) =
b∑

k=−a

ckx
k

where a, b are positive integers and ck ∈ R. We define the following Laurent-degree

polynomial for directed graphs:

DLau(
−→
G ;x) =

∑
v∈V

(
xodeg−→

G
(v) + x−ideg−→

G
(v)
)
.

Observe that this polynomial does not extend the ordinary degree polynomial in the

same sense that the previous does. We cannot obtain the ordinary degree polynomial

of the underlying undirected graph from this polynomial.

Consider again the directed graph in Figure 4.2. Vertex 0 contributes x3 + 1 to

the polynomial, while vertex 2 contributes x + 1/x. Summing the contributions of

each vertex, we find DLau(
−→
H ;x) = x3 + 2x+ 1/x+ 2/x2 + 2.

4.2.2 Multivariable Polynomials

We can also form multivariable versions of the degree polynomial using labellings of

vertices and edges. The extensions in this section will be defined for multigraphs to
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allow a more general treatment of graphs.

Suppose M = (V,E) is a multigraph where |V | = n, |E| = m, and let w(u, v) be

the number of edges between vertices u and v. If we associate a variable xk to vertex

vk (1 ≤ k ≤ n), then we can form a vertex-labelled degree polynomial :

Dvl(M ;x1, ..., xn) =
n∑

j=1

n∏
k=1

x
w(vj ,vk)
k .

Notice that this polynomial generalizes the ordinary degree polynomial since we have

D(M ;x) = Dvl(M ;x, ..., x). Similarly, if we associate a variable yk to edge ek, we

obtain an edge-labelled degree polynomial :

Del(M ; y1, ..., ym) =
n∑

j=1

∏
ek∈E
ek∋vj

xk.

This polynomial generalizes the ordinary degree polynomial in the same sense as the

previous: D(M ;x) = Del(M ;x, ..., x).

Let us illustrate these polynomials with an example, beginning with the vertex-

labelled degree polynomial. Consider the multigraph H in Figure 4.3. Vertex 1 has

neighbours 2, 3, 4, though there are two edges to vertex 3. Thus it contributes a term

x2x
2
3x4. Vertex 2 contributes a term x1x4. Computing the other terms similarly, we

have

Dvl(H;x1, x2, x3, x4) = x2x
2
3x4 + x1x4 + x2

1x4 + x1x2x3.

For the edge-labelled degree polynomial, we see that vertex 1 belongs to edges a, b,

c, and d. Thus this vertex contributes a term yaybycyd to the polynomial. Vertex 2

contributes a term yaye, and we can compute the other terms to obtain

Del(H; ya, yb, yc, yd, ye, yf ) = yaybycyd + yaye + ycydyf + ybyeyf .

4.3 Concluding Remarks

This thesis has presented a number of topics related to the degree polynomial of

graphs. Our goal was to contribute to the new and small body of work regarding this

graph polynomial, and generate interest for future research. Some properties and
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1 2

3 4

a

bcd e

f

Figure 4.3: A multigraph H with labelled vertices and edges.

special evaluations of the degree polynomial were discussed, notably that the degree

polynomial precisely encodes the degree sequence of a graph. Much of our focus

was on degree roots, or roots of the degree polynomial. We explored the connection

between degree roots for (simple) graphs, multigraphs, and the roots of polynomials

with non-negative integer coefficients. In particular, it was found that the sets of

these roots are equivalent. Inspired by research into the density of roots for other

graph polynomials, we showed that degree roots are dense in the complex plane. Our

investigation into the effect of restricting certain graph parameters on degree roots

showed a distinction between the degree roots of (simple) graphs, multigraphs, and

the roots of polynomials with non-negative integer coefficients for fixed graph order.

Furthermore, these restrictions allowed for degree roots to be bounded in modulus.

We also examined the degree roots for some families of graphs. Dealing with more

explicit degree polynomials, we were able to prove more precise statements about the

degree roots, detect their interesting behaviour, and even calculate limits of the roots.

Future research on the degree polynomial may involve further investigation into the

topics we have tackled thus far, specifically to answer problems that remain open, or

might involve generalizations/extensions of the degree polynomial.
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