
ZERO FORCING PROCESSES ON PROPER INTERVAL GRAPHS
AND TWISTED HYPERCUBES

by

Peter Collier

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

April 2023

© Copyright by Peter Collier, 2023

Contents

List of Tables . iii

List of Figures . iv

Abstract . v

Acknowledgements . vi

Chapter 1 Introduction . 1

1.1 Graph Theory . 2

1.2 Zero Forcing . 5

1.3 Probabilistic Zero Forcing . 8

Chapter 2 Zero Forcing on Proper Interval Graphs 15

2.1 q-paths . 17

2.2 Edge-Disjoint Proper Interval Graphs 24

Chapter 3 Twisted Hypercubes . 29

Chapter 4 Probabilistic Zero Forcing 43

4.1 Experiments . 44

4.2 2-paths . 48

4.3 q-paths . 59

Chapter 5 Conclusion . 70

Bibliography . 72

Appendix A Twisted Hypercubes with Small Zero Forcing Number 74

Appendix B Algorithms . 76

ii

List of Tables

1.1 The expected propagation times of various families of graphs . 14

iii

List of Figures

1.1 An example of a proper interval graph, with coloured intervals
corresponding to the same coloured vertex 3

1.2 The 3-dimensional hypercube graph, Q3. 5

2.1 A construction of a zero forcing set for Theorem 2.2 16

2.2 A 3-path on 8 vertices, P 3
8 . 18

2.3 An example showing how removing an outer edge of a proper
interval graph results in another proper interval graph 21

2.4 An edge-disjoint proper interval graph. A minimal zero forcing
set demonstrated. 25

2.5 Demonstrating how to adjust the initial set of vertices if an
inner edge is removed from a 3-clique. 26

2.6 Examples of adjusted initial sets of vertices if an inner edge is
removed from a k-clique, for k = 5. The first is when u = w,
the second is when u ̸= w. In both cases, arrows are drawn on
edges where forces occur, and labeled in the order of chrono-
logical forces. Once these forces are complete, the forcing chain
continues as in F . 28

4.1 A 2-tree in State A . 49

4.2 A 2-tree in State B . 50

4.3 The Markov chain of forcing set states of P 2
n 52

iv

Abstract

Zero forcing is a graph infection process where a colour change rule is applied itera-

tively to a graph and an initial set of vertices, S ⊆ V (G). If S results in the entire

graph becoming infected, we call this set a zero forcing set. The size of the smallest

zero forcing set for a graph, G, is called the zero forcing number of G. We study

subgraphs of proper interval graphs to determine how the removal of edges affects the

zero forcing number of these graphs. We, then, compare the zero forcing number of

twisted hypercubes to that of the same size hypercube, and determine that twisted

hypercubes have smaller zero forcing number. Finally, we turn our attention to prob-

abilistic zero forcing, a variant on zero forcing, and show that there are graphs who

become forced faster when initiating the process from vertices that are outside the

center of the graph.

v

Acknowledgements

I would like to thank my supervisor, Dr. Jeannette Janssen, for introducing me to the

concepts discussed within. This would not have been possible without your support

and guidance. I would also like to thank Dr. Jason Brown and Dr. Nancy Clarke for

reading this thesis.

vi

Chapter 1

Introduction

Recently, the world has become especially interested in the study of how diseases and

infections spread. We are able to model this spread mathematically by using Graph

Theory. The particular type of graph infection I will be studying is known as Zero

Forcing.

In zero forcing, an initial set of nodes in a network are infected. These infected

nodes can spread the infection to neighbouring nodes under certain conditions. If an

initial set of nodes are able to infect the entire network, then the initial set is called

a zero forcing set.

Zero forcing had previously been used to bound certain algebraic properties of

graphs, but was first studied in its own right in a 2007 paper by the AIM Minimum

Rank-Special Graphs Work Group [1]. As others became interested in this new graph

parameter [14, 8, 13], various new applications arose, including to inverse eigenvalue

problems [18], PMU placement problems [5], and quantum control problems [6].

With these applications, more information on zero forcing became of interest.

This gave rise to the zero forcing polynomial in [4]. This is a graph polynomial

whose coefficients are related to the number of zero forcing sets of the given graph.

Relationships to other well-known graph parameters have also been studied, such as

the chromatic number in [21].

There also came the introduction of variations on, what is now known as, classical

zero forcing. Among these are k-forcing [2], and Leaky Forcing [9]. The variation

that I will be studying is Probabilistic Zero Forcing, introduced by Kang and Yi in

their short paper [17]. The appeal of this model of zero forcing is that it can more

closely simulate a potential real-world model of infection spread along a network.

In this thesis, we will begin by exploring the classical zero forcing properties

of a particular family of graphs, called proper interval graphs, and subgraphs of

this family. After fully characterizing these subgraphs, we will extend these results

1

2

to random subgraphs and determine the zero forcing properties of these random

subgraphs. Then, in Chapter 3, we will develop some zero forcing results on a variation

of an extensively studied family of graphs, the hypercube.

In the context of probabilistic zero forcing, the question of how long it takes to

infect a graph is the main focus. In Chapter 4, we will consider the problem of which

vertices minimize the expected time it takes for a graph to become fully infected for

a particular family of proper interval graphs.

Now, we will begin by introducing the basic concepts in graph theory, zero forcing,

and probability that will be required for this thesis, as well as some previous results.

1.1 Graph Theory

A graph, G, is the ordered pair, (V,E), where V is the set of vertices, and E is the

set of undirected edges. If a graph has no multiple edges or loops, then it is called a

simple graph, otherwise it is a multigraph. Unless otherwise stated, the order of any

graph is n, |V | = n.

If two vertices, u and v, are connected by an edge, we say that u is adjacent to v,

or that u and v are neighbours, denoted u ∼ v. The set of neighbours of a vertex, v,

is called the open neighbourhood of v, N(v). The set N(v) ∪ {v} is called the closed

neighbourhood of v, denoted N [v]. The size of the open neighbourhood of a vertex, v

is called its degree, deg(v).

If there is a path from a vertex to any other vertex in G, then we say that G is

connected. For the purposes of this thesis, when I say graph, I refer to an undirected,

simple, connected graph.

For a graph, G, the minimum degree of G, δ(G), is the smallest degree of any of

the vertices of G.

A clique in a graph is a set of pairwise adjacent vertices A clique cover of a graph,

G, is a set of cliques (not necessarily disjoint) such that every edge is contained in a

clique. The smallest size of a clique cover for G is called the clique cover number of

G, denoted cc(G).

3

Example 1. Consider the following graph.

This graph has clique cover number 3, with a minimal clique cover indicated by the

edges in red, green, and blue.

For an edge, e, in a graph G, denote G−e = (V,E \{e}) as the graph representing

the deletion of the edge e from G.

One family of graphs of particular interest are the proper interval graphs.

Definition 1. A graph is called an interval graph if each of its vertices can be asso-

ciated with an interval on the real line in such a way that two vertices are adjacent

if and only if the associated intervals have a nonempty intersection.

Definition 2. A graph is called a proper interval graph if it is an interval graph, and

no interval is contained within another. Label the vertices from 1 to n, in the order

of the start of the intervals that correspond to each vertex, from left to right. We will

refer to this labeling as the standard labeling. See Figure 1.1.

Figure 1.1: An example of a proper interval graph, with coloured intervals corre-
sponding to the same coloured vertex

Proper interval graphs naturally arise in the context of graph infection as they

can be viewed as a simple model of groups of people, say households, clubs, or any

4

group that shares a space. Each clique corresponds to a club, and any intersection

between the cliques will represent members of multiple clubs. While this family of

graphs has its limitations of accurately modeling the complexity of such networks, it

is an excellent place to start.

Another family of graph that will arise are the q-trees.

Definition 3. A q-tree, T q
n , is defined by the following recursive construction:

• Kq, the complete graph on q vertices, is a q-tree.

• A q-tree on n > q vertices is constructed by beginning with a q-tree on n − 1

vertices, T q
n−1, adding a vertex, and attaching the new vertex to all vertices in

a copy of Kq in T q
n−1.

Specifically, I will work with the subset of q-trees that I call q-paths.

Definition 4. A q-path on n vertices, P q
n , is a q-tree where the recursive construction

has the following restriction:

• Kq is a q-path.

• A q-path on n > q vertices is constructed by beginning with a q-path on n− 1

vertices, P q
n−1, adding a vertex, and attaching the new vertex to the copy of Kq

in P q
n−1 containing the vertex n− 1.

These q-paths are a special case of the proper interval graphs, where each interval,

i, intersects with an interval j ̸= i whenever |j − i| ≤ q.

I will also discuss known properties of the hypercube graphs, and some results in

extending these properties to a family of graphs known as twisted hypercubes, defined

below:

Definition 5. A hypercube of dimension k, Qk, has vertex set {0, 1}k, with vertices

adjacent when they differ in exactly one coordinate. See Figure 1.2 for a 3-dimensional

hypercube.

Definition 6. The unique twisted hypercube of dimension 0 consists of a single

vertex. For k ≥ 1, a twisted hypercube of dimension k is obtained from two twisted

hypercubes of dimension k − 1 by adding a matching joining the vertex sets of the

two smaller graphs.

5

Figure 1.2: The 3-dimensional hypercube graph, Q3.

1.2 Zero Forcing

Definition 7. Given a graph, G, where each vertex is coloured either white or blue,

and an initial set of blue vertices, S ⊆ V (G), we define zero forcing as the graph

infection process in which we iteratively apply the following colour change rule:

If a blue vertex has exactly one white neighbour, then this neighbour changes to

blue.

The derived set is the set of blue vertices after performing all possible forces. If

the derived set is the entire vertex set, then we call S a zero forcing set.

The size of the smallest zero forcing set is called the zero forcing number of G,

and is denoted Z(G). If a zero forcing set has size Z(G), then it is called an optimal

zero forcing set.

Example 2. Consider the cycle on 6 vertices.

6

In (i), we try to force the graph with a single vertex. As every choice of initial

blue vertex will have two white neighbours, no forces are possible, and there are no

zero forcing sets of size 1.

In (ii), we choose two vertices that are adjacent as the initial set. Each of these

vertices has exactly one white neighbour, and can therefore force this neighbour. Each

newly forced vertex has exactly one white neighbour, and therefore forces it. After

these forces, all vertices are blue and our initial vertex set is a zero forcing set. This

also shows that the cycle has zero forcing number 2.

Note that we do not allow one vertex to be forced by multiple neighbours. If a

vertex can be forced by multiple neighbours, then we choose one to perform the force.

Also, we can see that each vertex can only force at most one other vertex.

If vertex u is blue with one white neighbour, v, then u forces v in the zero forcing

process. This will be denoted u → v.

Zero forcing was first used as a tool in studying the minimum rank problem of

graphs, introduced in [20]. The minimum rank problem is as follows:

Given an n × n real symmetric matrix A = [au,v], we may define an undirected

graph G(A) on n vertices 1, 2, . . . , n, by including the edge joining vertex u to vertex

v in the edge set, if and only if au,v ̸= 0. (We always ignore loops, av,v). Then, given

a graph, G, an adjacency matrix of G is a matrix, A, such that G(A) = G.

For a graph, G, define S(G) = {A|G(A) = G} to be the set of all adjacency

matrices of G with entries over R. The minimum rank of G is mr(G) = {rank(A)|A ∈
S(G)}. The problem is to determine the minimum rank of any graph.

The zero forcing number of a graph is used as a bound for the minimum rank

of a matrix, or more precisely, a bound on the maximum nullity, which is similarly

defined, M(G) = {null(A)|A ∈ S(G)}.

Theorem 1.1. [1] For any graph, G,

M(G) ≤ Z(G).

This bound was known for some time before the AIM Minimum Rank-Special

Graphs Work Group formalized the notion of the zero forcing number in [1], and

began studying this new parameter in its own right. They were able to flip the script

7

and use maximum nullity results to determine zero forcing properties of well known

graph families.

Theorem 1.1, along with the following results, provide useful bounds on the zero

forcing number of graphs that I will use regularly throughout this thesis:

Observation 1. For a graph, G,

Z(G) ≥ δ(G).

This is straightforward to see, as for a force to occur, a vertex must have its entire

closed neighbourhood coloured blue except for one vertex. The smallest such set in

a graph G has exactly δ(G) vertices.

When considering subgraphs, we need to understand how zero forcing properties

react to deletion of edges. Note the following definition of a forcing chain from [10]:

Definition 8. Consider a zero forcing set of a graph, G. Construct the derived set,

writing all of the forces as directed edges. Then, the graph induced by these directed

edges is acyclic, and consists of vertices with at most one in-edge, and one out-edge.

Therefore, the graph induced by the directed edges is a disjoint collection of directed

paths. These paths are called forcing chains. A maximal forcing chain is a forcing

chain that is not a proper subsequence of another zero forcing chain.

Notice that collections of forcing chains need not be unique. If a vertex can be

forced by more than one neighbour, then choosing to force with one or the other

neighbour results in two different collections of forcing chains.

The zero forcing number of a graph can be thought of as the size of a minimal

collection of forcing chains. Furthermore, we can compute the number of forces, or

the number of edges, in a minimal collection of forcing chains as

|E(F)| = n− Z(G),

which, in turn, rearranges to give another expression for the zero forcing number

Z(G) = n− |E(F)|.

Note that in a clique, at most one edge can be a forcing edge. Therefore, every

edge in F is in one clique. This gives that |E(F)| ≤ cc(G). Therefore,

Z(G) = n− |E(F)|

≥ n− cc(G).

8

Observation 2. [1] For a graph, G, of order n,

Z(G) ≥ n− cc(G).

The following lemma proves very useful in studying the zero forcing sets of sub-

graphs.

Lemma 1.2. [10] Let G be a graph, and S a zero forcing set of G with collection of

forcing chains F . If an edge e /∈ F , then S is also a zero forcing set of the graph

G− e.

Proof. Let S be a zero forcing set of G with collection of forcing chains F . Assume

that an edge, e, is not in F . Then, consider the graph G− e with initial set of blue

vertices S. Since e /∈ F , there is not a force along the edge e in this list of forces in

G. Therefore, the same forces as in F are still possible in G − e, as no vertex can

gain a white neighbour by the removal of an edge.

This shows that there is at least a case when the zero forcing number will not

increase upon deletion of an edge. Unfortunately, in general, there is not a monotonic

relationship between the zero forcing number of a graph and the zero forcing number

of its subgraphs.

Theorem 1.3. [10] Let G be a graph with zero forcing number Z(G). For an edge,

e, define ze(G) = Z(G)− Z(G− e) to be the edge spread of e in G. Then,

−1 ≤ ze(G) ≤ 1

This, however, is good enough to prove quite useful in determining the zero forcing

number of subgraphs. In particular, if one can demonstrate a zero forcing set of size

Z(G) − 1 for any subgraph of G, then it immediately follows that the zero forcing

number of the subgraph is exactly one less than the original graph.

1.3 Probabilistic Zero Forcing

Probabilistic Zero Forcing was introduced by Kang in 2012 [17] as an extension of

regular zero forcing that reduces to classical zero forcing in a special case. As men-

tioned above, this model of graph infection is a more believable model of short term

9

infection spread across a network, while maintaining some of the convenience that

comes with classical zero forcing.

First, I will need to outline some of the basic probabilistic concepts required

for this thesis. See [11], or any introductory probability textbook for the following

definitions and theorems.

Let the triple (Ω,F , P) be a probability space where Ω is the sample space, F is

an event space, and P is a probability measure. Note that for the purposes of this

thesis, all event spaces will be countable, and we take F = 2Ω.

The expectation of a random variable X, E(X), will be defined as

E(X) =
∞∑︂

i=−∞

iP (X = i).

Definition 9. Law of Total Probability

For the discrete case of The Law of Total Probability:

Let the events {Bk}k∈N be a countably infinite or finite partition of a sample

space, where each event, Bk is in F . If A is an event in the same probability space,

then

P (A) =
∑︂
k

P (A ∩Bk),

equivalently,

P (A) =
∑︂
k

P (A|Bk)P (Bk).

For example, if the partition consists of only two elements,

{Bk} = {B1, B2},

in the same probability space, then the probability of the event A can be written as

P (A) = P (B1)P (A|B1) + (1− P (B1))P (A|B2).

Some other probabilistic concepts I will use in this thesis:

Theorem 1.4. Markov’s Inequality

Let (Ω,F , P) be a probability space, X a random variable on this space, and a ∈ Z⋆.

Then

P (X ≥ a) ≤ E(X)

a
.

10

Theorem 1.5. Chebyshev’s Inequality

Let X be a random variable with variance Var(X). Then for all positive real

numbers a,

P (|X − E(X)| ≥ a) ≤ Var(X)

a2
.

Definition 10. Martingale

A sequence of random variables {Xi} is a Martingale if

E(|Xi|) < ∞,

E(Xi|X1, . . . , Xi−1) = Xi−1.

A sequence of random variables {Xi} is a submartingale if

E(|Xi|) < ∞,

E(Xi|X1, . . . , Xi−1) ≥ Xi−1.

Definition 11. Martingale with respect to another sequence

Let {Xi} be a sequence of random variables. A sequence of random variables {Yi}
is said to be a Martingale with respect to {Xi} if

E(|Yi|) < ∞,

E(Yi|X1, . . . , Xi−1) = Yi−1.

Definition 12. Stopping Time

Let {Xi} be a Martingale. A Stopping Time with respect to {Xi} is a random

variable T ∈ {1, 2, . . . } ∪ {∞}, such that the event {T ≤ n} can be determined from

X1, . . . , Xn.

Theorem 1.6. Stopping Time Theorem

If {Yt} is a Martingale with respect to {Xt} such that Yt is uniformly integrable,

and T is a stopping time with respect to {Xt}, such that P (T < ∞) = 1, then,

E(YT) = Y0.

Similarly, for Yt a submartingale,

E(YT) ≥ Y0.

11

Definition 13. Markov Chain

Consider a discrete-time stochastic process represented by a sequence of random

variables, {Xt}t≥0, which take values in a countable set S. The process {Xt} is a

Markov chain if, for all t ≥ 0 and all s, x0, x1, ..., xt ∈ S ,

P (Xt+1 = s|X0 = x0, X1 = x1, ..., Xt = xt) = P (Xt+1 = s|Xt = xt).

Definition 14. Hitting Time

Let {Xt} be a Markov chain with finite state space, S. For any u, v ∈ S, the

hitting time, hu,v, is the expected number of steps it takes to reach state v when

starting at state u. Precisely,

hu,v =
∞∑︂
t=1

t · P

(︄
{Xt = v} ∩

t−1⋂︂
i=1

{Xi ̸= v}|X0 = u

)︄
.

Theorem 1.7. Maximum of two Random Variables

Let X and Y be two independent, discrete random variables that take values on

{0, 1, 2, . . . }. Then,

E(max{X, Y }) =
∞∑︂
x=0

P (X = x)

(︄
x+

∞∑︂
y=x+1

P (Y ≥ y)

)︄
.

Proof. Let X, Y be independent, discrete random variables. Let Z = max{X, Y }.
Then,

E(Z) =
∞∑︂
z=0

P (max{X, Y } ≥ z)

=
∞∑︂
z=0

∞∑︂
x=0

P (X = x)P (max{x, Y } ≥ z|X = x)

=
∞∑︂
x=0

P (X = x)

(︄
∞∑︂
z=0

P (max{x, Y } ≥ z)

)︄
, by independence

=
∞∑︂
x=0

P (X = x)

(︄
x+

∞∑︂
z=x+1

P (Y ≥ z)

)︄
.

The preceding probabilistic concepts have proven vital in the study of probabilistic

zero forcing, which I can now define.

12

Definition 15. [17] For a graph, G, consider a set of blue vertices, S. With respect

to S, define the probabilistic colour change rule as follows:

Let P (u → v) be the probability that the event u → v occurs. Then

P (u → v) =

⎧⎨⎩
|N [u]∩S|
|N(u)| , if u ∈ S and v ∈ N(u) ∩ Sc

0 otherwise,

where u forces each of its white neighbours independently.

So the probability that u forces one of its neighbours depends on the number of

blue neighbours of u. As you can see, when u has exactly one white neighbour, v, the

probability that u → v is

P (u → v) =
deg(u)− 1 + 1

deg(u)
= 1,

and classical zero forcing falls out of this definition as a special case of probabilistic

zero forcing.

There will be occasions where I am only interested in whether a certain vertex

becomes forced, and will not care which of its neighbours actually performed the

force. In this case, I will consider the event that v is forced, denoted → v. This is

defined as

{→ v} =
⋃︂

u∈N(v)

{u → v}.

There will also be instances where I am interested in whether a vertex does not

become forced. The event that u does not force v is exactly {u → v}C , which I will

denote {u ↛ v}, and P (u ↛ v) = 1 − P (u → v). Similarly, I will define the event

that a vertex v is not forced by any of its neighbours as ↛ v, where

{↛ v} = {→ v}C

=

⎛⎝ ⋃︂
u∈N(v)

{u → v}

⎞⎠C

=
⋂︂

u∈N(v)

{u ↛ v}.

As each potential force in the probabilistic colour change rule is independent of

the others, this gives a convenient way to compute whether or not a vertex is forced

13

after a particular application of the probabilistic colour change rule:

P (↛ v) = P

⎛⎝ ⋂︂
u∈N(v)

u ↛ v

⎞⎠
=

∏︂
u∈N(v)

P (u ↛ v),

P (→ v) = 1− P (↛ v)

= 1−
∏︂

u∈N(v)

P (u ↛ v).

Notice that for any connected graph G, given any set of initially blue vertices, G

will become entirely forced eventually with probability 1. So, every subset of vertices

will be a probabilistic zero forcing set. This means that rather than studying whether

a graph will become completely forced, we will determine how quickly a graph can

be forced.

Definition 16. [12] The probabilistic propagation time of a set, S, of vertices of a

connected graph, G, ptpzf (G,S), is a random variable that reflects the time (number

of iterations of the probabilistic colour change rule) at which the last white vertex

turns blue when applying a probabilistic zero forcing process starting with the set S

blue. For a graph G and a set S of vertices, the expected propagation time of S for

G is the expected value of the propagation time of S. i.e.,

ept(G,S) = E[ptpzf (G,S)].

The expected propagation time of a connected graph G is the minimum of the ex-

pected propagation time of S for G over all one vertex sets S. i.e.,

ept(G) = min
v∈V (G)

{ept(G, {v})}.

Bounds on the expected propagation time have been determined for various fam-

ilies of graphs. I will state the most useful bound for the purposes of this thesis as

its own result, and the others will be listed in Table 1.1.

Theorem 1.8. [12] For the star on n+ 1 vertices,

ept(K1,n) = Θ(log n).

14

Graph, G ept(G)

Cn[12]

{︄
n
2
+ 1

3
if n is even

n
2
+ 1

2
if n is odd

Pn[12]

{︄
n
2
+ 2

3
if n is even

n
2
+ 1

2
if n is odd

Kn[7] Θ(log log n)
A spider graph with k legs[12] rad(G) +O(log k)
Km,n for any m,n ∈ Z+[7] O(log(m+ n))

Kc,n for any n ∈ Z+ and fixed c[7] Θ(log n)
Any connected graph, G[19] n

2
+O(log n)

Gm×n, the m× n grid graph[15] (1
2
− o(1))(m+ n) ≤ ept(Gm×n) ≤ (4 + o(1))(m+ n)

Any d-regular graph, d ≥ 2[15] O(n log d
d
)

Qn[15] O(n log n)

Table 1.1: The expected propagation times of various families of graphs

Chapter 2

Zero Forcing on Proper Interval Graphs

Proper interval graphs have a structure resembling intersecting cliques in a linear

arrangement. Before I begin, it will be useful to have the following definition:

Definition 17. Let G be a proper interval graph where vertices are labeled according

to the standard labeling in Definition 2, and e ∈ E(G) an edge in G. Then, e is an

outer edge of G if e is in a maximal clique of order a+1, and e = (r, r+a). Otherwise,

e is an inner edge of G.

In other words, the outer edges of a proper interval graph are the edges that have

no other edges above them. We will say that one edge, e = (i, j), covers another edge,

e′ = (i′, j′), if i ≤ i′ and j ≥ j′. So, an outer edge covers all edges in the maximal

clique that contains it.

For example, in Figure 1.1, the edges (1, 4), (3, 5), (5, 6), and (6, 8) are all of the

outer edges. The inner edges are those that have at least one other edge completely

covering them. We can consider the clique cover number of proper interval graphs

with respect to this definition.

Lemma 2.1. Let G be a proper interval graph. The clique cover number of G is equal

to the number of outer edges in G.

Proof. Let G be a proper interval graph. Notice that each outer edges defines a

clique. As every edge is in a clique defined by an outer edge, the outer edges define

a particular clique cover. So

cc(G) ≤ the number of outer edges.

Also, each clique contains at most one outer edge, because outer edges are incident

to the first and last vertex of the clique. Therefore,

cc(G) ≥ the number of outer edges.

15

16

And so, the clique cover number of a proper interval graph is simply the number

of outer edges. From this perspective, the clique cover number, cc(G), is the number

of maximal cliques along the interval. Notice that every clique intersects with at least

one other clique in at least one vertex. Only the first clique has its first vertex in only

one clique, and only the last clique has its last vertex in only one clique.

From this, the first result is as follows:

Theorem 2.2. [16] Let G be a proper interval graph. Then,

Z(G) = n− cc(G).

I will include a proof of this result because it demonstrates the particular con-

struction of a zero forcing set that I will refer to for the results in this chapter. See

Figure 2.1 for an example.

Proof. The lower bound follows from Observation 2 in Chapter 1.2. This lower bound

holds for all graphs. Therefore, it suffices to demonstrate a particular zero forcing set

on n− cc(G) vertices.

Consider an optimal clique covering, {K1, . . . , Kr}, of G, as defined by the outer

edges of G, , where the cliques are ordered by their smallest vertices. Consider the

set S of all vertices except those that are the larger indexed vertex of an outer edge.

Figure 2.1: A construction of a zero forcing set for Theorem 2.2

This is a zero forcing set of order n− cc(G). We will demonstrate this by strong

induction on the cliques in the clique cover, Ki. That is, we will show inductively

that all vertices in cliques K1, . . . , Kr are forced.

Base Case: First clique, K1: Vertex 1 is adjacent to only the other vertices in the

first clique, by construction. All of these are blue except for the final vertex in this

clique. Therefore, 1 forces this final vertex.

Induction Hypothesis: Fix i ≥ 2. Suppose that all vertices in cliques up to Ki are

forced. Now consider the clique Ki+1.

17

The first vertex of Ki+1, v, is necessarily blue because it is a member of a previous

clique. Note that all neighbours of v are either less than v or in Ki+1. Consider a

neighbour, u, of v. If u is in one of the cliques, K1, . . . , Ki, then u is blue by the

induction hypothesis. Otherwise, u ∈ Ki+1. If u is the final vertex of Ki+1, then u

will be white, by the construction of the set. Let u be any other vertex in Ki+1. Then,

u is either contained in another previous maximal clique, and is therefore blue by the

induction hypothesis, or u is not in a previous clique, and is blue by the construction

of S. So, all vertices less than v are blue, and all but the final vertex in Ki+1 are

blue, so v forces the final vertex in Ki+1.

This proves that the constructed set is a zero forcing set.

Recall from Definition 8 that the list of forces corresponds to a collection of forcing

chains, F . As each of the forces for this zero forcing set occurs along an outer edge,

this collection of forcing chains consists of one primary directed path along the outer

edges, and n− cc(G)− 1 isolated vertices.

The construction for the zero forcing set in Theorem 2.2 will be the standard set

that I consider for the results in the rest of this chapter. Notice that the forcing chains

for this zero forcing set are not unique. There could be more than one vertex that

can force a neighbour at each step of the process. For the purposes of the following

chapter, the particular collection of forcing chains we will refer to is the one described

in Theorem 2.2, F , which is the directed path along the outer edges.

A reversal of a zero forcing set is the set of final vertices of the maximal zero

forcing chains of a chronological list of forces. In [3], Barioli et al. prove that the

reversal of any zero forcing set is another zero forcing set. This means that forcing

the graph in the other direction also constitutes a minimal zero forcing set, and if

we reverse the ordering of the vertices, the reversal will have the same structure as

described in Theorem 2.2.

2.1 q-paths

One particular family of proper interval graphs that I will discuss in this section are

q-paths. Recall from Definition 4:

18

Definition 4. A q-path on n vertices, P q
n , is a q-tree where the recursive construction

has the following restrictions

• Kq is a q-path.

• A q-path on n > q vertices is constructed by beginning with a q-path on n− 1

vertices, P q
n−1, adding a vertex, and attaching the new vertex to the copy of Kq

in P q
n−1 containing the vertex n− 1.

Another characterization of q-paths is that P q
n is a proper interval graph of order

n with e = (i, j) ∈ E(P q
n) iff |i− j| ≤ q.

Figure 2.2: A 3-path on 8 vertices, P 3
8

1 2 3 4 5 6 7 8

The zero forcing number of these graphs follows from Theorem 2.2.

Corollary 2.3. Let P q
n be a q-path on n ≥ q + 1 vertices. Then

Z(P q
n) = q.

Proof. By Theorem 2.2, as P q
n is a proper interval graph, it has zero forcing number

Z(P q
n) = n− cc(P q

n).

We saw that the cc(P q
n) is equal to the number of outer edges in P q

n . Notice that,

in P q
n , every vertex after vertex q is the second vertex of an outer edge. So there are

n− q outer edges, and therefore the clique cover number of P q
n is n− q. This gives

Z(P q
n) = n− cc(P q

n)

= n− (n− q)

= q.

19

In general, subgraphs of proper interval graphs are not necessarily proper interval

graphs. When q = 1, P q
n is just a path, and subgraphs of paths with the same vertex

set are disconnected paths. The zero forcing number of these subgraphs are just the

number of connected components, and are not of interest. So, I will consider the case

when q ≥ 2. Looking at particular subgraphs, as well as random subgraphs, leads to

the following result.

Theorem 2.4. Let P q
n be a q-path on n ≥ q + 2 vertices. Let |E(P q

n)| = m. If an

edge, e, of P q
n is chosen uniformly at random, then the expected zero forcing number

of the graph P q
n − e is,

E(Z(P q
n − e)) = Z(P q

n) +
cc(P q

n)− 2

m

= q +
n− q − 2

m
.

The proof of this result first requires determining the effect of removing edges

from P q
n on the zero forcing number. These are Lemmas 2.5-2.7. For these results,

P q
n is a q-path of degree n ≥ q + 2.

Recall the definition of edge spread, ze(G), for an edge, e, in a given graph, G,

from Theorem 1.3, namely

ze(G) = Z(G)− Z(G− e).

Lemma 2.5. If e is an inner edge of P q
n, then

ze(P
q
n) = 0.

Proof. Consider the zero forcing set of P q
n described in Theorem 2.2, with collection

of forcing chains F . Edge e is not in F , so the same set is still a zero forcing set in

P q
n − e by Lemma 1.2. Therefore,

Z(P q
n − e) ≤ Z(P q

n).

• If e ̸= (1, i) or (j, n), then δ(P q
n − e) = q. Therefore,

Z(P q
n) = q ≤ Z(P q

n − e),

by Observation 1. So, in this case we find that

Z(P q
n − e) = Z(P q

n).

20

• If e is incident to either 1 or n, (say 1, by symmetry), then

q − 1 = Z(P q
n)− 1

≤ Z(P q
n − e).

We will show, by contradiction, that no zero forcing set of size q − 1 exists. Let

e = (1, k), for some 2 ≤ k ≤ q. Suppose S is a zero forcing set of P q
n − e of size

q − 1. As 1 is the only vertex of degree q − 1, S must consist of 1 and q − 2 of its

neighbours. Then, 1 has neighbours 2, . . . , k− 1, k+1, . . . q+1, all of which are blue,

except for some neighbour, j, so 1 can force j. Every vertex in the first clique, other

than 1, is adjacent to k, as well as at least one other white vertex > q + 1, since P q
n

is a q-path. As these are all of the blue vertices in the graph, no further forces are

possible. So S must not have been a zero forcing set to begin with, and no such set

exists. Therefore,

Z(P q
n − e) ≥ q

= Z(P q
n).

So we find that

Z(P q
n − e) = Z(P q

n)

whenever e is an inner edge.

When an outer edge, e = (i, j), is removed from a proper interval graph, the

resulting graph is still a proper interval graph. This is because removing an edge is

equivalent to shortening one interval so it intersects with exactly one less interval. If

we choose to shorten the interval corresponding to vertex i, the left endpoint of the

interval remains in place, while the right endpoint moves to the left until it no longer

intersects with the interval corresponding to vertex j. As the left endpoint has not

moved, no interval to the right of i can contain i, and since i was an outer edge, no

interval to the left of i will intersect with interval j, meaning that no interval to the

left of i can contain i. Therefore, removing the outer edge e from a proper interval

graph results in another proper interval graph. See Figure 2.3 for a diagram of this

procedure.

Therefore, we can determine the effect that removing an outer edge has on the

clique cover number of a q-tree in the following way:

21

Figure 2.3: An example showing how removing an outer edge of a proper interval
graph results in another proper interval graph

22

Lemma 2.6. Let e be an outer edge. If e is incident to 1 or n, then

cc(P q
n − e) = cc(P q

n).

Otherwise,

cc(P q
n − e) = cc(P q

n)− 1.

Proof. First, assume that e is incident to vertex 1. The argument for e incident to n

is exactly the same.

Removing e from P q
n removes an outer edge, but once e is removed, the edge

e′ = (1, q) now has no other edges completely covering it. Therefore e′ is now an

outer edge. Any other edge in P q
n − e is either already an outer edge, or will have

been covered by another edge in P q
n , and will therefore still be covered in P q

n−e. This

gives us

cc(P q
n − e) = cc(P q

n),

because P q
n and P q

n − e have the same number of outer edges.

Now, assume that e is not incident to either 1 or n. So e = (i, i + q). Removing

e from P q
n still removes an outer edge, but in this case, any edge covered by e is also

covered by (i− 1, i+ q − 1) or (i+ 1, i+ q + 1). Note that i+ q + 1 ≤ n because e is

not incident to n.

Consider any edge, e′, that is covered by e in P q
n . Then the endpoints of e′ must

be between i and i + q, because it was covered by e. If the left endpoint of e′ is i,

then the right endpoint must be less than q, but then e′ will also be covered by the

edge (i− 1, i+ q − 1).

Similarly, if the right endpoint of e′ is i + q, then e′ will also be covered by

(i+ 1, i+ q + 1). Any smaller edge covered by e will, then, also be covered by these

edges. Therefore, every edge covered by e is covered by at least one other edge, and

so removing e from P q
n will not result in additional outer edges in P q

n − e.

The only other case to consider is for edges not previously covered by e, but these

edges will either already be outer edges, or will still be covered by the same outer

edge as in P q
n . This gives that the outer edges of P q

n − e are exactly the outer edges

of P q
n , minus e.

So, removing e from P q
n only removes an outer edge, and no new outer edge takes

23

its place. This means that

cc(P q
n − e) = cc(P q

n)− 1

Understanding, now, how removing outer edges affects a q-tree, we can determine

the effect of removing these edges on the zero forcing number of the graphs.

Lemma 2.7. Let e be an outer edge. If e is incident to 1 or n, then

ze(P
q
n) = 0.

Otherwise,

ze(P
q
n) = −1.

Proof. In either case, the resulting graph, P k
n − e, is a proper interval graph. So we

just need to look at the clique cover number of P q
n − e.

• If e = (1, q) or (n− q, n), then cc(P q
n − e) = cc(P q

n) by Lemma 2.6. Therefore,

Z(P q
n − e) = n− cc(P q

n − e)

= n− cc(P q
n)

= Z(P q
n).

• If e ̸= (1, k) or (n−k, n), then cc(P q
n−e) = cc(P q

n)−1 by Lemma 2.6. Therefore,

Z(P q
n − e) = n− cc(P q

n − e)

= n− cc(P q
n) + 1

= Z(P q
n) + 1.

This concludes the required lemmas describing how the zero forcing number is

affected by removing any edges from a q-tree. We are now ready for the proof of

Theorem 2.4.

Proof of Theorem 2.4: From Lemmas 2.5 and 2.7, we know that the zero forcing

number increases when an edge, e, is removed from P q
n , and e is an outer edge, not

24

of the first or last clique. Otherwise, removing e does not change the zero forcing

number.

We also know that there are exactly cc(P q
n) outer edges in P q

n . So, when choosing

an edge uniformly at random, the probability that the chosen edge increases the zero

forcing number is cc(P q
n)−2)
m

. Define the set W ⊂ E to be the set of outer edges in E

that are not incident to the vertices 1 or n.

Define the random variable XW,e to be

XW,e =

⎧⎨⎩1, if e ∈ W

0, if e /∈ W

so, XW,e is the increase in zero forcing number when removing e from P q
n . When the

edge is chosen uniformly a random, we find that

E(XW,e) =
cc(P q

n)− 2

m
.

So the zero forcing number would be expected to increase by cc(P q
n)−2
m

, or the

expected zero forcing number of P q
n − e is

Z(P q
n − e) = Z(P q

n) +
cc(P q

n)− 2

m

= q +
n− q − 2

m
.

□

2.2 Edge-Disjoint Proper Interval Graphs

Consider the family of proper interval graphs where none of the cliques share an edge.

We will call this family of graphs Edge-Disjoint Proper Interval Graphs. See Figure

2.2 for an example with a minimal zero forcing set.

If a proper interval graph has a 2-clique as a maximal clique, then the associated

edge is a cut-edge, and therefore removing that edge disconnects the graph. In the case

of proper interval graphs, the resulting graph consists of two connected components,

both of which are proper interval graphs. This is because of the path-like structure

of the proper interval graphs. No vertex to the left of the maximal 2-clique, u, is

25

Figure 2.4: An edge-disjoint proper interval graph. A minimal zero forcing set demon-
strated.

adjacent to any vertex to the right of the maximal 2-clique, and so every path from

u to the right of the maximal 2-clique passes through the maximal 2-clique. As these

are trivial to study in the context of zero forcing, we will exclude the possibility of

having maximal 2-cliques in the following proper interval graphs.

The edge spread of this family of proper interval graphs behaves much more uni-

formly than that of the q-paths in Section 2.1.

Theorem 2.8. For an edge-disjoint proper interval graph, G, with no maximal 2-

cliques,

ze(G) = 1 ∀e ∈ E(G).

Proof. Let G be an edge-disjoint proper interval graph. We will show that for any

choice of edge, e, there is a smaller zero forcing set of G − e than a minimum zero

forcing set of G. Consider the zero forcing set, S, of G described by Theorem 2.2,

with collection of forcing chains F .

First, notice that when e = (i, j) is an outer edge, then G− e is a proper interval

graph, as described above. Recall that the clique cover number of a proper interval

graph is the number of outer edges. When e is removed, two new outer edges appear

in its place. This means that removing e replaces one outer edge in G with two in

G− e, and so cc(G− e) = cc(G) + 1. Therefore,

Z(G− e) = n− cc(G− e)

= n− cc(G)− 1

= Z(G)− 1.

This gives us that

ze(G) = 1.

26

Figure 2.5: Demonstrating how to adjust the initial set of vertices if an inner edge is
removed from a 3-clique.

Now suppose that e is an inner edge of G.

If the first (or last, by symmetry) clique of G is of size 3 and e = (2, 3) (or

e = (n− 2, n− 1) in the symmetric case), then G− e is a proper interval graph with

two 2-cliques in the place of the 3-clique in G. This means that cc(G−e) = cc(G)+1,

and therefore

Z(G− e) = Z(G)− 1,

as above. So again, we see that

ze(G) = 1.

Let e be any other inner edge. Suppose e is in a clique of size 3, {i, i + 1, i + 2}.
WLOG, assume that e = (i+1, i+2). (If it isn’t, reverse the ordering of the vertices

and it will be.). Recall that S is the forcing set of G described by Theorem 2.2 with

collection of forcing chains F . Since there are no maximal 2-cliques, there is a unique

maximal clique containing i− 1, call this clique C. Clique C also contains i, so i− 1

is not the final vertex in C. Therefore, by the construction of S, i− 1 ∈ S.

Let S ′ = S − {i− 1}, as in Figure 2.5. We will show that S ′ is a zero forcing set

for G− e. Let w be the first vertex in the C. The sequence of forces are the same as

those of F until w is forced. Then i+ 1 forces i, as it only has one neighbour. After

i is forced, w only has one white neighbour, being i− 1, so w → i− 1. Then the only

white neighbour of i remaining is i+ 2, so i → i+ 2, and the remaining vertices will

be forced as in the proof of Theorem 2.2. Therefore,

27

Z(G− e) ≤ Z(G)− 1,

when e is in a 3-clique. From Theorem 1.3, we know that the zero forcing number

of any subgraph formed by the removal of one edge can differ from the zero forcing

number of the original graph by at most 1. With this, we see that,

Z(G− e) = Z(G)− 1.

Now, suppose that e = (u, v), u < v, is an inner edge in a clique, C, of size k ≥ 4.

By reversing the ordering of G, if necessary, we can ensure that e is not incident with

the last vertex in C. Therefore, we can assume that v ∈ S, where S is the forcing

set of G described by Theorem 2.2 with collection of forcing chains F . Now consider

S ′ = S − {v}. Let the first vertex of C be w.

The sequence of forces of S ′ are the same as those in F , until w is forced. See

Figure 2.6 for an example of the following cases.

If u = w, then it is adjacent to vertices in the previous clique, which are all

coloured blue, and all vertices in C except for v. So its only white neighbour is the

last vertex in C, u+ k− 1. Therefore, u → u+ k− 1 along the top edge of the clique.

Once u+ k − 1 is forced, any other vertex in the clique, aside from u, will have v as

its only white neighbour, and will therefore force v.

If u ̸= w, then u is adjacent to all vertices in C, aside from v, so its only white

neighbour is the final vertex of the clique. Therefore u forces this final vertex. Then,

w is adjacent to the vertices in the previous clique, which are all coloured blue, and

all vertices in the clique containing e, so v is its only white neighbour. So w → v.

Once v is forced, the entire clique is forced, and the remaining vertices will be

forced as in the proof of Theorem 2.2. So, S − {v} is a zero forcing set of G − e of

size Z(G)− 1. Therefore,

Z(G− e) = Z(G)− 1

and so, we have proven that

ze(G) = 1,∀e ∈ E(G)

28

Figure 2.6: Examples of adjusted initial sets of vertices if an inner edge is removed
from a k-clique, for k = 5. The first is when u = w, the second is when u ̸= w. In
both cases, arrows are drawn on edges where forces occur, and labeled in the order
of chronological forces. Once these forces are complete, the forcing chain continues
as in F .

Chapter 3

Twisted Hypercubes

One of the first families of graphs whose zero forcing number was studied was the

hypercube. Hypercubes have a recursive construction that relates to certain zero

forcing results very nicely.

Definition 18. A hypercube of dimension k, Qk, has vertex set {0, 1}k, with vertices

adjacent when they differ in exactly one coordinate.

Or, the constructive definition:

Let Q0 be a single vertex. For k ≥ 1, Qk is formed by taking two copies of Qk−1

and adding a matching joining the corresponding vertices in the two copies. This is

equivalent to taking the Cartesian product of Qk−1 and K2 to form Qk.

So the hypercube has a convenient construction that only uses a Cartesian product

of a lower dimensional hypercube and a copy of K2. In [1], the AIM Minimum Rank-

Special GraphsWork Group proves the following result about the relationship between

the Cartesian product of two graphs, and the zero forcing number of their product:

Theorem 3.1. [1] Zero Forcing Number of the Cartesian Product.

Let G and H be two non-empty graphs. Then

Z(G□H) ≤ min{Z(G)|H|, |G|Z(H)}

Sketch of Proof: Consider a minimal zero forcing set, S, for the graph G, with

forcing chain F . If we take the same set in each of the |H| copies of G in G□H, then

each of the vertices in each copy of G are only adjacent to their corresponding vertex

in every other copy of G. This means that no vertex in the initial set in G□H is

adjacent to any extra white vertices, and so the forcing chain in each copy of G will

successfully follow the forces in F .

□

29

30

This result, along with the fact that Q1, the one-dimensional hypercube, or K2,

has zero forcing number Z(Q1) = Z(K2) = 1, gives that the zero forcing number of

any hypercube is bounded above by

Z(Qk) ≤ 2k−1

Recall from Chapter 1.2, that the original purpose of the zero forcing number as

a graph parameter was to act as an upper bound for the maximum nullity of the

graph. The AIM Minimum Rank-Special Graphs Work Group had the insight to use,

instead, the maximum nullity of particular families of graphs as a lower bound for

the zero forcing number. Thus, began the study of the zero forcing number of graphs

in their own right. In their original paper [1], they show that the maximum nullity

of a k-dimensional hypercube is also at least 2k−1, concluding that the zero forcing

number of hypercubes is, in fact, equal to 2k−1:

Theorem 3.2. [1] Maximum Nullity of the Hypercube

If Qk is a k-dimensional hypercube, then

M(Qk) ≥ 2k−1

Sketch of Proof: The proof given in [1] uses the following recursive definitions of

sequences of block matrices.

H1 =

[︄
1 1

1 1

]︄
, L1 =

[︄
0 1

1 0

]︄
.

For k ≥ 2,

Hk =

[︄
Lk−1 I

I Lk−1

]︄
, Lk =

1√
2

[︄
Lk−1 I

I −Lk−1

]︄
.

So Hk is an adjacency matrix for Qk, and[︄
I 0

−Lk−1 I

]︄
Hk =

[︄
Lk−1 I

0 0

]︄
. (3.1)

As the left matrix in equation 3.1 is an invertible matrix, it acts on Hk as per-

forming standard row operations. Because the result is a matrix with rank 2k−1, this

31

shows that the minimum rank of Hk is at most 2k−1. This gives us a bound on the

maximum nullity of the graph,

M(Qk) = |Qk| −m(Qk)

≥ 2k − 2k−1

= 2k−1.

□

It follows, from Theorem 1.1 and the above upper bound on the zero forcing

number of the hypercube, that

2k−1 ≤ M(Qk) ≤ Z(Qk) ≤ 2k−1.

So,

Z(Qk) = 2n−1.

Another family of graphs closely related to the hypercube is the twisted hypercube

family. These graphs are defined as follows:

Definition 19. The unique twisted hypercube of dimension 0 consists of a single

vertex. For k ≥ 1, a twisted hypercube of dimension k is obtained from two twisted

hypercubes of dimension k − 1 by adding a matching joining the vertex sets of the

two smaller graphs.

Definition 20. The randomly twisted hypercube of dimension 0, Q̂0, consists of

a single vertex. For k ≥ 1, the randomly twisted hypercube of dimension k, Q̂k,

is formed from two disjoint, independently generated, random (k − 1)-dimensional

twisted hypercubes, Q̂k−1 and Q̂
′
k−1, by adding a random matching joining their

vertex sets.

So hypercubes are actually a special case of the twisted hypercube. This leads to

the natural follow-up question to Theorem 3.2:

Do twisted hypercubes of dimension k also have zero forcing number 2k−1? The

answer to the above question is no. For any twisted hypercube of dimension k, Q̂k,

it is easy to see that the zero forcing number cannot be more than 2k−1. If Q̂k is

formed by matching the vertices of Q̂k−1 to those of Q̂
′
k−1, then taking the initial set

32

to be Q̂k−1 is a zero forcing set. This is because each vertex in Q̂k−1 will be adjacent

to exactly one white vertex, namely the vertex in Q̂
′
k−1 to which it was matched. As

each vertex in Q̂
′
k−1 is matched to a vertex in Q̂k−1, each vertex will be forced by one

of the vertices in the initial set.

So no twisted hypercube can have zero forcing number greater than the standard

hypercube, but for k > 3, it is possible to find, using a brute force computer algorithm,

examples of twisted hypercubes of dimension k with zero forcing number less than

2k−1. See Appendix B for this algorithm.

Example 3. Consider the following twisted hypercube of dimension 4 with a single

twist, indicated in red. This twisted hypercube consists of two standard 3-dimensional

twisted hypercubes with vertices {a1, . . . , a8} and {b1 . . . , b8}. The matching between

these two copies of Q3 is a1 to b2, a2 to b1, and ai to bi for 3 ≤ i ≤ 8.

This twisted hypercube has a zero forcing set of size 23 − 1 = 7, consisting of the

initial set indicated, S = {a1, a2, a3, a4, a5, a7, a8}. A forcing chain for this zero forcing

33

set is

F = {a1 → b2,

a3 → b3,

a4 → b4 → b8,

a7 → b7 → b5,

a8 → a6 → b6,

a2 → b1}.

From this example and Theorem 3.1, we can see that there must be twisted hyper-

cubes of dimension k ≥ 4 with zero forcing number at most 7 · 2k−4 = 2k−1(1− 2−3),

which leads to the first result on the zero forcing number of twisted hypercubes.

Theorem 3.3. There exist infinite families of twisted hypercubes with zero forcing

number

Z(Q̂k) ≤ 2k−1(1− 2−3)

= Z(Qk)(1− 2−3),

for k ≥ 4.

Proof. We will prove this by induction on the dimension of the twisted hypercubes.

Base Case: Consider the twisted hypercube outlined in Example 3, call it Q̂4.

Recall that Z(Qk) = 2k−1. This twisted hypercube has zero forcing number

Z(Q̂4) = 7

= 24−1 − 1

= 23(1− 2−3)

= Z(Q4)(1− 2−3).

Induction Step: Let Q̂k be a k-dimensional twisted hypercube with zero forcing

number less than Qk,

Z(Q̂k) = 2k−1(1− 2−3).

Now consider a twisted hypercube of dimension k + 1, Q̂k+1 = Q̂k□K2.

34

From Theorem 3.1, we see that

Z(Q̂k+1) = Z(Q̂k□K2)

≤ Z(Q̂k)|K2|

= 2k−1(1− 2−3) · 2

= 2k(1− 2−3)

= Z(Qk)(1− 2−3).

So, taking the Cartesian product of this Q̂4 with K2 results in a twisted hypercube

with zero forcing number smaller than that of Q5, and taking the Cartesian product

of the resulting graphs with K2 results in larger and larger twisted hypercubes with

smaller zero forcing number than the corresponding hypercubes.

Now we can ask whether these families of twisted hypercubes have the smallest

zero forcing number among all twisted hypercubes? Again, the answer to this question

is no. Using the same algorithm as that used to find the 4-dimensional twisted

hypercube with zero forcing number 7, we was able to find, for twisted hypercubes of

dimension 5 and 6, zero forcing sets of size 13 and 25 respectively. See Appendix A

for examples. Notice that 13 is double the minimum zero forcing number of a twisted

hypercube of dimension 4, minus 1. We can write this as

Z(Q̂5) ≤ 2(23(1− 2−3))− 1

= 24 − 2− 1

= 24(1− 2−3 − 2−4).

Using the same method as Theorem 3.3, we can then find an infinite family of

twisted hypercubes of dimension k ≥ 4 with zero forcing number

Z(Q̂k) = 2k−1(1− 2−3 − 2−4).

Similarly, 25 is double 13 minus 1, which we can express as

Z(Q̂6) ≤ 2(24(1− 2−3 − 2−4))− 1

= 25 − 22 − 2− 1

= 25(1− 2−3 − 2−4 − 2−5),

35

which results in an infinite family of twisted hypercubes of dimension k ≥ 5 such that

Z(Q̂k) = 2k−1(1− 2−3 − 2−4 − 2−5).

This short sequence seems to fit a pattern of doubling the zero forcing number

and subtracting one, whenever the dimension is increased after k = 3. We believe

this pattern will continue, and pose the following conjecture:

Conjecture 1. There exists a family of twisted hypercubes of dimension k ≥ 4, Q̂k,

such that

Z(Q̂k) ≤ 2k−1(1− 2−3 − 2−4 − · · · − 2−(k−1)).

As well as these examples with small zero forcing numbers, I have found examples

of twisted hypercubes of dimension 4 with zero forcing number 8, twisted hypercubes

of dimension 5 with zero forcing number 14, and 15, and twisted hypercubes of dimen-

sion 6 with zero forcing number varying between the currently observed minimum,

25, and the value of the 6 dimensional hypercube, 32. So, being a twisted hypercube

will not guarantee that the zero forcing number of the graph will be the minimum

possible, and in fact, it appears as though every value for the zero forcing number

between the minimum and 2k−1 is attainable for some twisted hypercube of dimension

k.

For k ≤ 3, however, the zero forcing number of any twisted hypercube matches

the zero forcing number of the untwisted hypercube. This can be proven exhaustively

as there are relatively few hypercubes of dimension less than 4.

Theorem 3.4. For k ≤ 3,

Z(Q̂k) = Z(Qk).

Proof. For k = 1 and k = 2 there is exactly one twisted hypercube, up to isomor-

phism. These being,

Q1
∼= K2,

Q2
∼= C4,

and we know their zero forcing numbers, from [1], are

Z(K2) = 1,

Z(C4) = 2.

36

Since these graphs are the same, up to isomorphism, as Q1 and Q2 with the same

zero forcing number, the only graphs to check are the different copies of Q̂3.

There are a number of twists possible between two copies of a four cycle, but

many of these are the same up to isomorphism. To represent these different twists, I

will use standard permutation notation.

Let Q2 and Q′
2 be two copies of the 2-dimensional hypercube with vertex sets

{1, 2, 3, 4} and {1′, 2′, 3′, 4′} respectively. The matching that matches vertex 1 in the

first copy of Q2 to vertex 2′ in the second copy of Q2, matches 2 to 3′, 3 to 4′, and 4

to 1′ would be (︄
1 2 3 4

2 3 4 1

)︄
.

Because both of these graphs are cycles, the permutations of the vertices will result

in many graphs isomorphic to each other. WLOG, assume that vertex 4 matches to

4′, so there will be 3! = 6 different permutations to study.

The first permutations I will consider are the following:(︄
1 2 3 4

1 2 3 4

)︄
,

(︄
1 2 3 4

2 3 1 4

)︄
.

The first is the identity, and results in a Q3, so can be ignored. The 3-cycle results

in a graph not isomorphic to Q3, but a brute force check confirms that there are no

zero forcing sets of size < 4.

37

The next set of permutations are the single twists:

(︄
1 2 3 4

2 1 3 4

)︄
,

(︄
1 2 3 4

4 2 3 1

)︄
.

These permutations also do not result in a graph isomorphic to Q3, the first results

in a graph which is isomorphic to the above 3-cycle generated graph, so has already

been checked. Again, a brute force check shows that no initial set of three vertices is

a zero forcing set for the second permutation.

The final permutations to consider are the double twists:

(︄
1 2 3 4

2 1 4 3

)︄
,

(︄
1 2 3 4

4 3 2 1

)︄
.

The first of these permutations also results in graphs isomorphic to Q3, and so

has zero forcing number 4. The second results in a graph isomorphic to the second

single twist, and so has already been checked.

38

So, of all unique matchings joining the two copies of Q2, only two resulted in

unique 3-dimensional twisted hypercubes, which have no zero forcing sets of size less

than 4. Therefore, the zero forcing number of any 3-dimensional twisted hypercube,

Q̂3, is 4.

Therefore,

Z(Q̂3) = 4

for all possible twisted hypercubes of dimension 3. However, the more immediately

useful result from Theorem 3.4 is that there are only 3 possible 3-dimensional twisted

hypercubes. Denote these twisted hypercubes as {Q3, Q̂3, Q̂
′
3}, where Q3 is the 3-

dimensional hypercube. This gives us a way to, more efficiently, exhaustively check

all possible hypercubes of dimension 4.

There are six ways to choose which of the 3 copies of Q̂3 to use to create our

Q̂4, since we can decide to use the same copy twice, and order doesn’t matter. So,

choosing option 1 and option 3 is the same as choosing option 3 and option 1. This

gives the possible pairings of twisted hypercubes as

Q3 → Q3 Q̂3 → Q̂3 Q̂
′
3 → Q̂

′
3

Q3 → Q̂3 Q̂3 → Q̂
′
3

Q3 → Q̂
′
3

39

For each of these six possible pairs, there are 8! possible ways to match the vertices

of one Q̂3 to the other. This gives a total count of 4-dimensional twisted hypercubes

we can generate to be

6 · 8! = 241920.

Many of these twisted hypercubes are isomorphic. I attempted to determine the

number of non-isomorphic twisted hypercubes, but the program to determine the set

of unique twisted hypercubes did not finish after a week of checking.

While this is still too large a set to realistically analyse by hand, it is within the

grasp of brute force computer computation to sort out. I have found that of the

241920 possible twisted hypercubes of dimension 4, 234480 have zero forcing number

7, and the remaining 7440 4-dimensional twisted hypercubes have zero forcing number

8. This gives us that 96.9% of of these twisted hypercubes have zero forcing number

7, and the remaining 3.1% have zero forcing number 8. Interestingly, this means that

there are thousands of generated examples of 4-dimensional twisted hypercubes with

zero forcing number 8, many of which are not isomorphic to the standard hypercube.

Therefore, being a twisted hypercube is not sufficient to have zero forcing number

less than that of the standard hypercube of the same size.

While this method of brute force computation is viable for these small examples

of twisted hypercubes, it is already pushing the limits of what can be efficiently done.

Once we step up to 5 dimensions, we’ve already reached the point of being way too

vast to compute in a lifetime. There are

241920∑︂
i=1

i = 29, 262, 764, 160

different ways to choose a pair of 4-dimensional twisted hypercubes, by the same

reasoning as above. For each pair, there are 16! different matchings between the two

graphs. Considering that it took my computer roughly a day to generate all possible

Q̂4’s and find each zero forcing number, trying to use the same method for Q̂5 is

not realistic. So, more general techniques will be required in order to analyse higher

dimensional twisted hypercubes.

As indicated in the proof of Theorem 3.2, the adjacency matrices of hypercubes

have a nice structure and can be used to study their algebraic properties. I hoped to

use this same property to find similar results for the zero forcing number of twisted

40

hypercubes as the zero forcing number of hypercubes. As with hypercubes, twisted

hypercubes have a nice block matrix form for their adjacency matrices, which can be

defined recursively.

Let

T1 =

[︄
0 1

1 0

]︄
.

Assuming we are given Tk−1 and T ′
k−1 define

Tk =

[︄
Tk−1 Pk−1

P T
k−1 T ′

k−1

]︄
,

where Pk is any permutation matrix of size 2k × 2k. Note that T1 is an adjacency

matrix for Q̂1, and so Tk is an adjacency matrix for Q̂k. My initial idea was to try to

emulate the proof of Theorem 3.2, and use the fact that the zero forcing number is

an upper bound for the maximum nullity, in reverse.

The Special Graphs Work Group uses the adjacency matrix of hypercubes to find a

lower bound for the maximum nullity, and therefore a lower bound for the zero forcing

number. In their case, the derived lower bound matched the previously known upper

bound and gave equality. Immediately, we can see that for twisted hypercubes, a

general equality statement is impossible. This is because there are different possible

twisted hypercubes with the same dimension that have different zero forcing numbers.

For k > 3, there will, at best, be a range of potential zero forcing numbers for the

twisted hypercubes of a given dimension, k.

To bound the maximum nullity, the Special Graphs Work Group instead computed

an upper bound for the minimum rank of the adjacency matrices, and used

M(G) = n−mr(G) ≤ n− (rank(A)),

where A is an adjacency matrix for G.

Their proof hinged on the fact that the permutation used in the construction of

hypercubes is the identity permutation, as well as the fact that the inverse of one of

the adjacency matrices of Qk, specifically Lk, is itself. This allowed them to compute

the rank of the constructed matrices to be 2k−1. In other words, they row-reduced

the matrix with a specified set of operations that converted half of the rows to be

zeroes.

41

In the case of twisted hypercubes, one would need to solve similar equations. The

first difference is that the permutations describing the matchings between twisted

hypercubes need not be the identity. The second is that the two graphs being matched

are not necessarily the same. Finally, the row reduction algorithm cannot result in

a matrix with rank 2k−1, as we know that there exist twisted hypercubes with zero

forcing number less than 2k−1.

Firstly, we need to construct adjacency matrices for twisted hypercubes of dimen-

sion k, Tk. Then, we need to row reduce this matrix to show it has nullity equal to

the smallest zero forcing number for twisted hypercubes of dimension k.

The construction of Tk will presumably follow the same recursive style as Theorem

3.2, being

T1 =

[︄
0 1

1 0

]︄
.

Tk = c

[︄
Tk−1 Pk−1

P T
k−1 Tk−1

]︄
.

where c ∈ R is a scalar, and Pk−1 is a permutation matrix of size 2k−1.

Once constructed, the rank of Tk must be determined. I was unable to find a

construction which guaranteed a rank lower than 2k − 2. This is not nearly low

enough, as for k = 4, I have found zero forcing sets of size 7 for particular copies of

Q̂4. This bounds the maximum nullity of T4 as

M(T4) ≤ Z(Q̂4) = 7

From the maximum nullity, we can compute the minimum rank of the adjacency

matrix

mr(T4) = n−M(T4)

≥ 24 − 7

= 9

Similarly, for k = 5 and k = 6, we need to demonstrate adjacency matrices with

rank 19 and 39 respectively.

To this end, I pose the problem

42

Problem 1. Minimize the rank of the adjacency matrix of the twisted hypercube.

For small values of k, show the following:

rank(T4) = 9

rank(T5) = 19

rank(T6) = 39.

Chapter 4

Probabilistic Zero Forcing

Probabilistic Zero Forcing, introduced in [17], is a generalization of Zero Forcing

where blue vertices can force their neighbours without the requirement that only one

of their neighbours are white. Recall Definition 15, the probabilistic color change

rule:

Definition 15: For a graph, G, consider a set of blue vertices, S. With respect to

S, define the probabilistic colour change rule as follows:

Let P (u → v) be the probability that the event u → v occurs. Then

P (u → v) =

⎧⎨⎩
|N [u]∩S|
|N(u)| , if u ∈ S and v ∈ N(u) ∩ Sc

0 otherwise

where u forces each of its white neighbours independently.

From this definition, we can see that if a blue vertex, u, has only one white

neighbour, v, then P (u → v) = 1, and the process reduces down to classical zero

forcing. Also, for any connected graph, having a single initial vertex in S is sufficient

for the graph to become fully forced in a finite number of iterations, with probability

1. This gives that the probabilistic zero forcing number of any graph is the number

of connected components, and is not an interesting parameter to study. Rather, we

can look at how long it takes to fully force a given graph.

This leads to the primary topic of study within probabilistic zero forcing, the ex-

pected propagation time. Recall Definition 16:

Definition 16: The expected propagation time of a connected graph G is the mini-

mum of the expected propagation time from an initial vertex,

ept(G) = min
v∈V (G)

{ept(G, {v})}.

In this chapter, we will refer to one iteration of applying the probabilistic colour

change rule to all blue vertices and their white neighbours as one turn. Then the

43

44

expected propagation time of a graph is the expected number of turns it takes to

colour all vertices blue.

Recall from Table 1.1 that the expected propagation time of a path is

ept(Pn) =

⎧⎨⎩
n
2
+ 2

3
if n is even

n
2
+ 1

2
if n is odd.

This result comes from taking the initial vertex to be the center of the graph, and

once any force occurs, the process becomes a deterministic zero forcing process. Sim-

ilarly, for the star graph in Theorem 1.8, the expected propagation time comes from

beginning with the central vertex and forcing all of the leaves. For nearly all of the

families of graphs that have been studied, the upper bounds on the expected prop-

agation time are computed by taking the starting vertex in the center of the graph.

While this is a natural candidate for expected propagation time, as these vertices will

have the shortest paths to force the furthest vertices, is this always the best choice

for any graph?

I will begin by outlining some simple experiments that I have run on a particular

family of graphs, q-paths. Recall from Definition 4 that q-paths are a special type of

q-tree where each new copy of Kq is attached to the next-most recently added Kq.

I will give evidence to support the theory that particular length q-paths may be

faster to propagate when starting the probabilistic zero forcing process from outside

the center of the graph. I will supplement this with theoretical computations to

attempt to explain the relationship.

4.1 Experiments

When propagating a probabilistic zero forcing process, the first thing that must occur

is the forcing of the entire closed neighbourhood of the initial vertex. This is because

once the neighbourhood of the initial vertex is forced, then this set of blue vertices

is a classical zero forcing set. Once our graph contains a classical zero forcing set,

at least one vertex will be forced each turn with probability 1, and the limit on the

number of turns remaining is the number of remaining white vertices. The worst case

for this is when none of the neighbours of the initial vertex are adjacent. For this

reason, we use the star bound, Theorem 1.8, to bound the expected propagation time

45

to force this set. This results in the first forces of our process taking time dependent

on the degree of the initial vertex.

The reason that q-paths are a viable choice of graph for which a starting vertex

outside of the center is because the degrees of the vertices in the center of the graph

are, generally, much higher than others. For example, for any q-tree with more than 2q

vertices, the degree of the central vertex is 2q, whereas the degree of the end vertices

are only q. This is because each new vertex, v, added to the q-path is immediately

connected to q other vertices. Then, the next q vertices added to the q-path will also

be connected to v, giving it a degree of 2q.

So, in theory, it will take much longer for a central vertex to force its entire

neighbourhood at the beginning of the zero forcing process, rather than an end vertex.

This could be significant because once this initial neighbourhood is forced, this will

be a classical zero forcing set for P q
n . Therefore, each turn will include at least one

deterministic zero force, or a probabilistic force with probability 1. This gives a hard

limit on the number of remaining turns in the propagation, being the number of

remaining white vertices. So, if we can get to this state of the propagation process

faster, then we may be able to force the entire graph faster.

Therefore, we are looking for q-paths that have central vertices with high enough

degree that they are significantly slower to force their neighbourhoods, but are short

enough so that the end vertices can force the opposite end of the graph before the

central vertices can force their neighbourhoods.

For the purposes of these experiments, I will consider q-paths of length at least

q+2, because q-paths of length q and q+1 are complete graphs, and all vertices are,

therefore, central.

For each of the following values of q and n, I have run the probabilistic zero forcing

process on the graph 10 000 times for each starting vertex and computed the average

number of turns required to force the graph. See Appendix B for the associated code.

n ept(P q
n , [1]) ept(P q

n , [⌈n
2
⌉]) ediff = ept(P q

n , [1])− ept(P q
n , [⌈n

2
⌉])

q = 2

4 2.5569 2.5481 0.0088

5 3.0358 2.9501 0.0857

46

6 3.6832 3.312 0.3712

q = 3

5 2.8594 2.8683 -0.0089

6 3.1791 3.1385 0.0406

7 3.5049 3.3741 0.1308

q = 4

6 3.0869 3.0918 -0.0049

7 3.3356 3.2967 0.0389

8 3.5401 3.4925 0.0476

9 3.7612 3.6357 0.1255

q = 5

7 3.2654 3.2704 -0.005

8 3.4281 3.4277 0.0004

9 3.5924 3.5551 0.0373

10 3.7462 3.6838 0.0624

11 3.9297 3.7968 0.1329

q = 6

8 3.3823 3.3972 -0.0149

9 3.5321 3.5135 0.0186

10 3.661 3.6293 0.0317

11 3.779 3.7313 0.0477

12 3.8825 3.8507 0.0318

13 4.0542 3.9149 0.1393

q = 7

9 3.5053 3.4944 0.0109

10 3.6081 3.6317 -0.0236

11 3.7224 3.7012 0.0212

12 3.8211 3.7772 0.0439

13 3.8997 3.855 0.0447

14 4.0285 3.9552 0.0733

15 4.1345 4.0026 0.1319

47

q = 8

10 3.5732 3.6013 -0.0281

11 3.6729 3.6837 -0.0108

12 3.7665 3.7606 0.0059

13 3.8529 3.8288 0.0241

14 3.9453 3.8981 0.0472

15 4.0213 3.9538 0.0675

16 4.1205 4.0271 0.0934

q = 9

11 3.6504 3.6613 -0.0109

12 3.7319 3.7127 0.192

13 3.8106 3.8069 0.0037

14 3.8784 3.865 0.0134

15 3.9568 3.9399 0.0169

16 4.041 3.9994 0.0416

17 4.1008 4.0724 0.0284

18 4.1857 4.1355 0.0502

19 4.279 4.1659 0.1131

q = 10

12 3.726 3.7223 0.0037

13 3.7853 3.7813 0.004

14 3.8451 3.869 -0.0239

15 3.8981 3.9087 -0.0106

16 3.9976 3.9579 0.0397

17 4.0542 4.0195 0.0347

18 4.1117 4.0683 0.0434

19 4.1729 4.1101 0.0628

20 4.2384 4.1722 0.0662

21 4.3191 4.218 0.1011

As ediff is the difference between the expected propagation times with initial

vertex at the end of the graph, and the center of the graph, negative values would

48

indicate that the end vertex had the faster propagation, on average. From this table,

it would appear that, beginning at q = 3, we can find examples of graphs where ediff

is negative. This generally occurs when n = q + 2, the first q-path that is not a

clique. For larger values of q, there are more examples of graphs where this occurs.

As for q = 7, when n = q + 2, we see that ediff is positive, and when n = q + 3

we get a negative ediff value. Similarly, for q = 10, we get positive values of ediff

for n = 12 and 13, before getting negative values for both n = 14 and n = 15. In

the following sections, we will develop bounds on the expected propagation times of

q-trees according to different initial vertices. This will give a better idea of when we

would expect negative ediff values.

4.2 2-paths

For q = 2, I will first look at the expected propagation time of P 2
n from vertex 1, the

end vertex of the 2-path. This will be more straightforward to analyse because all

forces will happen in the same direction. From the table in the previous section, we

expect to see that, for 2-trees, beginning in the center of the graph will always be

faster, on average.

Theorem 4.1. Let P 2
n be a 2-tree of order n. Then

ept(P 2
n , {1}) =

4

7
n(1 + o(1)).

Proof. Let Zt be the number of blue vertices in P 2
n after turn t, and St the set of blue

vertices after turn t. So Zt = |St|. When S0 = {1}, before the first turn,

P (1 → 2) = P (1 → 3) =
1

2
.

So, the first turn will consist of the events {1 → 2}, {1 → 3}, {1 → 2∩ 1 → 3}, or
the event that no forcing occurs, all with equal probability, 1

4
. If either {1 → 2} or

{1 → 2 ∩ 1 → 3} occur on turn 1, then we will say that the graph is in State A, see

Figure 4.1. Let the event that P q
n is in State A be A. In general, we will say that the

graph is in State A after turn t if Zt > 1, and all vertices to the left of the rightmost

vertex, v, are blue. See Figure 4.1 for an example.

Suppose the graph is in State A and the rightmost blue vertex is v. Then, vertex

v + 1 will be forced on the next turn with probability 1 by vertex v − 1. The only

49

Figure 4.1: A 2-tree in State A

other vertex that can be forced on this turn is v + 2, and this vertex can only be

forced by v. As v has two blue neighbours and two white neighbours, vi → v+2 with

probability

P (v → v + 2) =
|N [v] ∩ St|
|N(v)|

=
3

4
.

Define the random variable Y as follows:

Yt =

⎧⎨⎩1, if vi → v + 2

0, otherwise.

Since Yt is a Bernoulli random variable, E(Yt) =
3
4
.

We will assume, first, that the q-path is infinite.

Note that if the graph is in State A for turn t, Zt = Zt−1 + 1 + Yt. This gives

us that E(Zt|A,Zt−1) = Zt−1 +
7
4
. In other words, the expected number of vertices

forced each turn when the graph is in State A is 7
4
. Also notice, when the graph is

in State A, the only possibility after each turn is for the graph to remain in State A.

So, we know the expected number of forces that will occur each turn once the graph

is in State A, and therefore, we can use stopping times to determine when all of the

vertices will be forced.

Define the random variable Wt = Zt − 7
4
t. Then W0 = Z0 = 1, and

E(Wt+1|Zt) = E(Zt+1|Zt)−
7

4
(t+ 1)

= Zt −
7

4
+

7

4
(t+ 1)

= Zt +
7

4
t

= Wt.

50

Figure 4.2: A 2-tree in State B

So, {Wt} is a martingale with respect to {Zt}. We will say that this process ends

once Zt ≥ n, so we can define T to be the first time that ZT ≥ n. This is a stopping

time for this process. Also, note that we can force at most two vertices per turn

when the graph is in State A, so ZT = n or n + 1. By the Stopping Time Theorem,

Theorem 1.6, we find that

E(WT) = W0

= 1,

and because we know that WT = ZT − 7
4
T , we can compute

E(ZT) = E(WT) +
7

4
E(T)

= 1 +
7

4
E(T).

Therefore, we find
4

7
n− 4

7
≤ E(T) ≤ 4

7
n.

This tells us that if the graph begins in State A, we would expect the graph to

become fully forced in at most 4
7
n turns.

If, on turn 1, the event {1 → 3} occurs, then I will say that the graph is in State

B. Let the event that P q
n is in State B be B. In general, I will say a graph is in State

B after turn t if |Zt| > 1, and all vertices to the left of v are blue, except for vertex

v − 1. Notice that since these are all possible sequences of forces on turn 1, and the

rightmost vertex only has two white neighbours to its right, the graph is always in

either State A or State B after the initial force. See Figure 4.2 for an example.

Now, suppose the graph is in State B. Then v − 1 will be forced with probability

1 by vertex v− 2 on this turn. Aside from this, v can force v+1 and v+2, both with

probability 1
2
. These are all vertices that can be forced this turn. Define the random

51

variables Yt,1 and Yt,2 as follows:

Yt,1 =

⎧⎨⎩1, if v → v + 1

0, otherwise
, Yt,2 =

⎧⎨⎩1, if v → v + 2

0, otherwise

These are both Bernoulli random variables, so E(Yt,1) = E(Yt,2) =
1
2
. When the

graph is in State B, Zt = Zt−1 + 1 + Y1 + Y2. Then E(Zt|B,Zt−1) = Zt−1 + 2, or

the expected number of vertices forced each turn while the graph is in State B is 2.

While in State B, the only way to remain in State B after a turn is when v → v + 2

and v ↛ v + 1. As these events are independent, the probability that this occurs is

P (Y c
1 ∩ Y2) = P (Y c

1)P (Y2) =
1

4
.

So there is a 1
4
chance to remain in State B if the graph in State B. Otherwise, the

graph will transition to State A. If the graph remains in State B after an application

of the probabilistic color change rule, then exactly one sequence of forces must have

occurred, {v − 2 → v − 1 ∪ v → v + 2}. Therefore, we know that if the graph is in

State B before turn t, and remains in State B after turn t, then

Zt+1 = Zt + 2,

or, exactly two vertices are forced if the graph remains in State B. Furthermore, if

after turn 1, the graph is in State B, then Z1 = 2, and if the graph is still in State B

after turn t, then Zt = 2t.

From the above transition probabilities, we can set up a simple Markov chain to

describe the behaviour of the forcing set, as shown in Figure 4.3. Let {Xt} be the

sequence that says what state the graph is in at time t. Let {1} be the event that

only vertex 1 is in St. Then the transition matrix, P , for this Markov chain is given

by

P =

⎡⎢⎢⎣
{1} B A

{1} 1
4

1
4

1
2

B 0 1
4

3
4

A 0 0 1

⎤⎥⎥⎦.
As A is clearly the absorbing state for this Markov chain, we can compute the

expected number of turns to transition to State A if we assume this is an infinite

52

B

1 A

3
4

1
4

1
4

1
4

1
2

1

Figure 4.3: The Markov chain of forcing set states of P 2
n

process. We can use the hitting times from Definition 14 to compute the expected

number of turns to transition from {1} to A. Let hi,j be the hitting time from state

i to state j. Then

hB,A =
∞∑︂
i=1

iP ({Xt+i = A} ∩
i−1⋂︂
j=0

{Xt+j = B}|Xt = B)

=
∞∑︂
i=1

i

(︃
3

4

)︃(︃
1

4

)︃i−1

= 3
∞∑︂
i=1

i

4i

=
4

3
,

h1,A =
1

2
(1) +

1

4
(1 + h1,A) +

1

4
(1 + hB,A).

Grouping like terms gives

3

4
h1,A =

1

2
+

1

4
+

7

12
,

which solves to give

h1,A =
16

9
.

So the expected time to hit State A when starting from S0 = {1} is 16
9
turns.

Now, we separate the expected propagation time into two parts. Recall from

above that T is the first time the sequence Zt ≥ n. Define T1 to be the first time that

the graph transitions into State A, or vertex n becomes blue.

Let U be the event that ZT1 ≤ n. So, U is the event that the graph transitions

into State A before vertex n − 1 turns blue. Then UC is the event that the process

53

finishes without transitioning to State A, namely, the graph is always in State B. If

UC occurs, we immediately know a few things:

• First, the total time to force the graph will be one more than the time to

transition to State A. Once n is forced, there will need to be one more force,

which happens with probability 1. So,

T ≤ T1 + 1,

since the graph does not transition to State A.

• It follows that

n

2
− 1 ≤ E(T |UC) = E(T1|UC) + 1

≤ h1,B|UC +
n− 1

2
+ 1

≤ n

because we know that two vertices are forced each turn if the graph remains in

State B, and n− 1 vertices are blue at time T1.

• Finally,

P (UC) ≤ 1

2

(︃
1

2

)︃n/2−1

=

(︃
1

2

)︃n/2

because we could be in either State {1} or B, and the minimum probability of

entering State A is 1
2
. Also,

P (UC) ≥ 1

2

(︃
1

4

)︃n/2−1

≥
(︃
1

4

)︃n/2

because the minimum probability of not entering State A is 1
4
. This gives that(︃

1

2

)︃n

≤ P (UC) ≤
(︃
1

2

)︃n/2

.

54

From the Law of Total Probability (Definition 9), we can see that

E(T1) = P (U)E(T1|U) + P (UC)E(T1|UC).

Rearranging this equation, we can solve for E(T1|U):

E(T1|U) =
1

P (U)

(︁
E(T1)− P (UC)E(T1|UC)

)︁
≥ 16

9
−
(︃
1

2

)︃n/2

n

=
16

9
(1− o(1)).

E(T1|U) =
1

P (U)

(︁
E(T1)− P (UC)E(T1|UC)

)︁
≤ 1

1−
(︁
1
2

)︁n/2 (︃16

9
−
(︃
1

2

)︃n

n

)︃
=

16

9
(1− o(1)).

This gives

E(T1|U) =
16

9
(1− o(1)).

Next, we can determine the expected remaining time to force the graph once it is

in State A, because we know how many vertices are forced each turn before reaching

State A. Let T2 the time it takes for the process to finish once in State A. Then

T = T1 + T2 < n− 1.

As mentioned above,

0 ≤ E(T2|UC) ≤ 1

because P 2
n never achieves State A. If we do achieve State A, then by the stopping

time argument above, we know the upper bound on the number of turns remaining

to force the graph. It is 4
7
times the number of white vertices remaining,

E(T2|U) =
4

7
(n− 2E(T1|U)) .

55

This gives a total expected propagation time of

E(T |U) = E(T1|U) + E(T2|U)

= E(T1|U) +
4

7
(n− 2E(T1|U))

=
4

7
n− 1

7
E(T1|U)

=
4

7
n− 1

7

(︃
16

9
(1− o(1))

)︃
=

4

7
n(1− o(1)).

Then

E(T) = P (U)E(T |U) + P (UC)E(T |UC)

≤ 4

7
n(1− o(1)) +

(︃
1

2

)︃n/2

(n+ 1)

=
4

7
n(1 + o(1)),

and

E(T) = P (U)E(T |U) + P (UC)E(T |UC)

≥ 4

7
n(1− o(1)) +

(︃
1

2

)︃n (︂n
2
− 1
)︂

=
4

7
n(1 + o(1)),

giving that E(T) = 4
7
n(1 + o(1))

Now I will consider the case when the probabilistic zero forcing process begins in

the center of the graph. The major difference between the initial vertex being in the

center and at the end is that there are really two separate probabilistic zero forcing

processes occurring simultaneously. The set of blue vertices will be expanding towards

both ends of the q-path at the same time. The following lemma will, therefore, be of

use.

Lemma 4.2. Let v be a vertex in P q
n, and St ⊂ V (P q

n) the subset of blue vertices

after turn t. If N [v] ∈ St, then no vertex greater than v can force a vertex less than

v.

56

Proof. If v is in the first maximal clique of P q
n , then N [v] being in St implies that

there are no vertices less than v remaining to be forced, and the result holds trivially.

A symmetric argument holds for v in the last maximal clique.

So, assume v is not adjacent to 1 or n. We will argue for the vertices greater than

v, and the symmetric argument will hold for vertices less than v. The smallest vertex

greater than v that could possibly be forced is v+ q+1, because v+ q ∈ N [v], which

is assumed to be blue. Any vertex u < v cannot be in the neighbourhood of v+ q+1,

because

|(v + q + 1)− u| = v + q + 1− u

> v + q + 1− v

= q + 1.

So no vertex smaller than v can force any vertex greater than v once its closed

neighbourhood is completely forced.

This lemma tells us that once the neighbourhood of the initial vertex is forced, then

the graph is effectively split into two halves, with respect to probabilistic zero forcing.

We can, then, consider the subgraphs induced by {1, . . . , v} ⊂ V (P q
n), and {v, . . . , n}

as two separate q-paths after N [v] is all blue. Therefore, when the initial vertex in

the forcing set is in the center, a similar computation can be used to determine the

expected propagation time of S0 = {⌈n
2
⌉} on P 2

n .

Theorem 4.3. Let P 2
n be a 2-tree of order n. Then

ept(P 2
n , {
⌈︂n
2

⌉︂
}) ≤ 2

7
n(1 + o(1))

Proof. Let Zt be the number of blue vertices in P 2
n after turn t and St the set of blue

vertices after turn t. Let v be the vertex ⌈n
2
⌉. By Lemma 4.2, once N [v] is entirely

forced, the vertices on either side of v cannot interact with each other. We will refer

to the subgraph induced by {1, . . . , v} as the left half of P q
n , and the subgraph induced

by {v, . . . , n} as the right half of P q
n .

This naturally splits the probabilistic zero forcing process into two phases: the

first is forcing N [v], the second is forcing the remaining vertices. By Theorem 1.8,

this first phase takes constant time, because the degree of v is fixed. If we then

assume that N [v] is forced in constant time, then the worst case is when no other

57

vertices outside of N [v] are forced. While we could define specific states that the

graph could be in, note that in Theorem 4.1, the lowest expected number of forces

came from State A, which is the equivalent state that both halves of P q
n are in under

this assumption. So assuming that P 2
n is in State A will give an upper bound on the

expected propagation time for the graph.

Define Tr,1 to be the time it takes to force N [v], and Tr,2 to be the time to force the

remaining vertices in the right half of P 2
n once N [v] is forced. Let Tr be the first time

that all vertices in the right half of P 2
n are forced. Then Tr = Tr,1 + Tr,2. Define the

analogous random variables for the left half, Tl = Tl,1+Tl,2. Recall from Theorem 4.1

that the stopping time for a 2-path once in State A is 4
7
time the number of vertices

remaining. Assume N [v] is forced, and no other vertices are forced. Then each half of

P 2
n can be considered to be a 2-path on at most n

2
+1 vertices where the probabilistic

zero forcing process began with an end vertex, and is in State A. As 3 vertices from

these subgraphs are blue, the expected time remaining to force each half of P 2
n is at

most

E(Tr,2) ≤
4

7

(︂
(
n

2
+ 1)− 3

)︂
=

2

7
(n− 4).

Then, the total expected time to force the right half of the graph is

E(Tr) = E(Tr,1) + E(Tr,2)

≤ O(1) +
2

7
(n− 4)

=
2

7
n(1 + o(1)).

The symmetric argument shows that the expected time to force the left half of

P 2
n will also be 2

7
n(1 + o(1)). This gives that the time it takes to force the graph P 2

n

is the time it takes for both halves of the graph to be forced. This is equal to the

number of turns it takes the slower of the two halves to become forced.

Notice that Tr can take values from n
4
if all possible vertices are forced each turn,

to n
2
if only the deterministic vertices are forced each turn. The former happens with

probability (3
4
)n/4, and the latter with probability (1

4
)n/2. Notice that if the process

ends after n
4
turns, then every turn consisted of two forces, and 2 · n

4
= n

2
vertices

were forced. If the process ends after n
4
+ 1 turns, there were necessarily n

4
− 1 turns

58

with two forces, and 2 turns with a single force. This combination of turns results

in 2 · (n
4
− 1) = n

2
− 2 vertices forced on turns with two forces, and 1 · 2 = 2 vertices

forced on turns with a single force, totaling n
2
vertices. In other words, every turn

with two forces that is removed, must be replaced by two turns with a single force.

So, if the process ends in n
4
≤ n

4
+ k ≤ n

2
turns, then there are exactly 2k turns in

which the extra vertex is not forced. As there are
(︁n

4
+k

2k

)︁
possible choices for these 2k

turns, the probability that this event occurs is

P (Tr = k) =

(︃
n
4
+ k

2k

)︃
(
3

4
)n/4−k(

1

4
)2k.

Define T to be the largest of Tr and Tl. So,

T = max{Tr, Tl}.

By Theorem 1.7, we have an expression to compute the maximum value of these

two random variables:

E(T) = E(max{Tr, Tl})

=
∞∑︂
x=0

P (Tr = x)

(︄
x+

∞∑︂
y=x+1

P (Tl ≥ y)

)︄

≤
n/4∑︂
x=0

xP (Tr = x) +

n/4∑︂
x=0

P (Tr = x)

n/4∑︂
y=x+1

1

≤ E(Tr) +

n/4∑︂
x=0

(︃
n
4
+ x

2x

)︃(︃
3

4

)︃n/4−x(︃
1

4

)︃2x (︂n
4

)︂
≤ E(Tr) +

(︂ n

4 · 2n
)︂ n/4∑︂

x=0

nx3n/4

(2x)!
, because

(︃
n

k

)︃
≤
(︃
nk

k!

)︃
.

Recall from calculus, the series root test: Suppose we have a series
∑︁

n an. Define

L = lim
x→∞

x
√︁

|ax|.

Then, if L < 1, the series converges. If L > 1, the series diverges. If L = 1, the series

may converge or diverge.

59

Considering the series
∑︁∞

x=1
nx

(2x)!
, we can see that

L = lim
x→∞

x

√︄
nx3n/4

(2x)!

= lim
x→∞

n3n/4x

((2x)!)1/x

= 0.

So, for this series, L < 1 and therefore the series converges to some value, M .

Looking more closely at the final sum, we can see that

(︂ n

2n+2

)︂ n/4∑︂
x=1

nx3n/4

(2x)!
≤
(︃
n3n/4

2n+2

)︃ ∞∑︂
k=1

nx

(2x)!

≤
(︂ n

2n+2

)︂
M.

So this term is simply o(1), which gives a final expectation of T as

E(T) ≤ E(Tr) +
(︂ n

2n+2

)︂
M

≤ 2

7
n(1 + o(1)) +

(︂ n

2n+2

)︂
M

=
2

7
n(1 + o(1)).

The preceding two theorems give an idea for the expected propagation time of P 2
n

with respect to two different starting vertices. As the time to force the neighbourhood

of the initial vertex is so small in the case of 2-paths, it would appear that there is

not a length for which beginning at the end of the graph results in a faster expected

propagation time. This agrees with the experimental results in the previous section.

4.3 q-paths

Similar to 2-paths, We will begin by finding a bound for the expected propagation

time when the initial vertex is an end vertex. Consider the set St of blue vertices in

P q
n after turn t. The first thing to notice is that once the initial clique is contained

within St, this constitutes a classical zero forcing set. So, the graph will be in a state

similar to those discussed in Chapter 4.2. I will call State A the event when the

60

rightmost vertex of the set of blue vertices has no white vertices to its left. State B

will be when the rightmost vertex has exactly one white neighbour to its left. There

are many more potential states that the graphs P q
n can attain, simply because of the

fact that the graphs can transition out of State A. Since the rightmost blue vertex

will have more than two white neighbours to its right, there will, on each turn, be a

chance that the furthest neighbour from St will be forced, without all other vertices

between becoming forced.

We can determine the expected number of vertices forced each turn while P q
n is in

State A. Consider the following lemma:

Lemma 4.4. If P q
n is in State A after turn t, then the expected number of vertices

that will be forced on turn t+ 1 is at least q − 1 + 1
2q−1 .

Proof. Let St be the set of blue vertices in P q
n after turn t, with rightmost vertex v.

Every white neighbour of v, {v + 1, v + 2, ..., v + q}, has a chance to be forced on

the next turn. To determine the probability that each of these neighbours becomes

forced on turn t + 1, consider the neighbour v + i. When i = 1, then vertex v + 1 is

forced with probability 1. Now, consider the neighbour v + i, for 2 ≤ i ≤ q.

Note that the number of blue neighbours of vertex v+ i is completely determined

by i. The only blue neighbours can be to the left of v + i, and we know that v is the

last blue vertex in St. So, of the q neighbours to the left of v + i, the i − 1 vertices

between v and v+ i are white, and the remaining q− i+1 neighbours are blue. Vertex

v + i will be forced by vertex v − k with probability q+k+1
2q

, and will not be forced

with probability q−k−1
2q

, for 0 ≤ k ≤ q − i.

The probability that vertex v + i is not forced on turn t+ 1 given that we are in

State A is

P (↛ v + i|A) = q − 1

2q
· q − 2

2q
· · · i− 1

2q

because each vertex in {v − q + i, . . . , v} can force v + i independently. Then, the

probability that → v + i on turn t+ 1 can be computed as

1− P (↛ v + i|A),

which results in a probability of being forced on turn t+ 1 of

1−
(︃
q − 1

2q
· q − 2

2q
· · · i− 1

2q

)︃
= 1− (q − 1)!

(i− 2)!(2q)q−i+1
.

61

Now, define

Xt,i =

⎧⎨⎩1, if → v + i on turn t

0, otherwise
,

Xt =

q∑︂
i=1

Xt,i.

So, Xt+1,i is the Bernoulli random variable that has probability of success equal

to the probability that vertex v + i is forced on turn t + 1. This gives that Xt+1 is

the number of vertices forced, in total, on turn t+1. Taking the expectation of these

variables yields:

E(Xt+1,i) = 1− (q − 1)!

(i− 2)!(2q)q−i+1

≥ 1−
(︃
(q − 1)q−i+1

(2q)q−i+1

)︃
≥ 1−

(︃
1

2

)︃q−i+1

,

E(Xt+1) =

q∑︂
i=1

E(Xt+1,i)

≥ 1 +

q∑︂
i=2

(︄
1−

(︃
1

2

)︃q−i+1
)︄

= 1 + (q − 1)−
q∑︂

i=2

(︃
1

2

)︃q−i+1

= q −
(︃
1

2

)︃q+1 q∑︂
i=2

2i

= q −
(︃
1− 1

2q−1

)︃
= q − 1 +

1

2q−1
.

So if the graph is in State A, at least q−1 vertices would be expected to be forced

on the next turn.

Based on the results in the previous section, we will assume that State A is the

state with the lowest expected number of forces. Intuitively, this assumption makes

62

sense, as once the neighbourhood of the initial vertex is forced, there is a subset of

blue vertices that is in State A. So, every possible set of blue vertices can be thought

of as a subset in State A, plus some vertices to the right of this set. Every vertex we

add to the set in State A will increase the number of vertices that can be forced on

the next turn, as well as increase the probabilities that its neighbours will be forced.

To support this assumption, we will show that adding any one vertex to a set in

State A will increase the expected number of forces on the next turn. More precisely,

Lemma 4.5. Let St be a set of blue vertices in State A, with v the rightmost vertex,

and let C be the event that P q
n has blue vertices S ′

t = St ∪ {v + j} for j ≥ 1. Let

Yt = |St| − |St−1|, and Zt = |S ′
t| − |S ′

t−1| so Yt and Zt are the numbers of vertices

forced on turn t. Then,

E(Yt+1) ≤ E(Zt+1).

Proof. Let P q
n have St as its set of blue vertices after t turns, and let v be the rightmost

vertex in St. Define S
′
t = St∪{v+ j}. When j = 1, then the set S ′

t is still in State A,

and will have the same number of expected forces. If j ≥ q+1, then the only change

in forcing probabilities is non-negative: every vertex that could be forced by St has

the same or greater chance of being forced, and the neighbours of v + j can now be

forced as well. So this case is trivially true. Now, assume 2 ≤ j ≤ q.

Define the random variables Xt,w, and Xt to be

Xt,w =

⎧⎨⎩1, if → w on turn t

0, otherwise

and

Xt =
∑︂

w∈V (P q
n)

Xt,w

So, Xt is the expected number of vertices forced on turn t. In State A, as above, we

see that

E(Xt+1|A) =
∑︂

w∈V (P q
n)

E(Xt+1,w|A)

=

q∑︂
i=1

P (→ v + i|A).
(4.1)

63

Now, consider the vertex v + j, for 2 ≤ j ≤ q. Let r be the number of white

neighbours of vertex v + j. Then, v + j has 2q − r blue neighbours. The probability

that v + j forces, or does not force, some neighbour, u, is

P (v + j → u|C) =
2q − r + 1

2q
,

P (v + j ↛ u|C) =
r − 1

2q
.

Notice, that all vertices larger than v + q cannot be forced by any vertex other

than v + j, so the probability of any vertex, v + i being forced on turn t + 1, for

q < i ≤ q + j is just 2q−r+1
2q

. This quickly gives the expected number of vertices

greater than v + q to be forced on turn t+ 1 given C as

q+j∑︂
i=q+1

E(Xt+1,i|C) =

q+j∑︂
i=q+1

2q − r + 1

2q

= j

(︃
2q − r + 1

2q

)︃
.

(4.2)

The probability that any blue neighbour of v+ j ∈ S ′
t forces any of its neighbours

increases when compared to A, because it will now have one more blue neighbour,

being v + j. Its number of white neighbours will decrease by one, lowering the

probability that its does not force its neighbours. This tells us that for a vertex v+ i

for 1 < i ≤ q, i ̸= j,

P (↛ v + i|C) ≤ P (↛ v + i|A)
(︃
r − 1

2q

)︃
,

because all blue neighbours of v + i in St have a lower chance of not forcing v + i in

S ′
t, and vertex v + j does not force v + i with probability r−1

2q
.

From this, we can see that on turn t + 1, a vertex v + i for 1 < i ≤ q, i ̸= j, will

be forced with probability

P (→ v + i|C) = 1− P (↛ v + i|C)

≥ 1− P (↛ v + i|A)
(︃
r − 1

2q

)︃
≥ P (→ v + i|A).

(4.3)

Then, we can consider the expected number of forces on the next turn conditional

64

on C. We can see that

E(Xt+1|C) =
∑︂

w∈V (P q
n)

E(Xt+1,w|C)

=

j−1∑︂
i=1

P (→ v + i|A) +
q∑︂

i=j+1

P (→ v + i|A) +
q+j∑︂

i=q+1

2q − r + 1

2q
.

(4.4)

Using the differences found in equations 4.1 and 4.4 gives us that

E(Xt+1|C)− E(Xt+1|A) =
j−1∑︂
i=1

P (→ v + i|C) +

q∑︂
i=j+1

P (→ v + i|C)

+

q+j∑︂
i=q+1

2q − r + 1

2q
−

(︄
q∑︂

i=1

P (→ v + i|A)

)︄

=

j−1∑︂
i=1

(P (→ v + i|C)− P (→ v + i|A)) +
q∑︂

i=j+1

(P (→ v + i|C)− P (→ v + i|A))

+

q+j∑︂
i=q+1

2q − r + 1

2q
− P (→ v + j|A). (4.5)

By inequality 4.3, we can see that the first two summations in equation 4.5 are

positive. So, to prove the result, it would suffice to show that

q+j∑︂
i=q+1

2q − r + 1

2q
≥ P (→ v + j|A) (4.6)

in order to show that the whole difference is positive, and therefore the expected

number of forces would increase. To achieve this, note that we can calculate the

value of r in terms of q and j because we know the structure of the set of blue

vertices. In this case,

r = 2q − (q − j + 1)

= q + j − 1.

Then, the above sum becomes

q+j∑︂
i=q+1

2q − r + 1

2q
=

q+j∑︂
i=q+1

q − j + 2

2q

= j

(︃
q − j + 2

2q

)︃

65

which is a quadratic in j. We can solve for when this expression is equal to 1, as this

will be greater than or equal to any probability, and we get,

0 =
−j2 + (q + 2)j − 2q

2q

=
−(j − 2)(j − q)

2q
.

This tells us that the sum from inequality 4.6 is equal to 1 when j = 2 or j = q,

which are the extremal values that j can take in this context. As this quadratic has

a negative leading term, all values between these two points must be at least as large

as 1. Therefore, inequality (4.6) holds for all values of 2 ≤ j ≤ q. This tells us that

equation (4.5) must be non-negative, and therefore the expected number of forces

increases with the addition of vertex v + j to the set of blue vertices.

For values of q > 2, the expected propagation time of P q
n , when starting with the

initial set being the end vertex, can be bounded above by the following, if we assume

that State A is the slowest possible forcing state:

Let P q
n , q > 2, be a q-path of size n, and let q = q(n) be a function of n. Then

ept(P q
n , {1}) ≤ O(log(q)) +

n− q − 1

q − 1
(1 + o(1)).

Justification: By Theorem 1.8, the time it takes for {1} to force its neighbourhood

is O(log q). Let St be the set of blue vertices after turn t.

Since we are assuming State A is the worst case for expected number of forces,

the graph being in State A acts as an upper bound on the expected propagation

time. By Lemma 4.4, we expect at least q− 1 vertices to be forced each turn. Define

Zt = |St|, so Zt is the number of blue vertices after turn t. Let T be the first time

that ZT ≥ n − q. Then T is a stopping time for this process. If we let the expected

number of forces in State A be the lower bound, then

E(Zt+1|Zt) ≥ Zt + q − 1.

As in Theorem 4.1, define the random variable Yt = Zt − (q − 1)t. This random

variable is a submartingale, so by the stopping time theorem

E(YT) ≥ Y0 = 1.

66

We know that at most q vertices can be forced while in State A. Therefore the

value of ZT must be

n ≤ Z(T) ≤ n+ q − 1.

Now, we can solve for the expected value of T by using the definition of Yt,

E(YT) = E(ZT)− (q − 1)E(T).

Inserting the known values and rearranging for E(T) yields

E(T) =
1

q − 1
(E(ZT)− E(YT))

≤ 1

q − 1
(n+ (q − 1)− 1)

=
n

q − 1
(1 + o(1)).

So once P q
n is in State A, we would expect the time it takes to finish the proba-

bilistic zero forcing process to be at most n′

q−1
(1 + o(1)) turns, were n′ is the number

of white vertices remaining once the graph reaches State A.

Since the graph cannot be in State A at the beginning of the probabilistic zero

forcing process, the total expected time to completely force the graph would be at

most the time it takes to force the initial neighbourhood of {1} plus the expected time

to force the remaining vertices if the graph were always in State A. More precisely

ept(P q
n , {1}) ≤ O(log(q)) +

n− q − 1

q − 1
(1 + o(1)),

which concludes this discussion.

Now, considering the case when the probabilistic zero forcing process begins with

an initial vertex in the center of a q-path, we can determine a similar bound on the

expected propagation time under the same assumption, that State A is the slowest

forcing state for P q
n .

If our assumption holds, let P q
n be a q-path of order n with q > 2. Then,

ept(P q
n , {⌊

n

2
⌋}) ≤ O(log q) +

n− 2q − 1

2(q − 1)
(1 + o(1)).

Justification: Let v = {⌊n
2
⌋}. By Theorem 1.8, the time it takes v to force

its neighbourhood is O(log 2q) = O(log q). Once this initial closed neighbourhood

is entirely forced, the halves of the graph, as defined in Theorem 4.3, will be in

67

equivalent states to those discussed above. By our assumption, the slowest forcing

state is State A, and the expected number of forces each turn will be at least q − 1.

Thus, this state can be used to bound the expected propagation time of one half of

P q
n , as follows.

Once the vertex v has no white neighbours remaining, there will be at most
n−2q−1

2
= n−1

2
− q white neighbours on one half of the graph. Each turn, there will be

at least q − 1 vertices expected to be forced on one half of the graph. As each half

of P q
n can be viewed as P q

n/2 with initial vertex at the end, we can apply the above

discussion to conclude that each half of P q
n will be expected to be forced in at most

O(log q) +
n/2− q − 1

q − 1
≤ O(log q) +

n− 2q − 1

2(q − 1)

turns. As in Theorem 4.3, we now consider which half of the graph will finish forcing

second. Once the slower of the two halves is completely forced is when the entire

graph is forced. Let Tr be the time it takes for the right half of P q
n to be forced, and

Tl the time for the left half. Define

T = max{Tr, Tl}.

To approximate the probabilities that Tr takes k turns, we will assume that on

each turn, either q or q − 1 vertices are forced, as any other events are increasingly

rare, and this will give an upper bound on the expected propagation time. As the

furthest vertex from v, v + q, is the least likely to be forced, we will assume that all

vertices between v + 1 and v + q − 1 are forced, and only v + q has a chance of not

being forced each turn. Recall that P (→ v + q|A) = q+1
2q

> 1
2
, so the probability that

q vertices are forced each turn is greater than 1
2
. For simplicity, we will say that each

event occurs with probability 1
2
.

Then, the event that the right half of P q
n is forced in n

2q
turns occurs with probabil-

ity (1
2
)n/2q. If it is forced in n

2q
+1 turns, then there are two turns in which there must

have been less than q forces. This will occur with the same probability, but there will

be
(︁ n

2q
+1

2

)︁
ways to arrange the two turns where less than q forces occur. This gives

this event a probability of
(︁ n

2q
+1

2

)︁
(1
2
)n/2q+1 of occurring. This pattern continues until

the right half of P q
n is forced in n

q−1
turns, which happens with probability (1

2
)

n
q−1 .

Using these probabilities, we can apply Theorem 1.7 again to compute the expected

68

value of T . So

E(T) = E(max{Tr, Tl}

=
∞∑︂
x=0

P (Tr = x)

(︄
x+

∞∑︂
y=x+1

P (Tl ≥ y)

)︄

=

n/2q(q−1)∑︂
x=0

xP (Tr = x) +

n/2q(q−1)∑︂
x=0

P (Tr = x)

n/2q(q−1)∑︂
y=x+1

P (Tl ≥ y)

≤ E(Tr) +

n/2q(q−1)∑︂
x=0

(︃ n
2q

+ x

2x

)︃(︃
1

2

)︃n/2q n/2q(q−1)∑︂
y=x+1

1

≤ E(Tr) + n

(︃
1

2

)︃n/2q n/2q(q−1)∑︂
x=0

(︃
n

2(q − 1)

)︃2x
1

(2x)!
.

By the same series test argument as in Theorem 4.3, we can see for the series
∞∑︁
k=1

(︂
n

2(q−1)

)︂2x
1

(2x)!
that

L = lim
x→∞

x

√︄(︃
n

2(q − 1)

)︃2x
1

(2x)!

= lim
x→∞

n2

22x(q − 1)2x(2x!)1/x

= 0.

So L < 1, and therefore the series converges to some value M . The final sum in the

above equation is

n

(︃
1

2

)︃n/2q n/2q(q−1)∑︂
x=0

(︃
n

2(q − 1)

)︃2x
1

(2x)!
≤ n

(︃
1

2

)︃n/2q ∞)∑︂
x=1

(︃
n

2(q − 1)

)︃2x
1

(2x)!

≤ n

(︃
1

2

)︃n/2q

M.

Which gives the expected value of T to be

E(T) ≤ E(Tr) + n

(︃
1

2

)︃n/2q n/2q(q−1)∑︂
x=0

(︃
n

2(q − 1)

)︃2x
1

(2x)!

≤ O(log q) +
n− 2q − 1

2(q − 1)
+ n

(︃
1

2

)︃n/2q

M

= O(log q) +
n− 2q − 1

2(q − 1)
(1 + o(1))

69

concluding the discussion.

Now we can return to the question of whether any q-path’s expected propagation

time benefits from starting at one end of the graph, rather than in the center of the

graph. These conditional results, while they are only upper bounds, and no concrete

conclusions can be drawn from them, would indicate that the slowest expected prop-

agation time for initial vertex being an end vertex is slower than the slowest expected

propagation time for initial vertex being a central vertex, provided n is large.

It would also appear that, for large q and small n, there is a chance that beginning

at the end could be faster than beginning in the center, as increasing q theoretically

slows down the central vertex propagation time more than the end vertex. This is

because of the first phase in the probabilistic zero forcing process, where the initial

vertex’s neighbourhood must be forced. Any increase in the size of the neighbourhood

of the end vertices is doubled for the neighbourhood of the central vertices.

Experimentally, I was able to find that for values of q ≥ 3, there are q-paths

where the expected propagation time could be faster when taking the initial vertex

outside of the center of the graph. This was the case when q was relatively large when

compared to n. Based on the results of this section, I conclude with a conjecture

Conjecture 2. Let P q
n be a q-path on n vertices. If 1 is the first vertex, and v is a

central vertex, then

ept(P q
n , {1}) ≤ ept(P q

n , {v})

provided q ≫ n
logn

Chapter 5

Conclusion

This thesis was concerned with two variants of zero forcing. The first, now known

as classical zero forcing, began life as a bound for another graph parameter, but has

more recently been studied in its own right. We found the zero forcing number of

proper interval graphs, and determined the effect of edge removal on the zero forcing

number for this family of graphs. We used these results to find the expected zero

forcing number of random subgraphs of these proper interval graphs.

We then turned our attention to twisted hypercubes, a variation on the hypercube

family of graphs. We compared the zero forcing number of the hypercube to randomly

twisted hypercubes, and were able to show that twisted hypercubes have smaller zero

forcing number than hypercubes of the same dimension. Our results gave an upper

bound on the zero forcing number of twisted hypercubes that is smaller than the zero

forcing number of hypercubes, and led to Conjecture 1. This conjecture poses that

there are twisted hypercubes of dimension k ≥ 4 that have zero forcing number at

most

2k−1(1− 2−3 − 2−4 − · · · − 2−(k−1)).

We know this to be true for k = 4, 5, 6.

The second variant on zero forcing that was addressed is probabilistic zero forc-

ing. This is a probabilistic variant that reduces to classical zero forcing when enough

vertices are forced. Within the study of probabilistic zero forcing, the primary pa-

rameter of interest is the expected propagation time. In Chapter 4, we gave empirical

evidence to support that the standard method of computing expected propagation

time does not always give optimal bounds. Historically, vertices in the center of the

graph were thought to give the lowest upper bounds on propagation time, as they

minimize distance to all other vertices. Upon testing propagation time of q-paths

with various initial vertices, we found that there are cases where less time is required

to force the graph from the end of the q-path, not the center.

70

71

We then, gave partial results for small values of q to support this claim. We

also gave conditional results for general values of q that could help to explain this

phenomenon.

Bibliography

[1] AIM Minimum Rank – Special Graphs Work Group. Zero forcing sets and the
minimum rank of graphs. Linear Algebra and its Applications, 428(7):1628–1648,
2008.

[2] David Amos, Yair Caro, Randy Davila, and Ryan Pepper. Upper bounds on the
k-forcing number of a graph. Discrete Applied Mathematics, 181:1–10, 2015.

[3] Francesco Barioli, Wayne Barrett, Shaun M. Fallat, H. Tracy Hall, Leslie Hog-
ben, Bryan Shader, P. van den Driessche, and Hein van der Holst. Zero forcing
parameters and minimum rank problems. Linear Algebra and its Applications,
433(2):401–411, 2010.

[4] Kirk Boyer, Boris Brimkov, Sean English, Daniela Ferrero, Ariel Keller, Rachel
Kirsch, Michael Phillips, and Carolyn Reinhart. The zero forcing polynomial of
a graph. Discrete Applied Mathematics, 258:35–48, 2019.

[5] Boris Brimkov, Caleb C. Fast, and Illya V. Hicks. Computational approaches for
zero forcing and related problems. European Journal of Operational Research,
273(3):889–903, 2019.

[6] Daniel Burgarth, Domenico D’Alessandro, Leslie Hogben, Simone Severini, and
Michael Young. Zero forcing, linear and quantum controllability for systems
evolving on networks. IEEE Transactions on Automatic Control, 58(9):2349–
2354, 2013.

[7] Yu Chan, Emelie Curl, Jesse Geneson, Leslie Hogben, Kevin Liu, Issac Odegard,
and Michael S Ross. Using markov chains to determine expected propagation
time for probabilistic zero forcing. Electronic Journal of Linear Algebra, 36:318–
333, 2020.

[8] Randy Davila, Thomas Kalinowski, and Sudeep Stephen. A lower bound on the
zero forcing number. Discrete Applied Mathematics, 250:363–367, 2018.

[9] Shannon Dillman and Franklin Kenter. Leaky forcing: A new variation of zero
forcing. arXiv preprint arXiv:1910.00168, 2019.

[10] Christina J. Edholm, Leslie Hogben, My Huynh, Joshua LaGrange, and Dar-
ren D. Row. Vertex and edge spread of zero forcing number, maximum nullity,
and minimum rank of a graph. Linear Algebra and its Applications, 436(12):4352–
4372, 2012. Special Issue on Matrices Described by Patterns.

[11] Michael Evans and Jeffrey S. Rosenthal. Probability and statistics: The Science
of Uncertainty. W.H. Freeman and Company, 2010.

72

73

[12] Jesse Geneson and Leslie Hogben. Expected propagation time for probabilistic
zero forcing. Australian Journal of Combinatorics, 83(3):397–417, 2022.

[13] Michael Gentner, Lucia D. Penso, Dieter Rautenbach, and Uéverton S. Souza.
Extremal values and bounds for the zero forcing number. Discrete Applied Math-
ematics, 214:196–200, 2016.

[14] Leslie Hogben. Minimum rank problems. Linear Algebra and its Applications,
432(8):1961–1974, 2010. Special issue devoted to the 15th ILAS Conference at
Cancun, Mexico, June 16-20, 2008.

[15] David Hu and Alec Sun. Probabilistic zero forcing on grid, regular, and hyper-
cube graphs. arXiv e-prints, page arXiv:2010.12343, October 2020.

[16] Liang-Hao Huang, Gerard J. Chang, and Hong-Gwa Yeh. On minimum rank and
zero forcing sets of a graph. Linear Algebra and its Applications, 432(11):2961–
2973, 2010.

[17] Cong X Kang and Eunjeong Yi. Probabilistic zero forcing in graphs. Bull. Inst.
Combin. Appl., 67:9–16, 2013.

[18] Franklin H.J. Kenter and Jephian C.-H. Lin. A zero forcing technique for
bounding sums of eigenvalue multiplicities. Linear Algebra and its Applications,
629:138–167, 2021.

[19] Shyam Narayanan and Alec Sun. Bounds on expected propagation time of prob-
abilistic zero forcing. European Journal of Combinatorics, 98:103405, 2021.

[20] P.M. Nylen. Minimum-rank matrices with prescribed graph. Linear Algebra and
its Applications, 248:303–316, 1996.

[21] Fatemeh Alinaghipour Taklimi. Zero Forcing Sets for Graphs. PhD thesis, Uni-
versity of Regina, Regina, Saskatchewan, 2013.

Appendix A

Twisted Hypercubes with Small Zero Forcing Number

Construct the following twisted hypercubes according to the specified permutations:

Let Q̂3 be the 3-dimensional hypercube, Q3. Denote its adjacency matrix T3.

Let P8 be the 8× 8 permutation matrix with first and second rows swapped:

P8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let P16 be the 16× 16 permutation matrix with second and third rows swapped,

and let P32 be the 32× 32 permutation matrix with third and fourth rows swapped.

Then T4, generated by T3 with permutation P8,

T4 =

[︄
T3 P8

P T
8 T3

]︄

is the 4-dimensional twisted hypercube from Figure 3, which was shown to have zero

forcing number 7.

Generate T5 with T4 and permutation P16,

T5 =

[︄
T4 P16

P T
16 T4

]︄

and T6 with T5 and permutation P32,

T6 =

[︄
T5 P32

P T
32 T5

]︄

74

75

Then the 5-dimensional twisted hypercube corresponding to T5 has zero forcing

number 13, with a minimal zero forcing set being

{1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16}

where the vertices are labeled according to the rows in T5. The 6-dimensional twisted

hypercube corresponding to T5 has zero forcing number 25, with a minimal zero

forcing set being

{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 29, 30, 31, 32}

where the vertices are labeled according to the rows in T6.

Appendix B

Algorithms

1 import networkx as nx

2 import numpy as np

3 import itertools

4

5

6 def force(graph , vertex):

7 """ Takes a nx.Graph() object with vertices coloured white or

black and checks whether the given vertex can force

8 one of its neighbours. If yes , that neighbour ’s colour is

changed to black.

9 :param graph: An nx.Graph () object whose vertices are all

coloured either white or black

10 :param vertex: The vertex to check whether it can force a

neighbour

11 :return: Returns a list , where the first entry is True if the

force was successful , and False otherwise.

12 The second entry is the forced vertex if [0] is True. If [0] is

False , and [1] is not None , then the given vertex

13 did not force because all neighbours are already black.

14 """

15 if graph.nodes[vertex][’colour ’] == ’white’:

16 return [False , None]

17 count = 0

18 forced = None

19 for nbr in graph.adj[vertex]:

20 if graph.nodes[nbr][’colour ’] == ’white’:

21 count += 1

22 forced = nbr

23 if count == 1:

24 graph.nodes[forced][’colour ’] = ’black ’

25 return [True , forced]

26 elif count == 0:

76

77

1 return [False , vertex]

2 return [False , None]

3

4

5 def zero_force(graph):

6 """ Carries out the colour change rule on the given graph until

no more forces are possible.

7 param graph: A nx.Graph () object with vertices coloured

either white or

8 black.

9 :return: Returns True if successfully forced , False

otherwise

10 """

11 forcing_list = []

12 index = -1

13 check = [True , None]

14 for vertex in graph.nodes:

15 if graph.nodes[vertex][’colour ’] == ’black’:

16 forcing_list.append(vertex)

17 black_vertices = list(forcing_list)

18 if len(black_vertices) == len(graph.nodes):

19 return True

20 for vertex in forcing_list:

21 if check [0] is False:

22 if vertex == forcing_list[index + 1]:

23 return False

24 check = force(graph , vertex)

25 if check [1] is None:

26 forcing_list.append(vertex)

27 elif check [0] is True:

28 black_vertices.append(check [1])

29 forcing_list.append(check [1])

30 index = len(forcing_list) - 1 - forcing_list [:: -1]. index

(vertex)

31 if len(black_vertices) == len(graph.nodes):

32 return True

33 elif vertex == forcing_list[index + 1]:

34 forcing_list.append(vertex)

35

78

36

37 def zf_setup(graph , vertices):

38 """ Sets all nodes in graph to be white , then changes vertices to

black """

39 nx.set_node_attributes(graph , ’white’, ’colour ’)

40 for vert in vertices:

41 graph.nodes[vert][’colour ’] = ’black ’

42

43

44 def zf_num_top(graph):

45 """ Calculates the zero forcing number of graph by checking all

possible subsets of vertices of a given size , beginning from the

number of vertices """

46 i = len(graph.nodes)

47 found = True

48 while found is True:

49 found = False

50 i -= 1

51 for vertices in itertools.combinations(graph.nodes , i):

52 zf_setup(graph , vertices)

53 if zero_force(graph):

54 found = True

55 break

56 return i+1

Listing B.1: Algorithm to find the zero forcing number of a graph.

1 import networkx as nx

2 import random

3 from zeroforcing2 import zf_setup

4

5

6 def pccr(graph , vertex , prob):

7 """ Returns the number of vertices forced """

8 count = 0

9 for nbr in graph.adj[vertex]:

10 if graph.nodes[nbr][’colour ’] == ’white’:

11 rand = random.random ()

12 if rand < prob:

13 graph.nodes[nbr][’colour ’] = ’black ’

79

14 count += 1

15 return count

16

17

18 def find_probabilities(graph):

19 probabilities = {}

20 for vertex in graph.nodes:

21 if graph.nodes[vertex][’colour ’] == ’white’:

22 continue

23 denominator = len(graph.adj[vertex])

24 numerator = 1

25 for nbr in graph.adj[vertex]:

26 if graph.nodes[nbr][’colour ’] == ’black’:

27 numerator += 1

28 prob = numerator / denominator

29 if prob <= 1:

30 probabilities[vertex] = prob

31 return probabilities

32

33

34 def propagate_sequence(graph):

35 num_white_verts = 0

36 for vertex in graph.nodes:

37 if graph.nodes[vertex][’colour ’] == ’white’:

38 num_white_verts += 1

39 turns = 0

40 while num_white_verts > 0:

41 probs = find_probabilities_sequence(graph)

42 for vertex in probs:

43 num_white_verts -= pccr(graph , vertex , probs[vertex])

44 turns += 1

45 return turns

46

47

48 def simulate(graph , init_vertex , num):

49 results = {}

50 for i in range(num):

51 zf_setup(graph , init_vertex)

52 result = propagate(graph)

80

53 if result in results:

54 results[result] += 1

55 else:

56 results[result] = 1

57 count = 0

58 for value in results:

59 count += value * results[value]

60 print(’Average:’, count/num)

61 return results

Listing B.2: Probabilistic zero forcing algorithm.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Graph Theory
	Zero Forcing
	Probabilistic Zero Forcing

	Zero Forcing on Proper Interval Graphs
	q-paths
	Edge-Disjoint Proper Interval Graphs

	Twisted Hypercubes
	Probabilistic Zero Forcing
	Experiments
	2-paths
	q-paths

	Conclusion
	Bibliography
	Twisted Hypercubes with Small Zero Forcing Number
	Algorithms

