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Abstract

Compartmental models, especially the Susceptible-Infected-Removed (SIR) model,

have long been used to understand the behaviour of various diseases. Within this

context, it can be beneficial to let parameters such as the transmission rate be time

dependent functions. In this thesis, we attempt to build a nonparametric inference

framework for stochastic SIR models with time dependent infection rate. The frame-

work includes three main steps: likelihood approximation, parameter estimation and

confidence interval construction. The likelihood function of the stochastic SIR model,

which is often intractable, can be approximated using methods such as diffusion ap-

proximation or tau leaping. The infection rate is modelled by a B-spline basis whose

knot location and number of knots are determined by a fast knot placement method

followed by a criterion-based model selection procedure. Finally, a point-wise confi-

dence interval is built using a parametric bootstrap procedure. The performance of

the framework is observed through various settings for different epidemic patterns.

The model is then applied to the Ontario COVID-19 data across multiple waves.
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Chapter 1

Introduction

Compartmental models are a type of mathematical model used to study the spread of

infectious diseases through a population. The basic idea of a compartmental model

is to divide the population into different compartments based on their disease sta-

tus, such as the famous Susceptible-Infected-Removed (SIR) model [11]. Each com-

partment represents a group of individuals with the same disease status, and the

model tracks the flow of individuals between compartments over time. These models

have been used to study a wide range of infectious diseases, including influenza [13],

HIV/AIDS [1], plague [10], Ebola [9], and COVID-19 [16] and have been particularly

useful for understanding the dynamics of epidemics, including the timing and size of

outbreaks, as well as the impact of various control measures.

Many standard epidemic models assume that the epidemic parameters, such as the

transmission rate and the recovery rate, are constant over time. In reality, the pa-

rameters of an epidemic can change over time due to various factors, such as changes

in the behavior of the population, the implementation of interventions, and the emer-

gence of new variants of the pathogen. Therefore, there is a need for time-dependent

epidemic models that can capture the dynamics of these changing parameters.

For inference and prediction, there are two main types of compartmental models:

deterministic and stochastic. In the deterministic model, the epidemic dynamics are

described by a set of differential equations and the model parameters are often ob-

tained by solving a least square problem. Some works have implemented this model

type with time dependent rates [5, 18]. Deterministic models tends to work well for

large populations and are computationally efficient. Stochastic models, on the other

hand, takes into account the random variation in disease transmission within the pop-

ulation, which is useful for simulation. For these models, the number of individuals in

each compartment is often assumed to follow a Markov process. Unfortunately, exact

likelihood computation for stochastic compartmental models are typically intractable
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or time consuming so likelihood based methods tends to use approximation methods

in conjunction such as diffusion approximation [2, 6]. Because of this complex nature,

there are not as many works that incorporate time dependent rates into a stochastic

model.

With that in mind, this thesis explores a nonparametric inference framework for

compartmental models with time dependent rates, specifically the SIR model with

time dependent infection rate. There are two main underlying ideas: using a spline

basis to estimate the true rates and using simpler processes to approximate the often

intractable likelihood function. For inference, a fast spline knot placement method [21]

is employed and assisted by a moving average rate estimate. Then various aspects of

the model are examined in a simulation study including approximation type, model

selection procedure and numerical considerations. Finally, the model is applied to

estimate COVID-19 patterns in Ontario over multiple waves.

The rest of the thesis is structured as follows. Chapter 2 provides the necessary back-

ground; Chapter 3 describes the model including basis for likelihood approximation,

parameter estimation, confidence interval and numerical considerations; Chapter 4

discusses the simulation study results; and Chapter 5 applies the proposed frame-

work to the Ontario COVID-19 data.



Chapter 2

Background

This chapter will go over the definitions and properties of the stochastic processes

involved in the model construction, B-spline basis [20], Wasserstein distance [19] and

the parametric bootstrap procedure [7].

2.1 Stochastic SIR model

In this model, the population with an on-going disease is divided into three compart-

ments: susceptible (S) for those who are not yet infected, infected (I) for those who

are infected, and removed (R) for those who recovered or died from the disease. As

illustrated in figure 2.1, there are two types of movements for an individual in the

population: getting infected by the disease (S → I) and recovering (or dying) from

the disease (I → R).

For a closed population of N individuals, let S(t), I(t) and R(t) = N −S(t)− I(t) be

the number of susceptible, infected and removed individuals at time t, respectively.

Then at time t, individuals move from S to I with rate β(t)S(t)I(t) and from I to R

with rate γ(t)I(t). Here β(t) and γ(t) are the infection and recovery rates at time t,

respectively.

Figure 2.1: Graph representation of the SIR model.

In the stochastic SIR model, these movements are often formally described by a

bivariate continuous-time Markov process with transition probabilities as follow

3
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Definition 2.1.1. The stochastic SIR model assumes that X(t) = (S(t), I(t)) is a

bivariate continuous-time Markov process satisfying

P (X(t+ dt) = (S − 1, I + 1)⊤|X(t) = (S, I)⊤) = β(t)SIdt+ o(dt)

P (X(t+ dt) = (S, I − 1)⊤|X(t) = (S, I)⊤) = γ(t)Idt+ o(dt)
(2.1)

An equivalent definition describes the stochastic SIR model using Poisson processes.

We shall use this definition since it will help explain a likelihood approximation

method in the next chapter more naturally.

Definition 2.1.2. The stochastic SIR model assumes that X(t) = (S(t), I(t)) is a

bivariate continuous-time Markov process satisfying

X(t) = X(0) +

(
−1
1

)
Pois1

(∫ t

0

β(s)
S(s)I(s)

N
ds

)
+

(
0

−1

)
Pois2

(∫ t

0

γI(s)ds

)
(2.2)

where Pois1, Pois2 are independent standard Poisson processes.

For this thesis, the focus is on the SIR model where the recovery rate γ is constant.

Figure 2.2 shows the plot of an infection rate function and a corresponding sample

path of each compartment.

(a) Infection rate function (b) Compartment sample path

Figure 2.2: A sample path of each compartment in a stochastic SIR model (by per-
centage of the total population) and its corresponding infection rate function with
recovery rate γ = 0.25.
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2.2 Diffusion process

Diffusion processes are continuous-time stochastic processes whose sample paths are

continuous. A simple example of this is the Brownian motion. These processes are

often described by a stochastic differential equation (SDE) as follow

Definition 2.2.1. A diffusion process X(t) is a continuous-time Markov process that

satisfy the Ito SDE

dX(t) = A(t,X(t))dt+ L(t,X(t))dB(t) (2.3)

where B(t) is a multivariate Brownian motion, A(t, x) and L(t, x) are called the drift

vector and diffusion matrix, respectively.

A simple interpretation of this is that the drift vector controls the mean of the process

and diffusion matrix the variance. Figure 2.3 shows a sample path of a diffusion

process satisfying the following SDE

dX(t) = −X(t)dt+ dB(t) (2.4)

Figure 2.3: Sample path of a diffusion process.

In later chapters, a diffusion process will be used to approximate the stochastic SIR

model.
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2.3 B-spline

B-spline basis expansion is a well known method of curve fitting using piece-wise

polynomials.

Definition 2.3.1. Let t0 < t1 < t2 < . . . < tk < tk+1 be k points (known as knots) in

an interval (t0, tk+1). A B-spline f of order d+ 1 is a piece-wise degree d polynomial

defined by the formula

f(t) =
k+d+1∑
i=1

ciφi,d(t) (2.5)

where φi,d are degree d polynomials in (ti−d−1, ti)
1 called the basis functions and ci are

the corresponding coefficients.

For the construction of the basis functions, set τ1 = . . . = τd+1 = t0, τi+d+1 = ti for

i = 1, . . . , k and tk+1 = τk+d+2 = . . . = τk+2d+2. Then

φi,0(t) =

1 if t ∈ [τi, τi+1)

0 otherwise
(2.6)

φi,d(t) =
t− τi

τi+d − τi
φi,d−1(t) +

τi+d+1 − t

τi+d+1 − τi+1

φi+1,d−1(t) (2.7)

A note worthy feature of B-splines is that they have compact support which can speed

up calculations [20]. Figure 2.4 shows an example of a B-spline basis on (0, 1) with

five equally spaced knots.

Figure 2.4: B-spline basis on (0, 1) with five equally spaced knots.

1If j < 0, set tj = t0. If j > k + 1, set tj = tk+1
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2.4 Wasserstein distance

The Wasserstein distance is commonly used for measuring the difference between two

distributions.

Definition 2.4.1. Let U, V be two Rd-valued random variables. The Wasserstein-1

distance between them is defined as

W1(U, V ) = inf E(∥U − V ∥) (2.8)

where the infimum is over all possible couplings of U and V , i.e. all ways of jointly

defining the two variables while respecting their marginal distribution. Note that the

norm ∥ · ∥ is simply the Euclidean norm.

To measure the difference between two stochastic processes, we modify the above

definition as follow

Definition 2.4.2. Let U(t), V (t) be two Rd-valued stochastic processes on the interval

[0, T ]. Then the Wasserstein-1 distance between them is

W1,T (U, V ) = inf E(∥U − V ∥T ) (2.9)

where ∥X∥T = sup
t∈[0,T ]

∥X(t)∥ and the infimum is over all possible couplings of U(t) and

V (t), i.e. all ways of jointly defining the two processes while respecting their marginal

distribution.

Next we have a lemma about Wasserstein distance and the point-wise law of processes

Lemma 2.4.3. If the stochastic process sequence Un(t) and the stochastic process

V (t) on [0, T ] satisfy

W1,T (Un, V )
n→∞−−−→ 0 (2.10)

Then for all t ∈ [0, T ] we have

Un(t)
d−→ V (t) (2.11)

in other words, Un(t) converges in law to V (t).
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Proof. For all t ∈ [0, T ], ϵ > 0 we have

E(∥Un − V ∥T ) = E( sup
t∈[0,T ]

∥Un(t)− V (t)∥) ≥ E(∥Un(t)− V (t)∥)

≥ ϵP (∥Un(t)− V (t)∥ > ϵ)

(2.12)

Taking infimum over all couplings of Un(t) and V (t) in (2.12) gives

W1,T (Un, V ) ≥ ϵ inf P (∥Un(t)− V (t)∥ > ϵ) (2.13)

Since W1,T (Un, V )
n→∞−−−→ 0, we have

inf P (∥Un(t)− V (t)∥ > ϵ)
n→∞−−−→ 0 ∀ ϵ > 0 (2.14)

Next, we have for all u ∈ Rd, ϵ > 0

FUn(t)(u) = P (Un(t) ≤ u) ≤ P (V (t) ≤ u+ ϵ1) + P (∥Un(t)− V (t)∥ > ϵ)

= FV (t)(u+ ϵ1) + P (∥Un(t)− V (t)∥ > ϵ)
(2.15)

where 1 is the vector of 1’s and the inequalities here are element-wise. This is true

since if Un(t) ≤ u and ∥Un(t)− V (t)∥ ≤ ϵ then Vn ≤ u+ ϵ1. Applying this for u− ϵ1

with the role of Un(t) and V (t) swapped, we have

FV (t)(u− ϵ1) ≤ FUn(t)(u) + P (∥Un(t)− V (t)∥ > ϵ) (2.16)

Combining (2.15) and (2.16) gives us

FV (t)(u− ϵ1)− P (∥Un(t)− V (t)∥ > ϵ) ≤ FUn(t)(u)

≤ FV (t)(u+ ϵ1) + P (∥Un(t)− V (t)∥ > ϵ)
(2.17)

In (2.17), taking the infimum over all couplings of Un(t) and V (t) gives

FV (t)(u− ϵ1)− inf P (∥Un(t)− V (t)∥ > ϵ) ≤ FUn(t)(u)

≤ FV (t)(u+ ϵ1) + inf P (∥Un(t)− V (t)∥ > ϵ)
(2.18)

Note that the cdf’s are not affected by the coupling since the marginals are fixed.

This combined with (2.14) and letting ϵ→ 0, n→∞ gives us

FUn(t)(u)
n→∞−−−→ FV (t)(u) (2.19)

In other words, Un(t)
d−→ V (t) as n→∞ for all t ∈ [0, T ].
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2.5 Parametric Bootstrap and Bootstrap confidence intervals

Consider an estimation problem where the quantity of interest is θ and the data

generating distribution is Fθ. Now assume that we have a procedure to obtain an

estimate θ̂ of θ. The parametric bootstrap is a method to estimate the distribution

of θ̂. We accomplish that goal by performing the following steps:

1. Generate a sample from the approximate distribution Fθ̂.

2. Obtain an estimate θ̂∗ of θ̂.

3. Repeat steps 1 and 2 B times to get θ̂∗1, . . . , θ̂
∗
B.

With the sample of estimates in step 3, we can estimate various aspects of θ̂ such as

the bias, variance and confidence interval.

2.5.1 Bootstrap confidence intervals

In this subsection, we define all types of bootstrap confidence intervals that are utilized

in later sections.

Pivotal Interval

The 1− α bootstrap pivotal interval is defined as

CIpivotal =
(
2θ̂ − θ̂∗(B(1−α/2)), 2θ̂ − θ̂∗(Bα/2)

)
(2.20)

where θ̂∗(Bα) denotes the 100αth percentile of θ̂∗. This interval works under the as-

sumption that the distribution of θ̂∗ − θ̂ should approximate that of the pivot θ̂ − θ.

Normal Interval

The 1− α bootstrap normal interval is defined as

CInormal =
(
θ̂ − zα/2sb, θ̂ + zα/2sb

)
(2.21)

where zα/2 is the 1 − α/2 quantile of the standard normal and sb is the bootstrap

estimate of the standard error

s2b =
1

B

B∑
b=1

(
θ̂∗b −

1

B

B∑
r=1

θ̂∗r

)2

(2.22)
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This interval works under the assumption that the distribution of θ̂ is close to normal,

i.e. θ̂ ∼ N(θ, s2).

Percentile Interval

The 1− α bootstrap percentile interval is defined as

CIpercentile =
(
θ̂∗(Bα/2), θ̂∗(B(1−α/2))

)
(2.23)

This interval works under the assumption that there exists a monotonic transforma-

tion ρ such that ρ(θ̂) ∼ N(ρ(θ), c2).

2.5.2 Bias correction for Bootstrap confidence intervals

In many inference problems, especially nonparametric ones, there will be a certain

amount of bias

b = Eθ̂ − θ (2.24)

To account for these biases, we will have to make some adjustments to the bootstrap

confidence intervals. These adjustments often involve subtracting the bias, which is

estimated by the bootstrap bias

b̂∗ =
1

B

B∑
i=1

θ̂∗i − θ̂ (2.25)

Pivotal Interval

The appearance of a bias does not affect this interval’s main assumption, that is the

distribution of the pivot θ̂ − θ is close to the distribution of θ̂∗ − θ̂. Therefore, the

pivotal interval has already accounted for bias correction.

Normal Interval

When there is a bias term, the assumption for this interval becomes

θ̂ ∼ N(θ + b, s2) (2.26)

Then, the bias corrected confidence interval will be

CIcorrected normal =
(
θ̂ − b̂∗ − zα/2sb, θ̂ − b̂∗ + zα/2sb

)
(2.27)
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Percentile Interval

In this case, the main assumption is reinterpreted as

∃ ρ monotonic: ρ(θ̂ − b) ∼ N(ρ(θ), c2) (2.28)

Then the bias corrected percentile confidence interval can be derived as follow

1− α = P (ρ(θ)− zα/2 ≤ ρ(θ̂ − b) ≤ ρ(θ) + zα/2) (2.29)

= P (ρ(θ̂ − b)− zα/2 ≤ ρ(θ) ≤ ρ(θ̂ − b) + zα/2) (2.30)

= P (ρ(θ̂ − b)α/2 ≤ ρ(θ) ≤ ρ(θ̂ − b)1−α/2) (2.31)

Now since ρ is monotonic, it preserves quantiles so ρ(θ̂ − b)α = ρ(θ̂α − b) for all α.

Therefore (2.31) becomes

1− α = P (ρ(θ̂α/2 − b) ≤ ρ(θ) ≤ ρ(θ̂1−α/2 − b)) (2.32)

= P (θ̂α/2 − b ≤ θ ≤ θ̂1−α/2 − b) (2.33)

Then the quantiles of θ̂ are estimated by the bootstrap sample while keeping in mind

that there is a bias term

∀ α : θ̂α ≈ θ̂∗Bα − b̂∗ (2.34)

Plugging (2.34) into (2.33) and replacing b with b̂∗, we get

1− α = P (θ̂∗(Bα/2) − 2b̂∗ ≤ θ ≤ θ̂∗(B(1−α/2)) − 2b̂∗) (2.35)

Hence, the formula for the bias corrected percentile confidence interval is

CIcorrected percentile =
(
θ̂∗(Bα/2) − 2b̂∗, θ̂∗(B(1−α/2)) − 2b̂∗

)
(2.36)



Chapter 3

Methodology

This chapter introduces the model of interest, along with the methods for log likeli-

hood approximation and parameter estimation.

3.1 SIR model construction

Consider the stochastic SIR model, as defined in chapter 2, with infection rate function

β(t) and constant recovery rate γ. Our goal is to estimate both β(t) and γ using

discretely observed data of the number of susceptible and infected individuals. To

this end, a B-spline basis is used for modeling β(t). In summary, the model can be

written as follow

X(t) = (S(t), I(t)) : stochastic SIR model with rates β(t), γ (3.1)

X(t1), X(t2), . . . , X(tM) : observed states at times t1, t2, . . . , tM (3.2)

γ = θ1, β(t) =
K+d+1∑
i=1

θi+1ϕi,d(t) (3.3)

where K, d are the number of knots and degree of the B-spline basis, respectively,

and θi are the coefficients.

3.2 Likelihood approximation

With our model set up, the likelihood function is

LX(θ) = LX(θ1, . . . , θK+d+2) =
M−1∏
i=1

Pθ,ti,ti+1
(X(ti+1)|X(ti)) (3.4)

The biggest problem here is computing or approximating the transition probabili-

ties in (3.4). Therefore, a stochastic process whose transition probabilities can be

tractably approximated is used to approximate our SIR model.

12
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3.2.1 Diffusion approximation

In this section, the diffusion process used to approximate our SIR is presented along

with the convergence results. Now set x(t) = (s(t), j(t)) = X(t)/N = (S(t)/N, I(t)/N).

This rescaled process represents the proportion of susceptible and infected in the pop-

ulation. Using the new description, the state space of x(t) can be viewed as “con-

tinuous” for large N , making the approximation to a diffusion process more natural.

Next, consider the diffusion process z(t) = (s(t), j(t)) as follows

ds = −β(t)sjdt+
√

β(t)sj

N
dB1

dj = (β(t)sj − γj)dt−
√

β(t)sj

N
dB1 +

√
γj

N
dB2

(3.5)

where B1, B2 are independent Brownian motions. This process is similar to the deter-

ministic version of the SIR model with added white noise accounting for stochasticity

in each compartment. Rewriting (3.5) in matrix form gives us

dz = A(t, z)dt+ L(t, z)dB (3.6)

where B is a bivariate Brownian motion and

A(t, z) =

(
−β(t)sj

β(t)sj − γj

)
, L(t, z) =

1√
N

( √
β(t)sj 0

−
√

β(t)sj
√
γj

)
(3.7)

Next, we have the following theorem

Theorem 3.2.1. Let [0, T ] be the time interval of the data. Then we have

√
NW1,T (x, z)

N→∞−−−→ 0 (3.8)

or in other words, W1,T (x, z) = o(1/
√
N)

The proof for a more generalized version of theorem 3.2.1, where x(t) is a general

compartmental model, can be found in [2]. The main idea is to prove that both x(t)

and z(t) converge in Wasserstein distance to the same process.

With this, we can, for sufficiently large N , use lemma 2.4.3 to replace the likelihood

function in (3.4) with

Lz(θ) =
M∏
i=1

pθ,ti,ti+1
(z(ti+1)|z(ti)) (3.9)
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Likelihood computation for diffusion processes

We will now look into methods to compute the conditional densities in (3.9). If

the SDE in (3.6) is explicitly solvable, then the likelihood function can be exactly

computed. For example, assuming that the solution can be written as

z(t) = z(0) +D(t,θ) + E(t,θ)B(t) (3.10)

where D,E are functions of appropriate dimensions. Then

z(ti+1)|z(ti) = z(0) +D(ti+1,θ) + E(ti+1,θ)(B(ti) +N(0,∆tiI2)) (3.11)

where ∆ti = ti+1 − ti and I2 the rank 2 identity matrix. With this, we can get a

closed form for pθ(z(ti+1)|z(ti)).
However, the SDE in (3.6) is not explicitly solvable in general and therefore requires

a different approach. The method I settled on involves the simple Euler-Maruyama

approximation z̃(k)(t) of z(t). For all observed time ti, let

τir = ti + r
∆ti
k

= ti + r∆τi

z̃(k)(ti) = z(ti)

z̃(k)(τi(r+1)) = z̃(k)(τir) + A(τir, z̃
(k)(τir))∆τi + L(τir, z̃

(k)(τir))∆Bir

(3.12)

where ∆Bir = B(τi(r+1)) − B(τir). Next we have the conditions for this scheme to

converge:

Lemma 3.2.2. [12] Under the following conditions:

(A1) For all 0 < R < ∞, 0 ≤ t ≤ R, the functions A(t, ·) and L(t, ·) are Lipschitz

continuous in the closed ball B(0, R).

(A2) For all 0 < R <∞ there exists 0 < CR <∞ such that

∥A(t, x)∥+ ∥L(t, x)∥ ≤ CR(1 + ∥x∥) ∀ 0 ≤ t ≤ R, x ∈ Rd (3.13)

(A3) Σ(t, x) = L(t, x)L(t, x)⊤ is positive definite for all t ≥ 0 and x ∈ Rd.

We have z̃(k)(t)
L1−→ z(t) for all t ∈ [0, T ] as k →∞.
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Note that conditions (A1) and (A2) are satisfied since the components of A(t, ·) and
L(t, ·) are polynomials and square roots of polynomials, respectively. The remaining

condition is true as long as the epidemic has not ended, i.e. i(t) > 0.

Setting k = 1 in (3.12), we have the following scheme

z̃(1)(ti+1) = z̃(1)(ti) + A(ti, z̃
(1)(ti))∆ti + L(ti, z̃

(1)(ti))∆Bi (3.14)

where ∆Bi = B(ti+1)−B(ti).

With this we can approximate the likelihood function of z(t) with that of z̃(1)(t).

And due to the construction of z̃(1)(t) in (3.14), we have the following closed form

likelihood formula

p
(1)
θ,ti,ti+1

(z̃(1)(ti+1)|z̃(1)(ti)) = ϕ(∆z̃
(1)
i |A(ti, z̃(1)(ti))∆ti,Σ(ti, z̃

(1)(ti))∆ti) (3.15)

where ∆z̃
(1)
i = z̃(1)(ti+1)− z̃(1)(ti) and ϕ(·|µ,Σ) is the density of N(µ,Σ).

Now given the data points x(t1), . . . , x(tM), the approximate likelihood is

L(1)(θ) =
M∏
i=1

p
(1)
θ,ti,ti+1

(x(ti+1)|x(ti)) (3.16)

Another concern here is that in the original SIR model, the states of x(t) are in [0, 1]2,

which is not the case for z̃(1)(t). Therefore, in some cases when one or both elements

of x(ti) is 0 or 1, we view it as a censored observation in regard to z̃(1)(t). These cases

are when s(ti) = 1 or j(ti) = 1 or s(ti) = 0 ∧ s(ti−1) ̸= 0 or j(ti) = 0 ∧ j(ti−1) ̸= 0.

Now define

µ(ti) =

(
µ1(ti)

µ2(ti)

)
= x(ti−1) + A(ti−1, x(ti−1))∆ti−1

Σ(ti) =

(
σ11(ti) σ12(ti)

σ12(ti) σ22(ti)

)
= Σ(ti−1, x(ti−1))∆ti−1

(3.17)

and

µ∗
1(ti) = µ1(ti) +

σ12(ti)

σ22(ti)
(j(ti−1)− µ2(ti))

µ∗
2(ti) = µ2(ti) +

σ12(ti)

σ11(ti)
(s(ti−1)− µ1(ti))

(σ∗
1(ti))

2 = σ11(ti)−
σ2
12(ti)

σ22(ti)

(σ∗
2(ti))

2 = σ22(ti)−
σ2
12(ti)

σ11(ti)

(3.18)
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The terms defined in (3.18) are just the conditional mean and variance of each com-

ponent given the other. With this we can write out the likelihood formula for all

cases of the data

p
(1)
θ,ti,ti+1

(x(ti)|x(ti−1)) =

ϕ(x(ti)|µ(ti),Σ(ti)) if s(ti), j(ti) ∈ (0, 1)

Φ(ι(x(ti))|µ(ti),Σ(ti)) if s(ti), j(ti) ̸∈ (0, 1)

ϕ(s(ti)|µ1(ti), σ11(ti))Φ(ι(j(ti))|µ∗
2(ti), (σ

∗
2(ti))

2) if s(ti) ∈ (0, 1), j(ti) ̸∈ (0, 1)

ϕ(j(ti)|µ2(ti), σ22(ti))Φ(ι(s(ti))|µ∗
1(ti), (σ

∗
1(ti))

2) if s(ti) ̸∈ (0, 1), j(ti) ∈ (0, 1)

(3.19)

where Φ(ι(x)|µ, σ2) denotes the integral of the normal distribution on the correspond-

ing interval ι(x). For example, if x(ti−1) = (0.9, 0.1) and x(ti) = (0.85, 0) then the

third formula in (3.18) is used and ι(j(ti)) = (−∞, 0].

Multi-step likelihood approximation

The Euler-Maruyama approximation described in (3.14) only makes one jump from

one time stamp to the next and the likelihood derived from this is referred to as the

1-step likelihood. Problems with this scheme arise when the time stamps are too far

apart or the infection rate changes too quickly between observation times thereby

lowering the approximation quality. A solution is to use the k-step scheme in (3.12)

with larger k for better approximation. Note that in the multi-step scheme, we do not

know the observations in between the observed times and the likelihood will therefore

involve integrating out these values

Theorem 3.2.3. The likelihood formula for the scheme (3.12) is as follows

p
(k)
θ,ti,ti+1

(z2|z1) =
∫ k∏

r=1

p
(1)
θ,τi(r−1),τir

(ξr|ξr−1)dξ1 . . . dξk−1 (3.20)

= Ez1(p
(1)
θ,τi(k−1),ti+1

(z2|z̃(k)(τi(k−1)))) (3.21)

where ξ0 = z1, ξk = z2 ∈ R2, p and the expectation is taken conditional on z̃(k)(ti) = z1.

Proof. Since (3.20) is by definition, we only need to prove that the right hand side of
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(3.20) equals to (3.21)

∫ k∏
r=1

p
(1)
θ,τi(r−1),τir

(ξr|ξr−1)dξ1 . . . dξk−1

=

∫
p
(1)
θ,τi(k−1),τik

(ξk|ξk−1)
k−1∏
r=1

p
(1)
θ,τi(r−1),τir

(ξr|ξr−1)dξ1 . . . dξk−1

Fubini
=

∫
p
(1)
θ,τi(k−1),τik

(ξk|ξk−1)

(∫ k−1∏
r=1

p
(1)
θ,τi(r−1),τir

(ξr|ξr−1)dξ1 . . . dξk−2

)
dξk−1

=

∫
p
(1)
θ,τi(k−1),τik

(ξk|ξk−1)p
(k−1)
θ,τi0,τi(k−1)

(ξk−1|ξ0)dξk−1

=

∫
p
(1)
θ,τi(k−1),ti+1

(z2|ξk−1)p
(k−1)
θ,ti,τi(k−1)

(ξk−1|z1)dξk−1

= Ez1(p
(1)
θ,τi(k−1),ti+1

(z2|z̃(k)(τi(k−1))))

Using the law of large numbers and the expression (3.21) in Theorem 3.2.3, we have

the following procedure to approximate the multi-step likelihood

• Simulate B sample paths using (3.12) to get z̃
(k)
1 (τi(k−1)), . . . , z̃

(k)
B (τi(k−1)).

• By the law of large numbers, we have

1

B

B∑
b=1

p
(1)
θ,τi(k−1),ti+1

(z2|z̃(k)b (τi(k−1)))
a.s−→ Ez1(p

(1)
θ,τi(k−1),ti+1

(z2|z̃(k)(τi(k−1)))) (3.22)

The trade-off for using the multi-step likelihood is the increased computational time

due to the simulations.

3.2.2 Tau leaping approximation

For this method, we go back to the definition of the stochastic SIR model

X(t) = X(0) +

(
−1
1

)
Pois1

(∫ t

0

β(s)
S(s)I(s)

N
ds

)
+

(
0

−1

)
Pois2

(∫ t

0

γI(s)ds

)
(3.23)
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where Pois1, Pois2 are independent standard Poisson processes. Tau leaping is a

method for approximate simulation of (3.23) using a scheme similar to the Euler-

Maruyama method

τir = ti + r
∆ti
k

= ti + r∆τi

Z̃(k)(ti) = Z(ti)

Z̃(k)(τi(r+1)) = Z̃(k)(τir) +

(
−1
1

)
Pois1

(
∆τiβ(τir)

S(τir)I(τir)

N

)

+

(
0

−1

)
Pois2 (∆τiγI(τir)) .

(3.24)

With this the likelihood function can be approximated using the transition probabil-

ities of Z̃(k). Specifically, for k = 1 we have

L(1)(θ) =
M∏
i=1

P
(1)
θ,ti,ti+1

(Z̃(1)(ti+1)|Z̃(1)(ti))

=
M∏
i=1

f

(
∆Wi

∣∣∣∣∆tiβ(ti)
S(ti)I(ti)

N

)
f(∆Yi|∆tiγI(ti))

(3.25)

where ∆Wi = S(ti)−S(ti+1),∆Yi = S(ti)−S(ti+1) + I(ti)− I(ti+1) and f(·|λ) is the
probability mass function of a Poisson distribution with rate λ.

To compute the multi-step likelihood approximation, we use the same procedure de-

vised for diffusion processes with the path simulation method and one step likelihood

formula changed to that of tau leaping.

3.3 Parameter estimation

With a method to approximately compute the likelihood function, the maximum

likelihood estimate (MLE) for the model parameters can be found using built-in R

functions such as optim. Before that, we need to fine tune the hyperparameters,

specifically the number of knots and their locations. There are two main approaches

to achieve this goal. The first, called the penalized spline method [20], is to put a

knot on every observed time point and add a penalty term to the likelihood. Then

the model parameters are found by minimizing the following objective function

F (θ, λ) = −L(θ) + λJ(β) (3.26)
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where J(β) is the function that penalizes certain properties of the infection rate

function β and λ is the smoothing parameter controlling the degree of penalty. This

means the knots are predetermined but the number of parameters is large leading to

longer time spent estimating them. In addition, minimizing the function in (3.26)

usually requires estimating θ for multiple λ’s which increases computation time even

more.

The second approach, the regression spline method [17], uses fewer and unequally

distanced knots. While this method take less time to estimate θ, the choice of knot

number and placement is crucial to its performance. Through the experiments in the

next chapter, we will see that the method in [21] does a good job finding the right

knot locations. Therefore, the rest of this thesis will focus on the regression spline

method.

3.3.1 Knot selection

This section describes the knot placement method in [21]. In the paper, we are given

the values of the curve β(t) at times u0, . . . , um and the goal is to find the knots

κ1, . . . , κk for the degree d B-spline basis used to estimate β(t). This is achieved by

the following steps:

1. Calculate the (d+ 1)th derivative β(d)(t) of β(t) using the formula

β(j+1)(u
(j+1)
i ) =

β(j)(u
(j)
i+1)− β(j)(u

(j)
i )

u
(j)
i+1 − u

(j)
i

, u
(j+1)
i =

1

2
(u

(j)
i+1 + u

(j)
i+1) (3.27)

where β(0)(t) = β(t). Note that (3.27) implies that each derivative level has its

own time stamps which are the midpoints of the previous level’s time stamps.

2. Calculate the feature curve F (u). First, define the feature function f(u) as the

piecewise linear function that satisfies

fi = f(ūi) =

0 if i = 0,m− d

∥β(d+1)(u
(d+1)
i )∥1/(d+1) otherwise

(3.28)

where ū0 = u1, ūm−d = um and ūi = u
(d+1)
i for 0 < i < m − d. Then F (u) is
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defined as the integral of f(u), i.e.

F (u) =

u∫
−∞

f(v)dv (3.29)

3. Obtain knot locations from the feature curve by setting κj = F−1(j∆F ) where

∆F = maxF (u)/(k−1). In other words, divide the feature curve into segments

with equal amount of increase and set the corresponding time stamps as knots.

Computation of F−1(u) can be simplified by pretending F (u) is a piecewise

linear function and values at ūi calculated using trapezoid rule for fi.

3.3.2 Moving average rate estimate

A problem we run into is that the knot placement strategy described above uses the

true infection rate values at observed times, which is not present in the data. To

resolve this, ”true” values of β(t) are created by estimating the moving average rates

between observations. Consider r consecutive observations x(ti), . . . , x(ti+r), we now

build a mini model by assuming that the infection rate is a constant in this period.

Then the estimate for β using these data points will be the guess for the true value

of β((ti + ti+r)/2). Next, the procedure is repeated over all windows of r consecutive

observations to get the curve values for knot selection.

For example, if the whole data is x(0), x(1), . . . , x(30) and window size is r = 3, then

x(0), x(1), x(2) are used to estimate the value of β(1); x(1), x(2), x(3) for β(2) and so

on. The idea for this procedure is pretty similar to a moving average of a time series

but the average series is for the hidden infection rate.

3.3.3 Model selection and Estimation summary

The final step is to choose the number of knots to use. In [21], a linear regression

model was used to find the relationship between log(∆F ) and the log of the mean

square error and the number of knots k is chosen to get a desired amount of error. But

since the moving average rates are only rough guesses and the estimated parameter

vector is the MLE, it makes more sense to use a likelihood based model selection

criteria such as Bayesian information criterion (BIC) or Akaike information criterion

(AIC). In addition, a forward selection scheme is employed for this step to save more
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time. The idea is to increase the number of knots one at a time, and stop when none

of the last Q models (Q will be referred to as the stopping threshold) have improved

on the best value of the criterion. To summarize, the parameter estimation procedure

follows these steps

Algorithm 1 Forward selecting regression spline

Input: Data X, N , window size w, degree d, criterion C, threshold Q.

Output: Spline coefficients θ̂ for infection rate function β̂ and recovery rate γ̂.

β̄ ← estimate moving average rates(w)

count← 0

numknot← 0

while count < Q do

knots← find knot placement(β̄, numknot)

θ̂ ← MLE(X,N, knots, d)

crit← C(X, θ̂)

if numknot = 0 then

min crit← crit

else

if crit < min crit then

min crit← crit

count← 0

else

count← count+ 1

end if

end if

numknot← numknot+ 1

end while

return θ̂
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3.4 Confidence interval

A parametric bootstrap scheme is used to find the point wise confidence interval for

β(t). However, unlike the case where the infection rate is constant, we essentially have

no information about β(t) when the sample path terminates early. This can lead to

uninformative or even bad intervals for the infection rate function. An example is

when both I(t1) and the estimated rate β̂(t) is small in the beginning, which can

happen when the spline degree is 2 or higher, leading to many bootstrap samples

terminating too early. A solution is to discard simulated paths that terminated early

and use the ones that survived until the final observed time tM as bootstrap samples.

3.4.1 Interval smoothing

One of the most crucial steps in the model is knot placement. However, this step

relies entirely on the moving average rates, which is a very crude estimate of the

true infection rate, and therefore can misjudge the most effective placements. A way

to alleviate this is to smooth out the pointwise confidence interval using adjacent

time stamps. In particular, we consider three different ways of smoothing: weighted

smoothing, sample smoothing and min-max smoothing.

The first way is to use the interval values themselves. Let Lti , Uti be the lower and

upper bounds of the confidence interval for β(ti). Then the smoothed confidence

interval [L̄ti , Ūti ] is calculated as the weighted sum of adjacent bounds as follows

L̄ti =

∑
j w(ti, tj)Ltj∑
j w(ti, tj)

, Ūti =

∑
j w(ti, tj)Utj∑
j w(ti, tj)

(3.30)

where the weighting function w(·, ·) is the normal kernel

w(x, y) = ϕ(x− y)

The second way is to combine the β values from the bootstrap samples at adjacent

time points and use them as the the samples for the middle point. Specifically, we use

β̂∗
1(ti−1), . . . , β̂

∗
B(ti−1), β̂

∗
1(ti), . . . , β̂

∗
B(ti), β̂

∗
1(ti+1), . . . , β̂

∗
B(ti+1) as samples to construct

the confidence interval of β(ti) instead of just β̂∗
1(ti), . . . , β̂

∗
B(ti). Here β̂∗

b (t) denotes

the estimated infection rate at t for the bth bootstrap sample and B is the number of

bootstrap samples. The intuition behind this step is to improve the coverage rate at
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places where there are significant changes in the infection rate.

The third method is to simply widen the bounds by setting the new upper bounds as

the largest of all the surrounding bounds and the new lower bounds as the smallest

of all the surrounding bounds. Specifically, the new interval [L̄ti , Ūti ] for β(ti) is

L̄ti = min{Lti−1
, Lti , Lti+1

}, Ūti = max{Uti−1
, Uti , Uti+1

} (3.31)

3.5 Numerical considerations for multi-step approximation

Since the single step approximations have explicit and simple likelihood functions,

their results are mostly stable. The multi-step schemes, on the other hand, require

simulations and take longer to compute. Therefore, this section will mainly discuss

ways to make the multi-step methods faster and more stable.

The first problem comes from the simulation of the states in between the observed

data. Unless the number of simulated paths is very large, which can make the compu-

tation infeasible, it can lead to inconsistent evaluation of the likelihood function. This

can greatly impact the parameter estimation process. To see this effect in action, we

look at the result of the 20-step diffusion approximation method for a simulated data

set with different random number generator seeds. We can see from Figure 3.1 that

the change in seed is enough to change the number of knots the final model selected.

One solution to this is to set the generating seed beforehand. Doing this ensures the

consistency of the likelihood by making it smoother and easier to optimize.

In addition, for the multi-step diffusion approximation, we can generate standard

normal variables for the simulations beforehand as in [14]. This saves us from having

to generate new random variables every time the likelihood function is evaluated.

Unfortunately, the same cannot be done for the multi-step tau leaping method as

Poisson variables cannot be rescaled into other Poisson variables. Because of this, the

multi-step tau leaping method will have to spend time generating random variables

for its sample path and therefore, will not be feasible for repeated experiment.

The next consideration is about the initial value for β(t) that is fed into optim.

Generally, we want the number of likelihood evaluations to be as few as possible to

save more time. Therefore, we use the B-spline fit of the moving average rate as the

initial value for optim in hope that it is close to the MLE.
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Figure 3.1: Resulting estimates using two different seeds for path simulation.



Chapter 4

Simulation Study

In this chapter, various performance aspects of the proposed model are investigated

using simulated data. The data sets are generated using the R package ssar, which

employs the Gillespie algorithm for exact simulation of the stochastic SIR model.

Specifically, we mainly look at 4 typical epidemic patterns where the infection rate

is increasing, decreasing, going up then down or periodic. Each data set consists of

30 data points, the recovery rate is set at 0.25 for all 4 simulations and the infection

rates are plotted in Figure 4.1. In addition, the populations are all set to N = 1000

with initial proportion of susceptible and infected at 99% and 1%, respectively.

(a) Simulation 1 (b) Simulation 2

(c) Simulation 3 (d) Simulation 4

Figure 4.1: Infection rate functions of the 4 simulations.
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4.1 Approximation quality

The quality of the estimation β̂(t) is measured by its mean integrated squared error

(MSE) to the true infection rate β(t), i.e.

MSE(β̂, β) =

∫
(β̂(t)− β(t))2dt (4.1)

Each simulation is repeated 100 times for different settings of likelihood approxima-

tion, criterion for number of knots and moving average window size.

4.1.1 Effects of Likelihood approximation

In this subsection, we look at the performance of different types of likelihood approx-

imation. To this end, we consider 3 methods: 1-step diffusion, 1-step tau leaping and

a multi-step diffusion. For the multi-step method, we use a 20-step diffusion scheme

with 100 sample paths to estimate the likelihood. The window size is set to 2 and

the model selection criterion to BIC.

Figures 4.2 and 4.3 are the box plot comparison of MSE for each likelihood approxima-

tion method across the 4 simulations using degree 0 and 3 B-spline bases, respectively.

Based on these two figures, tau leaping seems to perform slightly better than diffusion

approximation for single step likelihood. This can be attributed to the former only

having one approximation step (Euler-Maruyama step) while the latter has two ap-

proximation steps (diffusion approximation and Euler-Maruyama step). In addition,

the 20-step diffusion method outperforms the single step schemes for all settings. The

improvement is most significant for simulation 4 as the multi-step method allows the

model to better capture the changes in the compartments between 2 consecutive time

points.
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Figure 4.2: Estimation performance of different simulations and methods using degree
0 B-spline basis.

Figure 4.3: Estimation performance of different simulations and methods using degree
3 B-spline basis.

Next, to see the estimation performance at different stages of an epidemic we plotted

the estimations in time in Figures 4.4 and 4.5. The solid lines are the true rates, the

dashed lines and two bands are the average, 5% and 95% quantiles of the estimations,

respectively. The places with the worst performance are often at the beginning and

the end of the epidemic where the approximations are most likely to be inaccurate.

We also observed that when a degree 3 B-spline is used, the estimated rates at the

two time boundaries are more varied. This maybe due to the nature of spline bases

that make estimations near boundaries erratic [15].
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Figure 4.4: Estimation performance in time for different simulations and methods
using degree 0 B-spline basis.

Figure 4.5: Estimation performance in time for different simulations and methods
using degree 3 B-spline basis.
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The biggest trade-off of the multi-step scheme is how time consuming it is. The

execution time ratios between the 20-step and 1-step diffusion methods across different

simulations are visualized in Figure 4.6. According to this, the multi-step scheme is

seen to run hundreds of times slower than the single step scheme even at moderate

step size 20 and low sample path number of 100 (multi-step scheme runs for 20 min

per data set on average while single-step scheme runs for less than 5 seconds). As

discussed in the previous chapter, this is the main reason for not running the multi-

step tau leaping method as it is not scalable when generating sample paths.

Figure 4.6: Execution time ratio between 20-step and 1-step diffusion methods.

4.1.2 Effects of Model selection criteria

To see how the model selection criterion affects the final estimator, we ran the sim-

ulations using AIC and BIC as model selection criteria. BIC is well known for its

consistency, i.e. if the generating model is present in the candidate models then the

probability of BIC selecting it approaches 1, while AIC is known for being asymptot-

ically optimal, i.e. if the generating model is not present among the candidate then

the selected model is the closest one to the true model on average (chapter 6 of [3]). If

the two criteria exhibit their relative properties, we would expect to see BIC perform

better in the first three simulations when degree 0 B-splines are used and AIC for

when degree 3 B-splines are used. However, Figure 4.7 implies that BIC performs as

well as or better than AIC in most settings. Therefore, in the following sections, BIC

will be the model selection method of choice.
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Figure 4.7: Estimation performance for different criteria. The rows represent the
degree of B-spline basis used.

Figure 4.8: Estimation performance for different window sizes. The rows represent
the degree of B-spline basis used.

4.1.3 Effects of Moving average window size

As stated before, the moving average window size is similar to the moving average

of a time series. Therefore, its main use is to smooth out the initial rate estimates

for knot placement. To see how window sizes affect our method’s performance, we

ran the simulations using window sizes 2, 4, 6 and plotted the results in Figure 4.8.

The benefit of smoothing is most evident when using degree 0 B-splines. This is
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because the procedure removes the random fluctuations in the rate estimates, helping

the knot placement algorithm locate the change points more accurately. For degree 3

B-spline, the forth derivative is used for knot placement, which is in a way a form of

smoothing, so increasing the window size does little to improve and, in some cases,

even hurts overall performance. Moving forward, window size 2 will be used in order

to observe the effects of other steps.

4.2 Confidence interval coverage

In this section, we analyze the performance of the bootstrap confidence intervals

introduced in Chapter 2 and the effects that techniques such as bias correction and

interval smoothing have on their coverage rates. For each simulation and repetition,

1000 bootstrap samples are created and fitted using the proposed framework with

1-step Tau leaping likelihood approximation. Then the estimated β’s are used to

construct the 95% bootstrap confidence intervals at each observed time.

The coverage rates at each time point for all simulations and confidence interval

types are plotted in Figure 4.9. From this, we can see that the coverage rates suffer

when a degree 0 basis is used for the smooth infection rate in Simulation 4 as well

as when a degree 3 basis is used for the simulations with step wise constant rates.

This is understandable as it is more difficult to express the truth when the basis is

misspecified. We also see dips in coverage rates near the change points t = 10 and

t = 15 in the first three simulations. Overall, the normal and pivot intervals have

better coverage rates than the percentile intervals. The trade-off is that the former

two can have negative lower bounds, which make them useless as the rates are always

positive, while the latter cannot. In addition, Figure 4.10 shows that the length of

normal interval does not seem to differ much from that of the other two intervals

except near the change points or the end of the epidemic, where it tends to be wider.

Note that the pivot and percentile have equal lengths by definition.
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Figure 4.9: Coverage rates for 95% bootstrap confidence intervals at each time stamp.
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Figure 4.10: Length ratio between the percentile interval and the normal interval by
time. The rows show the degree of basis used.

4.2.1 Effects of interval smoothing

In this subsection, we look at how each interval smoothing method affects the coverage

rate of the confidence intervals. Figures 4.11 and 4.12 shows the coverage rates of

the original intervals compared to the three interval smoothing methods proposed in

Chapter 3. Based on these, the min-max smoothing method has the best coverage

rates out of the three in most cases. This is to be expected as min-max smoothing

widens the intervals, guaranteeing improvement in coverage rates. The performance

of the other two is interesting as weighted smoothing works better when a degree

0 basis is used whereas sample smoothing works better for a degree 3 basis. The

reason may lie in the nature of each basis. A degree 0 basis gives step-wise constant

estimates so weighted smoothing can improve the smoothness between intervals at

different time points. A degree 3 basis, on the other hand, has smoothness but lacks

the ability to rapidly change its values like a degree 0 basis, which makes sample

smoothing more useful since it helps expand the bootstrap sample range in places

where the infection rate changes quickly.
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Figure 4.11: Coverage rates for different interval smoothing methods with degree a 0
basis. The labels o, w, s and m stands for original, weighted, sample and min-max,
respectively.
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Figure 4.12: Coverage rates for different interval smoothing methods with a degree 3
basis. The labels o, w, s and m stands for original, weighted, sample and min-max,
respectively.
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4.2.2 Effects of bias correction

In this subsection, we look at how bias correction affects the normal and percentile

intervals. Figures 4.13 and 4.14 show the coverage rates of the original intervals

compared to the bias corrected versions. For the normal interval, bias correction does

not appear to help much and even worsens the coverage rates in some cases. For the

percentile interval, however, there is improvement in coverage rates especially with

a degree 3 basis. Therefore, bias correction should only be used for the percentile

interval moving forward.

Another aspect to look at is how bias correction helps when used in conjunction with

the interval smoothing methods. Figures 4.15 and 4.16 illustrate the performance

of the interval smoothing methods with and without bias correction along with the

intervals where only bias correction is applied. These show that when both processes

are applied the coverage rates tend to be better than when only one is applied
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Figure 4.13: Coverage rates for the original intervals (o) compared to the bias cor-
rected intervals (c) with degree 0 basis.

Figure 4.14: Coverage rates for the original intervals (o) compared to the bias cor-
rected intervals (c) with degree 3 basis.
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Figure 4.15: Coverage rates for the percentile intervals when both processes are ap-
plied (solid line) compared to when only interval smoothing (red dashed line) or bias
correction (blue dashed line) is applied with degree 0 basis.
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Figure 4.16: Coverage rates for the percentile intervals when both processes are ap-
plied (solid line) compared to when only interval smoothing (red dashed line) or bias
correction (blue dashed line) is applied with degree 3 basis.



Chapter 5

Application to the COVID-19 data

5.1 Data

In this chapter, we will be estimating the basic reproduction number R0(t) = β(t)/γ

of the COVID-19 data from Ontario between January 2020 and January 2022. The

goal is to see how our proposed framework performs for a period in which multiple

waves have occurred.

The data was obtained from [4] in early 2022 when the number of active cases was

still recorded. The population is set to N = 14, 223, 942, which is the population

of Ontario in 2021 according to [8]. For our model, the number of susceptible S is

obtained by subtracting the cumulative cases from the population and the number of

infected I is the number of active cases in the data.

5.2 Results

We use the 1-step diffusion and tau leaping method for likelihood approximation,

BIC for model selection, window sizes 2 (daily),4 (3 days) and 8 (weekly), and both

degree 0 and 3 B-spline bases. The estimates are plotted in Figures 5.1 and 5.2. For

a degree 0 basis, the results from the daily and weekly window are more simple with

fewer change points. For a degree 3 basis, estimates agree across all window sizes and

likelihood approximation methods with only slight differences. With that in mind, we

shall use the 3 days window and Tau leaping likelihood to get the confidence intervals

for both bases since the estimates for this setting are the most consistent. In addition,

the BIC for 3 days window with degree 0 basis is significantly lower than the other

two.

40
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Figure 5.1: R0(t) estimates for COVID data using degree 0 basis

Figure 5.2: R0(t) estimates for COVID data using degree 3 basis
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Figure 5.3: Confidence intervals for degree 0 basis.

Figure 5.4: Confidence intervals for degree 3 basis.
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(a) Degree 0 splines

(b) Degree 3 splines

(c) Active cases data

Figure 5.5: Estimated R0(t) using 3 days window compared to outbreaks.
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For the confidence intervals, we use the parametric bootstrap scheme discussed in

Chapter 3 with the samples generated by the Tau leaping method since simulation

using the Gillespie algorithm is too time consuming for such a large population. The

results are shown in Figures 5.3 and 5.4. Note that for the pivotal interval, bias

correction only applies to the estimate not the interval. Looking at the original

percentile intervals, we can see that bias correction is necessary, especially for degree

0 basis. The only concern for is that the bias corrected estimate for the infection

rate has a portion that lies below 0, which is clearly not true. However, the period

where this happens is at the beginning of the epidemic where the number of cases

is very small, which is understandable. We also tried to apply interval smoothing

but all three methods yielded intervals too similar to the original. Finally, Figure 5.5

shows the reproduction estimates chosen by our method compared to outbreak dates.

It seems the peaks in reproduction number chosen by this model closely match the

major waves.



Chapter 6

Conclusion

In this thesis, a framework is developed for nonparametric inference of the infection

rate function for the SIR model. The two main ideas of this framework is approxi-

mating the SIR likelihood function with a different process and using a B-spline basis,

which is determined by applying a knot placement method on the moving average

rate estimates, to estimate the infection rate. We investigate two ways of approxi-

mating the likelihood function for the model using diffusion approximation and Tau

leaping. Each of these methods can be made more accurate by using a multi-step

scheme which involves simulating sample paths between observations. However, the

multi-step methods are considerably more time consuming since the number of sample

paths has to be relatively large for consistent results.

For inference, a parametric bootstrap scheme is used to build the percentile, normal

and pivotal confidence intervals along with techniques to improve coverage rates such

as interval smoothing and bias correction. Through simulation study, we found that

the performance of these intervals depend greatly on whether or not the spline basis

contain the true model. Finally, we applied our methods to the COVID-19 data in

Ontario over a two year period. The resulting models mostly agree with the major

waves suggesting that it can be used for disease data with multiple outbreaks.

There are currently many future directions for this framework. On the method side,

ways of improving the computation time of the multi-step likelihood and knot place-

ment techniques that work for a wider function space can be explored. Model-wise, a

different compartment setting such as SEIR (Susceptible-Exposed-Infected-Removed)

can be considered as well as making the recovery rate time dependent.
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