
AN ACTIVE-SET EVOLUTION STRATEGY FOR
MIXED-INTEGER BLACK-BOX OPTIMIZATION WITH

EXPLICIT CONSTRAINTS

by

Yuan Hong

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2023

© Copyright by Yuan Hong, 2023

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

Acknowledgements . vii

Chapter 1 Introduction . 1

1.1 Motivation . 3
1.2 Contribution . 4
1.3 Outline . 5

Chapter 2 Background and Literature Review 6

2.1 Background . 6
2.1.1 Mixed-Integer Programming 6
2.1.2 Black-Box Optimization . 8
2.1.3 Active-Set Method . 10
2.1.4 Branch-and-Bound . 10
2.1.5 MISQP Algorithm . 15
2.1.6 Further Techniques . 16

2.2 Nature-Inspired Heuristics for Mixed-Integer Optimization 17
2.2.1 MIDACO Algorithm . 17
2.2.2 GAMBIT Algorithm . 18
2.2.3 Evolution Strategies . 19
2.2.4 Differential Evolution . 21

2.3 Active-Set Evolution Strategies . 23
2.4 Benchmarks . 25

Chapter 3 Algorithm . 27

3.1 Evolutionary Mixed-Integer Optimization with Explicit Constraints . 27
3.2 Performance of ASmixInt-ES . 32

Chapter 4 Experiments . 40

4.1 Numerical Tests on MINLPlib . 41
4.1.1 Algorithms . 41
4.1.2 Test Environment . 41
4.1.3 Results . 43

ii

4.2 Numerical Tests on CEC 2020 Benchmark 46
4.2.1 Algorithms . 46
4.2.2 Test Environment . 46
4.2.3 Results . 49

Chapter 5 Conclusion . 54

5.1 Summary . 54
5.2 Future Research . 56

Appendix A CEC 2020 Test Functions 57

Appendix B Additional Experimental Figures 70

Bibliography . 73

iii

List of Tables

4.1 Summary of characteristics of MINLPlib test problems. n de-
notes the dimension of the problem, nint ≤ n denotes the num-
ber of integer variables including binary variables, l denotes the
number of inequality constraints, and m denotes the number of
equality constraints. Types of integer variables contain zero-one
binary variables (B), integer-valued variables (I), or a mixture
of both. All constraint functions include general nonlinear con-
straints. 43

4.2 Median numbers of objective function evaluations required to
solve problems across the successful runs and success rates within
the required target accuracy ϵ = 10−6 and constraint tolerance
δ = 10−6. – represents no optimal solutions found and - repre-
sents no data reported. 44

4.3 Summary of characteristics of CEC 2020 problems RC01-RC14.
n denotes the dimension of the problem, nint ≤ n is the number of
integer variables, l details the number of inequality constraints,
and m gives the number of equality constraints. Types of integer
variables contain zero-one binary variables (B) or integer-valued
variables (I). All constraint functions include general nonlinear
constraints. 48

4.4 Each cell in the table contains four data points. The top row of
the cell shows the median number of objective function evalu-
ations required to solve problems across the successful runs on
the CEC 2020 benchmarks, for two different target accuracies:
10−4 on the left and 10−8 on the right. The bottom row of the
cell displays success rates for the corresponding target accuracies
10−4 and 10−8. 50

iv

List of Figures

3.1 Flowchart of ASmixInt-ES. 28

3.2 Performance on sphere functions with randomly linear con-
straints l ∈ {1, 5, 9} for different coefficients in the constraint
matrix A in 101 runs. The top row presents results for the
ASmixInt-ES and the bottom row presents results for MIDACO.
The columns from left to right show results for large A, middle
A, and small A spheres. Left y-axis: the solid lines connect the
median numbers of objective function evaluations required to
locate the optimal solutions within the required accuracy; the
error bars encompass the range of 25th and 75th percentiles
observed for each algorithm. Right y-axis: the dashed lines
represent success rates. 34

3.3 Median numbers of nodes required to solve sphere functions
with randomly linear constraints l ∈ {1, 5, 9} for different coef-
ficients in the constraint matrix A in 101 runs. The columns
from left to right show results for large A, middle A, and small
A spheres. 36

3.4 Empirical cumulative running time distributions for ASmixInt-ES
and MIDACO on linearly constrained spheres for l ∈ {1, 5, 9}
with different coefficients in the constraint matrix A. The rows
from top to bottom show results for the ASmixInt-ES and the
MIDACO on large A, middle A, and small A spheres. The
columns from left to right present results with the number of
integer variables nint ∈ {2, 5, 8} for two algorithms. 39

4.1 Empirical cumulative running time distributions on the CEC
2020 problems. 53

B.1 Percentage of runs to reach globally optimum on the CEC 2020
problems for SASS, COLSHADE, sCMAgES, and MIDACO
with constraint tolerance δ = 10−8. 70

B.2 Percentage of runs to reach globally optimum on the CEC
2020 problems for MIDACO with constraint tolerances δ ∈
{10−2, 10−4, 10−8} and target accuracies ϵ ∈ {10−4, 10−8}. . . . 71

B.3 ECDF plots on the CEC 2020 problems for MIDACO with con-
straint tolerances δ ∈ {10−2, 10−4, 10−8}. 72

v

Abstract

Many real-world applications involve the optimization of both continuous and discrete

variables simultaneously. Evolution Strategies are stochastic black-box optimization

strategies, which are most commonly applied to continuous optimization. Black-box

optimization refers to tasks where the objective function values of specific points can

be obtained, but no additional information is available. Gradients can only be ap-

proximated through finite differencing. In recent studies, the Active-Set Evolution

Strategy (AS-ES) has been designed for constrained continuous optimization prob-

lems, which assumes that the objective function is a black box, but the constraint

functions are explicit and computationally inexpensive to evaluate. This assumption

allows the algorithm to evaluate the feasibility of constraints at multiple points before

spending an objective function evaluation. In this thesis, we propose a Mixed-Integer

Active-Set Evolution Strategy (ASmixInt-ES) for solving black-box mixed-integer opti-

mization problems with explicit constraints. In contrast to Branch-and-Bound tech-

niques, the proposed algorithm does not require solving problems at each node to

be optimal to prune the search tree. Instead, a heuristic is employed in place of the

bounding mechanism to determine which node to propagate forward. After introduc-

ing the design of ASmixInt-ES, we analyze the behaviour of the algorithm on a series of

linearly constrained sphere problems. In addition, we conduct computational experi-

ments to compare its performance against several algorithms designed for constrained

optimization.

vi

Acknowledgements

I would like to express my deepest appreciation to my supervisor Dr. Arnold for his

invaluable patience and feedback. He generously shared his knowledge and expertise

with me. This thesis would not have been accomplished without his support and

dedicated participation throughout the entire process. In addition, many thanks to

my parents who provided generous support and encouragement. The trust they have

in me has maintained my spirit and motivation at every stage of my Master’s program.

vii

Chapter 1

Introduction

Optimization is widely used in various fields, such as engineering, economics, mathe-

matics, etc. Optimization aims to find the minimum or maximum value of a function

in a domain of definition. Real-world optimization problems can vary widely in terms

of their objective functions, constraints, and variable types in different areas. Two

common types of optimization problems are continuous and discrete optimization.

The focus of continuous optimization is finding optimal solutions for problems over a

continuous domain. The problem variables are represented by real-valued variables.

In discrete optimization, the problem variables are represented by integer, binary, or

categorical values. Research in Evolutionary Computation is diverse, and some of it

is tailored to solve purely continuous or discrete optimization problems. In practice,

many academic and industrial problems require the optimization of both continuous

and discrete variables simultaneously. These problems are classically referred to as

mixed-discrete optimization problems. Such optimization problems frequently arise in

various real-world problems and application fields such as engineering design, process

industry, finance, automobile engineering, aircraft design, etc.

Black-box functions do not have explicit functional forms and can be non-smooth,

discontinuous, or computationally expensive to evaluate. In a black-box setting, the

cost of optimization is often measured in terms of the number of function evaluations

required to locate an optimal solution. Since black-box optimization algorithms do

not assume any specific structure or characteristics of the functions being optimized,

they may require costly computer simulations to evaluate the functions at sampled

points. Using as few objective function evaluations as possible to find optimal so-

lutions can significantly reduce the overall computational cost of the optimization

process. This is particularly important in cases where the evaluation of the objective

function is computationally expensive. In contrast, gradient-based methods require

the objectives and constraints to be continuous and differentiable. These methods

1

2

utilize information about the gradient or its approximation to direct the search for

optimal solutions.

Mixed-discrete optimization problems are often subject to a set of linear or non-

linear constraints, which restrict the feasibility of the solutions in the search space.

A taxonomy that categorizes constraints using four criteria has been proposed by Le

Digabel and Wild [19], including Quantifiable or Non-quantifiable, Relaxable or Unre-

laxable, A priori or Simulation-based, and Known or Hidden. The taxonomic notation

QRAK implies that the constraint is quantifiable in that it can provide a meaning-

ful numerical value to indicate degrees of its violation/feasibility; the constraint is

relaxable in that it allows for the evaluation of the objective function at infeasible

points, leading to meaningful results; the constraint is given a priori and its feasibility

can be verified without running a simulation; and gradient information of the known

constraint may be available or approximated at little cost. Non-quantifiable con-

straints provide Boolean values to reflect their violation/feasibility; for unrelaxable

constraints, an infeasible point is not meaningfully interpreted by objective function;

for simulation-based constraints, each candidate solution is evaluated by both the ob-

jective and constraint functions; hidden constraints are not given explicitly. In certain

instances, the constraint functions of a problem may be considered black boxes and

could be as computationally expensive as the objective function to evaluate. However,

in other cases, constraint function values may be calculated at a negligible computa-

tional cost compared to the objective function evaluation. Under this taxonomy, we

consider constraints to be quantifiable and a priori, which are referred to as explicit

constraints.

Evolution strategies (ES) [63, 81] are stochastic black-box optimization strategies

that are commonly used for continuous optimization. They are based on principles

from biological evolution theory, including selection, recombination, and mutation.

They are more likely to escape local optima and find the global optimum due to their

stochastic nature. In recent years, several adaptive variants of ES have been pro-

posed, each with its strengths for dealing with various types of constrained black-box

optimization problems where constraints are given a priori, based on the taxonomy of

Le Digabel and Wild [19]. These ES variants include Adaptive Ranking Constraint

Handling (ARCH) [69, 70], Active-Set Evolution Strategies (AS-ES) [6, 7, 83], and

3

lcCMSA-ES [84]. They assume that constraint functions are computationally cheaper

to calculate than the objective function and employ larger numbers of constraint func-

tion evaluations than objective function evaluations. Assuming constraints are given

explicitly, the (1+1)-AS-ES as described by Spettel et al. [83] exhibits good perfor-

mance on a set of 24 constrained continuous problems from the 2006 IEEE Congress

on Evolutionary Computation (CEC) competition benchmark gathered by Liang et

al. [53].

1.1 Motivation

There are several nature-inspired algorithms for mixed-integer black-box optimiza-

tion. Those algorithms are considered stochastic black-box optimization algorithms

and they do not make any assumptions about the structure or properties of the ob-

jective function and constraints present in a given problem. Those algorithms do

not distinguish between the cost of evaluating the objective function and constraint

functions. Assuming that the constraints are explicit, based on the taxonomy of

Le Digabel and Wild [19], and that integrality constraints are relaxable, we argue

that it is possible to achieve near-optimal solutions with significantly fewer objective

function evaluations than those required by the aforementioned algorithms. In this

thesis, we propose an evolutionary algorithm for constrained black-box mixed-integer

optimization with explicit constraints. The Branch-and-Bound algorithm [48, 16] in-

volves a tree search while utilizing specific rules that restrict the search to a sub-tree.

Inspired by this method, we focus on implementing a branching mechanism for han-

dling integrality constraints. By utilizing the explicitness of the constraints, we rely

on the (1+1)-AS-ES algorithm by Spettel et al. [83], performing a mutation operation

and employing active-set techniques to project infeasible candidate solutions onto the

feasible search space. In addition, the performance of our proposed algorithm will be

evaluated and compared with other comparable algorithms. The goal of this thesis is

to demonstrate the advantages of the algorithm that exploits the explicit nature of

constraints.

4

1.2 Contribution

In this thesis, we develop a new algorithm in the field of Evolutionary Computa-

tion called the Mixed-Integer Active-Set Evolution Strategy. Our algorithm aims to

solve constrained mixed-integer optimization problems, where the objective function

is treated as a black box and the constraint functions are explicitly given. To achieve

this, we draw inspiration from the work of Dakin [16] and utilize a branching tech-

nique to handle binary variables only or both binary and integer-valued variables. To

deal with the resulting continuous optimization problems, we use the (1+1)-AS-ES

algorithm [83] as an underlying solver. However, due to the presence of nonlineari-

ties and nonconvexities in objective and constraint functions, it may not be possible

to guarantee that the optimization problem is solved to global optimality, and be

challenging to determine effective bounds. Therefore, different from classical Branch-

and-Bound techniques, the proposed algorithm does not require the continuous opti-

mization problem at each node to be solved to optimality. Instead of the bounding

scheme, we propose heuristics to determine when to split a problem into subproblems

and then eliminate them from further consideration. The fundamental idea under-

lying the proposed method is to revisit the choice of a node to propagate forward,

applying a single step of (1+1)-AS-ES at each iteration, to possibly minimize the

required effort.

A benchmark of 57 constrained optimization problems motivated by industrial

applications for the 2020 IEEE Congress on Evolutionary Computation competition

has been gathered by Kumar et al. [47]. Their collection includes several mixed-

integer problems. During our examination, we observed that several of these problems

have undergone modifications since their original proposal, resulting in significant

and often undesirable changes to their characteristics in some cases. In this thesis,

we evaluate the performance of the proposed algorithm on two sets of test functions

for constrained mixed-integer optimization [14, 47]. In addition to mixed-integer

problems, we also examine several other problems from the CEC 2020 problem set

[47] that do not involve any integrality constraints. These problems are of interest

due to their real-world applicability. Another contribution of our work is that we

have carefully examined and corrected a subset of test problems in the CEC 2020

benchmark.

5

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces some

necessary terminology and background information required for understanding the

proposed algorithm. Additionally, we highlight related research as well as benchmarks

for evaluating the proposed algorithm. In Chapter 3, we describe our algorithm, which

we refer to as Mixed-Integer Active-Set Evolution Strategy (ASmixInt-ES), and analyze

the performance on simple test problems. Experiments on constrained mixed-integer

problems are conducted in Chapter 4, along with comparisons between the proposed

algorithm and several other algorithms. Finally, Chapter 5 summarizes conclusions

and provides open questions for future research.

Chapter 2

Background and Literature Review

In this chapter, we provide some necessary background information for the proposed

algorithm in Chapter 3 and present a literature review for constrained continuous op-

timization and mixed-integer optimization. Section 2.1 reviews some relevant knowl-

edge about mixed-integer optimization, including the concept of a mixed-integer opti-

mization problem. Then, an introduction of the general Branch-and-Bound algorithm

is accompanied by a detailed description of two important decisions in Branch-and-

Bound. This is followed by other integrality constraint handling techniques. In Sec-

tion 2.2, we survey comparable nature-inspired algorithms to constrained continuous

optimization and constrained mixed-integer optimization. Section 2.3 gives a sum-

mary of active set evolution strategies for constrained continuous optimization, along

with pseudo-code and descriptions of implementations. Last, we will highlight the

benchmarks for evaluating the proposed algorithm in Section 2.4.

2.1 Background

In this section, some necessary background information is introduced for a better

understanding of the process of mixed-integer optimization, which is used in the later

chapters.

2.1.1 Mixed-Integer Programming

In general, optimization refers to a process of finding minimum or maximum values of

a function. The problem to be optimized is defined by an objective function, subject

to a set of constraints that define the feasible domain of optimization variables. Unless

otherwise noted, we will focus on the minimization problem in the following sections.

6

7

The general form of constrained optimization problem is defined as:

(P) minimize f(x)

subject to gi(x) ≤ 0 for i ∈ {1, 2, . . . , l}
hj(x) = 0 for j ∈ {1, 2, . . . ,m}
x ∈ Rn

(2.1)

where f : Rn → R is the objective function and gi(x) is referred to as inequality

constraints and hj(x) as equality constraints. These constraints can be linear or non-

linear. There are bound constraints on all variables x, i.e., xl ≤ x ≤ xu. We assume

that lower and upper bounds may be finite or infinite. The feasible region is the set

D = {x ∈ Rn | gi(x) ≤ 0 for all i ∈ {1, 2, . . . , l}, hj(x) = 0 for all j ∈ {1, 2, . . . ,m}}.
An inequality constraint gi is said to be active at x ∈ D if gi(x) = 0; it is said to

be inactive if gi(x) < 0. Equality constraints hj are always active. The active set

A(x) ⊆ {1, 2, . . . , l} is the set of the indices of all inequality constraints active at

x ∈ D .

A point x∗ is called a local minimizer of objective function f(x), if and only if

there is an open neighbourhood S (x∗) such that

f(x∗) ≤ f(x),∀x ∈ S (x∗) ∩ D

A local minimum is the function value associated with a local minimizer. A point x∗

is called a global minimizer, if and only if

f(x∗) ≤ f(x),∀x ∈ D

The function value of the point x∗ is called a global minimum. Multimodal functions

include multiple local minimizers, whereas unimodal functions only have one local

minimizer.

Mixed-discrete programming problems are mathematical programs where some

variables take on discrete values. A Mixed-Integer Programming (MIP) problem is a

special case of mixed-discrete programming problems in which a specified subset of

the variables are required to take on integer values. The set I ⊆ {1, . . . , n} is the index

8

set of integer variables. Variables that are restricted to the values of zero and one

are commonly referred to as binary variables. We denote by nint = |I | the dimension

of the integer space. We denote the subvector of integer variables by xI ∈ Znint . To

distinguish between the constraints described in Eq. (2.1) and integrality constraints

(i.e. all integer variables xI ∈ Znint take integer values), we will use the term feasible

to refer to points that satisfy the former, and integer-feasible to describe those points

that satisfy all constraints, including integrality constraints. Infeasible refers to points

in the search space that violate at least one constraint. We write Dint ⊆ Rn for the

set of all integer-feasible points.

This general type of problem finds applications in various fields, such as chemical

engineering, mechanical engineering, automobile engineering, and aerospace. If the

MIP problem contains a linear objective function and all the constraints are linear

in form, then the problem is termed a Mixed-Integer Linear Programming (MILP)

problem. If the MIP problem involves nonlinearities in the objective function or con-

straints, the problem is termed a Mixed-Integer Nonlinear Programming (MINLP)

problem, which includes both Nonlinear Programming (NLP) and Mixed-Integer Lin-

ear Programming (MILP) as subproblems. Solving such problems can be challenging.

The discrete nature of integer variables results in the search space becoming discon-

tinuous, potentially making it more difficult for optimization algorithms to locate

the global optimum compared with continuous optimization problems. In addition,

non-convexity increases the difficulty of finding a globally optimal solution.

2.1.2 Black-Box Optimization

In a black-box scenario, we assume no inside knowledge of the formulation of the

optimization problem or how the objective function value is calculated. In particular,

gradients of the objective function are not explicitly available. It is possible that ob-

taining an objective function value requires a computationally expensive simulation

or even conducts a physical experiment. In constrained black-box optimization, the

objective function is typically considered a black box because it may lack a mathe-

matical representation. However, the constraint functions may or may not be black

boxes. In some cases, such as bound constraints, these functions are known and can

be evaluated at a relatively low cost. A taxonomy for constraint functions allowing for

9

the comparison of different algorithms for constrained optimization problems has been

developed by Le Digabel and Wild [19]. It includes Quantifiable or Non-quantifiable,

Relaxable or Unrelaxable, A priori or Simulation-based, and Known or Hidden.

• Quantifiable/Non-quantifiable: A quantifiable constraint (Q) provides a

meaningful numerical value to indicate degrees of constraint violation or feasi-

bility in the search space, whereas a non-quantifiable constraint (N) only returns

a Boolean value to reflect the constraint’s feasibility.

• Relaxable/Unrelaxable: During the optimization process, relaxable con-

straints (R) allow the evaluation of infeasible points on the objective function,

while unrelaxable constraints (U) do not.

• A priori/Simulation-based: An a priori constraint (A) can evaluate the

constraint’s feasibility directly, such as linear equalities or bound constraints

based on the type of variables involved (e.g., continuous, integer, binary, or

discrete). A simulation-based constraint (S) cannot be evaluated analytically,

and requires a simulation to verify if a candidate solution violates the constraint.

• Known/Hidden: Known constraints (K) are explicitly stated in the problem

definition, while hidden constraints (H) are not defined explicitly or are not

known to the solving algorithm. A hidden constraint cannot be quantifiable,

relaxable, or a priori since we cannot detect the violation or feasibility.

The taxonomy utilizes four letters that classify constraint types. For instance,

QRAK represents the constraint as quantifiable, relaxable, a priori, and known. Le

Digabel and Wild [19] point out that this is the most common type of constraint found

in nonlinear optimization. We use the term explicit constraints to refer to constraints

that are quantifiable and a priori. Bounds and integrality constraints are common

examples of explicit constraints, but other linear or nonlinear constraints can also be

explicit.

10

2.1.3 Active-Set Method

The active-set method is a widely used numerical optimization technique to handle

constrained optimization problems that involve both inequality and equality con-

straints. The active-set method aims to solve an optimization problem by transform-

ing it into a sequence of quadratic programming (QP) subproblems. The QP sub-

problem involves minimizing a quadratic function subject to equality constraints and

active inequality constraints, where the quadratic function is obtained by approximat-

ing the Lagrangian function quadratically. Solving a subproblem involves iteratively

finding a search direction that converges to a local optimum. At each iteration, some

of the inequality constraints are treated as equality constraints, and added to the

working set W , while the remaining inequality constraints not in W are disregarded.

The active-set method then computes Lagrange multipliers to determine whether the

solution x∗ obtained for the working set W satisfies the Karush-Kuhn-Tucker (KKT)

conditions [61], then removes constraints with negative Lagrange multipliers. The

working set at the optimum x∗ is the active set A(x∗) of the solution. The active-

set method is known for its effectiveness in identifying the optimal solution in finite

iterations [61].

2.1.4 Branch-and-Bound

Many industrial problems have been formulated as MILP problems. The methods

used to solve MILP problems differ significantly from those used to solve Linear

Programming (LP) problems. To solve a MILP, the solution of the LP relaxation

(obtained by relaxing the integrality constraints on the integer variables) is usually

required at each step of the algorithm. Four classes of algorithms for MILP problems

were outlined by Floudas [22]. Branch-and-Bound is one of the most commonly

used methods for handling integer programming. The earliest work on Branch-and-

Bound for MILP is by Land and Doig [48], dating back to the early 1960s. LP-based

Branch-and-Bound proposed by Dakin [16] has become the standard paradigm for

most modern solvers for solving MILPs. In this context, we will give an overview

of the general idea behind the Branch-and-Bound method for MILPs, along with a

detailed description of two selection schemes.

11

2.1.4.1 General Branch-and-Bound Method Overview

In order to describe the algorithm it is necessary to introduce some notation and ter-

minology. We use the term node or subproblem to denote the problem associated with

a certain part of the feasible region of MILPs. Generally, a node stores a candidate

solution, its corresponding objective function value, and a constraint set. Roughly

speaking, Branch-and-Bound is a Divide-and-Conquer method that divides the orig-

inal problem into a series of smaller subproblems and then recursively solves each

subproblem. Each subproblem is either a continuous or mixed-integer optimization

problem with potentially fewer integer variables than the original MILP problem.

The entire procedure of a Branch-and-Bound method can be viewed as a tree search,

with all variables regarded as continuous at the root node of the tree. The term

branch refers to a constructed tree structure. The term bound refers to bounding the

best feasible solution in the sub-tree and pruning the search tree to avoid complete

enumeration if its bound indicates that it will not contain a better solution in the

following sub-trees. The search tree is built in a recursive way to solve a relaxation

of a candidate node to optimality (i.e. the relaxation obtained by relaxing the in-

tegrality restrictions on the variables). A candidate solution that is feasible for the

continuous relaxation is said to be an integer-feasible solution if all integer variables

xd take integer values at the solution. Moreover, the best integer-feasible solution

found so far (a.k.a incumbent solution) x∗ ∈ Rn is stored globally. Set N keeps a list

of active nodes that need to be explored further.

The search starts by solving the continuous relaxation (P) of the MILP problem

to optimality (i.e., the relaxation obtained by simply ignoring the integrality require-

ments on variables xd ∈ Z,∀d ∈ I). At each iteration, Branch-and-Bound selects a

node from the set N of active nodes for exploration. The algorithm maintains the

incumbent solution and the corresponding objective function value in the search. As-

suming we consider the minimization problem, if an integer-feasible solution x ∈ Rn

with a better objective function value is found, i.e., f(x) < f(x∗), the incumbent

solution is then updated. Conversely, if the integer-feasible solution of a candidate

node is not better than the best one found so far, the candidate node is terminated

and removed from the set N . On the other hand, if some of the integer variables

are fractional at the optimal solution of a relaxed problem, then one can split the

12

problem into two new subproblems by selecting one of those integer variables xd ∈ Z
for some d ∈ I . In one of the subproblems, the constraint xd ≤ ⌊x̄d⌋ is added to the

associated constraint set, and in the other, the constraint xd ≥ ⌈x̄d⌉ is added, where

x̄d represents the value of variable xd. The parent node is removed and new nodes

are added to the set of active nodes. One of the nodes from set N is selected and

solved next. Note that an objective function value stored in a node is the optimal

function value of the relaxation of the MILP problem given all of the constraints,

including new bound constraints. After exploring all nodes of set N , the algorithm

terminates and the best incumbent solution in the search is returned. The complete

Branch-and-Bound algorithm for solving MILPs is described in Algorithm 1.

Algorithm 1 General Branch-and-Bound Algorithm

Input: initial objective function value f ∗ = +∞, set N of active nodes
Output: optimal solution x∗ of MILP
1: while N ̸= Ø do
2: Select and remove a node Q from N .
3: Solve a relaxation (P) corresponding to the selected node Q, and let x be an

optimal solution of the relaxation and fx = f(x) be its objective value.
4: if x is infeasible then
5: Jump to Line 2.
6: end if
7: if x is integer-feasible then
8: if f ∗ > fx then
9: Let x∗ ← x and f ∗ ← fx. ▷ Update incumbent solution
10: Remove nodes from N whose objective function value is inferior to f ∗.
11: end if
12: else
13: Branch on variable xd for d ∈ I with a non-integer value.
14: Create node L with constraint xd ≤ ⌊x̄d⌋.
15: Create node R with constraint xd ≥ ⌈x̄d⌉.
16: Add nodes L and R to N .
17: end if
18: end while

The complete search of a tree is not always necessary. It may be possible to

prune a sub-tree (subproblem) in Line 7 if the solution of a node is infeasible, then

no feasible solution in its sub-trees could be found. If the optimal objective function

value of a node is greater than or equal to that of the incumbent solution in Line 8,

then no improved solution in its sub-trees can be found and further branching from

13

this node is no longer required.

Compared to MILP problems, MINLP problems involve nonlinearities in the ob-

jective function or constraints. Algorithms for MINLP problems have a lot in common

with methods for solving MILP problems. Branch-and-Bound algorithm can be ex-

tended to in a natural way to handle convex MINLP problems. Dakin [16] suggested

that this Branch-and-Bound approach used for solving linear problems can also be

applied to non-linear problems, although he did not provide any computational ev-

idence. An implementation of the Branch-and-Bound approach for convex MINLP

problems was also suggested by Gupta and Ravindran [27], which used the under-

lying NLP solver OPT, implemented with a generalized reduced gradient method.

Leyffer [51] presented an integrated algorithm for convex MINLP problems which

interlaces a Sequential Quadratic Programming method at a node with the Branch-

and-Bound method tree search and applies an early branching heuristic as described

by Borchers and Mitchell [10]. The MINLP problems are generally non-convex due

to the presence of nonlinearities. Even when the integer variables are relaxed to be

continuous, the feasible region may be non-convex. Handling non-convex problems

can be difficult as the relaxed problems may have multiple locally optimal solutions

and cannot be guaranteed to be solved to global optimality. Thus it may be possible

to remove a node wrongly due to the bounding rules, cutting off the global optimum

of the original problem. The search is terminated when all nodes in the set N are

either explored or removed. A Spatial Branch-and-Bound method was proposed by

McCormick [57], using quadratic under-estimating and over-estimating functions for

non-convex MINLPs.

2.1.4.2 Node Selection

There are two important decisions left unspecified in the above description of the

Branch-and-Bound method. One of them is which node we select to process next in

Line 2. In this subsection, we briefly discuss some popular strategies. The selection

method for branching nodes may significantly affect the performance of Branch-and-

Bound.

A common strategy for node selection is depth-first search (or depth-first search

with backtracking), which selects the deepest node in the search tree (or the last node

14

that is added to the active node set). It was proposed by Dakin [16] and Little et al.

[55] primarily due to the limited memory capacity of computers at that time. The

depth-first search can exhibit inferior performance if some optimal solutions are close

to the root and some long paths do not yield an optimal solution. It may choose

those long paths and explore many nodes before it explores a path that leads to an

optimal solution. Another popular strategy is best-first search proposed by Land and

Doig [48]. As the name suggests, the candidate node which has the smallest objective

function value is selected for branching. Lawler and Wood [49] argued that it has

the advantage of minimizing the total amount of computation, under the assumption

that the set of new bounding problems is uniquely determined for any given problem.

However, this strategy requires significant storage space to keep the set of active

nodes. Theoretical comparison of breadth-first search, depth-first search, and best-

first search was done by Ibaraki [40]. Breadth-first search is the opposite of depth-first

search, which selects the first node that is added to the active set. All nodes at one

level of the search tree are processed before any new node at a higher level. The above

strategies reflect a trade-off between saving memory usage and keeping the number

of explored nodes in the search tree as small as possible.

The best-first search has some proposed variants. The first variant is the best-

projection method [25], which evaluates a node by considering both its objective

function value and the degree of integer infeasibility in its current solution. The

second variant is the best-estimate method [9], which estimates the objective function

value of the integer-feasible solution that can be obtained by exploring the subtree

that originates from a node, by calculating pseudocost values.

2.1.4.3 Branching Variable Selection

The other important decision left open in Algorithm 1 is which variable we decide to

branch on in Line 13. As explained, we select an integer-constrained variable xd for

d ∈ I that takes a fractional value and create two smaller subproblems by adding the

constraint xd ≤ ⌊x̄d⌋ and xd ≥ ⌈x̄d⌉ respectively. The choice of branching variable can

likewise have significant effects on the performance of the Branch-and-Bound method.

Some common strategies are listed below.

The simple and widely-used strategy is known as the most fractional branching

15

[13], which chooses the variable with the largest integer violation to branch on, in

other words, branch on a variable whose fractional part is closest to 0.5. Pseudocost

branching was first developed by Bénichou et al. [9] for MILPs, which keeps the

history of the results of past branching decisions for every variable and utilizes the

historical information to predict the per unit change in the objective function value

by averaging the increase in the objective function value for each candidate branching

variable. Bénichou et al. chose to branch on the variable that is expected to yield

a significant change in the objective value. One difficulty is that past branching

experience is not available at the start of the algorithm. Thus, the estimates of

the change in the objective function value for each variable should be initialized in

some way. Strong branching was first proposed by Applegate et al. [5], solving

difficult instances of the traveling salesman problem. The main idea is to execute

a few iterations of tentative branching on each candidate variable before performing

actual branching, and then select the candidate variable with the greatest change

in the objective function value. One drawback is the computation time is high.

Several variants of combining pseudocost branching and strong branching have been

proposed. One of the most popular ones is reliability branching [1]. Strong branching

was applied early during the tree search by Achterberg et al. [1], and then pseudocost

branching was turned to once accurate estimates were obtained.

2.1.5 MISQP Algorithm

Mixed Integer Sequential Quadratic Programming (MISQP) is a trust-region Sequen-

tial Quadratic Programming (SQP) algorithm designed for mixed-integer nonlinear

programming problems proposed by Exler et al. [21, 20]. MISQP features a FOR-

TRAN interface and operates as a standalone library. MISQP has the capability to

solve both convex and nonconvex MINLP problems, but Exler and Schittkowski [21]

state that the algorithm relies on the assumption that integer variables have a smooth

influence on the model functions, i.e., an increment or decrement of an integer variable

by one leads to a small change of function values. The algorithm is stabilized by an

SQP-based trust region method with second-order corrections proposed by Yuan [90].

It models the objective function by constructing a quadratic approximation in every

iteration. The Hessian of the Lagrangian function is approximated by a quasi-Newton

16

update formula (BFGS). The generated mixed-integer quadratic programming sub-

problems must be solved by the solver MIQL of Lehmann et al. [50], which uses the

solver QL of Schittkowski [72] for solving continuous quadratic programming.

The algorithm assumes that integrality constraints are not relaxable, in other

words, the objective function and constraint functions cannot be evaluated when

the values of variable xd,∀d ∈ I are fractional. Thus, Exler and Schittkowski [20]

approximate partial derivatives of objective and constraint functions with respect to

integer variables by a difference formula at neighbored grid points. When dealing with

variables that are subject to bounds, they apply a forward or backward difference for-

mula. This procedure may require additional function evaluations to obtain gradient

approximations. The standard difference formula is used to calculate partial deriva-

tives with regard to continuous variables. It is important to note that MISQP can

solve relaxable mixed-integer programming problems as well if users provide gradients

in analytical form. The MISQP algorithm rounds integer variables with non-integer

values before evaluating them using the objective and constraint functions at each

iteration, in order to ensure integer feasibility. However, even in the case of convex

MINLP problems, Exler and Schittkowski [21] point out that the algorithm cannot

guarantee a globally optimal solution.

2.1.6 Further Techniques

Besides rounding off the continuous solution to the nearest feasible integer points,

the mixed-integer optimization problem can be converted into a continuous problem

using nonlinear optimization techniques. For example, Li [30] proposed a global

optimization algorithm where a binary variable xd ∈ {0, 1} can be replaced by a

continuous variable xd
′ ∈ [0, 1], by introducing the constraint xd

′(1 − xd
′) = 0, 0 ≤

xd
′ ≤ 1, which enforces variable xd

′ to take a value of either 0 or 1. Li [30] found

this operation to be more straightforward than the Branch-and-Bound method and

implicit enumeration method. The newly introduced constraint function is a non-

convex nonlinear function. Similarly, Li and Chou [31] investigated a mixed-discrete

nonlinear programming problem, where some of the variables are continuous and

others may be integer or categorical. For a discrete variable xd ∈ {k1, k2, . . . , km}, a

non-convex equality constraint (xd − k1)(xd − k2) . . . (xd − km) = 0 can be formed as

17

a penalty term in the objective function. They referred to this as discrete condition

to model discrete variables. The solutions found for non-convex NLP problems are

often local optima, and they are not guaranteed to be the globally optimal solution.

Li and Chou [31] then utilized a multi-level single linkage technique [64] to obtain

globally optimal solutions.

2.2 Nature-Inspired Heuristics for Mixed-Integer Optimization

Nature-inspired heuristics are a class of optimization algorithms inspired by the pro-

cess of natural selection. They are considered stochastic black-box optimization al-

gorithms as they do not require any prior knowledge or assumptions about the struc-

ture or characteristics of the objective function present in a given problem. This

type of algorithms is most commonly used for solving continuous optimization prob-

lems. The effectiveness for black box optimization problems has been extensively

researched in the literature and demonstrated in various practical applications. Over

the last few decades, nature-inspired heuristics have been applied to mixed-integer op-

timization problems, including but not limited to Genetic Algorithms, Partial Swarm

Optimization, Ant Colony Optimization Algorithm, Differential Evolution, and Evo-

lution Strategies. These algorithms have been used to solve a wide range of mixed-

integer optimization problems in various domains, such as engineering design, finance,

aerospace, and others. In this section, we provide a brief overview and discussion of

some nature-inspired heuristics that will be used in the following chapters.

2.2.1 MIDACO Algorithm

Mixed Integer Distributed Ant Colony Optimization (MIDACO) [77] is a global op-

timization algorithm for black-box mixed-integer nonlinear problems. The nature-

inspired heuristics utilized in MIDACO builds upon the ant colony optimization

metaheuristic for continuous optimization developed by Socha and Dorigo [82] and

was extended to mixed-integer optimization by Schlüter et al. [74]. MIDACO ap-

plies the Oracle Penalty Method [75] for constraint handling. It performs automatic

restarts to escape from local solutions and to improve the best solution found so

far. The algorithm does not require the relaxation of integer variables, which means

18

objective and constraint functions are evaluated only at integer values for integer vari-

ables. Similar to other heuristic algorithms, MIDACO does not provide a guarantee

of finding the global optimal solution.

An extensive comparison of MIDACO against eight sequential quadratic program-

ming (SQP) based algorithms using a large set of test problems in the MINLPlib

(www.minlplib.org) [14] was conducted by Schlüter et al. [76]. They also provide

references to real-world applications of MIDACO in areas such as chemical engineer-

ing, aerospace and space engineering, and robotics. Their study has revealed that

MIDACO outperforms the SQP-based algorithms in terms of its ability to locate

globally optimal solutions. Schlüter et al. [76] indicate that although MIDACO

requires significantly larger numbers of function evaluations, it can achieve a very

competitive performance in terms of CPU time while maintaining a high chance of

global optimality if the function evaluations are not computationally expensive. The

parallelization method discussed in [77] is targeted towards distributing function eval-

uations, specifically for complex industrial applications where the function evaluation

is computationally expensive. Schlüter [77] points out that a reasonable amount

of CPU time can be utilized to solve problems with effective parallelization of the

problem function evaluation. Schlüter and Munetomo provide further information

regarding the numerical analysis conducted using this method in [78, 79]. It is impor-

tant to note that the target scenario of MIDACO differs significantly from our study,

as we consider objective function evaluations to be expensive and constraints to be

explicit.

2.2.2 GAMBIT Algorithm

GAMBIT [67] is a model-based evolutionary algorithm designed for optimizing black-

box mixed-binary problems. GAMBIT treats both the objective function and the con-

straint functions as black boxes and utilizes a penalty function method for constraint

handling. The penalty function value in their implementation [67] is the square of

the total constraint violation value multiplied by the number of previous generations.

The algorithm integrates the model-building and sampling ability of the Linkage Tree

Genetic Algorithm (LTGA) [87] and the Incremental Adapted Maximum-Likelihood

Gaussian Model Iterated Density Estimation Evolutionary Algorithm (iAMaLGaM)

https://www.minlplib.org/

19

[11] for handling discrete and continuous variables respectively. A clustering mecha-

nism is employed by Sadowski et al. [67] to split the problem population into some

sub-populations at the beginning of each generation. Subsequently, the authors opti-

mize the sub-populations by utilizing instances of an integrated model-based mecha-

nism on each sub-population. The resulting offspring solutions from each instance are

combined, thereby replacing the previous population. The process is then repeated

from the beginning. With a lack of problem information, the algorithm detailed in

[67] utilizes two mechanisms to estimate variable dependencies.

The appropriate selection of population size parameters in GAMBIT was noted as

a problem by Sadowski et al. [68]. In general, empirical data are used in population-

based algorithm research to determine the optimal or somewhat adjusted population

size for a given problem. Similarly, Sadowski et al. [68] indicate that determining the

optimal number of clusters for a given problem before execution is often infeasible.

GAMBIT has been extended by introducing a multi-restart scheme [68], making the

algorithm more practical by eliminating the need to specify parameters such as prob-

lem population and cluster size. Sadowski et al. [67, 68] show that GAMBIT has

proven to be effective in solving mixed-integer problems involving binary variables,

even in the presence of constraints. However, this algorithm is incompatible with

general mixed-integer problems, where discrete variables can take on more than two

potential values.

2.2.3 Evolution Strategies

Evolution strategies (ES) are stochastic black-box optimization algorithms that are

widely used to solve unconstrained optimization problems. Similar to differential

evolution, evolution strategies are a type of evolutionary algorithm. The basic idea

of ES is to generate a population of candidate solutions through mutation, evaluate

their objective function values, and use a selection mechanism to choose the best

individuals to generate offspring for the next generation. The process may also involve

the recombination of multiple candidate solutions through arithmetic averaging. One

of the most straightforward examples of evolution strategies, the (1+1)-ES does not

employ recombination. It generates a single offspring candidate solution from a single

parent candidate solution in each generation. The one with the better objective

20

function value is considered the parental candidate solution for the next generation.

Rudolph [65] introduced a mutation operator for unbounded integer search spaces and

Bäck and Schütz [8] presented a mixed-integer evolution strategy aimed at optimizing

optical multilayer systems. Li et al. [52] utilized specialized mutation operators for

different types of decision variables in mixed-integer evolution strategies (MIES).

Additionally, they provided theoretical analysis on the optimality of adapting step

sizes and mutation rates.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [34] is an evo-

lutionary algorithm for solving black-box continuous optimization problems. It is

acknowledged as a powerful algorithm for complex optimization problems involving

ill-conditioning, multi-modality, discontinuity, and non-separability. The CMA-ES

has several invariance properties, as described by Hansen et al. [36], such as the

invariance of rotation and scaling of the coordinate system. These properties are im-

portant in black-box optimization since they assume no other knowledge of problem

structures. All hyperparameters in the CMA-ES [35] have default values based on

thorough experiments and theoretical research. Given the dimension n, all the default

values can be computed. Consequently, the CMA-ES [34, 35] is considered a quasi-

parameter-free algorithm that does not require users to tune the hyperparameters,

such as the learning rate parameters of the covariance matrix adaptation.

Hansen [32] presents an extension of CMA-ES for mixed-integer optimization, in-

cluding boundary handling. For this extension, integer variables with fractional values

are rounded when evaluating the objective f and constraint functions gi. To prevent

the CMA-ES from being trapped on plateaus, integer mutations are introduced for

the integer variables, in addition to regular mutations [32]. Moreover, Hansen disre-

gards integer variables with a small standard deviation in the global step-size update

all together. As pointed out in [32], this algorithm variant does not work effectively

for binary variables and k-ary integers in k < 10. Hamano et al. [29] have revis-

ited Hansen’s algorithm to enable it to solve problems with binary variables, which

is referred to as CMA-ES with Margin (CMA-ESwM). They use a penalty function

that is the sum of squared values of constraint violations divided by the dimension

n. The experimental results in [29] indicate that the CMA-ESwM remains robust

even as the number of dimensions increases, and can locate the optimal solution

21

with fewer function evaluations than the existing method proposed by Hansen [32].

Both algorithm variants are designed for unconstrained or bound-constrained mixed-

integer problems and thus are not applicable for general constrained mixed-integer

optimization problems.

Another variant of the CMA-ES algorithm has been proposed by Kumar et al.

[45] to deal with the limitations of CMA-ES in handling general mixed-integer op-

timization problems, which is referred to as sCMAgES. To address the nonlinear

constraints of the optimization problems, sCMAgES utilizes a constraint handling

technique, namely ϵ-constrained based ranking scheme. In addition, to handle non-

linear equality constraints, sCMAgES employs a gradient-based repair method, which

is capable of transforming infeasible solutions to feasible ones, especially when the

solutions are close to the boundary of the feasible region. The authors [45] also in-

corporate a restart scheme in their algorithm to ensure that the solutions converge to

globally optimal values. Empirical results in [45] have shown that the sCMAgES algo-

rithm has demonstrated good performance and ranked third among all submissions

to the IEEE Congress on Evolutionary Computation (CEC) 2020 competition on

non-convex constrained optimization problems. However, sCMAgES obtains the op-

timal point by simply rounding the result of continuous optimization. Consequently,

sCMAgES is not specifically intended for mixed-integer optimization.

2.2.4 Differential Evolution

Differential Evolution (DE) is a population-based evolutionary algorithm. It was first

introduced by Storn and Price [85, 86], which has been successfully applied to op-

timization problems including non-convex, non-linear, non-differentiable, and multi-

modal functions. DE is inspired by natural selection and simulates the evolutionary

process of biological systems. We use evolutionary terminology to describe the op-

timization process, where the iterations are referred to as generations, the collection

of candidate solutions is referred to as a population, and parents and offspring are

denoted existing and newly generated candidate solutions, respectively. DE operates

on a population of candidate solutions within the search space and updates the pop-

ulation by applying mutation, recombination/crossover, and selection operators. The

mutation operator creates a new trial vector by adding a scaled difference between

22

two randomly selected vectors from the population to the base vector. In general,

the DE mutation operator is represented as a string of the form DE/x/y/z where x

specifies the way that the base vector is selected from the population, y refers to the

number of difference vectors involved, and z represents the parent vector considered

during the mutation process. The recombination/crossover operator then generates a

new offspring vector by incorporating the trial vector with the parent vector. Finally,

the selection operator chooses the best vector among the parent and offspring vectors

for the next iteration of the search process. Once the new population is formed in

the next generation, the iterative processes of mutation, crossover, and selection are

performed continuously until the termination criteria are met.

During the last two decades, various modifications have been proposed for DE,

which has enabled modified variants of DE to perform well in almost all CEC com-

petitions held during this time. The original DE algorithm is designed for handling

continuous optimization problems. A modified differential evolution (MDE) algorithm

has been extended by Angira and Babu [4] to solve process synthesis and design prob-

lems. These problems are difficult non-convex optimization problems with continuous

and discrete variables. Before evaluating objective functions and constraints, MDE

applies a truncation operation for integer variables with fractional values. Constraints

are handled by using a penalty function method. COLSHADE [28], which is another

variant of DE, has been ranked second among all submissions in the IEEE CEC 2020

competition for constrained optimization. COLSHADE is a modified version of the

L-SHADE [62] that incorporates additional features such as adaptive Lévy flights and

a constraint handling technique with a dynamic tolerance mechanism for equality con-

straints. The adaptive Lévy flight-based mutation (called levy/1/bin) as introduced

in [28] is used to increase exploration in the search space and prevent loss of diver-

sity in the population. During an optimization process, the current-to-pbest/1/bin

mutation of L-SHADE is incorporated to reduce the population size linearly over

generations to accelerate convergence and exploit the best solutions obtained. In the

context of mixed-integer optimization problems, COLSHADE rounds the non-integer

values of the integer variables before evaluating trial vectors and handling constraint

violations.

23

2.3 Active-Set Evolution Strategies

Building on previous research by Arnold [6, 7], Spettel et al. [83] assume that con-

straints are given explicitly based on the taxonomy of Le Digabel and Wild [19] and

implement the active-set evolution strategies for evolutionary constrained black-box

optimization, which is referred to as (1+1)-AS-ES. A fundamental assumption of the

(1+1)-AS-ES algorithm is that constraint function evaluations are significantly less

expensive than objective function evaluations. A single iteration of (1+1)-AS-ES is

provided in Algorithm 2, taken directly from Spettel et al. [83]. The (1+1)-AS-

ES performs mutation and projects infeasible candidate solutions onto the feasible

search space. The (1+1)-AS-ES algorithm employs Lagrange multipliers to determine

whether a constraint is active. The algorithm uses a working set W ⊆ {1, 2, . . . , l} of

indices of inequality constraints that are treated as equality constraints. S (W) is the

subset of the feasible region where all of the constraints in the working set are active.

These active constraints reduce the feasible region and consequently reduce the de-

grees of freedom of the optimization problem. We denote S (W) the reduced search

space. If the offspring candidate solution improves the objective function value of the

parental candidate solution, then it replaces the latter. In this case, any constraints

that are active at the offspring candidate solution and not yet present in the working

set W are added to it. However, during the optimization process, it is possible for

constraints that are not in the optimal active set to be added to the working set. To

address this, the (1+1)-AS-ES releases a constraint temporarily from the working set

and generates an offspring candidate solution where the constraint is not active. The

process of releasing a constraint refers to converting the active inequality constraints

back to inequalities. If the offspring candidate solution outperforms the parental one,

the constraint is removed from the working set. Additionally, the update of step

size σ employs the implementation of the 1/5th-rule [41] based on the dimension of

the reduced search space. According to the study conducted on the CEC 2006 test

set [53], it appears that the (1+1)-AS-ES algorithm proposed by Spettel et al. [83]

has higher success rates for some problems than the SQP and interior-point methods

implemented in MATLAB’s fmincon, with comparable numbers of objective function

evaluations.

24

Algorithm 2 Single Iteration of (1+1)-AS-ES

Input:

• candidate solution x ∈ Rn and its objective function value fx = f(x)

• step size parameter σ ∈ R
• working set W

• release times t ∈ Nl and iteration number t ∈ N

1: Computer the effective dimension neff of the reduced search space.

2: if W ̸= Ø and (neff = 0 or U0,1 < 0.2) then

3: Let k ∈W be the index of a constraint with tk = minl∈W tl.

4: else

5: Let k = 0.

6: end if

7: repeat

8: Sample z ∈ Rn from a standard normal distribution.

9: Let y be the projection of x + σz onto S (W \{k}).
10: until y is feasible and (either k = 0 or gk(y) < 0).

11: Obtain fy = f(y).

12: if fy < fx then

13: Let x← y and fx ← fy. ▷ success

14: Add to W any newly tight constraints.

15: if k = 0 then

16: Let σ = σe1/
√
1+neff .

17: else

18: Let W ←W \{k}.
19: end if

20: else if k = 0 then

21: Let σ = σe−0.25/
√
1+neff . ▷ failure

22: end if

23: if k > 0 then

24: Let tk ← t.

25: end if

26: Let t← t + 1.

25

2.4 Benchmarks

MINLPlib (www.minlplib.org) [14] is a well-known library of over 1500 mixed-integer

and continuous nonlinear programming test problem instances. These problems arise

from a broad range of industrial applications. It has been used in the past to de-

velop and test mixed-integer programming algorithms and solvers. There are sev-

eral researchers who have conducted the performance analysis and comparisons of

their algorithms using MINLPlib. For example, Li et al. [52] tested their algorithm

on artificial unconstrained benchmarks and presented six mixed-integer constrained

problems, three of which are included in MINLPlib. To make the results of algorithm

comparisons more easily understood, Schittkowski [73] and Schlüter and Munetomo

[80] typically concentrate on smaller test sets. They utilized a set of 200 test instances

from MINLPlib to evaluate and compare their algorithms. We select a small set of

constrained optimization problems in MINLPlib [14] with published experimental re-

sults for comparable algorithms, choosing problems of diverse difficulties and varying

dimensions to investigate algorithm performance.

In the field of Evolutionary Computation, several much smaller test problem sets

have been selected by Deep et al [17] and Liao [54] that have similar characteristics

with MINLPlib. The test function sets that are specified for the IEEE Congress on

Evolutionary Computation (CEC) competitions on single-objective constrained real-

parameter optimization are widely used as benchmark test collections for stochastic

search algorithms. A set of test problems for constrained evolutionary optimization

was assembled by Michalewicz and Schoenauer [58], building on earlier collections

by Hock and Schittkowski [39], as well as Floudas and Pardalos [24]. Subsequently,

Liang et al. [53] expanded this set to 24 test problems and used it as the basis for a

competition held in connection with the 2006 IEEE Congress on Evolutionary Com-

putation. A set of 57 optimization problems for the 2020 IEEE CEC competition

with the goal of ensuring that the test instances reflect real-world challenges has been

gathered by Kumar et al. [47]. The collection includes various types of optimization

problems, including mixed-integer problems. However, since the original references

of these problems date back several decades, errors have been introduced by some

authors and then copied by others. Bound constraints were imposed by Kumar et al.

[47] on certain problems, resulting in changes to the properties of the problems, which

https://www.minlplib.org/

26

can significantly affect the optimization problem. These constraints can effectively

prevent algorithms from converging to local optima, which have been previously iden-

tified as major obstacles in locating globally optimal solutions. On the other hand,

some constraints are active at optimal solutions despite lacking physical significance.

Chapter 3

Algorithm

Several challenges arise when employing evolution strategies to solve mixed-integer

optimization. The presence of integer variables alters the nature of the search space.

Additionally, the application of traditional operators in evolution strategies, such

as mutation and recombination, may generate infeasible solutions that violate the

constraints. Active-set evolution strategy [83] is designed for solving constrained

continuous optimization problems with both equality constraints and inequality con-

straints. Branch-and-Bound method [16] is one of the most commonly used method

for handling mixed-integer programming problems. This chapter presents an algo-

rithm for evolutionary mixed-integer optimization with explicit constraints, which we

refer to as ASmixInt-ES, incorporating (1+1)-AS-ES as described by Spettel et al. [83]

with a branching technique to handle integrality constraints. However, the black-box

nature of the objective function and the stochastic nature of the evolution strategy

make it difficult to determine useful bounds for the optimization problem. Thus,

we introduce heuristics to determine when to split a problem into subproblems and

subsequently eliminate subproblems from further consideration, rather than pruning

the search tree simply based on the bounds. The remainder of this chapter describes

the proposed algorithm in detail.

3.1 Evolutionary Mixed-Integer Optimization with Explicit Constraints

A flowchart illustrating the process of the proposed algorithm is provided in Figure

3.1. The ASmixInt-ES keeps a set N of active nodes that need to be explored fur-

ther. Each node stores a candidate solution that satisfies its bound constraints as

well as other linear and nonlinear constraints, but that may violate some integrality

constraints. In addition, each node contains a step size, a working set of indices of

inequality constraints that are treated as equalities, lower bounds, and upper bounds.

27

28

Live nodes?
N

Select a node and remove

from live nodes

Apply a single step of (1 + 1)-AS-ES

Y
Integer-feasible

solution?

N

update incumbent

solution

Branching?

Y

Split node,
repair solutions

Terminate, return

optimal solution

Y

Add to

live nodes

N

Figure 3.1: Flowchart of ASmixInt-ES.

In each iteration of the algorithm, an active node is selected randomly, but the selec-

tion process is weighted to choose nodes whose candidate solutions have the minimum

objective function values. The algorithm applies a single (1 + 1)-AS-ES step [83] to

the selected node. If the integer-feasible solution improves on the incumbent solu-

tion, then the incumbent solution value is replaced by the former. If there exists an

integer-constrained variable which takes a non-integer value, and the step size associ-

ated with the node drops below a threshold, then the node is split into two new nodes

by selecting the integer variable and replacing the old node with the new ones. The

two new nodes are updated bounds to the old node that make its candidate solution

infeasible, while still ensuring that any integer-feasible solution is feasible for one of

the new nodes. Only a node that generates a candidate solution satisfying the up-

dated bound constraints can be added to the set N . We repeat the whole procedure

29

until there are no live nodes left in N or the maximum objective function evaluation

limit is reached.

The state of the algorithm is given by a set N of active nodes, the best integer-

feasible candidate solution located so far along with its objective function value, and

the current iteration number t. A node is a septuple (x, fx, σ,W , t, l,u) comprising

a candidate solution x ∈ Rn that satisfies all equality and inequality constraints but

that may violate integrality constraints, its objective function value fx ∈ R, step size

parameter σ > 0, a working set W ⊆ {1, 2, . . . , l} of indices of inequality constraints

that are considered to be equality constraints, an array t = (t1, t2, . . . , tl) that for

each inequality constraint stores the iteration number when it was most recently

considered for removal from the working set, lower bounds l ∈ Rn, and upper bounds

u ∈ Rn. The initialization of x and σ depends on the particular problem. When the

initial candidate solution is infeasible, it is projected onto the feasible region using

the method outlined by Spettel et al. [83]. The set N of active nodes is initialized

to contain the root node. W is initialized to the active set A(x). t is initialized to

hold all zeros. The incumbent solution x∗ is initialized to have an objective function

value f ∗ of infinity.

A single iteration of the ASmixInt-ES is summarized in Algorithm 3 and discussed

in what follows. Lines 1 through 6 determine which node is selected in N , i.e. which

candidate subproblem should be processed next. A candidate node Q is selected with

equal probability by either choosing the node with the lowest objective function value

fx, or by randomly selecting a node from the set N . Node Q is then temporarily

removed from the set of active nodes in Line 7 and applied a single step of the (1

+ 1)-AS-ES as described by Spettel et al. [83] in Line 8. The (1 + 1)-AS-ES per-

forms mutation, projects the resulting point onto the feasible region, ignoring the

integrality constraints, and then updates the candidate solution x, its corresponding

objective function value fx, the working set to account for any newly active or inac-

tive inequality constraints. The step size is updated based on the 1/5th-rule. Line

9 computes the maximum integrality constraint violation ∆. Lines 10 through 29

determine whether or not node Q from N is to be considered for permanent removal.

As described in Lines 10 through 12, if an integer-feasible solution is better than the

current incumbent solution, then one would update the incumbent solution and its

30

Algorithm 3 Single Iteration of ASmixInt-ES

Input:

• set N of active nodes

• incumbent solution x∗, objective function value f ∗ = f(x∗)

• iteration number t ∈ N

1: Sample p uniformly at random in [0, 1).

2: if p < 0.5 then

3: Select node Q ∈ N with the minimal objective function value.

4: else

5: Select node Q ∈ N uniformly at random.

6: end if

7: Let N ← N\{Q}.
8: Let (x, fx, σ,W , t, l,u)← (1+1)-AS-ESstep(Q, t).
9: Let ∆← ∥xI − round(xI)∥∞ .

10: if ∆ < δ and fx < f ∗ then

11: Let x∗ ← x and f ∗ ← fx. ▷ Update incumbent solution

12: end if

13: if σ < 10−8 then

14: Jump to Line 30.

15: end if

16: Compute the effective dimension neff of the reduced search space at x.

17: if ∆ > δ and (neff = 0 or σ < 0.1) then

18: Branch on xd with the maximum integrality constraint violation.

19: Let l′ ← ⟨l1, . . . , ld−1, ⌈xd⌉ , ld+1, . . . , ln⟩.
20: if (y,W ′)← repair(x,W , l′,u) is successful then

21: Let N ← N ∪ {(y, fy, σ,W ′, t, l′,u)}.
22: end if

23: Let u′ ← ⟨u1, . . . , ud−1, ⌊xd⌋ , ud+1, . . . , un⟩.
24: if (y,W ′)← repair(x,W , l,u′) is successful then

25: Let N ← N ∪ {(y, fy, σ,W ′, t, l,u′)}.
26: end if

27: else

28: Let N ← N ∪ {(x, fx, σ,W , t, l,u)}.
29: end if

30: Let t← t + 1.

31

corresponding objective function value. If the step size falls below 10−8 as a result

of the (1+1)-AS-ES step, the remaining steps in the iteration are skipped, and the

node is permanently removed from consideration. Line 16 computes the effective di-

mension neff of the reduced search space by subtracting the dimension of the span of

the normal vectors of the equality constraints and the inequality constraints in the

working set evaluated at x from the dimension n. In Line 17, we detect any violations

of the integrality constraints, i.e. an integer variable xd ∈ Z takes a non-integer value

for some d ∈ I . If any violations exist, node Q is split if the effective dimension neff

of the reduced search space is zero or the step size drops below 0.1. If neither of

these conditions are met, node Q is not split and is instead added back to the set N
in Line 28. Lines 18 through 26 implement the branching procedure for the selected

node Q. Line 18 selects xd with the maximum integrality constraint violation as the

branching variable. Based on the idea of branching operation [16], node Q is split

into two new nodes. The new nodes should inherit all information of parent node Q.

Two bounds are updated correspondingly in Lines 19 and 23, one with lower bound

for variable xd to ⌈xd⌉, and the other with upper bound for variable xd to ⌊xd⌋, where

⌈xd⌉ and ⌊xd⌋ denote rounding up and down the value of xd for d ∈ I respectively.

Clearly, solution x of parent node Q is infeasible for either of the new nodes. Lines

20 and 24 involve a repair operation that projects the candidate solution x onto the

feasible regions of the corresponding node, using the working set W . Projection is

implemented as detailed by Spettel et al. [83]. If no feasible solution is found, up to

forty points are uniformly generated at random within the bound constraints of the

node, and then projected with an empty working set. The first feasible solution that

is obtained, along with its working set, is returned. The associated node is added

to N in Lines 21 and 25. If no feasible solution is located, the node is not added in

the set N of active nodes, and is therefore terminated. Line 30 updates the iteration

number.

It should be noted that each iteration of the algorithm involves between one

and three objective function evaluations. This includes one evaluation executed by

the (1+1)-AS-ES in Line 8, and up to two additional evaluations if a node is split

and feasible solutions are obtained for the newly created nodes in Lines 20 and 24.

Additionally, projection onto the feasible region frequently requires a significantly

32

larger number of constraint function evaluations.

It is worth noting that the node selection process in Line 8 comes with a trade-off.

Preliminary experiments demonstrated that it was not possible to reliably estimate

the potential of a node that had undergone a limited number of AS-ES steps. Always

selecting a node with the smallest objective function value is likely to result in the

overlooking of the node with a larger objective function, which would lead to the

optimal solution. Generally, advancing a node with a larger objective value in a

small number of objective function evaluations may lead to a better solution in the

end. Thus, we introduce a probability-based approach to selecting nodes, which takes

into account either the node’s objective function value or random sampling. At the

branching stage in Line 17, we set a small threshold for the distance from an integer

and the step size of a candidate node, which prevents early and frequent branching

and allows integer variables to converge to an integral solution instead. Furthermore,

neff = 0 effectively prevents the algorithm from exploring a node indefinitely for which

no search directions are available.

3.2 Performance of ASmixInt-ES

This section aims to investigate the impact of different problem characteristics on the

performance of ASmixInt-ES, including the number of integer variables, the number of

constraints, and the scaling factors of constraint functions. To analyze their influence,

we first consider n-dimensional constrained sphere functions with different numbers

of constraints. The objective function is

minimize f(x) = (x− c)T (x− c) (3.1)

where the elements of c are uniformly distributed numbers between 0 and 1. The

linear inequalities constraints are of the form

gi(x) = ATx ≤ b

where A is an l×n matrix and b is an l-dimensional column vector. Each element of

matrix A and vector b are independently sampled from a normal distribution with

33

mean zero and unit variance. To study the effect of both the number of constraints and

integer variables, we randomly generated a set of problem instances with n = 10 and

l ∈ {1, 5, 9}. The number of integer variables of test problems ranges from zero to n.

The problem instances used in this study do not have any bound constraints on their

continuous and integer variables and are characterized by convexity and unimodality.

Despite their relative simplicity, they allow us to explore how the algorithm performs

under different numbers of constraints and integrality constraints. Examining the

algorithm’s behaviour on such problems can provide insights into its performance on

more complex objective functions. In practice, if an optimization algorithm fails on

a simple objective function, it is not likely to work well on more complicated ones.

To observe the scaling behaviour of the algorithm on linearly constrained spheres,

two additional sets of sphere functions are considered, which have increased (referred

to as large A) and decreased (referred to as small A) scaling factors of random con-

straint functions. Each component of matrix A is randomly sampled from a normal

distribution with a mean of 0 and a variance of 104 and 10−2 respectively in large A

and small A problems. The modifications made to the test problems involve chang-

ing only the relevant scaling factor while leaving the problem formulations themselves

unchanged. In order to ensure that problem dimensions do not impact algorithm per-

formance, we keep the size of the test problems constant. The optimal solutions for

large A and middle A spheres are expected to be concentrated in a narrow range near

the origin; however, small A values may cause the optimal solutions to be located

farther away.

In addition to analyzing the algorithm’s performance, we also compare it with the

Mixed Integer Distributed Ant Colony Optimization (MIDACO) by Schlüter [77],

which was described in Section 2.2.1. MIDACO extends the ant colony optimiza-

tion algorithm and incorporates the oracle penalty function for constrained handling.

Schlüter [77] demonstrated that MIDACO is competitive with several established

MINLP software on comprehensive MINLP benchmark sets in terms of the number

of globally optimal solutions found. We have conducted 101 runs of both ASmixInt-

ES and MIDACO. A problem is considered solved successfully if a solution with an

objective function value f(x) < f ∗ + ϵ|f ∗| is obtained, where f ∗ is the optimal value

of the problem and it is feasible within the tolerance of constraints δ > 0, which

34

indicates the maximum degree of constraint violation. Parameter ϵ > 0 is referred

to as the target accuracy. If no solution meeting the termination criterion has been

obtained after a maximal budget of objective function evaluations, then the run is

declared unsuccessful.

The initialization of starting points involves uniform sampling from the interval

[−2, 2]n, with an initial step size of σ = 1 and constraint tolerance of δ = 10−8. Runs

are terminated after either a solution with an objective function value within a factor

of 1 + 10−8 of the optimal value is found, or 105 iterations have been spent without

finding a solution that satisfies the termination criterion. Runtimes for successful

runs are measured as the number of objective function evaluations required to solve

the problem.

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

0

500

1000

1500

2000

fu
n
ct

io
n

ev
al

u
a
ti

on
s

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

ASmixInt-ES, large A

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

0

500

1000

1500

2000

fu
n
ct

io
n

ev
al

u
a
ti

on
s

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

ASmixInt-ES, middle A

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

0

500

1000

1500

2000

2500

3000

fu
n
ct

io
n

ev
al

u
a
ti

on
s

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

ASmixInt-ES, small A

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

103

104

105

fu
n
ct

io
n

ev
al

u
at

io
n
s

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

MIDACO, large A

l=1 l=5 l=9

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

103

104

105

fu
n
ct

io
n

ev
al

u
at

io
n
s

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

MIDACO, middle A

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

103

104

105

fu
n
ct

io
n

ev
al

u
at

io
n
s

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

MIDACO, small A

Figure 3.2: Performance on sphere functions with randomly linear constraints l ∈
{1, 5, 9} for different coefficients in the constraint matrix A in 101 runs. The top row
presents results for the ASmixInt-ES and the bottom row presents results for MIDACO.
The columns from left to right show results for large A, middle A, and small A
spheres. Left y-axis: the solid lines connect the median numbers of objective function
evaluations required to locate the optimal solutions within the required accuracy;
the error bars encompass the range of 25th and 75th percentiles observed for each
algorithm. Right y-axis: the dashed lines represent success rates.

35

The median number of objective function evaluations required to achieve a ter-

mination accuracy ϵ = 10−8 and success rates for the ASmixInt-ES and MIDACO

algorithms against the number of integer variables is shown in Figure 3.2. The solid

lines connect the median values over successful runs. The error bars illustrate the

range from the 25th to 75th percentile values observed across successful runs. The

dashed lines represent success rates. The top row of Figure 3.2 reveals a similar trend

among different A spheres with l = 1. However, with l = 9, the number of median

objective function evaluations required has an increasing trend as the number of in-

teger variables grows. It can be observed that for l = 5, as the number of integer

variables increases, there is a similar trend in the behaviour of large and middle A

spheres. However, for small A spheres, there is a rapid increase in the number of

required function evaluations. It is apparent that the number of linear constraints

has an effect on the runtime. The ASmixInt-ES exhibits an advantage in handling

problems that possess a higher number of linear constraints and a lower number of

integer variables. This could be contributed to the fact that more linear constraints

lead to decreased unconstrained dimensions, and the active-set ES can benefit from

the reduced search space. However, as the integer variables begin to exceed half of

the total variables, this benefit gradually diminishes. Moreover, in terms of different

scaling factors A, the algorithm’s performance on large and middle A problems with

varying numbers of integrality constraints is similar, solving all problem instances in

all of the runs. However, compared to large and middle A spheres, the ASmixInt-ES

requires a higher number of objective function evaluations on the small A problems

with l = 5 and l = 9.

As expected, Figure 3.3 indicates that on spheres with l = 5 and l = 9, the

ASmixInt-ES requires visiting a larger number of nodes during the branching stage as

the number of integrality constraints increases.

The results obtained with MIDACO indicate a different trend as illustrated in the

bottom row of Figure 3.2, in contrast to the performance of ASmixInt-ES. The missing

data in the figure reflect that MIDACO fails to achieve the termination accuracy on

the corresponding problems in any of the runs. Notably, MIDACO performs well

when the number of integer variables exceeds half of the total variables and achieves

a success rate of 100 percent on pure integer problems with l = 1, where all variables

36

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

0

100

200

300

400

500
n
u
m
b
er
of
n
o
d
es

ASmixInt-ES, large A

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

0

100

200

300

400

500

n
u
m
b
er
of
n
o
d
es

ASmixInt-ES, middle A

0 1 2 3 4 5 6 7 8 9 10

number of integer variables

0

500

1000

1500

n
u
m
b
er
of
n
o
d
es

ASmixInt-ES, small A

l = 1 l = 5 l = 9

Figure 3.3: Median numbers of nodes required to solve sphere functions with randomly
linear constraints l ∈ {1, 5, 9} for different coefficients in the constraint matrix A in
101 runs. The columns from left to right show results for large A, middle A, and
small A spheres.

of problem instances take on integer values. However, it is observed that MIDACO

is less effective in problems with more linear constraints, regardless of the number of

integer variables and the size of the scaling factor A. The comparison of the results

depicted from top to bottom of Figure 3.2 demonstrates that MIDACO requires a

higher median number of objective function evaluations and has lower success rates

than the ASmixInt-ES for all test instances. The ASmixInt-ES locates globally optimal

solutions in 99 percent of runs for target accuracy ϵ = 10−8, while MIDACO only

achieves a corresponding rate of 28 percent. For MIDACO, the corresponding rates

on l = 1, l = 5, and l = 9 are 66 percent, 14 percent, and 5 percent respectively; the

rates on middle A, large A, and small A spheres are 32 percent, 28 percent, and 25

percent respectively. It can be observed that the capability of MIDACO to solve the

problem decreases with an increase in the number of constraints and an increase in

the range of optimal solutions for integer variables. It is important to keep in mind

that MIDACO considers the constraint functions as black boxes while the ASmixInt-ES

assumes knowledge of constraint functions.

To have a better insight into the overall performance of two algorithms, we present

empirical cumulative distribution function (ECDF) plots as described by Hansen et

al. [33] in Figure 3.4, which are known as data profiles [60]. We select twenty loga-

rithmically uniformly distributed values between f ∗ + 10−8 |f ∗| and f ∗ + 102 |f ∗| as

targets for each problem, where f ∗ is the optimal solution value of the problem. For

37

each algorithm, the plots show the percentage of test problems that reached objec-

tive function values within the required accuracy against running time. A measure

of its performance is the ratio of the number of targets achieved from the set by

integer-feasible solutions. We limit each run to a maximum of 105 objective function

evaluations for both algorithms. In Figure 3.4, it is evident from the first to the third

row that the ASmixInt-ES successfully meets all targets in all runs, with an expected

increase in the proportion of met targets along with runtimes. It can be observed

that small A problems require more time to achieve the targets than problems with

larger scaling values A. Although all test spheres are defined for any x ∈ Rn, middle

and large A spheres have their optimal solutions for the integer variables fall between

-3 and 3, whereas for small A spheres, optimal solutions are found in a broader range

of integer variables within [−5, 5], [−10, 10], and [−20, 20] for l = 1, l = 5, and l = 9

respectively. This difference in optimal solutions requires more computational effort

in the branching step of the ASmixInt-ES algorithm as illustrated in Figure 3.3, leading

to much longer runtimes for solving small A spheres.

MIDACO reaches less than half of the targets for the nint ∈ {2, 5} and l ∈ {5, 9}
combination cases, while it achieves a higher percentage of targets (around 89 per-

cent, 86 percent, and 84 percent respectively) for middle A, large A, and small A

spheres with nint = 8 and l = 1. MIDACO can be observed to reach a small num-

ber of targets than the ASmixInt-ES does at the beginning. This may be because

MIDACO only evaluates objective and constraint functions for integer variables at

integer points, while the ASmixInt-ES does not enforce the integrality requirement for

integer variables when evaluating functions. After that, the ASmixInt-ES appears to

converge significantly faster than MIDACO. The ASmixInt-ES eventually achieves all

of the targets with different numbers of linear constraints l ∈ {1, 5, 9}. MIDACO

achieves 52 percent of targets on nint = 8, 46 percent on nint = 5, 43 percent on

nint = 2. We can see that the efficiency of MIDACO in solving problems increases

with decreasing number of continuous variables.

The objective function definition for the mixed-integer problems discussed in this

section is relatively straightforward, but the results show that the number of integer

variables and constraint functions has a significant impact on the algorithm’s running

time. The effects can contribute to the complexity of the problems to some extent.

38

The ASmixInt-ES can deal with such mixed-integer problems using an integrality con-

straint handling approach. Additionally, we observe that different scaling values for

the coefficient matrix A have a strong effect on the algorithm’s performance, with

the range of optimal solutions on integer variables being a key factor. As the num-

ber of integrality constraints increases, small A spheres become more challenging for

ASmixInt-ES, reducing its efficiency. In the next chapter, we will evaluate the compu-

tational performance of ASmixInt-ES and compare it with other related algorithms on

relatively complex problems.

39

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
a
ch

ed

nint=2nint=2nint=2nint=2nint=2nint=2

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
a
ch

ed

large A

nint=5nint=5nint=5nint=5nint=5nint=5

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
a
ch

ed

nint=8nint=8nint=8nint=8nint=8nint=8

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
ac

h
ed

nint=2nint=2nint=2nint=2nint=2nint=2

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
ac

h
ed

middle A

nint=5nint=5nint=5nint=5nint=5nint=5

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
ac

h
ed

nint=8nint=8nint=8nint=8nint=8nint=8

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
ac

h
ed

nint=2nint=2nint=2nint=2nint=2nint=2

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
ac

h
ed

small A

nint=5nint=5nint=5nint=5nint=5nint=5

100 101 102 103 104 105

function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
s

re
ac

h
ed

nint=8nint=8nint=8nint=8nint=8nint=8

ASmixInt-ES, l = 1 ASmixInt-ES, l = 5 ASmixInt-ES, l = 9

MIDACO, l = 1 MIDACO, l = 5 MIDACO, l = 9

Figure 3.4: Empirical cumulative running time distributions for ASmixInt-ES and MI-
DACO on linearly constrained spheres for l ∈ {1, 5, 9} with different coefficients in the
constraint matrix A. The rows from top to bottom show results for the ASmixInt-ES
and the MIDACO on large A, middle A, and small A spheres. The columns from left
to right present results with the number of integer variables nint ∈ {2, 5, 8} for two
algorithms.

Chapter 4

Experiments

The presence of both discrete and continuous variables introduces new optimization

challenges. The main focus here is to illustrate the applicability and efficiency of

the proposed algorithm for mixed-integer optimization. This chapter evaluates the

performance of the proposed ASmixInt-ES on two sets of test problems. In the first

experiment, we consider several of the algorithms surveyed in Chapter 2. These algo-

rithms’ implementations are not accessible. They have been evaluated on problems

included in the MINLPlib set, and we compare the performance data of ASmixInt-ES

to those of other algorithms that have been reported in the literature. The second

experiment utilizes a subset of non-convex constrained problems collected by Ku-

mar et al. [47] that we refer to as the CEC 2020 Benchmark. Detailed information

about these problems is given in Appendix A. We present numerical results of the

proposed ASmixInt-ES and compare them with several algorithms submitted to the

CEC 2020 competition. A further investigation that we would like to conduct is to

confirm whether the (1+1)-AS-ES algorithm’s strong performance reported by Spet-

tel et al. [83] on the CEC 2006 test problem set, which was a key component in the

development of the ASmixInt-ES, extends to real-world problems.

The performance of the ASmixInt-ES on a set of MINLPlib test problems and com-

pares the results to one deterministic algorithm (named MISQP) and two stochastic

algorithms (named MIDACO and GAMBIT respectively) is investigated in Section

4.1. MIDACO builds upon the ant colony optimization and GAMBIT is a model-

based evolutionary algorithm. In Section 4.2, extensive experiments are carried out

on a set of the CEC 2020 benchmark to evaluate the performance of the proposed

algorithm. Section 4.2.1 highlights several comparable algorithms that are used on

constrained optimization problems, Section 4.2.2 describes the test environment, and

Section 4.2.3 presents experimental results.

40

41

4.1 Numerical Tests on MINLPlib

4.1.1 Algorithms

We compare the performance of the ASmixInt-ES with three other algorithms:

• MISQP by Exler and Schittkowski [21], as described in Section 2.1.5. MISQP

makes use of pre-defined initial starting points in the source code provided by

Schittkowski [73]. Default tolerances and parameter settings are applied with

target accuracy ϵ = 10−6 and constraint tolerance δ = 10−6. As stated in [73],

the maximum number of iterations is set to 100, and the maximum number of

iterations without improvements is set to 10.

• MIDACO Version 6.0 by Schlüter [77], as outlined in Section 2.2.1, conducting

21 independent runs for each problem instance. We use the same starting points

as Schittkowski did in [73] for all problem instances. Additionally, we set the

constraint tolerance to δ = 10−6, matching the tolerances used in [73]. Runs

are terminated when either a solution with an objective function value within

a factor of 1 + 10−6 of the optimal value is found, or 105 iterations have been

spent without finding a solution that satisfies the termination criterion. We do

not consider the parallelization of MIDACO in the following experiments.

• GAMBIT, which extends MIES [52] to solve constrained MINLP by exploiting

a dynamic penalty method as a means of constraint handling and the clustering

mechanism, as outlined in Section 2.2.2. Identical starting points as those in

MIES [52] are used. The maximum population size is set to 2500 [67]. Success

criteria are declared if the optimal value is achieved with a precision of 10−5

and a constraint tolerance of 10−10. The optimum is reached in at least 19 out

of 20 runs.

4.1.2 Test Environment

Three problems in MINLPlib [59] have been used to evaluate their algorithms by

Sadowski et al. [67]. The integer variables of these three problems only involve a

value of zero or one. We refer to this type of problem as a mixed-binary problem. To

evaluate the generality of the proposed algorithm, we select additional test problems

42

from [59] in several different fields. These problems contain binary and integer-valued

variables, thereby adding to the diversity of the test set. These are all mixed-integer

problems with various types of objective functions, including linear and non-linear,

as well as different types of constraints, such as linear inequalities, non-linear inequal-

ities, linear equalities, and non-linear equalities. The problem dimensions range from

2 to 17, with the number of integer variables ranging from 1 to 12 and up to 13

constraints. The first class of problems is composed of seven mixed-binary problems,

such as problems EX1223A, EX1226, and ST E15. The other seven test problems are

classified as general mixed-integer problems. It is necessary to collect a wide range of

test problems in a comparative study. The dimension of a problem partly determines

its overall complexity. Moreover, the complexity of a problem is also influenced by

factors such as the types of integer variables, the number of constraints and integer

variables, as well as the presence of inequality and equality constraints.

A summary of the selected problems is listed in Table 4.1. The first column gives

the name of the problems, followed by four columns that detail the dimensions, num-

ber of integer variables, inequalities, and equalities constraints. The types of objective

functions are given in column six, followed by the types of integer variables and their

ranges in the last column. All constraint functions include general nonlinear con-

straints. These problems are collected from a range of real-world applications. Note

that while most of the test problems have both inequality and equality constraints,

some exceptions exist. For instance, problem WINDFAC does not have inequality

constraints, and problems EX1223A, NVS08, and PROB10 do not have equality con-

straints. Some problems in [59] do not have lower or upper bound constraints defined

for some continuous variables, while other problems have both bound constraints.

However, Schittkowski [73] provides lower and upper bounds for all variables in all

test problems. Therefore, we use the same bounds as in [73] for consistency.

Initial starting points of the proposed algorithm ASmixInt-ES are the same as those

provided in [73]. The step size parameter σ is initialized to one-fifth of the minimum

extent of the interval width for all variables. All test problems are provided with

globally optimal objective function values f ∗, which are the same as the known ones

reported in the MINLPlib [59]. In the following experiments, we conduct 21 indepen-

dent runs of ASmixInt-ES and MIDACO for each test problem considered and use the

43

Problem n nint l m
Type of

objective function
Type of

integer variables
Ranges for

integer variables
EX1223A 7 4 9 0 non-linear B {0, 1}4
EX1225 8 6 8 2 linear B {0, 1}6
EX1226 5 3 4 1 linear B {0, 1}3
GKOCIS 11 3 3 5 linear B {0, 1}3

PROCSEL 10 3 3 4 linear B {0, 1}3
ST E15 5 3 3 2 linear B {0, 1}3

SYNTHES2 11 5 13 1 non-linear B {0, 1}5
NVS01 3 2 2 1 non-linear I [0, 200]2

NVS05 8 2 5 4 non-linear I [1, 200]2

NVS08 3 2 3 0 non-linear I [0, 200]2

PROB10 2 1 2 0 non-linear I [0, 10]
SPRING 17 12 3 5 non-linear both {0, 1}11 × [1, 10]
ST E36 2 1 1 1 non-linear I [15, 25]

WINDFAC 14 3 0 13 non-linear I [1, 10]× [1, 100]2

Table 4.1: Summary of characteristics of MINLPlib test problems. n denotes the
dimension of the problem, nint ≤ n denotes the number of integer variables including
binary variables, l denotes the number of inequality constraints, and m denotes the
number of equality constraints. Types of integer variables contain zero-one binary
variables (B), integer-valued variables (I), or a mixture of both. All constraint func-
tions include general nonlinear constraints.

same termination criteria as Schittkowski [73]. The evaluation metrics include the

median number of objective function evaluations needed by each algorithm to meet

the target accuracy over successful runs and the success rate, obtained as the ratio of

the number of successful runs to the total number of runs.

4.1.3 Results

The experimental results are presented in Table 4.2 where, for each problem, we dis-

play the problem name, the median number of objective function evaluations across

successful runs, and success rates. To bring into comparisons, the previously re-

ported data of two optimization algorithms are also summarized in Table 4.2. Data

for MISQP have been taken from Schittkowski [73]. Data for GAMBIT stem from

Sadowski et al. [67] and for each problem represent the best algorithm variant consid-

ered there. There is no available data for GAMBIT on the problems marked with a

dash. It should be noted that making a direct and fair comparison is difficult, as the

44

data have been collected from various sources that used different termination crite-

ria and evaluation measures. Also, GAMBIT uses a different initialization condition

than the other algorithms. Moreover, GAMBIT and MIDACO treat the constraint

functions as black boxes, while we do not. MISQP by Exler and Schittkowski [21]

applies finite differences and computes partial derivatives of objective functions and

constraints to variables.

ASmixInt-ES MISQP MIDACO GAMBIT
EX1223A 50/1.00 150/1.00 9010/1.00 20155/1.00
EX1225 59/1.00 80/1.00 5773/0.57 -
EX1226 13/1.00 21/1.00 329/1.00 2996/1.00
GKOCIS 144/1.00 373/1.00 –/0.00 -

PROCSEL 133/1.00 362/1.00 –/0.00 -
ST E15 12/1.00 34/1.00 5730/0.76 4001/1.00

SYNTHES2 171/1.00 623/1.00 90962/0.05 -
NVS01 21/1.00 140/1.00 56923/0.10 -
NVS05 139/1.00 770/1.00 –/0.00 -
NVS08 42/1.00 138/1.00 2818/1.00 -

PROB10 40/1.00 20/1.00 594/1.00 -
SPRING 61/1.00 965/1.00 –/0.00 -
ST E36 58/1.00 188/1.00 –/0.00 -

WINDFAC 10/1.00 3321/1.00 –/0.00 -

Table 4.2: Median numbers of objective function evaluations required to solve prob-
lems across the successful runs and success rates within the required target accuracy
ϵ = 10−6 and constraint tolerance δ = 10−6. – represents no optimal solutions found
and - represents no data reported.

As it can be seen from Table 4.2, ASmixInt-ES appears to perform at least as

well, even better than MISQP and locates the global optima in all test instances.

The median number of required objective function evaluations ranges between 10

for WINDFAC and 171 for SYNTHES2. Problem size alone does not determine

the runtimes as illustrated in Table 4.2. For instance, ASmixInt-ES takes similar me-

dian objective function evaluations to solve problems ST E36 and SPRING. Problem

ST E36 comprises two variables, one of which takes a value ranging from 15 to 25,

and two constraints. In contrast, problem SPRING consists of 17 variables, including

eleven binary variables and one integer variable, and it is subject to eight constraints.

Both problems involve nonlinear objective functions. On the other hand, problem

NVS05, which requires a relatively large number of function evaluations to solve,

45

contains eight variables and nine constraints. The objective function of the problem

is nonlinear, and there are two integer variables that can take values in a wider range

between 1 and 200.

MISQP converges to globally optimal solutions within default tolerance for all

problems reported in [73]. The number of objective function evaluations required

ranges from 20 for PROB10 to 3321 for WINDFAC. Comparing the results of ASmixInt-

ES, MISQP achieves a higher number of objective function evaluations, with the

exception of PROB10. MISQP computes gradients of both the objective function

and constraints, which can be computationally expensive for some problems. In

contrast, the ASmixInt-ES assumes that constraint function evaluations have negligible

cost compared to objective function evaluations and focuses solely on the number of

objective function evaluations. The ASmixInt-ES likely employs a far larger number of

constraint function evaluations than MISQP.

The stochastic algorithm MIDACO successfully solves four of the fourteen prob-

lem instances in all runs. For the four problems (NVS05, ST E36, SPRING, and

WINDFAC) containing integer-valued variables, MIDACO cannot locate the opti-

mal solution, even though the problem dimension is small. The results indicate that

MIDACO presents a higher success rate with a relatively lower median number of

objective function evaluations required when solving those with only zero-one binary

variables, while its performance is poor with general integrality constraints. Addi-

tionally, for mixed-binary problems, MIDACO performs relatively well in problems

with low-dimensional search spaces, and conversely, it exhibits inferior performance

in high-dimensional problems.

The number of objective function evaluations required of GAMBIT is significantly

larger than those of ASmixInt-ES for all problems. It is important to note that the

starting point of ASmixInt-ES, MISQP, and MIDACO for each problem is determined

using a priori-defined initial point given in [73], while GAMBIT does not utilize the

pre-defined starting points. Furthermore, one has to keep in mind that MIDACO and

GAMBIT are designed to work without any prior knowledge of constraint functions,

therefore treating constraints as black boxes. However, if these algorithms exploit

known problem characteristics, such as constraint functions, there would be potential

for improved performance in such cases.

46

The above results indicate the potential of the proposed ASmixInt-ES for solving

such mixed-integer problems in terms of objective function evaluations. ASmixInt-ES

takes advantage of the explicit nature of the constraints. MISQP is comparable with

the proposed ASmixInt-ES, whereas the other algorithms are not.

4.2 Numerical Tests on CEC 2020 Benchmark

4.2.1 Algorithms

In this section, we validate the effectiveness of the proposed algorithm, conducting

extensive experiments on CEC 2020 benchmark suite and comparing the performance

with four other optimization algorithms in the literature. Except for MIDACO, the

other three selected algorithms are the top three algorithms submitted to the CEC

2020 Competition on Real-World Single Objective Constrained Optimization. They

are a self-adaptive spherical search algorithm (SASS) [46], a differential evolution

variant (COLSHADE) [28], and a CMA-ES variant (sCMAgES) [45]. Both SASS

and sCMAgES employ a gradient-based repair method and analytically compute gra-

dients of constraint functions, while COLSHADE treats constraint functions as black

boxes. None of these algorithms are intended for mixed-integer optimization and in-

stead rely on rounding the values of integer variables with non-integer values before

computing objective and constraint function values. We run these algorithms using

code from the authors1. To avoid misunderstandings or incorrect parameter tuning,

the parameters of these comparative algorithms are identical to default settings in

the literature. Furthermore, we consider the SQP and interior-point methods im-

plemented in MATLAB’s fmincon in the comparison to confirm the efficiency of the

(1+1)-AS-ES algorithm [83] on real-world continuous constrained problems.

4.2.2 Test Environment

A set of 14 benchmark problems are chosen from CEC 2020 real-world single-objective

constrained optimization competition benchmarks collected by Kumar et al. [47].

These test problems arise from the area of chemical engineering and represent diffi-

cult non-convex optimization problems. The brief properties of these test problems

1The source codes of SASS, COLSHADE, and sCMAgES are available at https://github.com/P-
N-Suganthan/2020-RW-Constrained-Optimisation.

47

are reported in Table 4.3. The test problem names are followed by the original citation

sources. Some optimization problems in CEC 2020 benchmarks were chosen to be

altered by Kumar et al. [47]. They imposed bound constraints on some problems and

changed problems’ properties, which can prevent algorithms from converging to local

optima and lost physical significance. To ensure the comparability of the experiments,

we have used formulations of the optimization problems that are either directly from

the original references as provided in Table 4.3, or if the problem has been signifi-

cantly reformulated before being included in the test set by Kumar et al. [47], we use

a reference that preserves the problem’s essential characteristics and optimal solution

from the original reference2. We have ensured not to impose bound constraints that

alter the characteristics of the problems significantly. Full details on these problems

are given in Appendix A. These problems have different characteristics of objective

functions (linear or non-linear), constraints (linear or non-linear, equalities or in-

equalities), and variables (continuous, zero-one binary, integer-valued). There are no

more than 48 continuous variables and 4 integer variables. Moreover, there are up

to 38 equality constraints and 14 inequality constraints. They fall into two broad

classes. Problems RC01-RC07 are continuous constrained optimization problems in

the field of industrial chemical processes. Problems RC08-RC14 are mixed-integer

constrained optimization problems in the field of process synthesis and design. The

variety of test problems enables us to evaluate the performance of all algorithms from

various aspects, such as their capability to solve problems with different dimensions

and constraint functions.

In order to succinctly present the results of this computational study, we use a

fixed-target approach [33] for comparing algorithms. A successful run for each prob-

lem refers to the algorithm finding the optimal solution within target accuracy ϵ > 0

and the solution being feasible within the constraint tolerance δ. Unless otherwise

noted, experiments are run with constraint tolerance δ = 10−8, and computations are

carried out with relative termination accuracy. We generate a set of targets for each

problem by choosing twenty values that are logarithmically uniformly distributed be-

tween f ∗ + 10−8 |f ∗| and f ∗ + 100 |f ∗|, where f ∗ is the value of an optimal solution to

2According to our investigation, the source reference for problem RC13 by J. Wong cannot be
found. Nevertheless, it seems that the problem has been derived from Himmelblau’s problem [38]
by removing three constraints and imposing two new integrality constraints.

48

Problem Ref n nint l m
Type of

objective function
Type of

integer variables
Ranges for

integer variables
RC01 [88] 3 0 0 2 non-linear
RC02 [88] 5 0 0 3 linear
RC03 [71] 7 0 14 0 non-linear
RC04 [56] 6 0 1 4 linear
RC05 [37] 9 0 2 4 linear
RC06 [23] 38 0 0 32 linear
RC07 [3] 48 0 0 38 non-linear
RC08 [43] 2 1 2 0 linear B {0, 1}1
RC09 [42] 3 1 1 1 linear B {0, 1}1
RC10 [22] 3 1 3 0 non-linear B {0, 1}1
RC11 [44] 8 2 4 4 linear B {0, 1}2
RC12 [89] 7 4 9 0 non-linear B {0, 1}4
RC13 [15] 5 2 3 0 non-linear I [78, 102]× [33, 45]
RC14 [26] 10 3 13 0 non-linear I [1, 3]3

Table 4.3: Summary of characteristics of CEC 2020 problems RC01-RC14. n denotes
the dimension of the problem, nint ≤ n is the number of integer variables, l details
the number of inequality constraints, and m gives the number of equality constraints.
Types of integer variables contain zero-one binary variables (B) or integer-valued
variables (I). All constraint functions include general nonlinear constraints.

the problem. For each algorithm, the empirical cumulative running time distribution

function (ECDF) plots show the fraction of reached objective function value targets

for each problem across 21 runs against the number of objective function evaluations.

In order for a target to be considered as reached, the corresponding solution generated

by the algorithm needs to be feasible within tolerance δ. To ensure a fair comparison

between the algorithms and reduce potential biases, we use identical initialization

methods and termination criteria across all experiments. Initial starting points of

all algorithms are generated by sampling uniformly and randomly within the bound-

constrained region of the test problems. The step size parameter σ of the proposed

algorithm ASmixInt-ES is initialized to one-fifth of the minimum extent of the interval

width for all variables in all runs. The maximum number of objective function eval-

uations for all algorithms is set to 105. To ensure that the SQP and interior-point

algorithms do not terminate before finding a feasible solution for the desired target

accuracy, we specify the optimality tolerance, step tolerance, and function tolerance

parameters as zero, and employ an output function to halt the algorithms when the

termination criteria outlined above are met. Except for sCMAgES and MIDACO, we

do not consider restart schemes in our experiments.

49

4.2.3 Results

The numerical results of testing the algorithms implemented in MATLAB’s fmincon

function on a set of CEC 2020 benchmark problems are summarized in Table 4.4.

For each problem considered, we have conducted 21 runs of the above-mentioned

algorithms for target accuracies ϵ ∈ {10−4, 10−8} and constraint tolerance δ = 10−8.

Each cell in the table displays results for target accuracy ϵ = 10−4 on the left and

for ϵ = 10−8 on the right. In each cell, the upper row shows the median number of

objective function evaluations required to reach termination accuracy for all successful

runs of each algorithm. The lower row shows the percentage of successful runs out

of all runs. The table does not include data for SASS, COLSHADE, and sCMAgES

due to their high computational cost, which requires a number of objective function

evaluations ranging from a few thousand to tens of thousands. In the table, problems

RC06 through RC07 for some algorithms are marked with dashed lines indicating

that no optimal solutions could be located for these problems. The SQP and interior-

point algorithms have no values in the cells from problems RC08 to RC14 due to the

presence of integrality constraints that make the algorithms inapplicable. It is worth

noting that when there are no integrality constraints, the ASmixInt-ES is equivalent to

the (1+1)-AS-ES described by Spettel et al. [83].

It can be observed that none of the algorithms can solve all problems from RC01 to

RC07 in all runs from Table 4.4. The ASmixInt-ES solves seven out of the 14 problems

within both target accuracies ϵ = 10−4 and ϵ = 10−8 in all runs. The ASmixInt-

ES fails to solve problems RC01, RC04, RC05, RC06, RC07, RC08, and RC11 in

some of the runs, which are multimodal. In such cases, the ASmixInt-ES converges to

locally optimal solutions, which have been noted in several references [66, 23, 3, 44].

Incorporating ASmixInt-ES into a straightforward restart scheme would significantly

increase the probability of finding globally optimal solutions.

The algorithm exhibits relatively lower success rates in problems RC06 and RC07,

solving only around 15 out of 21 runs. These two problems have the highest dimension

and the largest number of constraints active at the optimal solution. In the unsuccess-

ful runs, the algorithm runs into local optimizers, which prevents it from converging

to the optimal solution. Nevertheless, ASmixInt-ES achieves among the highest suc-

cess rates for RC06 and RC07 of all algorithms considered. The interior-point method

50

ASmixInt-ES active-set sqp interior-point

RC01
14/13

0.95/0.95
24/24

0.76/0.86
35/41

0.90/0.90
127/181

0.95/0.90

RC02
101/181

1.00/1.00
316/341

0.86/0.86
230/229

1.00/1.00
1886/1716
1.00/1.00

RC03
194/321

1.00/1.00
175/178

0.95/1.00
215/399

1.00/1.00
730/677

1.00/0.95

RC04
19/85

0.90/0.95
1183/1624
0.71/0.57

114/108
0.57/0.57

198/213
1.00/1.00

RC05
60/42

0.95/0.90
175/165

0.86/0.95
161/161

0.90/1.00
252/261

0.76/1.00

RC06
61/66

0.67/0.67
24934/19826

0.38/0.38
2383/2577
0.62/0.71

–/–
0.00/0.00

RC07
90/115

0.76/0.71
–/–

0.00/0.00
4809/4411
0.62/0.43

–/10686
0.00/0.14

RC08
7/10

0.95/0.95
-/- -/- -/-

RC09
5/7

1.00/1.00
-/- -/- -/-

RC10
17/26

1.00/1.00
-/- -/- -/-

RC11
65/142

0.81/0.86
-/- -/- -/-

RC12
81/63

1.00/1.00
-/- -/- -/-

RC13
14/21

1.00/1.00
-/- -/- -/-

RC14
109/104

1.00/1.00
-/- -/- -/-

Table 4.4: Each cell in the table contains four data points. The top row of the
cell shows the median number of objective function evaluations required to solve
problems across the successful runs on the CEC 2020 benchmarks, for two different
target accuracies: 10−4 on the left and 10−8 on the right. The bottom row of the cell
displays success rates for the corresponding target accuracies 10−4 and 10−8.

51

has encountered singular matrices when solving problem RC07 and failed to converge

to a solution. Comparing the median numbers of objective function evaluations re-

quired across successful runs, the ASmixInt-ES is the fastest algorithm for most of

those problems tested. However, for problem RC03, the active-set method exhibits

superior performance. A single run of the algorithm on problem RC04 is unsuccessful.

Problem RC04 exhibits multi-modality and contains two local minima, with one of

them having an objective function value close to the global optimal function value.

Interior-point method is the only algorithm to solve problems RC04 and RC05 in all

runs within target accuracy ϵ = 10−8.

The ASmixInt-ES locates globally optimal solutions in 89 percent of runs for target

accuracy ϵ = 10−4 and in 88 percent of runs for ϵ = 10−8 across all continuous

problems RC01 through RC07. The corresponding rates for active-set are 65 percent

and 66 percent, for sqp are 80 percent for both target accuracies, and for interior-

point are 67 percent and 71 percent. As shown in Figure B.1 of Appendix B, for

SASS are 43 percent and 21 percent, for COLSHADE are 15 percent and 16 percent,

and for sCMAgES are 27 percent and 16 percent. MIDACO cannot achieve globally

optimal solutions for these problems within both target accuracies and the tightest

constraint tolerance even in a single run.

It can be noted that the performance of the ASmixInt-ES is consistent with the

results reported by Spettel et al. [83] from the data in Table 4.4. With regard to

all constrained mixed-integer problems from RC08 to RC14, the ASmixInt-ES reaches

globally optimal solutions in 97 percent of runs for both target accuracies. The SQP

and interior-point algorithms are not capable of solving mixed-integer optimization

problems. The corresponding rates within both target accuracies shown in Figure B.1

of Appendix B for SASS are 71 percent, for sCMAgES are 71 percent, for COLSHADE

are 53 percent, and for MIDACO are 58 percent of runs and 56 percent of runs

with ϵ = 10−4 and ϵ = 10−8 respectively. It is noteworthy that the relatively poor

performance of COLSHADE and MIDACO may be attributed to a strict constraint

tolerance δ used in the conducted experiments. COLSHADE and MIDACO do not

require any assumptions on the constraint functions and treat constraints as black

boxes, while other algorithms assume knowledge of the constraint functions. As shown

in Figure B.2 of Appendix B, with a higher constraint tolerance of δ = 10−4 used by

52

Schlüter [77], MIDACO can locate globally optimal solutions in 62 percent of runs

and 64 percent of runs for ϵ = 10−4 and ϵ = 10−8 respectively. The corresponding

rates with δ = 10−2 for MIDACO are 66 percent and 69 percent respectively.

Empirical cumulative running time distributions for all fourteen test problems are

displayed in Figure 4.1. For each algorithm, the plots show the percentage of runs

that reached objective function values within the required accuracy and tolerance δ

against running time. A measure of its performance is the ratio of the number of

targets achieved from the set. With the exception of problem RC03, the ASmixInt-ES

demonstrates the quickest convergence to globally optimal solutions among all prob-

lems in Figure 4.1. For problem RC03, the active-set method requires fewer objective

function evaluations to reach the hardest target accuracy. Except for ASmixInt-ES, all

other algorithms achieve all targets within tolerance δ on problem RC08, where one of

the 21 runs converges to a local optimum. On problem RC11, none of the algorithms

are able to reach all targets. ASmixInt-ES achieves 88 percent of the targets, MIDACO

30 percent, sCMAgES 8 percent, and COLSHADE 6 percent. The introduction of

a restart technique can possibly prevent the ASmixInt-ES from getting stuck on the

local optimum and achieving better performance. ASmixInt-ES is the only algorithm

to meet all targets on the 10-dimensional problem RC14 which contains three integer

variables. Empirical cumulative running time distributions for MIDACO across all

test problems within different constraint tolerances and target accuracies are provided

in Figure B.3. In certain cases, it has been observed that MIDACO achieves a higher

number of targets with the strictest tolerance and target accuracy compared to other

settings within the same number of function evaluations.

Furthermore, compared to the other algorithms, ASmixInt-ES is capable of reaching

more targets with a single objective function evaluation due to projecting feasible

candidate solutions onto the feasible region, even in several constrained mixed-integer

test problems. As mentioned previously, the integer variables in the implementations

provided by Kumar et al. [47] are rounded before applying objective or constraint

functions. Thus, SASS, COLSHADE, and sCMAgES are not specifically tailored for

mixed-integer optimization. In contrast, MIDACO exhibits better performance in

mixed-integer test problems compared to problems with continuous search spaces.

53

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC01RC01RC01RC01RC01RC01RC01RC01

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC02RC02RC02RC02RC02RC02RC02RC02

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC03RC03RC03RC03RC03RC03RC03RC03

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
a
ch
ed

RC04RC04RC04RC04RC04RC04RC04RC04

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
a
ch
ed

RC05RC05RC05RC05RC05RC05RC05RC05

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
a
ch
ed

RC06RC06RC06RC06RC06RC06RC06RC06

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC07RC07RC07RC07RC07RC07RC07RC07

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC08RC08RC08RC08RC08RC08RC08RC08

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC09RC09RC09RC09RC09RC09RC09RC09

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC10RC10RC10RC10RC10RC10RC10RC10

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC11RC11RC11RC11RC11RC11RC11RC11

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
ac
h
ed

RC12RC12RC12RC12RC12RC12RC12RC12

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
a
ch
ed

RC13RC13RC13RC13RC13RC13RC13RC13

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg
et
s
re
a
ch
ed

RC14RC14RC14RC14RC14RC14RC14RC14 ASmixInt-ES
active-set
sqp
interior-point
SASS
COLSHADE
sCMAgES
MIDACO

Figure 4.1: Empirical cumulative running time distributions on the CEC 2020 prob-
lems.

Chapter 5

Conclusion

In this chapter, we summarize the main contributions of this thesis, and provide

potential directions for future research.

5.1 Summary

In this thesis, we have proposed ASmixInt-ES as an evolutionary algorithm for solv-

ing mixed-integer problems with explicit constraints. Previous studies on active-set

evolution strategies [6, 7, 83] for constrained optimization have indicated that em-

ploying active-set techniques to enforce active constraints to be equality constraints

can reduce the search space dimensions. According to the results of the CEC 2006

test set [53], the (1+1)-AS-ES algorithm proposed by Spettel et al. [83] appears to

have higher success rates for some problems than the SQP and interior-point methods

implemented in MATLAB’s fmincon, while using a comparable number of objective

function evaluations. The (1+1)-AS-ES algorithm [83] is designed for continuous

black-box optimization with explicit constraints. To expand its applicability to op-

timize mixed-integer constrained problems, a branching technique is incorporated

to prevent the optimization algorithm from converging to solutions that violate any

integrality constraints. In this thesis, we focus on explicit constraints, where the

constraint functions are computationally cheap to evaluate.

In contrast to other solvers, we do not utilize the bounding scheme of Branch-

and-Bound methods to prune the search tree. Our proposed algorithm avoids solving

problems to optimality at each node. We use heuristics instead to decide which node

to propagate forward, when to split a problem into subproblems, and when to elimi-

nate them from further consideration. For our proposed algorithm, we have conducted

multiple runs on linearly constrained random spheres and collected experimental data

for analysis. Empirical studies show that the ASmixInt-ES can converge to the global

optimum with different numbers of integrality constraints and linear constraints. The

54

55

results suggest that in terms of objective function evaluations, the algorithm’s per-

formance is impacted by the number of integer variables and constraint functions.

These effects can contribute to the complexity of the problems to a certain extent. In

addition, the range of optimal solutions on integer variables is a factor to affect the

algorithm’s effectiveness.

To validate the applicability and efficiency of ASmixInt-ES, we have applied it to

a set of 28 constrained optimization problems, half of which have been taken from

MINLPlib [14], half of which have been adapted from the CEC 2020 test set of Ku-

mar et al. [47]. Our experiments demonstrate that ASmixInt-ES can be applied to

linearly as well as non-linearly constrained mixed-integer problems. In most cases,

the ASmixInt-ES requires fewer objective function evaluations to solve constrained

mixed-integer problems from MINLPlib compared to MISQP, a mixed-integer trust-

region sequential quadratic programming algorithm. Both MISQP and ASmixInt-ES

compute constraint gradients, but the ASmixInt-ES assumes that constraint functions

are explicit and requires more constraint function evaluations than objective function

evaluations. This assumption allows the ASmixInt-ES to succeed faster in black-box op-

timization scenarios compared to algorithms that do not assume explicit constraints.

Among CEC 2020 problem sets considered, seven problems do not have integral-

ity constraints. For these, the ASmixInt-ES and the (1+1)-AS-ES algorithm perform

exactly the same. We compare the empirical cumulative running time distributions of

ASmixInt-ES to those of the SQP and interior-point algorithms in MATLAB’s fmincon

function, the top-three algorithms from the CEC 2020 competition, and MIDACO

version 6.0. Our studies confirm the observations made by Spettel et al. [83] that the

active-set evolution strategy outperforms other algorithms for most problems. How-

ever, some of the other algorithms achieve higher success rates for some test problems

when the active-set evolution strategy converges to the local optimum. Embedding

a restart scheme would improve the chances to obtain the globally optimal solutions

without exceeding its computational budget. The active-set evolution strategy treats

constraint functions explicitly, employing more constraint function evaluations than

objective function evaluations, which contributes to its lower computational cost.

For those problems with integrality constraints considered in the CEC 2020 set, the

ASmixInt-ES also dominates the empirical cumulative running time distributions of the

56

top-three algorithms in the CEC 2020 competition and MIDACO. The ASmixInt-ES

is approximately two or three orders of magnitude faster than those algorithms. In

some low dimensional cases, the ASmixInt-ES only requires tens of objective function

evaluations. This is because other algorithms do not assume that constraint function

evaluations have negligible cost compared with objective function evaluations. In

fact, if constraints are defined explicitly, algorithms can exploit this information and

potentially improve their performance.

5.2 Future Research

While the experimental results of the algorithm are encouraging, it is important to

acknowledge that the algorithm still has some limitations and potential directions for

further investigation. Studies conducted on linearly constrained sphere functions have

shown that the algorithm’s performance appears to deteriorate with a large number

of constraints and integrality constraints. The range of optimal solutions on integer

variables can also pose challenges for the algorithm. However, these behaviours were

not observed in the real-world test problems considered in our experiments. This is

likely due to the fact that these test problems have no more than twelve integrality

constraints, and in all but one problem, the number of integrality constraints is six

or fewer. In general, larger numbers of integer variables may lead to combinatorial

difficulties resulting in more computational effort in the branching process. The

simple biased sampling of a live node to propagate may not be sufficient to handle such

challenges. Considering variants of best-first search that focus on node selection could

be a potential step to address this issue. Evaluating the ASmixInt-ES on a broader

range of real-world optimization problems with more than ten integer variables is also

an important future direction. In addition, the algorithm can be extended to address

multimodal and ill-conditioned optimization problems, which are areas of interest for

future research. Finally, the ASmixInt-ES requires the mixed-integer problems must

be relaxable subject to integrality constraints based on the branching mechanism and

does not consider categorical variables. A potential future target is to develop an

algorithm variant that does not require making the assumption mentioned above, as

the assumption may be suitable for certain problems, but it may not be applicable

to others.

Appendix A

CEC 2020 Test Functions

The corrected test problems used in Section 4.2 are given. The original references,

the objective function, constraint functions and the optimal function value are listed.

Problem RC01 (Westerberg and Shah [88])

Kumar et al. [47] manipulated the constraint equations algebraically and added

bound constraints active at the optimal solution. They simplified the problem by

excluding locally optimal solutions. Ryoo and Sahinidis [66] (example 11) used less

restrictive bound constraints and only included a single weakly active physical con-

straint at the optimal solution. We use their formulation to represent the original

real-world problem.

Minimize:

f(x) = 35x0.6
1 + 35x0.6

2

subject to:

h1(x) = 600x1 − 50x3 − x1x3 + 5000 = 0

h2(x) = 600x2 + 50x3 − 15000 = 0

with bounds:

(0, 0, 100) ≤ x ≤ (34, 17, 300)

f(x∗) = 1.893116296866205.

Problem RC02 (Westerberg and Shah [88])

Similar to Problem RC01, we refer to the problem formulation by Ryoo and Sahini-

dis [66] (example 5).

57

58

Minimize:

f(x) = x1 + x2 + x3

subject to:

h1(x) = 100000 (x4 − 100)− 120x1 (300− x4) = 0

h2(x) = 100000 (x5 − x4)− 80x2 (400− x5) = 0

h3(x) = 100000 (500− x5)− 40x3(600− 500) = 0

with bounds:

(0, 0, 0, 100, 100) ≤ x ≤ (15834, 36, 250, 10000, 300, 400)

f(x∗) = 7049.249272475995.

Problem RC03 (Sauer et al. [71])

Kumar et al. [47] used bound constraints that are not present in earlier references

[71, 12, 18]. However, their optimal solution is physically infeasible. The formulation

by Adjiman et al. [2] appears to be the most relevant to the original problem among

all formulations.

Minimize:

f(x) = −0.035x1x6 − 1.715x1 − 10x2 − 4.0565x3 + 0.063x3x5

subject to:

g1(x) = 0.0059553571x2
6x1 + 0.88392857x3 − 0.1175625x6x1 − x1 ≤ 0

g2(x) = 1.1088x1 + 0.1303533x1x6 − 0.0066033x1x
2
6 − x3 ≤ 0

g3(x) = 6.66173269x2
6 − 56.596669x4 + 172.39878x5 − 10000

− 191.20592x6 ≤ 0

g4(x) = 1.08702x6 − 0.03762x2
6 + 0.32175x4 + 56.85075− x5 ≤ 0

g5(x) = 0.006198x7x4x3 + 2462.3121x2 − 25.125634x2x4 − x3x4 ≤ 0

59

g6(x) = 161.18996x3x4 + 5000x2x4 − 489510x2 − x3x4x7 ≤ 0

g7(x) = 0.33x7 + 44.333333− x5 ≤ 0

g8(x) = 0.022556x5 − 1.0− 0.007595x7 ≤ 0

g9(x) = 0.00061x3 − 1.0− 0.0005x1 ≤ 0

g10(x) = 0.819672x1 − x3 + 0.819672 ≤ 0

g11(x) = 24500x2 − 250x2x4 − x3x4 ≤ 0

g12(x) = 1020.4082x4x2 + 1.2244898x3x4 − 100000x2 ≤ 0

g13(x) = 6.25x1x6 + 6.25x1 − 7.625x3 − 100000 ≤ 0

g14(x) = 1.22x3 − x6x1 − x1 + 1.0 ≤ 0

with bounds:

1 ≤ x1 ≤ 2000

1 ≤ x2 ≤ 120

1 ≤ x3 ≤ 5000

85 ≤ x4 ≤ 93

90 ≤ x5 ≤ 95

3 ≤ x6 ≤ 12

145 ≤ x7 ≤ 162

f(x∗) = −1766.365179377954.

Problem RC04 (Manousiouthakis and Sourla [56])

Minimize:

f(x) = −x4

subject to:

g1(x) = x0.5
5 + x0.6

6 − 4 ≤ 0

h1(x) = k1x5x1 + x1 − 1 = 0

60

h2(x) = k3x5x3 + x3 + x1 − 1 = 0

h3(x) = k2x6x2 − x1 + x2 = 0

h4(x) = k4x6x4 + x2 − x1 + x4 − x3 = 0

where k3 = 0.0391908, k4 = 0.9k3, k1 = 0.09755988, and k2 = 0.99k1

with bounds:

(0, 0, 0, 0, 0, 0) ≤ x ≤ (1, 1, 1, 1, 16, 16)

f(x∗) = −0.3888114342920.

Problem RC05 (Haverly [37])

Minimize:

f(x) = −9x5 − 15x8 + 6x1 + 16x2 + 10x6 + 10x7

subject to:

g1(x) = x3x9 + 2x6 − 2.5x5 ≤ 0

g2(x) = x4x9 + 2x7 − 1.5x8 ≤ 0

h1(x) = 3x1 + x2 − x9(x3 + x4) = 0

h2(x) = x1 + x2 − x3 − x4 = 0

h3(x) = x3 − x5 + x6 = 0

h4(x) = x4 + x7 − x8 = 0

with bounds:

(0, 0, 0, 0, 0, 0, 0, 0, 1) ≤ x ≤ (300, 300, 100, 200, 100, 100, 200, 200, 3)

f(x∗) = −400.

Problem RC06 (Floudas and Aggarwal [23])

Kumar et al. [47] also impose bound constraints. We refer to the original formu-

lation in [23].

61

Minimize:

f(x) = 0.9979 + 0.00432x5 + 0.01517x13

subject to:

h1(x) = x4 + x3 + x2 + x1 − 300 = 0

h2(x) = x6 − x8 − x7 = 0

h3(x) = x9 − x11 − x10 − x12 = 0

h4(x) = x14 − x16 − x17 − x15 = 0

h5(x) = x18 − x20 − x19 = 0

h6(x) = x5x21 − x6x22 − x9x23 = 0

h7(x) = x5x24 − x6x25 − x9x26 = 0

h8(x) = x5x27 − x6x28 − x9x29 = 0

h9(x) = x13x30 − x14x31 − x18x32 = 0

h10(x) = x13x33 − x14x34 − x18x35 = 0

h11(x) = x13x36 − x14x37 − x18x38 = 0

h12(x) =
1

3
x1 + x15x31 − x5x21 = 0

h13(x) =
1

3
x1 + x15x34 − x5x24 = 0

h14(x) =
1

3
x1 + x15x37 − x5x27 = 0

h15(x) =
1

3
x2 + x10x23 − x13x30 = 0

h16(x) =
1

3
x2 + x10x26 − x13x33 = 0

h17(x) =
1

3
x2 + x10x29 − x13x36 = 0

h18(x) =
1

3
x3 + x7x22 + x11x23 + x16x31 + x19x32 − 30 = 0

h19(x) =
1

3
x3 + x7x25 + x11x26 + x16x34 + x19x35 − 50 = 0

h20(x) =
1

3
x3 + x7x28 + x11x29 + x16x37 + x19x38 − 30 = 0

h21(x) = x21 + x24 + x27 − 1 = 0

h22(x) = x22 + x25 + x28 − 1 = 0

62

h23(x) = x23 + x26 + x29 − 1 = 0

h24(x) = x30 + x33 + x36 − 1 = 0

h25(x) = x31 + x34 + x37 − 1 = 0

h26(x) = x32 + x35 + x38 − 1 = 0

h27(x) = x25 = 0

h28(x) = x28 = 0

h29(x) = x23 = 0

h30(x) = x37 = 0

h31(x) = x32 = 0

h32(x) = x35 = 0

with bounds:
0 ≤ xi ≤ 300, i = 1, 2, . . . , 20

0 ≤ xi ≤ 1, i = 21, 22, . . . , 38

f(x∗) = 1.8639.

Problem RC07 (Aggarwal and Floudas [3])

Minimize:

f(x) = c11 + (c21 + c31x24 + c41x28 + c51x33 + c61x34)x5 + c12+

(c22 + c32x26 + c42x31 + c52x38 + c62x39)x13

where

c i = 1 i = 2
c1i 0.23947 0.75835
c2i -0.0139904 -0.0661588
c3i 0.0093514 0.0338147
c4i 0.0077308 0.0373349
c5i -0.0005719 0.0016371
c6i 0.004256 0.0288996

63

subject to:

h1(x) = x4 + x3 + x2 + x1 − 300 = 0

h2(x) = x6 − x8 − x7 = 0

h3(x) = x9 − x11 − x10 − x12 = 0

h4(x) = x14 − x16 − x17 − x15 = 0

h5(x) = x18 − x20 − x19 = 0

h6(x) = x6x21 − x24x25 = 0

h7(x) = x14x22 − x26x27 = 0

h8(x) = x9x23 − x28x29 = 0

h9(x) = x18x30 − x31x32 = 0

h10(x) = x25 − x5x33 = 0

h11(x) = x29 − x5x34 = 0

h12(x) = x35 − x5x36 = 0

h13(x) = x37 − x13x38 = 0

h14(x) = x27 − x13x39 = 0

h15(x) = x32 − x13x40 = 0

h16(x) = x25 − x6x21 − x9x41 = 0

h17(x) = x29 − x6x42 − x9x23 = 0

h18(x) = x35 − x6x43 − x9x44 = 0

h19(x) = x37 − x14x45 − x18x46 = 0

h20(x) = x27 − x14x22 − x18x47 = 0

h21(x) = x32 − x14x48 − x18x30 = 0

h22(x) =
1

3
x1 + x15x45 − x25 = 0

h23(x) =
1

3
x1 + x15x22 − x29 = 0

h24(x) =
1

3
x1 + x15x48 − x35 = 0

h25(x) =
1

3
x2 + x10x41 − x37 = 0

64

h26(x) =
1

3
x2 + x10x23 − x27 = 0

h27(x) =
1

3
x2 + x10x44 − x32 = 0

h28(x) =
1

3
x3 + x7x21 + x11x41 + x16x45 + x19x46 − 30 = 0

h29(x) =
1

3
x3 + x7x42 + x11x23 + x16x22 + x19x47 − 50 = 0

h30(x) =
1

3
x3 + x7x43 + x11x44 + x16x48 + x19x30 − 30 = 0

h31(x) = x33 + x34 + x36 − 1 = 0

h32(x) = x21 + x42 + x43 − 1 = 0

h33(x) = x41 + x23 + x44 − 1 = 0

h34(x) = x38 + x39 + x40 − 1 = 0

h35(x) = x45 + x22 + x48 − 1 = 0

h36(x) = x46 + x47 + x30 − 1 = 0

h37(x) = x43 = 0

h38(x) = x46 = 0

with bounds:

0 ≤ xi ≤ 300, i = 1, 2, . . . , 20, 25, 27, 29, 32, 35, 37

0.85 ≤ xi ≤ 1, i = 24, 26, 28, 31

0 ≤ xi ≤ 1, i = 21, 22, 23, 30, 33, 34, 36, 38, 39, . . . , 48

f(x∗) = 1.567072.

Problem RC08 (Kocis and Grossmann [43])

Minimize:

f(x) = x2 + 2x1

65

subject to:

g1(x) = −x2
1 − x2 + 1.25 ≤ 0

g2(x) = x1 + x2 ≤ 1.6

with bounds:

0 ≤ x1 ≤ 1.6

x2 ∈ {0, 1}

f(x∗) = 2.0.

Problem RC09 (Kocis and Grossmann [42])

Minimize:

f(x) = −x3 + x2 + 2x1

subject to:

g1(x) = x2 − x1 + x3 ≤ 0

h1(x) = −2e−x2 + x1 = 0

with bounds:

0.5 ≤ x1 ≤ 1.4

0 ≤ x2 ≤ 1.4

x3 ∈ {0, 1}

f(x∗) = 2.124467584550870.

Problem RC10 (Floudas [22])

Minimize:

f(x) = −0.7x3 + 0.8 + 5(0.5− x1)
2

66

subject to:

g1(x) = −ex1−0.2 − x2 ≤ 0

g2(x) = x2 + 1.1x3 + 1 ≤ 0

g3(x) = x1 − 1.2x3 − 0.2 ≤ 0

with bounds:

0.2 ≤ x1 ≤ 1

− 2.22554 ≤ x2 ≤ −1

x3 ∈ {0, 1}

f(x∗) = 1.076543083332262.

Problem RC11 (Kocis and Grossmann [44])

Minimize:

f(x) = 7.5x7 + 5.5x8 + 7x5 + 6x6 + 5(x1 + x2)

subject to:

g1(x) = x5 − 10x7 ≤ 0

g2(x) = x6 − 10x8 ≤ 0

g3(x) = x1 − 20x7 ≤ 0

g4(x) = x2 − 20x8 ≤ 0

h1(x) = x7 + x8 − 1 = 0

h2(x) = x3 + x4 − 10 = 0

h3(x) = x3 − 0.9(1− e−0.5x5)x1 = 0

h4(x) = x4 − 0.8(1− e−0.4x6)x2 = 0

h5(x) = x3x7 + x4x8 − 10 = 0

67

with bounds:

0 ≤ xi ≤ 100, i = 1, 2, . . . , 6

x7, x8 ∈ {0, 1}

f(x∗) = 99.239635053646964.

Problem RC12 (Yuan et al. [89])

Minimize:

f(x) = (1− x4)
2 + (2− x5)

2 + (1− x6)
2 − ln(1 + x7)

+(1− x1)
2 + (2− x2)

2 + (3− x3)
2

subject to:

g1(x) = x1 + x2 + x3 + x4 + x5 + x6 − 5 ≤ 0

g2(x) = x2
6 + x2

1 + x2
2 + x2

3 − 5.5 ≤ 0

g3(x) = x1 + x4 − 1.2 ≤ 0

g4(x) = x2 + x5 − 1.8 ≤ 0

g5(x) = x3 + x6 − 2.5 ≤ 0

g6(x) = x1 + x7 − 1.2 ≤ 0

g7(x) = x2
5 + x2

2 − 1.64 ≤ 0

g8(x) = x2
6 + x2

3 − 4.25 ≤ 0

g9(x) = x2
5 + x2

3 − 4.64 ≤ 0

with bounds:

0 ≤ x1 ≤ 1.2

0 ≤ x2 ≤ 1.8

0 ≤ x3 ≤ 2.5

x4, x5, x6, x7 ∈ {0, 1}

68

f(x∗) = 4.579582402436706.

Problem RC13 (Cardoso et al. [15], Himmelblau [38])

Minimize:

f(x) = 5.357854x2
1 − 40792.141 + 37.29329x4 + 0.835689x4x3

subject to:

g1(x) = a3x4x2 + a1 + a2x5x4 − a4x1x3 − 92 ≤ 0

g2(x) = a7x4x5 + a5 + a6x5x3 + a8x
2
1 − 110 ≤ 0

g3(x) = a9 + a11x4x1 + a10x1x3 + a12x1x2 − 25 ≤ 0

where

a1 = 85.334407 a5 = 80.51249 a9 = 9.300961
a2 = 0.0056858 a6 = 0.0071317 a10 = 0.0047026
a3 = 0.0006262 a7 = 0.0029955 a11 = 0.0012547
a4 = 0.0022053 a8 = 0.0021813 a12 = 0.0019085

with bounds:

27 ≤ x1, x2, x3 ≤ 45

x4 ∈ {78, 79, . . . , 102}

x5 ∈ {33, 34, . . . , 45}

f(x∗) = −32217.4310371.

Problem RC14 (Grossmann and Sargent [26])

Minimize:

f(x) = 250(x1x
0.6
4 + x2x

0.6
5 + x3x

0.6
6)

69

subject to:

g1(x) =
40000x7

x9

+
20000x8

x10

− 6000 ≤ 0

g2(x) = 8− x1x7 ≤ 0

g3(x) = 20− x2x7 ≤ 0

g4(x) = 8− x3x7 ≤ 0

g5(x) = 16− x1x8 ≤ 0

g6(x) = 4− x2x8 ≤ 0

g7(x) = 4− x3x8 ≤ 0

g8(x) = −x4 + 2x9 ≤ 0

g9(x) = −x5 + 3x9 ≤ 0

g10(x) = −x6 + 4x9 ≤ 0

g11(x) = −x4 + 4x10 ≤ 0

g12(x) = −x5 + 6x10 ≤ 0

g13(x) = −x6 + 3x10 ≤ 0

with bounds:

x1, x2, x3 ∈ {1, 2, 3}

250 ≤ x4, x5, x6 ≤ 2500

6 ≤ x7 ≤ 20

4 ≤ x8 ≤ 16

40 ≤ x9 ≤ 700

10 ≤ x10 ≤ 450

f(x∗) = 38499.46511672663.

Appendix B

Additional Experimental Figures

This section provides supplementary figures for the experimental results discussed in

Chapter 4.

Figure B.1 shows for each algorithm, the proportion of successful runs across 21

runs on a set of CEC 2020 problems within tolerance δ = 10−8 and target accuracies

ϵ ∈ {10−4, 10−8}. The left plot of Figure B.1 shows that across seven continuous

optimization problems RC01 through RC07, SASS locates globally optimal solutions

in 43 percent of runs for target accuracy ϵ = 10−4 and in 21 percent of runs for

ϵ = 10−8. The corresponding rates for COLSHADE are 15 percent and 16 percent,

and for sCMAgES are 27 percent and 16 percent. MIDACO cannot achieve globally

optimal solutions for any continuous problems within both target accuracies and the

tightest constraint tolerance even in a single run. The right plot of Figure B.1 shows

the percentage for each algorithm across seven mixed-integer optimization problems

RC08 through RC14. The corresponding rates within both target accuracies for SASS

are 71 percent, for sCMAgES are 71 percent, for COLSHADE are 53 percent, and for

MIDACO are 58 percent of runs and 56 percent of runs with ϵ = 10−4 and ϵ = 10−8

respectively.

SASS COLSHADE sCMAgES MIDACO
0

0.5

1

su
cc

es
s
ra

te

RC01-RC07

SASS COLSHADE sCMAgES MIDACO
0

0.5

1

su
cc

es
s
ra

te

RC08-RC14

0 = 10!4

0 = 10!8

Figure B.1: Percentage of runs to reach globally optimum on the CEC 2020 problems
for SASS, COLSHADE, sCMAgES, and MIDACO with constraint tolerance δ = 10−8.

Figure B.2 indicates the performance of MIDACO varies with different constraint

70

71

tolerances and target accuracies. MIDACO performs better for both continuous prob-

lems and mixed-integer problems when the tolerance for constraints is not very strict,

compared to when the tolerance is set to be very small. One possible reason is that

smaller tolerances can potentially lead to smaller search spaces, making it more dif-

ficult for MIDACO to solve these problems, and vice versa.

/ = 10!2 / = 10!4 / = 10!8
0

0.5

1

su
cc

es
s
ra

te

RC01-RC07

/ = 10!2 / = 10!4 / = 10!8
0

0.5

1

su
cc

es
s
ra

te

RC08-RC14

0 = 10!4

0 = 10!8

MIDACO

Figure B.2: Percentage of runs to reach globally optimum on the CEC 2020 problems
for MIDACO with constraint tolerances δ ∈ {10−2, 10−4, 10−8} and target accuracies
ϵ ∈ {10−4, 10−8}.

ECDF plots are given in Figure B.3. We select twenty logarithmically uniformly

distributed objective function values between f ∗+10−8 |f ∗| and f ∗+100 |f ∗| as targets

for each problem, where f ∗ is the optimal solution value of the problem. The plots

show the percentage of reached objective function value targets for each problem

across 21 runs against the number of objective function evaluations. In order for

a target to be considered as reached, the corresponding solution generated by the

algorithm needs to be feasible within tolerance δ. In some cases, MIDACO can be

observed to achieve a larger number of targets with the strictest tolerance and target

accuracy compared to other settings within the same number of function evaluations.

MIDACO does not reach any targets with the maximum function evaluation limit for

the high-dimensional problems RC06 and RC07, regardless of the tolerance settings

used. Moreover, the initial slow increase in the fraction of reached targets and the

rapid increase afterward may indicate that exploiting a restart scheme could be helpful

in exploring different regions of the search space and improving the performance. By

generating new initial points, MIDACO may be able to find better solutions more

quickly.

72

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0
ta

rg
et

s
re

ac
h
ed

RC01RC01RC01RC01RC01RC01

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC02RC02RC02RC02RC02RC02

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC03RC03RC03RC03RC03RC03

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC04RC04RC04RC04RC04RC04

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC05RC05RC05RC05RC05RC05

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC06RC06RC06RC06RC06RC06

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC07RC07RC07RC07RC07RC07

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC08RC08RC08RC08RC08RC08

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC09RC09RC09RC09RC09RC09

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC10RC10RC10RC10RC10RC10

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC11RC11RC11RC11RC11RC11

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC12RC12RC12RC12RC12RC12

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC13RC13RC13RC13RC13RC13

100 101 102 103 104 105

function evaluations

0.0

0.5

1.0

ta
rg

et
s
re

ac
h
ed

RC14RC14RC14RC14RC14RC14
/ = 10!2; 0 = 10!4

/ = 10!2; 0 = 10!8

/ = 10!4; 0 = 10!4

/ = 10!4; 0 = 10!8

/ = 10!8; 0 = 10!4

/ = 10!8; 0 = 10!8

Figure B.3: ECDF plots on the CEC 2020 problems for MIDACO with constraint
tolerances δ ∈ {10−2, 10−4, 10−8}.

Bibliography

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.

[2] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimiza-
tion method, αBB, for general twice-differentiable constrained NLPs—I. Theo-
retical advances. Computers & Chemical Engineering, 22(9):1137–1158, 1998.

[3] A. Aggarwal and C. A. Floudas. Synthesis of general distillation se-
quences—nonsharp separations. Computers & Chemical Engineering, 14(6):631–
653, 1990.

[4] R. Angira and B. V. Babu. Optimization of process synthesis and design prob-
lems: A modified differential evolution approach. Chemical Engineering Science,
61(14):4707–4721, 2006.

[5] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP.
Technical report, DIMACS, 1995.

[6] D. V. Arnold. An active-set evolution strategy for optimization with known con-
straints. In Parallel Problem Solving from Nature–PPSN XIV: 14th International
Conference, pages 192–202. Springer, 2016.

[7] D. V. Arnold. Reconsidering constraint release for active-set evolution strategies.
In Proceedings of the Genetic and Evolutionary Computation Conference, pages
665–672, 2017.

[8] T. Bäck and M. Schütz. Evolution strategies for mixed-integer optimization of
optical multilayer systems. In J. R. McDonnell, R. G. Reynolds, and D. B.
Fogel, editors, Evolutionary Programming IV: Proceedings of the Fourth Annual
Conference on Evolutionary Programming, pages 33–51. MIT Press, 1995.

[9] M. Bénichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent.
Experiments in mixed-integer linear programming. Mathematical Programming,
1:76–94, 1971.

[10] B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for
mixed integer nonlinear programs. Computers & Operations Research, 21(4):359–
367, 1994.

[11] P. A. Bosman, J. Grahl, and D. Thierens. Benchmarking parameter-free amalgam
on functions with and without noise. Evolutionary Computation, 21(3):445–469,
2013.

73

74

[12] J. Bracken and G. P McCormick. Selected applications of nonlinear program-
ming. Technical report, Wiley, 1968.

[13] R. Breu and C. A. Burdet. Branch and bound experiments in zero-one program-
ming. In M. L. Balinski, editor, Approaches to Integer Programming, volume 2,
pages 1–50. Springer Berlin Heidelberg, 1974.

[14] M. R. Bussieck, A. S. Drud, and A. Meeraus. MINLPLib—A collection of test
models for mixed-integer nonlinear programming. INFORMS Journal on Com-
puting, 15(1):114–119, 2003.

[15] M. Cardoso, R. Salcedo, S. Feyo De Azevedo, and D. Barbosa. A simulated
annealing approach to the solution of MINLP problems. Computers & Chemical
Engineering, 21(12):1349–1364, 1997.

[16] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3):250–255, 1965.

[17] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan. A real coded genetic
algorithm for solving integer and mixed integer optimization problems. Applied
Mathematics and Computation, 212(2):505–518, 2009.

[18] R. S. Dembo. A set of geometric programming test problems and their solutions.
Mathematical Programming, 10(1):192–213, 1976.

[19] S. L. Digabel and S. M. Wild. A taxonomy of constraints in simulation-based
optimization. arXiv:1505.07881, 2015.

[20] O. Exler, T. Lehmann, and K. Schittkowski. MISQP: A Fortran implementa-
tion of a trust region SQP algorithm for mixed-integer nonlinear programming-
user’s guide. Technical report, Department of Computer Science, University of
Bayreuth, Germany, 2010.

[21] O. Exler and K. Schittkowski. A trust region SQP algorithm for mixed-integer
nonlinear programming. Optimization Letters, 1(3):269–280, 2007.

[22] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and
Applications. Oxford University Press, 11 1995.

[23] C. A. Floudas and A. Aggarwal. A decomposition strategy for global optimum
search in the pooling problem. ORSA Journal on Computing, 2(3):225–235, 1990.

[24] C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained
Global Optimization Algorithms. Springer Verlag, Berlin, Heidelberg, 1990.

[25] J. Forrest, J. Hirst, and J. A. Tomlin. Practical solution of large mixed integer
programming problems with umpire. Management Science, 20(5):736–773, 1974.

75

[26] I. E. Grossmann and R. W. Sargent. Optimum design of multipurpose chemical
plants. Industrial & Engineering Chemistry Process Design and Development,
18(2):343–348, 1979.

[27] O. K. Gupta and A. Ravindran. Branch and bound experiments in convex non-
linear integer programming. Management Science, 31(12):1533–1546, 1985.

[28] J. Gurrola-Ramos, A. Hernàndez-Aguirre, and O. Dalmau-Cedeño. COLSHADE
for real-world single-objective constrained optimization problems. In 2020 IEEE
Congress on Evolutionary Computation, pages 1–8. IEEE, 2020.

[29] R. Hamano, S. Saito, M. Nomura, and S. Shirakawa. CMA-ES with margin:
Lower-bounding marginal probability for mixed-integer black-box optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference, pages
639–647, 2022.

[30] L. Han-Lin. An approximate method for local optima for nonlinear mixed integer
programming problems. Computers & Operations Research, 19(5):435–444, 1992.

[31] L. Han-Lin and C. Chih-Tan. A global approach for nonlinear mixed discrete
programming in design optimization. Engineering Optimization, 22(2):109–122,
1993.

[32] N. Hansen. A CMA-ES for Mixed-Integer Nonlinear Optimization. Research
Report RR-7751, INRIA, October 2011.

[33] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. Coco:
A platform for comparing continuous optimizers in a black-box setting. Opti-
mization Methods and Software, 36(1):114–144, 2021.

[34] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In Proceedings of
IEEE International Conference on Evolutionary Computation, pages 312–317.
IEEE, 1996.

[35] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evo-
lution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[36] N. Hansen, R. Ros, N. Mauny, M. Schoenauer, and A. Auger. Impacts of invari-
ance in search: When CMA-ES and PSO face ill-conditioned and non-separable
problems. Applied Soft Computing, 11(8):5755–5769, 2011.

[37] C. A. Haverly. Studies of the behavior of recursion for the pooling problem.
SIGMAP Bulletin, (25):19–28, Dec 1978.

[38] D. M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill, 1972.

[39] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes.
Springer Verlag, Berlin, Heidelberg, 1981.

76

[40] T. Ibaraki. Theoretical comparisons of search strategies in branch-and-bound
algorithms. International Journal of Computer & Information Sciences, 5:315–
344, 1976.

[41] S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos.
Learning probability distributions in continuous evolutionary algorithms–a com-
parative review. Natural Computing, 3:77–112, 2004.

[42] G. R. Kocis and I. E. Grossmann. Relaxation strategy for the structural opti-
mization of process flow sheets. Industrial & Engineering Chemistry Research,
26(9):1869–1880, 1987.

[43] G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed-
integer nonlinear programming (MINLP) problems in process synthesis. Indus-
trial & Engineering Chemistry Research, 27(8):1407–1421, 1988.

[44] G. R. Kocis and I. E. Grossmann. A modelling and decomposition strategy for the
MINLP optimization of process flowsheets. Computers & Chemical Engineering,
13(7):797–819, 1989.

[45] A. Kumar, S. Das, and I. Zelinka. A modified covariance matrix adaptation
evolution strategy for real-world constrained optimization problems. In Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference Companion,
pages 11–12, 2020.

[46] A. Kumar, S. Das, and I. Zelinka. A self-adaptive spherical search algorithm for
real-world constrained optimization problems. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, pages 13–14, 2020.

[47] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, Ponnuthurai N. Suganthan, and
S. Das. A test-suite of non-convex constrained optimization problems from the
real-world and some baseline results. Swarm and Evolutionary Computation,
56:100693, 2020.

[48] A. H. Land and A. G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):497–520, 1960.

[49] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699–719, 1966.

[50] T. Lehmann, K. Schittkowski, and T. Spickenreuther. MIQL: A Fortran sub-
routine for convex mixed-integer quadratic programming-user’s guide. Techni-
cal report, Department of Computer Science, University of Bayreuth, Germany,
2010.

[51] S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear
programming. Computational Optimization and Applications, 18:295–309, 2001.

77

[52] R. Li, M. T. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra, and
J. H. Reiber. Mixed integer evolution strategies for parameter optimization.
Evolutionary Computation, 21(1):29–64, 2013.

[53] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan,
C. A. C. Coello, and K. Deb. Problem definitions and evaluation criteria for the
CEC 2006 Special Session on Constrained Real-Parameter Optimization. Journal
of Applied Mechanics, 41(8):8–31, 2006.

[54] T. W. Liao. Two hybrid differential evolution algorithms for engineering design
optimization. Applied Soft Computing, 10(4):1188–1199, 2010.

[55] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the
traveling salesman problem. Operations Research, 11(6):972–989, 1963.

[56] M. Manousiouthakis and D. Sourlas. A global optimization approach to ratio-
nally constrained rational programming. Chemical Engineering Communications,
115(1):127–147, 1992.

[57] G. P. McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part I—convex underestimating problems. Mathematical Programming,
10(1):147–175, 1976.

[58] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary Computation, 4(1):1–32, 1996.

[59] MINLPLib. A library of mixed-integer and continuous nonlinear programming
instances. https://www.minlplib.org/. Last Accessed on December 22, 2022.

[60] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM Journal on Optimization, 20(1):172–191, 2009.

[61] J. Nocedal and S. Wright. Numerical Optimization. Springer New York, 2006.

[62] R. Polakova. L-SHADE with competing strategies applied to constrained opti-
mization. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages
1683–1689. IEEE, 2017.

[63] I. Rechenberg. Evolutionsstrategie Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Friedrich Frommann Verlag, 1973.

[64] K. A. Rinnooy. Towards global optimization methods (I and II). Mathematical
Programming, 39:27–78, 1987.

[65] G. Rudolph. An evolutionary algorithm for integer programming. In Y. Davidor,
H.-P. Schwefel, and R. Männer, editors, Parallel Problem Solving from Nature
— PPSN III, pages 139–148. Springer Berlin Heidelberg, 1994.

78

[66] H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and
MINLPs with applications in process design. Computers & Chemical Engineer-
ing, 19(5):551–566, 1995.

[67] K. L. Sadowski, P. A. Bosman, and D. Thierens. A clustering-based model-
building EA for optimization problems with binary and real-valued variables. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation, pages 911–918, 2015.

[68] K. L. Sadowski, D. Thierens, and P. A. Bosman. GAMBIT: A parameterless
model-based evolutionary algorithm for mixed-integer problems. Evolutionary
Computation, 26(1):117–143, 2018.

[69] N. Sakamoto and Y. Akimoto. Adaptive ranking based constraint handling for
explicitly constrained black-box optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 700–708, 2019.

[70] N. Sakamoto and Y. Akimoto. Adaptive ranking-based constraint handling
for explicitly constrained black-box optimization. Evolutionary Computation,
30(4):503–529, 2022.

[71] R. Sauer, A. Colville, and C. Burwick. Computer points way to more profits.
Hydrocarbon Processing, 84(2), 1964.

[72] K. Schittkowski. QL: A Fortran code for convex quadratic programming-
user’s guide. Technical report, Department of Computer Science, University
of Bayreuth, Germany, 2005.

[73] K. Schittkowski. A collection of 200 test problems for nonlinear mixed-integer
programming in Fortran-user’s guide. Technical report, Department of Computer
Science, University of Bayreuth, Germany, 2015.

[74] M. Schlüter, J. A. Egea, and J. R. Banga. Extended ant colony optimization
for non-convex mixed integer nonlinear programming. Computers & Operations
Research, 36(7):2217–2229, 2009.

[75] M. Schlüter and M. Gerdts. The oracle penalty method. Journal of Global
Optimization, 47:293–325, 2010.

[76] M. Schlüter, M. Gerdts, and J. J. Rückmann. A numerical study of MIDACO
on 100 MINLP benchmarks. Optimization, 61(7):873–900, 2012.

[77] M. Schlüter. Nonlinear mixed integer based optimization technique for space
applications. PhD thesis, University of Birmingham, 2012.

[78] M. Schlüter and M. Munetomo. Parallelization strategies for evolutionary algo-
rithms for MINLP. In 2013 IEEE Congress on Evolutionary Computation, pages
635–641. IEEE, 2013.

79

[79] M. Schlüter and M. Munetomo. Numerical assessment of the parallelization
scalability on 200 MINLP benchmarks. In 2016 IEEE Congress on Evolutionary
Computation, pages 830–837. IEEE, 2016.

[80] M. Schlüter and M. Munetomo. MIDACO parallelization scalability on 200
MINLP benchmarks. Journal of Artificial Intelligence and Soft Computing Re-
search, 7(3):171–181, 2017.

[81] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie: Mit einer vergleichenden Einführung in die Hill-Climbing-
und Zufallsstrategie. Birkhäuser Basel, 1977.

[82] K. Socha and M. Dorigo. Ant colony optimization for continuous domains. Eu-
ropean Journal of Operational Research, 185(3):1155–1173, 2008.

[83] P. Spettel, Z. Ba, and D. V. Arnold. Active sets for explicitly constrained evo-
lutionary optimization. Evolutionary Computation, 30(4):531–553, 04 2022.

[84] P. Spettel, H.-G. Beyer, and M. Hellwig. A covariance matrix self-adaptation
evolution strategy for optimization under linear constraints. IEEE Transactions
on Evolutionary Computation, 23(3):514–524, 2018.

[85] R. Storn. On the usage of differential evolution for function optimization. In
Proceedings of North American Fuzzy Information Processing, pages 519–523.
IEEE, 1996.

[86] R. Storn and K. Price. Differential evolution-a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341, 1997.

[87] D. Thierens. The linkage tree genetic algorithm. In Robert Schaefer, Carlos
Cotta, Joanna Ko lodziej, and Günter Rudolph, editors, Parallel Problem Solving
from Nature, PPSN XI, pages 264–273, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[88] A. W. Westerberg and J. V. Shah. Assuring a global optimum by the use of an
upper bound on the lower (dual) bound. Computers & Chemical Engineering,
2(2-3):83–92, 1978.

[89] X. Yuan, S. Zhang, .L Pibouleau, and S. Domenech. A mixed-integer nonlinear-
programming method for process design. RAIRO-Recherche Opérationnelle-
Operations Research, 22(4):331–346, 1988.

[90] Y. X. Yuan. On the convergence of a new trust region algorithm. Numerische
Mathematik, 70(4):515–539, 1995.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contribution
	Outline

	Background and Literature Review
	Background
	Mixed-Integer Programming
	Black-Box Optimization
	Active-Set Method
	Branch-and-Bound
	MISQP Algorithm
	Further Techniques

	Nature-Inspired Heuristics for Mixed-Integer Optimization
	MIDACO Algorithm
	GAMBIT Algorithm
	Evolution Strategies
	Differential Evolution

	Active-Set Evolution Strategies
	Benchmarks

	Algorithm
	Evolutionary Mixed-Integer Optimization with Explicit Constraints
	Performance of -

	Experiments
	Numerical Tests on MINLPlib
	Algorithms
	Test Environment
	Results

	Numerical Tests on CEC 2020 Benchmark
	Algorithms
	Test Environment
	Results

	Conclusion
	Summary
	Future Research

	CEC 2020 Test Functions
	Additional Experimental Figures
	Bibliography

