
DESIGN OF DIRECT ERROR PATTERN TESTING
(DEPT)-BASED ITERATIVE DECODER FOR OPEN FORWARD

ERROR CORRECTION (OFEC) STANDARD

by

Xiaoting Huang

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

April 2023

© Copyright by Xiaoting Huang, 2023

Table of Contents

Abstract . iv

List of Abbreviations . v

Acknowledgements . vi

Chapter 1 Introduction . 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Outline of the Thesis . 4

Chapter 2 Coding Structure . 5

2.1 Braided Block Codes . 5

2.2 Zipper Codes . 7

2.3 Staircase Codes . 9

Chapter 3 Decoding Algorithm . 11

3.1 Chase-Pyndiah Algorithm . 11
3.1.1 Chase Algorithm . 11
3.1.2 Pyndiah Algorithm . 13

3.2 DEPT Algorithm . 15

3.3 DEPT-GRAND Algorithm . 17

3.4 Hard Decoding Algorithm . 20
3.4.1 Berlekamp-Massey Algorithm 20
3.4.2 Look-up Table (LUT) Based Decoder 20

Chapter 4 oFEC Codes . 22

4.1 Code Properties . 22
4.1.1 Front and Back Bits . 22
4.1.2 Unit Block . 23
4.1.3 Unit Block Permutation . 24

4.2 Structure of a Single Iteration . 25

ii

4.2.1 Overview of a Single Iteration Block Window 25
4.2.2 Permutation of Structure . 26

4.3 Iterative Process . 30

4.4 Memory Buffer . 31

4.5 Code Rate . 32

Chapter 5 oFEC with DEPT-based Decoders 34

5.1 oFEC Iterative Coding . 34
5.1.1 Net Coding Gain . 37
5.1.2 SNR Normalization . 38
5.1.3 Simulation with Different Number of LRBs 39
5.1.4 Weighting and Reliability Factor Selection 39

5.2 Table-based Hard Decoder for oFEC 40

5.3 DEPT Algorithm for oFEC . 42
5.3.1 Partial Error Patterns (PEPs) 42
5.3.2 oFEC Simulation Result with DEPT 43
5.3.3 DEPT With Different PEPs 46
5.3.4 Quantization . 48

5.4 DEPT-ORBGRAND Algorithm for oFEC 49
5.4.1 oFEC Simulation Result with DEPT-ORBGRAND 49
5.4.2 DEPT-ORBGRAND Varies the Number of Query and Maxi-

mum Searched Error Sequences 51

Chapter 6 Conclusion and Future Work 53

6.1 Conclusion . 53

6.2 Future Work . 54

Bibliography . 55

iii

Abstract

oFEC Forward Error Correction (oFEC) is an error correction coding standard

for fiber optical communication, which is introduced as an optical transport network

(OTN) with high efficiency and code rate. oFEC code was introduced and stan-

dadized by Open ROADM [16] targeting metro applications. The code is typically

decoded by Chase-Pyndiah algorithm provides an NCG of 11.1dB for BPSK/QPSK

with pre-FEC BER of 2e−2 and 11.6dB for 16QAM after three soft-decision iterations.

Recent research has focused on adapting decoding algorithms to oFEC in order to

enhance its performance. This is crucial since even a small enhancement can lead

significantly boost the transmission distance and efficiency of fiber. People are cur-

rently interested in some new algorithms for decoding short codes, such as DEPT

and GRAND presented by recent research. These two algorithms have good error

correction performance for redundant error correction codes.

The existing research has applied Chase-Pyndiah algorithm on the oFEC and pro-

posed simplified schemes based on power dissipation and correction threshold at 10−15

BER. In this thesis, we proposed to apply the concept of short-code decoding and

adapt it for iterative coding of oFEC code, so that the error correction performance

of oFEC can be further enhanced. Specifically, the suggested short-code decoding

algorithm, which includes the DEPT and the DEPT-ORBGRAND algorithm, would

optimize the design of PEPs in accordance with the unique properties of oFEC in

order to accommodate its specific structure. The external information scale factor

employed by the Pyndiah method is improved based on the unique oFEC code struc-

ture in order to significantly enhance the performance of oFEC. In addition, the

study suggests using table-based hard decoders to replace conventional hard-decision

decoders such as the Berlekamp-Massey algorithm. Using the improved decoder, the

performance of oFEC can achieve a gain of around 0.22 dB, which is a significant

enhancement for the transmission of fiber-optic systems.

iv

List of Abbreviations

FEC Forward Error Correction

oFEC Open Forward Error Correction

NCG Net Coding Gain

BPSK Binary Phase Shift Keying

QPSK Quadrature Phase Shift keying

QAM Quadrature Amplitude Modulation

DEPT Direct Error Pattern Testing

ORBGRAND Ordered Reliability Bits Guessing Random Additive Noise

Decoding

PEP Partial Error Pattern

HDD Hard Decision Decoding

SDD Soft Decision Decoding

LLR Log Likelihood Ratio

SISO Soft-in Soft-out

SIHO Hard-in Hard-out

LRB Least Reliable Bits

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

SNR Signal To Noise Ratio

v

Acknowledgements

First and foremost, I am deeply grateful to Professor Dmitry Trukhachev for his

guidance and supervision during the research process. His profound knowledge and

research experience provides me with many valuable suggestions and guidance during

the research process. He used his patience and encouragement to support me in

completing this research, especially when the research was in trouble and difficult to

advance. I would also like to thank him for his ongoing financial support.

I would also like to thank Professor Kamal EI-Sankary for his support and intro-

duction, which gave me the opportunity to get in touch with this research field and

become interested in it, as well as his valuable advice during the research process.

I would also like to thank Reza Hadavian for helping me to start the work on

DEPT-ORBGRAND for oFEC, actively discussed relevant content with me during

the research process, which greatly accelerated the progress of the project.

I want to thank the other members of my committee. We thank them for taking

time out of their busy schedules to evaluate and discuss this study.

I would also like to sincerely thank the Tri-agency and Dalhousie University for

their scholarship funding for their financial support.

Finally, I would like to thank my family for their unconditional support, tolerance

and encouragement.

vi

Chapter 1

Introduction

1.1 Background

With the development of fiber-optic communication systems, the primary goal of

researchers is to maximize transmission speed, precision, and capacity. Forward error

correction (FEC), which is the typical optical transport network (OTN), plays a vital

role in high-speed fibre optical communication systems due to its high dependability

of digital transmission with reduced complexity and resource consumption. In 2000,

the ITU-T recommendation G.975 [14] standardized the first-generation FEC coding

for the first time. Reed-Solomon (255,239) was selected as the component codes for

the FEC frame structure utilized on the 2.5 Gbits/s submarine optical fibre cable

systems. The RS(255,239) codes, often referred to as Generic FEC(GFEC), are able

to correct up to 8 incorrect byte-symbols out of 255 codeword length with 6.69%

overhead and 6.2dB of NCG.

In 2004, ITU-T recommendation G975.1 [19] established Super FEC techniques

for dense wavelength division multiplexing (DWDM) submarine systems with large

data rates. Combining two FEC codes, such as RS codes and BCH codes, is the

principle for achieving better error correction than the first generation FEC. The

greatest performance of the suggested scheme can reach 9.4dB of NCG with 25%

redundancy. In the years that followed, the staircase code was presented in 2012 as

a new class of FEC codes that could be implemented with a data rate of 100Gb/s.

Simultaneously, the hard-decision (HD) Staircase code is specified in ITU-T G.709.2

as the first coherent FEC, capable of achieving 9.38dB of NCG with a pre-FEC BER

threshold of 4.5e-3. Similar iterative decoding codes, such as Block Turbo Codes

(BTCs), Low Density Parity Check (LDPC) codes, and product codes [6], among

others, are increasingly being developed.

1

2

Due to the great coding gain and reliability of iterative decoding, the topic of iter-

ative decoding has always been considered worthy of in-depth research. The mecha-

nism behind this is to divide the decoding task into several stages, where the decoding

result from the previous stage is used to generate the result of the next step, etc. The

applicable well-known decoding construction, such as BTCs, staircase codes [17], etc.

Unlike hard-decision (HD) iterative decoding, soft-decision (SD) iterative decoding

utilizes LLR to transmit data. Extrinsic information needs to be generated in order

to bring LLR information up to date before the next iteration, so that it can be used

to deliver new information. To boost the feasibility of iterative decoding, the com-

plexity of each iteration’s decoding algorithm is always one of the primary research

concerns. Therefore, researchers are committed to maximizing decoding performance

and data integrity while minimizing the complexity of the system.

Other than that, concatenated code systems first introduced in [8] are also a

common choice for error-correction code construction due to its outstanding correction

performance and minimal complexity. The basic principle behind concatenated code

systems is to series combine two or more codes, often one high-rate outer code and

one low-rate inner code. The inner decoder is the first to be developed and is tasked

with the responsibility of correcting errors up to their threshold. After deinterleaving,

the rest mistakes are corrected by the outer decoder. Recent research has shown that

concatenated code systems are frequently used in conjunction with iterative decoding

methodology. BTCs is a good illustration of this type of system, [13] [3]. Recent

research in [2] investigates the implementation of concatenated FEC with 400Gbps

data capacity.

1.2 Motivation

Recently, a novel FEC scheme called Open Forward Error Correction (oFEC) was

presented in the Open ROAMD specification document [16], which is designed for

high-throughput fiber-optical communications. The architecture of oFEC exhibits a

strong resemblance to that of braided block codes (BBCs), which is accomplished by

connecting two different block component codes in order to produce an two-dimensinal

array. Such that both component codewords examine each other for errors while the

parity symbols of one component codeword serve as input for the second component

3

codeword. As the infinite bit stream braided constantly, the sliding window moved

along the diagonal in an infinitely continuous manner. The oFEC system utilizes iter-

ative soft-decision (SD) decoders with a semi-infinite block-based window of memory

in order to achieve high efficiency and high coding rate. Instead of connecting two

different component codewords, oFEC divides component codewords in half and in-

terconnects them in a predetermined permutation pattern. The primary advantage

of the oFEC over the FEC is that, due to the parallel decoding engine design, the

oFEC has a very high code rate and can execute a large number of codewords con-

currently. In addition, its error correction capabilities is remarkable as a result of

the special bit permutation explained in detail in the following section. The obvious

drawbacks of oFEC are its latency and its high power consumption, both of which

grow dramatically with the number of iterations performed and the level of difficulty

of the decoding algorithm that is being used. In a recent article [22], the authors

proposed that the oFEC is capable of attaining 400Gbps over optical connection with

a correction threshold of 1.81e-2. OFEC is a potential FEC scheme that should be

researched and simplified further in order to achieve a data throughput of 800Gbps

in the near future.

In this thesis, the DEPT-based decoding algorithms, including DEPT-Pyndiah,

and DEPT-ORBGRAND-Pyndiah, are utilized on the oFEC as the alternative decod-

ing algorithms of Chase, and the performance of the DEPT-based decoding algorithms

are compared with Chase in terms of accuracy and efficiency. According to the Open

ROAMD specification documentation [16], the decoding technique used by oFEC

refers to Turbo Product Codes (TPCs), also known as block turbo codes (BTCs),

which are formed by serial and parallel concatenation of simple block codes on a ma-

trix with multiple dimensions. Since the introduction of the Chase [1] and Pyndiah

[13] algorithms in 1972 and 1998, respectively, the Chase-Pyndiah algorithm has been

one of the most frequently adopted iterative soft-in soft-out (SISO) decoding methods

in the construction of TPCs. Hence, the Chase-pyndiah algorithm has been presented

as one of the SISO decoding methods that can be utilized with oFEC codes, and its

implementation has been described in [22]. Throughout the research, [22] implements

oFEC using a record 400Gbps 100-chip FPGA and explores the power consumption

and correction threshold of oFEC under different iterations and test patterns in each

4

SISO. The optimal correction threshold is then suggested to be 1.8e-2.

Other than the Chase-Pyndiah algorithm, the DEPT, which was proposed in

[21] and the DEPT-ORBGRAND, which was introduced in [5] and [4], are proposed

to be used with oFEC as the alternative decoding algorithms in order to improve

performance even further than that of utilizing Chase in this work. These algorithms

are intended to compete with the Chase algorithm on error sequence generation, for

which the DEPT and DEPT-GRAND proposed a method that would choose error

patterns based on syndrome as opposed to generating all potential error patterns,

which would significantly improve the system’s efficiency. In the subsequent sections,

the fundamental concepts of decoding algorithms will be explained in further detail.

Evaluation and comparison of the algorithms are in the final section of the paper.

1.3 Outline of the Thesis

Section II describes related coding structures, including braided codes, zipper

codes, and staircase codes. Section III describes the mechanism of the decoding

algorithms applied with oFEC. In Section IV, the oFEC structure’s construction is

discussed in detail, including an overview of the structure, the iterative encoding

and decoding process, bit permutation, and memory design. Section V describes

the oFEC implementation procedures in depth, including the elaborate details of

each decoding algorithm’s adaptation to oFEC. In addition, Section V also further

compares and analyzes the simulation results when the DEPT-based decoder employs

different numbers of error patterns with the results of applying the Chase. Lastly, the

performance of DEPT-based decoding algorithms applied to oFEC is summarized in

Section VI, and related future work is discussed.

Chapter 2

Coding Structure

2.1 Braided Block Codes

As the fundamental reference structure of oFEC, braided block codes (BBCs)

are introduced throughout [10], [20] and [7]. The scheme can be thought of as a

family of sliding codes because it is made up of two interconnected block codes that

are braided continuously in both the horizontal and vertical directions. However, in

comparison to the open FEC, the scheme uses a different permutation. Typically,

BBCs are broken down into two subclasses: tightly braided block codes (TBBCs)

and sparsely braided block codes (SBBCs). Component codewords are braided and

positioned in both the horizontal and vertical directions during the encoding and

decoding process. This is in contrast to the normal Elias product code [6]. After each

encoding and decoding operation, the array will slide indefinitely down its diagonal,

and the previously decoded symbols will be utilized to determine the parity check

symbols of newly supplied codewords.

The framework of a typical TBBC graphic representation is depicted in Figure

2.1a. At each time slot t, a certain number of information bits, denoted by ut, are

inserted onto a diagonal centre ribbon with a width of 1. Simultaneously, the informa-

tion bit ut is encoded with three horizontal and vertical parity check bits and generates

three additional bits. At a time slot of t, for instance, when ut is input and hori-

zontally concatenated with [ũt,h1, ũt,h2, ũt,h3], new bits [ût,h1, ût,h2, ût,h3] are generated

after encoding. Likewise, when ut is vertically concatenated with [ũt,v1, ũt,v2, ũt,v3],

new bits [ût,v1, ût,v2, ût,v3] are generated.The blue-shaded area represents bits that

have already been encoded, while the red-shaded area represents bits that will be

produced in consecutive time periods.

However, the symbols stored in the memory cells of sparsely braided block codes

(SBBC) are not contiguous; the array cells are split as depicted in Figure 2.1b. Iter-

ative decoding is more efficient for them due to their larger capacity and low storage

5

6

(a) TBBC.

(b) SBBC.

Figure 2.1: Grapghic representation of BBC with component codes of Hamming (7,4)
codes.

7

density. The width of the BBCs scheme is determined by the length of the compo-

nent codeword; if the width of the TBBCs scheme is m, the width of the SBBCs

scheme is 2m-1. So far, the width of the oFEC scheme is defined by the component

codeword employed and the number of iteration execute. The research from 2005

[24] presents block convolutional codes (BCCs), which utilize convolutional codes as

component codes of BBCs, and convolutional permutor. This research [25] suggests

that sparsely braided convolutional codes with iterative decoding offer outstanding

convergence performance. Utilizing the statistical Markov permutation model, it was

also determined that braided convolutional codes provide better distance qualities

than conventional turbo codes.

2.2 Zipper Codes

The concept of zipper codes is presented as an innovative framework for describing

spatially-coupled product-like codes in [18]. The codes make reference to a variety of

well-known constructs, including BBCs, staircase codes, and swizzle codes, amongst

others. The structure of a zipper code is comprised of a virtual buffer known as A

and a real buffer known as B. These two buffers are referred to as a zipping pair (A,

B), and their structural form is depicted in Figure 2.2a, with the appropriate oFEC

structure form given in Figure 2.2b.

The new message symbols will only fill in the real buffer; the message that is

stored in the virtual buffer is made up of symbols that have been replicated from the

position specified by the interleaver map. An interleaver map ϕ is bijective if there

exists a map demonstrating the following,

ϕ : A → B (2.1)

ϕ−1 : B → A (2.2)

such that as a ∈ A and b ∈ B, it follow the rules ϕ−1(ϕ(a)) = a and ϕ−1(ϕ(b)) =

b. Consequently, it is required to retain in memory some previously encoded and

decoded symbols in order to prepare for future decoding. In this regard, oFEC is

fairly comparable to zipper in that it is necessary to retain the earlier symbols in order

to utilize them for the newly input symbols. In the case of oFEC, the component

codewords are divided into front and back bits prior to being stored in distinct regions

8

(a) Graphical representation of zipper
codes. (b) Graphical representation in form of oFEC.

Figure 2.2: Zipper codes verse oFEC codes.

of memory. This is identical to how the symbols of zipper codes are separately stored

in the virtual and real buffers. The newly input symbol is referred to as back bits,

which must be concatenated with front bits prior to encoding and decoding, whereas

front bits are retrieved from the old memory buffer, which contains encoded and

decoded old symbols.

Moreover, [18] describes a subset of the Zipper codes, including tiled diagonal

zipper codes and delayed diagonal zipper codes. As the name suggests, tiled diagonal

zipper codes are characterized by their ”tile-like” structure. Assuming the structure

comprised of a number of w × w tiles, let’s the width of the virtual or real buffer is

denoted as m = wL, such that the width of the entire structure denoted as n = 2m =

2wL. If Tq,s represent a tile in the q-th row and s-th column, then the interleaver

map of a tile can be expressed as Tq−s−1,L+s, which satisfies the property of bijective,

Tq,s = Tq−s−1,L+s. Delayed diagonal zipper codes are variants of tiled diagonal zipper

codes with w=1 and with added ”delay” δ to the interleave map, demonstrates in

9

Equation 2.3,

ϕδ(i, j) = (i− j − δ, j +m) (2.3)

where i, j ∈ w, and δ ∈ Z. In the case of Zipper codes, the stall pattern appears as a

collection of errors that cannot be rectified through iterative decoding. So, the decoder

must identify potential error locations based on some hypotheses on the syndrome.

The syndrome is a term used commonly in error-correcting coding to identify the error

locations, which are derived by multiplying the encoded message by the transpose

of the parity check matrix H. In general, if the received sequence is error-free, the

syndrome is a zero vector; otherwise, it is non-zero. The syndrome will indicate the

exact error locations for a single error-correcting code, such as the Hamming code.

However, for codes that can correct more than one error, a table of possible error

positions will be constructed instead, mapping syndromes to corresponding errors.

Then the position of errors can be searched from the table based on the syndrome.

For Zipper codes, if a component code is t-error-corrected, for example, the decoder

will make assumptions and examine possible error locations based on the fact that

the error is less than t, and then flip associated bits.

2.3 Staircase Codes

Another structurally comparable code is staircase codes, which were presented

in [17] as a family of hard-decision algebraically decodable codes with near-capacity

performance. It was suggested as an improvement to the techniques of forward er-

ror correction (FEC) that are outlined in ITU-T G.975.1 [19]. The structure of the

code is stair-like, as its name suggests, and the neighbouring blocks can be utilized

to correct the input error of codewords that have an unterminated length. Recent

studies have concentrated on the exploration of effective implementations for increas-

ing throughput speed, reducing latency, and lowering power consumption. To achieve

high throughput, [23] developed the staircase code with overhead ranging from 6.25

to 33.3%, reducing the complexity and delay of previous codes with a 20% overhead.

And [11] investigate how the hardware design can be altered to reduce the amount

of power it uses in compliance with the ITU-T recommendation G.709.2/Y.1331.2 [9]

and the OIF-400ZR implementation agreement. In the year 2021, the throughput of

10

the staircase had surpassed 400Gbps with to the installation of the FEC that was out-

lined in the 400ZR implementation agreement that was carried out using fiber-optic

communication lines, [21].

Chapter 3

Decoding Algorithm

It has been suggested that the decoding of the system will be a soft-input and soft-

output (SISO) iterative decoding process. The system employs the Chase-Pyndiah

algorithm as a typical effective SISO iterative decoding technique, with decoding

based on the reliability of the log-likelihood ratio (LLRs) of the channel output.

The alternate decoding algorithms, DEPT-Pyndiah and DEPTGRAND-Pyndiah are

applied concurrently with the competing error pattern location technique. Unlike the

Chase algorithm, DEPT [21] and DEPTGRAND [4] prefer to identify error patterns

with a look-up table (LUT). The coming section will provide a detailed explanation

of the oFEC decoding algorithm and a comprehensive overview of the algorithms.

3.1 Chase-Pyndiah Algorithm

3.1.1 Chase Algorithm

David Chase first introduces the Chase algorithm in [1], which is a type of decod-

ing algorithm that utilizes channel measurement information. Wagner decoding [15]

introduces the use of channel measurement information with block code decoding.

Since the channel measurement information decoding approach is applicable to all

block codes, it can also increase the error-correcting capabilities of a given code by a

factor of two. Assume that the received sequence, designated by Y, and the possible

candidate codewords within the decode radius, denoted by Ci, Ci = C1, C2, C3..., are

encircled by a Y sphere with a radius of (dmin − 1)/2, as shown in the shaded area in

Figure 3.1.

Based on this approach, [1] presents three techniques for producing codeword sets

of Ci. Chase-II algorithm, a standard soft-in hard-out (SIHO) decoding algorithm,

is utilized in this study. It only considers error patterns less than (dmin − 1)/2 errors

located outside the set. Thus, p number of least reliable bits (LRBs) are searched

11

12

Figure 3.1: Decoding with channel measurement information.

based on the reliability of each bit. The reliability of each bit is established by the

absolute value of the LLRs at the channel output; the bigger the absolute LLRs, the

greater the reliability in the bit position. As a consequence of this, 2p number of

potential candidate codewords are formed as a result of filling the LRBs slots with

different combinations of zeros and ones. The process of candidates generation is

described as follows,

Step 1: As the received LLRs output from AWGN channel is given as R = (r1, r2, r3, . . . , r2N),

N=128 in this case, the normalized reliability of each bit is determined as

Rabs = (|r1|, |r2|, |r3|, . . . , |r2N |).

Step 2: Hard decision of the received LLRs is generated as a sequence Yi = (y1, y2, y3, . . . , y2n),

where,

yi =

1, if ri > 0

0, otherwise

Step 3: Determine the p least reliable bits from Rabs acquired from step 1.

Step 4: Generate 2p different test patterns T by filling the p least reliable bit positions

with a number of 0s and 1s.

Step 5: 2p of test sequences are generated by perturbing sequences set by using,

Z = Y
⊕

T (3.1)

13

, where
⊕

denotes modulo-2 addition, Z stands for test sequences, Y stands for

the hard decision of LLRs and T stands for error sequences acquired in step 4.

Step 6: Hard decodes 2p of test sequences to generate 2p of candidates codewords Cq.

The article [1] introduces the Chase-I and Chase-III algorithms in addition to the

Chase-II algorithm. The Chase-II algorithm is the one with the best efficiency and the

least amount of complexity among the three. The suggested Chase-I algorithm eval-

uates all error patterns within the (d-1) radius sphere enclosing the received sequence

Y and generates all error sequences with a binary weight less than the minimum dis-

tance d. Due to the enormous number of error sequences, Chase-I can only be applied

to codes with a limited minimum distance. The Chase-III algorithm is comparable

to the Chase-II algorithm, but it offers an extra strategy for lowering the number of

error sequences by dividing them depending on the number of dmin stands for the

code’s minimum distance. This helps to reduce the total number of error sequences.

As I is the index of candidates if the code has an even number of d, its value is given

by i=1,3,...,d-1; if d is an odd number, i is given by i=0,2,3,...,d-1; and when i=0,

the test pattern is all zero. Chase-III may be inferior to Chase-I and Chase-II, but

its application on codes with a large minimum distance is desired, according to the

article.

3.1.2 Pyndiah Algorithm

The article [13] provides a description of the decoding technique that is used to

estimate the log-likelihood ratio (LLR) of binary decisions that are provided by the

Chase decoder with Block Turbo Codes (BTCs). The Pyndiah algorithm is also

applicable to this research, as the standard document specifies that any iterative

algorithm established for turbo decoding of Product codes can be easily adapted to

decode oFEC codewords. To compute the output LLRs, it was necessary to identify

the soft decision of the closest codeword D and the second closest codeword C as

competing codewords of D based on the Euclidean distance from the received LLRs,

where cj and dj are not equal. Then, the codewords D and C will be employed

to calculate the normalized output LLRs r
′
j utilizing Equation 3.2. In other cases,

however, the competing codeword C cannot be located. This is probably due to

14

the fact that the codeword C is located an excessive amount of Euclidean distance

away from the received codeword R. At this stage, Equation 3.3 will be utilized

to approximate the output LLRs. After estimating all output LLRs, calculate the

extrinsic information W by subtracting it from the input LLRs using Equation 3.4.

Then update the received codewords for the succeeding iterations using Equation

3.5, where [R] is the sequence that was received for the first iteration and [R(2)] is

the sequence that was received for the succeeding iteration, e.g. second iteration.

Similarly, α(2) refers to the alpha value used exclusively for the second iteration,

and [W (2)] refers to the extrinsic information evaluated in the second iteration. The

process of Pyndiah algorithm to estimate the soft output is described as follows,

r
′

j =
|R− C|2 − |R−D|2

4
× dj (3.2)

r
′

j = β × dj (3.3)

r
′

j = r + wj (3.4)

[R(2)] = [R] + α(2)[W (2)] (3.5)

Step 1: Map candidate codewords from (0,1) to (-1,1).

Step 2: Compute Euclidean distance from received sequence R to candidate codewords

Cq respectively by using,

d(R,Cq) = (R− Cq)
2 (3.6)

Step 3: Find the codeword D with minimum Euclidean distance, and the competing

second closest codeword C, which satisfies cj ̸= dj.

Step 4: Computes soft output r
′
j with given C and D by using Equation 3.2 and Equation

3.3 on different conditions.

Step 5: Determine extrinsic information W with Equation 3.4.

Step 6: Update the LLRs for succeeding iterations with applying Equation 3.5.

The decoding technique relies heavily on the weighting factor α and the reliability

factor β. Since the standard deviations of the received codeword R and extrinsic

15

information W are different, especially during the initial iteration of decoding, the

scaling factor α is utilized to reduce the effect of W given the relatively high SNR.

The scaling factor α will steadily approach one as the number of iterations increases.

Because the conditions are different for every scenario, it is impossible to specify the

values of the factors. The ideal value is obtained by analyzing the experimental data.

In the case of the oFEC code, the factors may vary between the front and back bits,

as the divided front and back bits of the codewords are placed in separate block areas,

resulting in the front and back bits locating in a different number of iterations with

varying SNR in a given time slot. Based on the results of the experiment, the ideal

factors for the front bits are determined as,

α(j) = [0.2, 0.3, 0.5, 0.6, 0.9, 1.0, 1.0] (3.7)

β(j) = [0.2, 0.4, 0.6, 0.7, 1.0, 1.0, 1.0] (3.8)

Due to the unique circumstances of the front and back bits, the number of α and β

values is likewise doubled. Assuming that the entire number of iterations is recorded

as j, the decoding process requires 2j parameters in total. The parameter α(2j) and

β(2j) are used while front bits are decoded, and back bits are decoded using α(2j−1)

and β(2j − 1).

3.2 DEPT Algorithm

On the implementation of a soft-input hard-output (SIHO) concatenated forward

error-correction (FEC) decoder for the inner Hamming code with 400Gps fiber-optical

communication connections in 2021, the DEPT method is introduced [21]. It was

suggested that the number of errors may be determined by the last term of the

syndrome with the parity-check matrix H as a reference point. As two sets of partial

error patterns (PEPs) are predefined for scenarios of odd and even amounts of errors

if s̸=0 and the final bit of syndrome is 1, the codeword is decoded on the assumption

that it has an odd number of errors (e.g. e=1,3,5,7), and error patterns are searched

in the odd PEPs set; otherwise, search the even PEPs set (e.g. e=0,2,4,6).

The predefined PEPs for odd and even cases can be used to query for error pat-

terns that clearly identify likely error locations, based on the index of the least reliable

16

LLRs. It will determine the positions of these 1’s by computing the vector e and gener-

ating symbols notation for potential error patterns based on the least reliable absolute

LLRs. For instance, the notation (1,2,4) indicates that the first, second, and fourth

bits of the LRB are 1 and include errors.

All the error patterns are queried from predefined PEPs except for the last error,

which is the last 1 to be added to the error patterns. In order to estimate the position

of the last error, it is required to determine a term of s
′
, which is obtained by adding

the syndrome of received sequence with the (N-1) component column of H matrix as

shown in Equation 3.10,

H =



αn−1 αn−2 ... α 1

α3(n−1) α3(n−1) ... α3 1

α5(n−1) α5(n−1) ... α5 1

...

α(2t−1)(n−1) α(2t−1)(n−1) ... α2t−1 1


(3.9)

s
′
= s+ hj1 + hj2 + ...+ hjN−1

(3.10)

Then figure out the corresponding index of the error via the function f(s
′
) defined

below.

f(s
′
) =

j
′
, if s

′
= hj

−1, otherwise

,where j ∈ 1, 2, ..., N . For the case of the number of error is even, s17 = 0, the last

two error positions are required to identify instead. Let’s define hi and hj as the two

component columns of the H matrix with the length of (2N-k), and satisfies i ̸= j.

Such that, instead of compare the acquired term s
′
with hj, in order to identify the

last two error positions s
′
required to compare with hi + hj, which is express as the

function below,

f
′
(s

′
) =

{i, j}, if s
′
= hi + hj

−1, otherwise

The steps to execute the algorithm are described as follows:

Step 1: Determine syndrome of the received codewords, given s = vHDH.

17

Step 2: If the s = 0, it means the codeword is error-free. Output the codewords as

v̂ = vHD. If s ̸= 0 and s2N−k = 0, search even PEPs within a specified decode

radius. Otherwise, search the odd PEPs. Generate corresponding test patterns

according to the least reliable LLRs.

Step 3: If the received codeword v has odd number of errors, identify the last error

position with applying the function f(s
′
). If the codeword v has even number

of errors, last two error position is required to be identified using the function

f
′
(s

′
) instead.

Step 4: Obtain error pattern e by adding the error position of the last error with the

test pattern determined in step 2. Perform error correction via v̂ = vHD + e.

In the paper [21], the analog weight of each error pattern is required to be deter-

mined by summing up the absolute values of the LLRs of the error position. then

selects the pattern with the minimum analog weight, and then performs error cor-

rection via v̂ = vhd + e. However, in this work, the Pyndiah technique is used to

estimate the soft output instead. As a result, all places indicating errors are decoded

by v̂ = vhd+ e and compiled into a list of candidate codewords. They are then passed

into Pyndiah for further soft output information estimate.

3.3 DEPT-GRAND Algorithm

Guessing Random Additive Noise Decoding (GRAND) is recently introduced in

[5] and provides ML decoding for any moderate redundancy block-code construction.

The GRAND algorithm is implemented with two core components, a code-book mem-

bership checker and a sequential putative noise-effect sequence generator. In order to

remove putative noise-effects, the demodulated sequences are rank-ordered in a de-

creasing likelihood order, from most likely to least likely. Assuming that cn represents

a transmitted codeword, and Zn represents an independent additive noise effect bi-

nary sequence, then the hard decision demodulated sequence yn satisfies yn = cn+Zn.

The sorted binary noise effect sequence is zn, which is subtracted from the demodu-

lated binary sequence yn, yn − zn. If the codeword can be queried in the codebook,

subtraction will yield the decoding codeword. In general, a code-book requires an av-

erage of 2n−k queries to find faults, and the number of queries has a direct impact on

18

the complexity of the decoding process. Hence, the GRAND algorithm’s complexity

is determined by the number of parity check bits rather than the codeword length.

ORBGRAND (Order Reliability Bits Guessing Random Additive Noise Decoding)

is presented as an extension of GRAND. It offers superior soft decoding performance

on a variety of codes, including BCH, CA-Polar, and RLC. It inherits the fundamen-

tal properties of high throughput and highly parallelized implementation possessed

by GRANDS. ORBGRAND, like all GRAND algorithms, involves the generation of

queries to identify noise effect, Zn. The putative noise effect sequence is ranked by

increasing logistic weight, often known as the sum of flipped positions. The maxi-

mal logistic weight wL is defined as wL(1, 1, ..., 1) = n(n + 1)/2, with n representing

the length of the codeword. In another words, it implies the noise effect queries is

capable of recognizing the sequence with the logistic weight WL within the range

of {0, 1, 2, ..., n(n + 1)/2}. The noise-effect queries are generated according to the

pattern shown in Table 3.1.

Logistic Weight Index of flipped LRBs Hamming Weight
WL WH

WL=0 [0] 0

WL=1 [1] 1

WL=2 [2] 1

WL=3
[3] 1
[1 2] 2

WL=4
[4] 1
[1 3] 2

WL=5
[5] 1
[1 4] 2
[2 3] 2

WL=6

[6] 1
[1 5] 2
[2 4] 2
[1 2 3] 3

Table 3.1: Putative errors queries generation algorithm.

DEPT-ORBGRAND is another algorithm that inherits the characteristics of OR-

BGRAND and DEPT. Similar to DEPT, DEPT-ORBGRAND classifies sequences as

19

having an odd or even number of errors based on the final bit of syndrome. However,

DEPT requires a set of partial error patterns (PEPs) to determine the likely position

of errors; after inheriting the property of ORBGRAND, the set of matrices containing

the index of flipped bits under the situations of different logistic weights will serve

as PEPs. Aside from that, DEPT-ORBGRAND also recommended determining the

location of the last error by comparing the s
′
with hj, recall that the term hj is the

component column of the H matrix and j satisfies j ∈ {1, 2, ..., n}, and the term s
′

is determined with the Equation 3.10. If the syndrome is the same as hj, then the

corresponding column will be logged as the index position of the last error. The

following examples illustrate the general steps of the DEPT-ORBGRAND:

Step 1: Define the set of probable error sequences beforehand and divide it into odd

and even situations depending on the hamming weight of bits that have been

flipped.

Step 2: Determine the syndrome of received codewords via s = vHDH. If sn−k = 0,

search error patterns from the odd set of PEPs; otherwise, search the even

PEPs set. If s = 0, it implies the codeword is error-free, vHD is delivered as the

decoded codeword v̂.

Step 3: Locate error positions in PEPs with N − 1 1’s in position, compute s
′
, and

apply the Equation 3.10.

Step 4: Determining the place of the last error by comparing hj with s
′
via the function

f(s
′
) shown in the previous section. Return the index j

′
as the error position if

s
′
= hj; else, return noting.

Step 5: Create error patterns e, and execute error correction using via v̂ = vHD + e.

Step 6: Return to step 3 and repeat the preceding stages until all error sequences have

been queried and processed, or until the maximum number of candidate code-

words is reached.

20

3.4 Hard Decoding Algorithm

After finishing processing a number of iterations of soft decoding, there are few

errors that remain; however, if another iteration of soft decoding is applied, the

efficiency will be greatly reduced. At this point, it is advisable to implement hard

decoding iterations instead so that the system requires less time and power to perform

error correction. Because the old decoded LLRs are retained in the decoder’s memory,

hard-decoded binary codewords are typically mapped as 1,-1 prior to being saved in

memory. However, in contrast to the decoding memory used for soft iteration, the

information stored is limited to only the values -1 and 1. After the decoded sequence

R has been obtained from the previous iteration, the sign function is utilized to

determine the hard decision of the sequences, which is represented by the formula

Y=(sign(R)+1)/2. The front and back bits are then concatenated to produce a

sequence of 2N bits, which, after a permutation step, is ready to begin decoding. In

addition to that, the Chase algorithm makes use of a hard decoder as well.

3.4.1 Berlekamp-Massey Algorithm

Conventional hard-decision decoder (HDD) techniques, such as the Berlekamp-

Massey algorithm, decode codewords by determining error locator polynomials that

indicate error positions. The Berlekamp-Massey algorithm takes a different approach

to determining the locator polynomial, employing a linear feedback shift register

(LFSR) to determine the minimal polynomial. In this article, however, the perfor-

mance of the BM decoder is inadequate, and a bounded distance hard decoder is

better appropriate. After gathering candidate codewords for the hard decoder used

in the Chase algorithm, for instance, the system requires a hard decoder that can

rectify errors within two. However, sometimes BM-based hard decoders attempt to

rectify more than two errors, which can result in codewords being over-decoded and

extra errors being generated in oFEC.

3.4.2 Look-up Table (LUT) Based Decoder

To optimize hard decoding, a look-up table (LUT) based hard decoder capable of

considering all bits and proposing multiple strategies with different conditions based

21

on the syndrome is proposed. It utilized syndrome to determine the amount of errors

in a manner analogous to that of the DEPT decoding algorithm. If s ̸= 0 and the last

bit of syndrome is 1, the system looks up the error pattern in the table, as there is only

one error; otherwise, two errors exist. In this instance, it is necessary to consider the

possibility that no error pattern can be identified. In the event that s=0, it indicates

that the sequence is error-free and no additional decoding is required. If, however, no

error patterns can be identified in the table when s ̸=0, it indicates that the candidate

sequence exceeds the maximum number of errors that the hard decoder can correct,

the system should disregard those sequences and pass them to the soft decoder for

decoding.

Typically, conventional hard decoders do not account for such a restricted de-

coding distance during decoding; as a result, this can result in additional errors,

which could cause further misdirected decoding during the computation of extrinsic

information. Consequently, a LUT-based hard decoder that takes into account the

bounded decoding distance is more applicable and significantly improves the decoding

performance of oFEC.

Chapter 4

oFEC Codes

4.1 Code Properties

4.1.1 Front and Back Bits

In this particular study scenario, the extended BCH (256,239) code is regarded

as the constituent codeword of oFEC. The length of the code word is denoted by the

symbol 2N=256, whereas the length of the information bit is denoted by k=239, of

which 2N-K=17 parity bits. The BCH codewords are split into to the front and back

bits in oFEC. Suppose that the component codeword extension (256,239) BCH code

is Ci = (ci1, ci2, ..., cN , ..., c2N), where ci1 to cN bits are referred to as front bits and

cN+1 to c2N bits are regarded back bits. Figure 4.1 illustrates that the front and back

bits are extracted from distinct locations. The back n bits are the new information

bits input to the oFEC system at each time slot of each iteration block. Front bits

are bits that have been encoded and decoded earlier and are typically retrieved from

the memory of the encoder and decoder in accordance with a specified arrangement

pattern, which will be introduced later. Hence, the front and back bits are retrieved

from separate locations and concatenated into a 2N BCH code during encoding and

decoding.

Figure 4.1: Front and back bits of BCH code.

22

23

4.1.2 Unit Block

The entire memory structure is composed of a number of unit squares, each of

which has the dimensions B×B, where B is equal to 16 in this illustration. The

number of block columns in the storage structure is denoted by N/B, where N is

half the length of the component codeword. In this study, N=128 is utilized since

the component codewords are extended (256,239) BCH codes. In such a structure,

information bits are arranged in a particular fashion. For the front bits, it is separated

into N/B segments, with each segment typically positioned vertically within N/B

blocks. After completing bit stuffing in one block, it advances to the next diagonal

block and continues to place bits vertically until all previously front bits have been

placed. Suppose that at a specific time slot t, 2B rows of the codewords are input

as Figure 4.2 illustrate, which is expressed as C = [C1;C2;C3; ...;Cj], j ∈ {1, 2B}.
Consider a 2B × B unit block as an example, as depicted in Figure 4.3a; the red-

shaded region represents a segment of C. Hence, the line segment from C1 to CB is

positioned in {ci, rB+1 − r2B}, i given by i ∈ {1, B}. The segments between CB+1 to

C2B are placed at the block position {ci, r1 − rB}. Then the next section of C, that

is, the blue shaded segments are placed in the next diagonal block area with a size of

2B × B according to the same rules.

Figure 4.2: Sample constituent codewords split into the segments of 2B × B.

The back bit has a somewhat simpler bit arrangement than the front bit. As

another illustration, consider a 2B × B unit block, as depicted in Figure 4.3b. The

back components are placed horizontally, unlike the front bits. Referring back to the

example input codeword C, the yellow-shaded segments are positioned horizontally

24

in the sample block region between r1 and r2B, as depicted in the image. The next

adjacent segment is positioned in the following 2B×B block horizontally, and so on.

(a) Unit block of front bits. (b) Unit block of back bits.

Figure 4.3: Unit block of front and back bits.

4.1.3 Unit Block Permutation

The performance of an oFEC code is characterized by its ”error events,” and per-

mutation is a vital step for reducing ”error events” so that error correction accuracy

can be enhanced.As codewords are read and written from memory, the oFEC struc-

ture adheres to the specified permutation depicted in Equation 4.1 and 4.2. Each bit

of the matrix block can be identified in the quadruple form {R,C, r, c} to locate any

bit in the memory structure, where R and C are the block row and column numbers

specified by square blocks, and r and c are the bit row and column numbers within

each square block. As front and back bits occupy distinct positions, the equations

described the permutation under various conditions of k being less than N and greater

than or equal to N, where k is denoted by k = {0, 1, 2,, 2N − 1}.

25

{R⊕ 1− 2G− 2N

B
+ 2

⌊
k

B

⌋
,

⌊
k

B

⌋
, (k mod B)⊕ r, r} if k < N (4.1)

{R,

⌊
k −N

B

⌋
, r, (k mod B)⊕ r} if k ≥ N (4.2)

k < N k mod B k > N k mod B

0 0 128 0
1 1 129 1
2 2 130 2
3 3 131 3
· · · · · · · · · · · ·
15 15 143 15
16 0 144 0
17 1 145 1
18 2 146 2
· · · · · · · · · · · ·
126 14 254 14
127 15 255 15

Table 4.1: Derivation of bits permutation.

On the unit block side, assuming that the block is expressed as {r, c}, the permu-

tation of the front bit is indicated as {(k mod B) ⊕ r, r}, and {r, (k mod B) ⊕ r}
for the back bits. Table 4.1 illustrates the derivation, which obtained (k mod B) ∈
{0, 1, ..., 15}, r ∈ {0, 1, ..., 15}. Hence, the interface of each block after permutation

is depicted in Table 4.2. It is important to note that the permutation of the square

block has diagonal symmetry, meaning that the front and back bits are permuted in

the exact same manner.

4.2 Structure of a Single Iteration

4.2.1 Overview of a Single Iteration Block Window

Figure 4.4 depicts an overview of a single iteration block window, whose number

of columns is comprised of N/B unit blocks and whose number of rows depends on the

window’s design and the quantity of codewords to be processed at each time point.

The graphic demonstrates that the block matrix is separated into three compartments.

26

Before Permutation
Front Back

0 0 · · · 0 0 0 1 · · · 14 15
1 1 · · · 1 1 0 1 · · · 14 15
2 2 · · · 2 2 0 1 · · · 14 15
...

... · · · ...
...

...
... · · · ...

...
13 13 · · · 13 13 0 1 · · · 14 15
14 14 · · · 14 14 0 1 · · · 14 15
15 15 · · · 15 15 0 1 · · · 14 15

After Permtation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14 1 0 3 2 4 4 7 6
10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 13 14 15 9 8 10 11 4 5 6 7 1 0 2 3
13 12 15 14 8 9 11 10 5 4 7 6 0 1 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 1 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 4.2: Unit block before after bits permutation.

The front bits are located in rows 0 through 15 of the block, and the back bits are

in rows 20 and 21. The area between them is the guard block area, the guard block

must have an even row number, and its value is 2G. Moreover, both the system’s

execution time and the size of the matrix block are sensitive to the value of G. When

G rises, the latency of the pipeline rises, allowing for a greater number of encoders

and decoders to be parallelized, but at the expense of larger memory blocks.

4.2.2 Permutation of Structure

In addition to illustrating the organization of each unit block, Equation 4.1 and 4.2

depict the arrangement of the block’s rows and columns. According to the equation,

27

Figure 4.4: Single iteration block window.

R indicates the block row number where the input information bits are located, also

known as the block row where the back bits are located. Thus, the front block

behaviour Rfront = R ⊕ 1 − 2G − 2N/B − 2⌊k/B⌋ may be derived, where 2G is the

row of the protection block, 2N/B is the total number of rows placed in the front

block, and 2⌊k/B⌋ is the number of rows to be inserted for each segment of front bits.

The derivation is provided in Table 4.3, assuming k=1 and G=2.

Notably, when 32 rows of information bits are input, the positions of the first

16 lines and the back 16 lines are swapped. Back bits in row 20 will have their

corresponding front bits in row 1, and back bits in row 21 will have their corresponding

front bits in row 0. A graphical illustration of this is shown in Figure 4.4; this

illustration is based on the assumption that the 32 rows of constituent codewords

28

R R⊕ 1 2G k 2
⌊
N
B

⌋
2
⌊
k
B

⌋
Rfront

· ·
20 21 4 1 16 0 1
21 20 4 1 16 0 0
22 23 4 1 16 0 3
23 22 4 1 16 0 2
· ·

Table 4.3: Derivation of block permutation.

that are being entered into memory are being placed in the area of the figure that is

shaded in grey. The green line is a representation of a sample codeword in the first

B rows of this codeword, with the back bit located in the corresponding location of

row 20 and the first bit located in row 1. In comparison, the yellow line depicts an

example constituent codeword in the back B rows, with the back bit on row 21 and

the front bit on row 0.

The block columns of the front and back bits are stated as k/B and (k-N)/B,

according to Equation 4.1 and Equation 4.2. If the factor R = 20 is predefined,

then the derivation for the block row and column of front bits can be determined as

k ∈ {0, 1, 2, ..., 2N − 1} in Table 4.4.

k < N Rfront

⌊
k
B

⌋
k > N Rback

⌊
k−N
B

⌋
0 1 0 128 20 0
1 1 0 129 20 0
2 1 0 130 20 0
3 1 0 131 20 0
· · · · · · · · · · · · · · · · · ·
16 3 1 144 20 1
17 3 1 145 20 1
18 3 1 146 20 1
· · · · · · · · · · · · · · · · · ·
124 15 7 252 20 7
125 15 7 253 20 7
126 15 7 254 20 7
127 15 7 255 20 7

Table 4.4: Derivation of block row and column.

Recalling the constituent codeword in green shown in Figure 4.4 as an example.

29

As the back bits are positioned in row 20, the front bits of the component codeword

are diagonally positioned on an even number of rows. Assuming that each unit block

may be expressed as {R,C}, the front N bits are separated into 8 segments and

inserted in column 1 of block {1,1}, {3,2}, {5,3}, {7,4}, {9,5}, {11,6}, {13,7}, {15,8},
respectively. The details illustration of permutation in quadruple form for front and

back bits is depicted in Figure 4.5.

(a) Front bits permutation.

(b) Back bits permutation.

Figure 4.5: Front and back bits permutation in quadruple form.

30

4.3 Iterative Process

In order to implement the iterative process of oFEC, a number of unit oFEC

structures introduced in the previous section will be vertically concatenated one after

the other, the memory window is depicted as shown in Figure 4.6. The number of

iterations depends on the number of unit structures are concatenated.

Figure 4.6: Iterative oFEC memory window.

At each time slot, a 2B × (k −N) array of new information bits are fed into the

oFEC system. After transmitting the encoded input constituent codewords through

the AWGN channel, it’s ready to be fed them into the first iteration of decoder. Notice

that except for the first iteration, decode symbols output by the previous iteration

become the input symbols of the subsequent iteration, which are then decoded by the

subsequent iteration, and so on. After decoding process is done, decoded information

bits are placed in the corresponding memory position according to the permutation

specified in Equation 4.1 and 4.2. Once the encoding of decoding is complete for the

time instance of t, the memory buffer will typically shift downward in the preparation

for the subsequent encoding and decoding cycle to begin in the following time slot.

31

Due to 2B rows of new information bits are input, the number 2B is designated as

the shift unit at each time instance. As the memory shift with time, the previously

decode symbols are interconnected with one another, and cross-decoding with new

information bits, until they complete transmit through all iterations.

During the construction of an oFEC structure, it is recommended that a few itera-

tions of hard-decision decoders (HDD) be added after a few soft iterations of decoding

in order to increase the decoding efficiency. In the event of decoding sequences with

equal or less than two errors, HDD is preferable than SDD in terms of both decoding

efficiency and power consumption.

4.4 Memory Buffer

An oFEC system requires a pair of identical memories, one for the encoder and

one for the decoder, to store the encoded and decoded information symbols within a

given time instance. Note that if the two memories are of different sizes, the stored

encoded and decoded symbols will not be in the same time slot, which is likely to

result in decoding errors owing to improper bit interconnections. Aside from that, it

also simplifies the process of calculating the bit error rate during simulations.

The dimensions of the memory buffer is determined by the constituent codewords

utilised by the oFEC system. The number of columns is set to be the same as the

half-length of the component codewords, and the number of memory rows is set to

be equal to the number of codewords that can be processed in parallel by the system

during each time slot. As indicated, each memory iteration block is composed of

three compartments. Since the front constituent codewords are split into (N/B) of

16-bits segments, the block area of front bits can be written as 2B × (N/B). The

block region for storing back bits is constructed of 2B rows, while the guard block

comprises 2G rows. Hence, it is possible to derive the row of a single iteration of

memory as follows,

D = 2B × (
N

B
+ 1) + 2G (4.3)

Where it is assumed that the term I stands for the total number of iterations

performed, and where G equals 2B in this particular instance. The dimension of the

32

memory can be expressed as,

D = I × 2B × (
N

B
+ 1 + 2) (4.4)

In other words, each input codeword requires (N
B
+ 1 + 2) × I number of time

instances to traverse all iteration blocks, which 11 time slots are required for each

iteration in this case. Assuming that t ∈ {1, 2, 3, ...} is given as the time slot grows

indefinitely, the index of the back bits is denoted as,

IB(t) ≡ (I × (
N

B
+ 1 + 2)) mod t (4.5)

such that the index of the front bits can be expressed as,

IF (t, i) = IB − (
N

B
+ 1 + 2) + i (4.6)

where i = 0, 1, 2. . . , N
B
− 1 as front bits are divided into N/B segments. In addition,

according to the description of the Pyndiah algorithm, the LLRs output by the chan-

nel are used to determine extrinsic information; therefore, another memory buffer is

required to synchronously store the LLRs output by the AWGN channel within a

particular time slot in order to assist with decoding.

4.5 Code Rate

Although the component codeword of oFEC is the extended BCH(239,256), only

(k-N) fresh information bits are given to the oFEC system during each time slot, and

(2N-k) parity check bits are generated after encoding. Consequently, since the code

rate of the extended BCH(256,239) is expressed as k/2N, the code rate of oFEC can

be determined as follows:

RBCH =
2(k −N) + (2N − k)

2((k −N) + (2N − k))
(4.7)

Which assumes v = k −N , p = 2N − k. Hence it can be simplified as,

RBCH =
2v + p

2(v + p)
(4.8)

2RBCH = 1 + RoFEC (4.9)

33

In the case of the study, the coding rate of the (256,239) extended BCH code is

estimated as RBCH = 239/256; afterward, the code rate of the oFEC code can be

derived as RoFEC = 111/128 after applying the Equation 4.9. This indicates that at

each time slot, 111 bits are supplied into the system and 128 bits are removed from

the system simultaneously.

Chapter 5

oFEC with DEPT-based Decoders

5.1 oFEC Iterative Coding

The implementation of the oFEC system employs three soft-decision (SD) iterative

decoders, as recommended by the document [16]. Additionally, instead of utilizing

another soft-decision (SD) iterative decoder to correct the remaining few errors, it is

more effective to add two HD iterative decoders after the first set of three SD decoders

as suggested in [22]. In order to meet expectations, 256 candidate codewords must

be generated from the eight least reliable bits (LRBs) when the Chase algorithm is

applied to the three-soft and two-hard (3S2H) iterative decoder structure of oFEC.

The overall operational path of the oFEC system is depicted by the block diagram in

Figure 5.1.

Let’s firstly define the vector RT as the position of the block row that the input

information bits are placed at each time slot of t, t ∈ Z, which is denoted as the

Equation 5.1. it clearly implies that the memory is a circular shifting window with a

unit of 55, due to the system employing five iterations. For instance, if the back bits

were located in row 55 of the preceding slot, the back bits for the succeeding time

slot will be positioned in block row 1, block row 2, so and so on. Notice that in the

case of position new informations in row 55 RT is determined as 0 after following the

Equation 5.1. At this time, it means the system finish a round of trip and tend to

circular shift to the top of the memory and process next round.

RT ≡ t mod 55 (5.1)

Two function of π(.) and ϕ(.) are employed to define the permutation of memory

structure. Assume X(r, c) represents a bit in a B × B single unit square block, and

Y (r, c) is denoted as the corresponding bit after permutation. Thus, the function

Y (r, c) = π(X(r, c)), which is denoted as the permutation within each unit square

block, can be defined as,

34

35

Y (r, c) =

X((k mod B)⊕ r, c), if k < N

X(r, (k mod B)⊕ c), if k ≥ N

where the vector r and c are defined as r, c ∈ [0, 1, 2, ..., B−1]. As it states Y = π(X),

it satisfies the property of π(Y) = π−1(π(X)).It means that if permutation is applied

twice to a unit square, the bit permutation will return to the position before the

permutation. The functioon ϕ(.) defined used to retreieved old encoded and decoded

information from memory. Suppose each B × B block in the memory structure is

defined as X(R,C), and retreived information bits referred as Y (R,C). Such that

the function Y (R,C) = ϕ(X(R,C)) is defined as,

Y (R,C) =

X(RB, C), if k ≥ N

X(RB ⊕ 1− 10 + C,C), if k < N

where C is defined by,

C =

⌊ k
B
⌋, if k < N

⌊k−N
B

⌋, if k ≥ N

where C ∈ 0, 1, 2, ..., N
B
− 1. Note that the vector RB in the ϕ(.) function changes

depending on which iteration the decoding takes place.According to the oFEC design

in this paper, the new information codeword is fed from the top of the memory. When

the information codeword is decoded for the first iteration, RB = RT , otherwise RB

needs to be derived according to the number of iterations of decoding. Assuming

the vector I denoted as the number of iteration that the constituent codewords is

experiencing, the vector RB can be expressed as,

RB ≡ (RT + Z × 11) mod 55 (5.2)

Z ≡ ((5− I mod 5) + 1) mod 5 (5.3)

Thus, retrieved front bits F (t) can be inferred as F (t) = ϕ([X1(t), X2(t), ..., X8(t)]),

after further derivation F (t) is expressed as F (t) = [XF (RB(t)⊕ 1− 10), XF (RB(t)⊕
1− 9), ..., XF (RB(t)⊕ 1− 3)].Details implementation steps of oFEC are described as

follows:

36

Step 1: Initializing memories, encoder memory is filling with zeros, decoder memories

are filling with -1s since LLRs are stored into the memory.

Step 2: At a time slot of t, a 2B × (k−N) bit array of information is transmitted into

the oFEC system, denoted as back constituent codewords C(t).

Step 3: Retrieved front constituent codewords Fe(t) from block XF (RB − 11+ i) of the

encoder memory. Then implement permutation on front bits and concatenated

with C(t).

Cin(t) = [π(Fe(t)) C(t)] (5.4)

Step 4: Encode the permutated codewords Cin(t) with the generator matrix G, where Ik

is the unity matrix of dimension K×K, and P is the parity check bit generating

matrix with dimension (2N−k)×k. The function ϕ(.) is then applied to encoder

memory to store the encoded back bits.

Cout(t) = Cin(t)G (5.5)

Step 5: Implement permutation on the back of the encoded information bits Cout(t).

C
′

out(t) = [F
′

e(t) π(C
′

out(t))] (5.6)

Step 6: Modulate C
′
out ∈ {0, 1} into {−1, 1} and transmit it through AWGN channel.

Demodulated the channel output and feed it into the decoder. At the same

time fill the demodulated channel output into the channel information memory.

Step 7: Retrieve front constituent codewords Fd(t) with the same block pattern as the

step (3) states, then apply π(.) function on the concatenated codewords D(t).

D
′
(t) = π(D(t)) = π([Fb(t)R(t)]) (5.7)

Step 8: Applying ϕ(.) function to retrieve bits from channel information memory, pre-

pare for the later deocoding steps.

Step 9: Decoding the concatenated codewords with applying SISO decoding algorithm,

e.g. Chase-Pyndiah decoder, DEPT decoder. Apply inverse permutation on

decoded bits, D
′
out(t) denoted as decoder output.

D
′

out(t) = ϕ(D
′
(t)) (5.8)

37

Step 10: Restore the decoded and permuted codeword D
′
out(t) to decoder memory using

the phi(.) function.

Step 11: Circularly shift all memories downward with a unit of 2B. Enter into next time

instances ti+1. Go back to step (2), and start the next round of encoding and

decoding, so and so on.

Figure 5.1: oFEC system implementation block diagram.

5.1.1 Net Coding Gain

The oFEC code described in the document [16] may achieve 10−15 bit error rate

(BER) with a Net Coding Gain (NCG) of 11.1dB when utilizing BPSK or QPSK

modulation and demodulation and 11.6dB when applying 16QAM after three soft

decision (SD) iterations. The Equation 5.9 clearly depicts the calculation of Net

Coding Gain (NCG), where SNRin and SNRout are input and output SNR when the

bit error rate (BER) reaches 10−15, and 10log10(RoFEC) is a normalization term for

comparing the performance of oFEC code with others.

In the instance where BPSK is utilized, the uncoded BER approaches 10−15 at

approximately 14.99dB after the extended (256,239) BCH codeword has passed over

the AWGN channel. Given that the RoFEC is 111/128 and the NCG is 11.1dB, the

output SNR may be calculated to be 3.27dB. However, when 16QAM is used, the

uncoded BER approaches 10−15 at approximately 18.93dB; thus, the output SNR of

16QAM is calculated to be 12.73dB.

NCG = SNRin − SNRout + 10 log10(RoFEC) (5.9)

38

5.1.2 SNR Normalization

The signal-to-noise ratio (SNR) is normalized as energy per information bit to

spectral density ratio (Eb/N0), also known as ”SNR per bit,” in order to facilitate

more accurate comparisons of bit error rate (BER) performance. If Es represents

the energy per symbol and Eb represents the energy per information bit, then the

relationship between Es and Eb can be represented as Equation 5.11 considering the

code rate of oFEC.

Eb

N0

=
A2

N0

=
d2min

4N0

(5.10)

Es

N0

=
Eb

N0

× log2(M)×RoFEC (5.11)

The number of different modulation symbols, represented by the letter M, varies

according on the type of modulation being used. In this article, both conditions of

employing BPSK and 16QAM are considered for the case study, with M=2 for BPSK

and M=16 for 16QAM. According to the definition of the AWGN, the noise vector

is independent and normally distributed from a zero-mean normal distribution with

variance N, expressed as n ∼ N(0, σ2). The term N0 represents noise variance σ2.

The purpose of normalization is to facilitate error correction performance comparison.

Comparing the energy per symbol is unfair because different modulations result in a

varied amount of bits per symbol. Furthermore, the normalization is closely related

to the code rate as well. As a result, the most cases, Es/N0 needs to be converted to

Eb/N0.

For instance, if BPSK is utilized, each symbol consists of one bit. The relationship

between Eb/N0 and Es/N0 is expressed as Equation 5.12 illustrates when N0 = σ2.

To convert them into the unit of decibels, apply logarithms on both sides of the

expression as shown in Equation 5.13, since the signal-to-noise ratio in dB is given

as SNRdB = 10log10(Eb/N0). Eventually, the relationship is expressed as Equation

5.14.

39

Eb

N0

=
Es

N0RoFEC

(5.12)

10 log10
Eb

σ2
= 10 log10

Es

σ2
− 10 log10 RoFEC (5.13)

Eb

N0

[dB] =
Es

N0

[dB]− 10log10(RoFEC) (5.14)

5.1.3 Simulation with Different Number of LRBs

As noted previously, when utilizing the chase algorithm, the system uses eight

LRB to generate 256 candidate codewords for decoding and collaborates with the

3S2H oFEC structure to obtain a bit error rate (BER) of 10−15. In addition to

p=8, the Chase algorithm can use alternative numbers of LRBs, such as p=5,6,7, to

reach a similar level of performance as p=8. As a result of reducing the number of

LRBs to be selected, the collection of candidate codewords that need to be processed

and assessed has also been reduced. Hence, less time is required due to decreased

complexity. Yet, the accuracy of error correction has decreased. In order to obtain

the desired BER at the specified net coding gain, it is necessary to increase the

number of iterations as the number of candidates p decreases. As the number of

iterations rises, the size of the memory window may change, but the procedures

are identical when p=8. For instance, when p=6, four SD iterations may require

to combined with two HD iterations. Also, the values of alpha and beta must be

modified according to the situation. For instance, the oFEC structure is created

as 4S2H at p=6, where the alpha and beta factors cannot grow as steeply as they

do at p=8. As p lowers, fewer candidate codewords are generated, and the error-

correction capabilities of each individual iteration weakens. Hence, alpha and beta

values must be gradually increased to prevent over-decoding.

5.1.4 Weighting and Reliability Factor Selection

The parameter α and β play a crucial role on decoding performance while Pyndiah

algorithm is utilized. Since the standard deviations of the received codeword R and

extrinsic information W are different, particularly in the first iteration of decoding,

the scaling factor α is used to reduce the effect of W given the relatively high SNR.

40

As the number of iterations increases, the factor α and β gradually increase to one.

As the [12] states, α and β are vary for different cases, such as depends on the type

of modulation and component codeword used. Theoretically, there’s no definition

equation can be used to calculate exact value of α and β in all of cases, the optimal

alpha and beta values are chosen by simulation, which is a tedious procedure. To

avoid such a tedious procedure of seeking suitable value, some papers conclude and

deduced some equations of calculating α and β within some limited situation. The

[12] proposed and derive the relationship equation between the extrinsic information

W with the factors in the case of product codes and block turbo codes.

5.2 Table-based Hard Decoder for oFEC

Table-based hard decoder is an advancement of hard decision decoding technol-

ogy in compared with convenience HDD technologies such as the Berlekamp-Massey

algorithm. Figure 5.2 illustrates the BER curves of oFEC implemented using the

Berlekamp-Massey and table-based HDD techniques, respectively. By implementing

the table-based hard decoder, the efficiency of error correction has been significantly

enhanced. While the length of the code word must fulfill 2M −1 when the Berlekamp-

Massey algorithm is applied, the last bit of the code word is ignored during decoding.

Similar to the DEPT, table-based hard decoders identify cases with either one or two

errors, depending on the last bit of the syndrome. Table 5.1 demonstrates that the

table-based hard decoder improves oFEC performance by approximately 0.22dB.

Decoding Algorithm Number of pre-FEC
Error Patterns BER Threshold

Chase BM p=8 256 1.81e−2

Chase Table-based p=8 256 2.06e−2

Table 5.1: Comparison of pre-FEC BER threshold of applying BM hard decoder and
table-based hard decoder.

41

Figure 5.2: BM Chase verses table-based Chase.

42

5.3 DEPT Algorithm for oFEC

5.3.1 Partial Error Patterns (PEPs)

Partial error patterns (PEPs) is a predetermined set containing all potential error

patterns. In order to collect as many error patterns as possible prior to decoding, it is

important to simulate all the procedures, including encoding, modulation, transmis-

sion through an AWGN channel with a given signa-to-noise ratio, and demodulation,

throughout a number of frames. The SNR utilized to generate the PEP is depen-

dent on the desired SNR level during oFEC system simulation; for example, if, while

utilizing BPSK, oFEC is expected to achieve a pre-FEC BER threshold of 2e−2 at

3.27dB, then 3.27dB is used as the reference for creating the appropriate PEP.

Assuming that information contains random 239 bits, u, is input and encoded as

C, then after it passes through the AWGN channel, the hard decision of the codewords

is obtained as vHD. Hence, errors can be identified as e = C + vHD. If the vector e

is nonzero, the codeword contains an error; otherwise, it is error-free. Then, record

the error positions, excluding the last member, if the number of errors is greater than

zero but less than the maximum number of errors supplied. To rectify all conceivable

error patterns, it is important to simulate as many frames as feasible.

After all of the frames have been worked on, it is necessary to make an estimation

of the error probability using the total number of bits and the total number of error

patterns. The number of error patterns will be increment by one when the likelihood

of an error is larger than zero. Eventually, the number of error patterns corresponding

to the i number of error weight can be determined, where i = 1, 2, ...,m is denoted as

the weight of errors, and m is denoted as the maximum weight of errors. Meanwhile,

another vital information matrix containing the index positions of all conceivable

errors under each error weight condition is constructed. However, the volume of error

patterns with error probability greater than 0 is enormous. Thus, error patterns with

less reliability are typically eliminated. Based on error probability, a list of PEPs

with error location indices is produced.

43

5.3.2 oFEC Simulation Result with DEPT

Figure 5.3 depicts the performance of oFEC utilizing DEPT-Pyndiah decoding

algorithm when BPSK signalling is used. In the illustration, oFEC employs the

Chase-Pyndiah decoding algorithm with the LRBs p=6,7,8. The performance of

error correction steadily improves along with an increase in the number of LRBs

that are used. The reason for this is that as long as there are more LRBs, the error

correction range, given by the variable p, will increase. Simultaneously, the decoder

will create more candidate codewords. Hence, the decoding performance of the oFEC

system is enhanced as well. Nevertheless, the ever-increasing number of candidate

codewords that need to be processed causes an exponential increase in both the cost

of the operation and the complexity of the system as well as the amount of time it

takes to analyze the information.

Figure 5.3: BPSK oFEC with Chase-Pyndiah p=6, 7, 8 verses DEPT-Pyndiah.

The figure depicts two DEPT outcomes, which employed 413 and 284 number of

44

error patterns respectively during decoding process. In fact, both of them are gen-

erated from the same PEPs, but they employ different strategies to eliminate those

unnecessary low-probability error patterns. Specifically, the PEP is compiled from all

potential error positions on a certain Eb/N0. The NCG of the system determines, in

general, the Eb/N0 ratio used to generate PEPs. Generally speaking, it is impractical

to employ all error patterns during decoding. Thus, error patterns with a lower prob-

ability are filtered out, resulting in two BER curves shown in the figure decoding with

a different number of error patterns. There are 256 error sequences produced when

the Chase p=8 algorithm is used in conjunction with oFEC. Nonetheless, the figure

demonstrates that the performance of DEPT with 284 error patterns is comparable

to Chase p=8. DEPT has a steeper curve than Chase p=8 with a similar number

of error sequences. And the DEPT curve with 413 error sequences is vastly superior

to the Chase p=8 curve. However, the number of frames used during PEP synthesis

may have an effect on the outcomes, as a larger number of frames allows the PEP

to cover the maximum number of conceivable error patterns. Hence increasing the

precision of error correction.

Figure 5.4 depicts the performance of oFEC employs 16QAM utilizing DEPT-

Pyndiah decoding algorithm. Similarly, oFEC employs the decoding algorithms of

Chase p=6,7,8 in compare with DEPT algorithm. As predicted, the error correction

accuracy improves as p grows when the Chase algorithm is utilized. In the 16QAM

scenario, DEPT performed noticeably better than Chase p=8, and around 184 error

patterns were utilized for both the odd and even cases respectively. Clearly, DEPT

enhances the accuracy of error correction significantly by utilizing fewer error pat-

terns. As DEPT does not list all possible candidate codewords within a specified

decoding radius, it splits the error amount into even and odd situations based on the

final component of the syndrome mentioned in the preceding section. As a result, the

range of error correction is narrowed, and not only is the precision of error correction

enhanced, but also the time required for error correction is decreased.

The statistical performance comparison between decoding algorithms is displayed

in Table 5.2 and Table 5.3, which is respectively under the BPSK and 16QAM signal-

ing. For BPSK, DEPT with 284 error patterns has almost identical performance with

the Chase p=8, in which their pre-FEC BER threshold is 2.06e−2 and 2.07e−2. But

45

Figure 5.4: 16QAM oFEC Chase-Pyndiah p=6, 7, 8 verses DEPT-Pyndiah.

the DEPT using 413 error patterns has an obvious improvement which is capable of

reaching 2.09e−2. In the case of 16QAM, the performance of the DEPT greatly sur-

passes the Chase p=8, which its pre-FEC BER threshold of reaching 10−15 is 2.10e−2,

while the pre-FEC BER threshold of the Chase p=8 is 2.02e−2.

Decoding Algorithm Number of pre-FEC
Error Patterns BER Threshold

Chase BM p=8 256 1.81e−2

Chase Table-based
p=7 128 2.0e−2

p=8 256 2.06e−2

DEPT
decode radius=10 284 2.07e−2

decode radius=10 413 2.09e−2

Table 5.2: Comparison of the number of error patterns and the pre-FEC BER thresh-
old of Chase and DEPT on BPSK oFEC.

46

Decoding Algorithm Number of pre-FEC
Error Patterns BER Threshold

Chase Table-based
p=7 128 2.0e−2

p=8 256 2.02e−2

DEPT decode radius=10 184 2.10e−2

Table 5.3: Comparison of the number of error patterns and the pre-FEC BER thresh-
old of Chase and DEPT on 16QAM oFEC.

5.3.3 DEPT With Different PEPs

As the time slot expands, the front and back bits may be in different blocks due

to the unique construction of oFEC. Hence, over time, the front and back bits of

the codewords may be decoded in different iterations, and the uncoded BER may

vary. Table 5.4 displays the bit error rate (BER) for the front and back bits for

each iteration. The table reveals that the uncoded BER of the front bit is always

greater than that of the back bit, which explains why the β and α values employed

by the Pyndiah algorithm are different for the front and back bits. When the input

SNR is 3.27dB, the uncoded BER after the first iteration is 1.967e−2 corresponding

to the SNR 3.69, and the uncoded BER before the bit is 1.417e−2 corresponding to

the SNR 3.809, the front bit always has a lower number of errors, which implies it

has higher reliabilty and requires higher values of α and β throughout the decoding

process. When utilizing the DEPT technique to construct the PEP, it is therefore

important to account for the varying Eb/N0 of the front and back bits. The input

signal-to-noise ratios of the front and back pre-FEC are 3.81dB and 3.27dB before

normalization, respectively, based on the results of numerous tests.

Despite the fact that the uncoded BER values for the front and back bits are

different in each iteration, it is not impractical to use its specific PEPs for each

iteration. Except for the initial iteration, the bit error rate is unstable in subsequent

iterations. Due to the fact that the input codeword is fully random, it is difficult

to construct an exact PEP suitable for all circumstances based on the bit error rate

because the input codeword is completely random. Hence, the generation of PEP

relies solely on the BER of distinct front and back bits for the first iteration.

Figure 5.5 depicts the comparison curves before and after examining the front and

47

Number of Iteration BER SNR
Front Back Front Back

1st Iteration 1.417e−2 1.967e−2 3.809 3.269
2nd Iteration 2.127e−3 1.131e−2 6.113 4.147
3rd Iteration 1.277e−5 6.198e−4 9.475 7.173

Table 5.4: Estimation of uncoded BER of front and back bits.

back bits individually. When the front and back bits are considered independently,

the BER curve is somewhat slightly worse at lower SNR. As the SNR increases, the

BER curve begins to steepen, and when the SNR reaches approximately 3.73dB, it

outperforms both Chase and the original DEPT (do not considering the front and

back bits separately). Thus, considering a variety of circumstances during the creation

of PEPs can result in modest gains at higher SNR stages.

Figure 5.5: On BPSK oFEC, compare the original PEP and generate PEPs with
considered front and back bits respectively.

48

5.3.4 Quantization

The oFEC system employs two uniform quantizers with evenly spaced quantiza-

tion stages. After symbols pass through the AWGN channel, one of the quantizers is

implemented. Assuming that the number of quantization bits is n, the output of the

channel y is quantized to yq, which has 2n intervals within the given range [L, -L]. The

symbol generated by the channel after 16QAM modulation is a complex number, such

as y = (yI , yQ), and both the real and imaginary components must be quantized uni-

formly. The second quantizer follows the demodulator, and the demodulated symbols

are converted to rational values based on the log-likelihood ratio. In a similar fashion,

2n intervals are differentiated evenly within the quantization interval [L, -L], and the

quantization range is determined by the maximum and minimum values of LLR. The

quantized LLR is multiplied by the scale factor α to enable further decoding.

Figure 5.6: 16QAM oFEC N-bit quantization comparison.

Figure 5.6 depicts a comparison of the curves resulting from the application of

various quantization levels. When the number of quantization bits is increased to 9

49

bits, performance is nearly identical to that of oFEC without quantization.

5.4 DEPT-ORBGRAND Algorithm for oFEC

5.4.1 oFEC Simulation Result with DEPT-ORBGRAND

During a simulation with DEPTGRAND, the algorithm generates a set of queries

whose logic is based on the Table 3.1. It uses a number of queries Q = 212 to search

for C quantities of potentially most likely error sequences. Similar to DEPT, DEPT-

ORBGRAND’s query set includes all allowable potential error patterns, but with

logistic error weights. However, only partial queries are utilized during implemen-

tation. Likewise, the DEPT-ORBGRAND decoding algorithm is applied to oFEC

with BPSK and 16QAM, and the simulation results are displayed in Figures 5.7 and

5.8. DEPT-ORBGRAND with the parameter of C=8 and Q = 212 considerably

outperforms Chase p=8 according to both graphs.

Figure 5.7: BPSK oFEC Chase-Pyndiah p=6, 7, 8 verses DEPTGRAND-Pyndiah.

50

Table 5.5 makes it more apparent that the pre-FEC BER threshold of DEPT-

ORBGRAND for BPSK is approximately 2.12e−2, with parameters C=8 and Q = 212.

In the case of 16QAM, when the number of query Q is unchanged, the maximum

number of candidate codewords examined rises to 10 and the pre-FEC BER thresh-

old reaches around 2.12e−2 according to Table 5.6. Nonetheless, the pre-FEC BER

threshold for Chase p=8 is 2.06e−2. Further than that, after comparing the perfor-

mance of DEPT in the previous section, it can be found that DEPT-ORBGRAND

with using such value of parameter of C and Q can outperforms than DEPT we well.

Since DEPT-ORBGRAND select C most likely candidate codewords, which signifi-

cantly enhances the accuracy of LLRs correction in the subsequent implementation

of the Pyndiah algorithm.

Figure 5.8: 16QAM oFEC Chase-Pyndiah p=6, 7, 8 verses DEPTGRAND-Pyndiah.

Notably, the decoder must scan the all queries until the specified maximum num-

ber of error patterns, C, is reached. This implies that the size of the queries directly

influences the complexity of the system. Consequently, despite the fact that the

51

DEPT-ORBGRAND algorithm applied to oFEC provides improved decoding perfor-

mance, its decoding complexity is relatively higher than the DEPT and Chase.

Decoding Algorithm Number of pre-FEC
Error Patterns BER Threshold

Chase table-based
p=7 128 2.0e−2

p=8 256 2.06e−2

DEPT-ORBGRAND C=8, Q=212 8 2.12e−2

Table 5.5: Comparison of the number of error patterns and the pre-FEC BER thresh-
old of Chase and DEPT-ORBGRAND on BPSK oFEC.

Decoding Algorithm Number of pre-FEC
Error Patterns BER Threshold

Chase table-based
p=7 128 2.0e−2

p=8 256 2.02e−2

DEPT-ORBGRAND C=10, Q=212 10 2.12e−2

Table 5.6: Comparison of the number of error patterns and the pre-FEC BER thresh-
old of Chase and DEPT-ORBGRAND on 16QAM oFEC.

5.4.2 DEPT-ORBGRAND Varies the Number of Query and Maximum

Searched Error Sequences

As stated in the previous section, the complexity of the system is exponentially

proportional to the number of error patterns contain in a query set. Thus, the DEPT-

ORBGRAND implementation with the parameters C=8 and Q = 212 may not the

most efficient in terms of power efficiency and latency during the comparison with

the Chase and DEPT.

As illustrated in Figure 5.9, DEPTGRAND simulates using three different num-

bers of queries, Q = 210, Q = 211 and Q = 212, with the maximum search candidate

codeword C=8. After comparison, it is obvious that the parameter Q needs to reach

at least 211, indicating that Q = 211 is the threshold for DEPT-ORBGRAND to

surpass the performance of the Chase p=8 with around eight maximum number of

candidate codewords required to search.

52

Figure 5.9: Performance of DEPTGRAND on oFEC with the different parameters of
C and Q.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research presents an in-depth analysis of oFEC by applying DEPT-based de-

coding algorithm and compare with the typical Chase-Pyndiah decoding algorithm.

DEPT-based decoding algorithm proposed different mechanisms of generating can-

didate codewords. Chase list out all 2p feasible candidate codewords as p number

of LRBs are selected based on the reliability of LLRs. However, DEPT prefers to

search for error patterns in predefined PEPs according to the error probabilities of

their respective error weights. Decoder estimates the number of error is even or odd

and search corresponds PEP set and locate possible error location. It enables for a

more precise determination of the error positions. The simulation results illustrates

in the previous section also prove that DEPT with the decode radius of 10 has higher

efficiency and accuracy on error correction compared with Chase p=8. In comparison

with the Chase-Pyndiah algorithm, DEPT provides around 0.02dB of improvement

when it apppled with oFEC.

DEPT-ORBGRAND provides another further improvements based on DEPT al-

gorithm. It inherit the idea of estimating the number of errors in the cases of even

and odd based on syndrome, proposed the idea of generating queries regarding to

the logistic weight of errors and selected C number of great possible error patterns

to implement decoding. The pre-FEC BER threshold of DEPT-ORBGRAND with

utilizing the parameter of C=10 and Q = 212 achieves around 2.12e−2 according to

the result illustrates in the tables. In other words, DEPOT-ORBGRAND brings a

0.05dB improvement under the specified parameters compared to oFEC with Chase

algorithm applied. However, the complexity of the DEPT-ORBGRAND is the high-

est among the three algorithms. In addition, the table-based hard decoder, consider

bounded decode distance, is more appliable for oFEC than the conventional hard

decoder, bringing an additional 0.22dB gain.

53

54

6.2 Future Work

The error correction of DEPT-ORBGRAND is quite inefficient due to its high

complexity. Searching for error patterns from 212 queries at each stage of decoding

is tedious. In terms of software implementation, the time consumption of simula-

tion is relatively high. Power consumption is also a major issue during the hardware

implementation of DEPT-ORBGRAND. As a result, DEPT-ORBGRAND is worthy

of further research and seeking a method to improve the efficiency of error pattern

query, such as by using parallelization techniques to speed up the process. Alterna-

tively, further filtering out unnecessary error patterns from queries is another possible

option for efficiency improvement.

Bibliography

[1] D. Chase. Class of algorithms for decoding block codes with channel measure-
ment information. IEEE Transactions on Information Theory, 18(1):170–182,
1972.

[2] Kevin Cushon, Per Larsson-Edefors, and Peter Andrekson. Low-power 400-gbps
soft-decision ldpc fec for optical transport networks. Journal of Lightwave Tech-
nology, 34(18):4304–4311, 2016.

[3] Sameep Dave, Junghwan Kim, and Subhash C Kwatra. An efficient decod-
ing algorithm for block turbo codes. IEEE Transactions on communications,
49(1):41–46, 2001.

[4] Ken R Duffy, Wei An, and Muriel Médard. Ordered reliability bits guessing ran-
dom additive noise decoding. IEEE Transactions on Signal Processing, 70:4528–
4542, 2022.

[5] Ken R Duffy, Jiange Li, and Muriel Médard. Guessing noise, not code-words.
In 2018 IEEE International Symposium on Information Theory (ISIT), pages
671–675. IEEE, 2018.

[6] Peter Elias. Error-free coding. pages 29–37, 1954.

[7] Alberto JimÉnez Feltstrom, Dmitri Truhachev, Michael Lentmaier, and
Kamil Sh. Zigangirov. Braided block codes. IEEE Transactions on Informa-
tion Theory, 55(6):2640–2658, 2009.

[8] G David Forney. Concatenated codes. 1965.

[9] G ITU-T. Interfaces for the optical transport network (otn). Recommendation
G, 709, 2009.

[10] Michael Lentmaier, Dmitri Truhachev, and Kamil Zigangirov. Iteratively de-
codable sliding codes on graphs. In Workshop on Algebraic and Combinatorial
Coding Theory (ACCT), pages 190–193, 2002.

[11] Shizhong Li, Kamal El-Sankary, Alireza Karami, and Dmitri Truhachev. Area-
and power-efficient staircase encoder implementation for high-throughput fiber-
optical communications. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 28(3):843–847, 2020.

[12] Annie Picart and Ramesh Pyndiah. Adapted iterative decoding of product
codes. In Seamless Interconnection for Universal Services. Global Telecommu-
nications Conference. GLOBECOM’99.(Cat. No. 99CH37042), volume 5, pages
2357–2362. IEEE, 1999.

55

56

[13] R.M. Pyndiah. Near-optimum decoding of product codes: block turbo codes.
IEEE Transactions on Communications, 46(8):1003–1010, 1998.

[14] ITU Recommendation. Itu-t g. 975, 2000.

[15] RA Silverman and Martin Balser. Coding for constant-data-rate systems-part i.
a new error-correcting code. Proceedings of the IRE, 42(9):1428–1435, 1954.

[16] Mike A Sluysk. Open roadm msa 3.01 w-port digital specification (200g-400g).
Acacia Commun. Inc. 3 Mill and Main, 2019.

[17] Benjamin P. Smith, Arash Farhood, Andrew Hunt, Frank R. Kschischang, and
John Lodge. Staircase codes: Fec for 100 gb/s otn. Journal of Lightwave Tech-
nology, 30(1):110–117, 2012.

[18] Alvin Yonathan Sukmadji. Zipper codes: High-rate spatially-coupled codes with
algebraic component codes. University of Toronto (Canada), 2020.

[19] ITU Telecommunication. Itu-t g. 975.1 recommendation: Forward error correc-
tion for high bit-rate dwdm submarine systems. SERIES G Recommendation:
TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NET-
WORKS: Digital Sections and Digital Line Systems—Optical Fibre Submarine
Cable Systems, 2004.

[20] D. Truhachev, M. Lentmaier, and K. Zigangirov. On braided block codes.
In IEEE International Symposium on Information Theory, 2003. Proceedings.,
pages 32–, 2003.

[21] Dmitri Truhachev, Kamal El-Sankary, Alireza Karami, Abolfazl Zokaei, and
Shizhong Li. Efficient implementation of 400 gbps optical communication fec.
IEEE Transactions on Circuits and Systems I: Regular Papers, 68(1):496–509,
2021.

[22] Weiming Wang, Weifeng Qian, Kai Tao, Zitao Wei, Shihua Zhang, Yan Xia,
and Yong Chen. Investigation of potential fec schemes for 800g-zr forward error
correction. In 2022 Optical Fiber Communications Conference and Exhibition
(OFC), pages 1–3. IEEE, 2022.

[23] Lei M. Zhang and Frank R. Kschischang. Staircase codes with 6 Journal of
Lightwave Technology, 32(10):1999–2002, 2014.

[24] Wei Zhang, Michael Lentmaier, Daniel J. Costello, and K.Sh. Zigangirov.
Braided convolutional codes. In Proceedings. International Symposium on In-
formation Theory, 2005. ISIT 2005., pages 592–596, 2005.

[25] Wei Zhang, Michael Lentmaier, Kamil Sh. Zigangirov, and Daniel J. Costello.
Braided convolutional codes: A new class of turbo-like codes. IEEE Transactions
on Information Theory, 56(1):316–331, 2010.

	Title Page
	Table of Contents
	Abstract
	List of Abbreviations
	Acknowledgements
	Introduction
	Background
	Motivation
	Outline of the Thesis

	Coding Structure
	Braided Block Codes
	Zipper Codes
	Staircase Codes

	Decoding Algorithm
	Chase-Pyndiah Algorithm
	Chase Algorithm
	Pyndiah Algorithm

	DEPT Algorithm
	DEPT-GRAND Algorithm
	Hard Decoding Algorithm
	Berlekamp-Massey Algorithm
	Look-up Table (LUT) Based Decoder

	oFEC Codes
	Code Properties
	Front and Back Bits
	Unit Block
	Unit Block Permutation

	Structure of a Single Iteration
	Overview of a Single Iteration Block Window
	Permutation of Structure

	Iterative Process
	Memory Buffer
	Code Rate

	oFEC with DEPT-based Decoders
	oFEC Iterative Coding
	Net Coding Gain
	SNR Normalization
	Simulation with Different Number of LRBs
	Weighting and Reliability Factor Selection

	Table-based Hard Decoder for oFEC
	DEPT Algorithm for oFEC
	Partial Error Patterns (PEPs)
	oFEC Simulation Result with DEPT
	DEPT With Different PEPs
	Quantization

	DEPT-ORBGRAND Algorithm for oFEC
	oFEC Simulation Result with DEPT-ORBGRAND
	DEPT-ORBGRAND Varies the Number of Query and Maximum Searched Error Sequences

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

