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Abstract

The FM-index is used in many bioinformatics applications, using the Burrows-Wheeler

Tranform (BWT) to support pattern matching queries; however it cannot handle large

text collections. This is of particular concern due to reference bias; DNA alignment

is inaccurate when the references fail to capture the required genetic diversity. Pan-

genomics attempts to avoid this by utilising the information of many genomes. A

recently successful solution has been FM-indexes using the run-length compressed

BWT (RLBWT). Gagie et al. showed how we can support queries efficiently with

an RLBWT but relied on sparse bitvectors requiring worst case logarithmic time

rank operations [20]. Nishimoto and Tabei improved this result to answer queries in

optimal time given a polylog-sized alphabet by computing last-to-first (LF) steps in

constant-time [46].

We show that this result can be made practical for LF, generalizing to run-length

compressing permutations which contain r runs which are permuted consecutively.

This “table-lookup” approach is fast even without theoretical guarantees despite be-

ing worst case Ω(r)-time; however, the simple formulation is large when implemented

using uncompressed integers. We show how to compress columns of the table to

support count queries, competitive in time/space with the best existing implementa-

tions. An algorithm for constant-time LF steps is evaluated, but does not impactfully

improve the speed of count queries. LF steps can also be used to compute matching

statistics, which describe exact matching substrings of a pattern, for pan-genomic

datasets. The approach requires storing thresholds or computing LCE queries to re-

orient in the BWT when a character mismatches. We show how storing additional

LCE information alongside thresholds allows us to improve the speed of computing

matching statistics with one pass of the pattern.
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Chapter 1

Introduction

A string is a datatype consisting of a sequence of symbols, with this thesis itself

a convenient example. Given a sub-string, we can ask how many times it occurs

within another string and where; in other terms, string matching of a pattern to

a text. Relevant application areas include queries on natural language texts, DNA

and protein sequences, website data, and software heritage. A text index is a data

structure supporting pattern matching queries in sub-linear time with respect to the

length of the text [23]. Compact text indexes take this further by occupying sub-linear

space through compression of the input whilst supporting queries [17].

1.1 Compact Text Indexing

Pattern matching can be supported with efficient speed by using foundational data

structures such as a suffix tree [27] and a suffix array (SA) [39]. By sorting suffixes

of the text, any matching pattern is found as a prefix for some range of these suf-

fixes. However, these approaches can occupy space larger than the text itself and

still require access to the full text [23]. In contrast, the FM-Index of Ferragini and

Manzini [17] encapsulates the input text while supporting queries over its compressed

representation. Lossless compression is performed by applying the Burrows-Wheeler

Transform (BWT) algorithm [12]: a reversible permutation of the original text. It

supports queries by an underlying relation to the suffix array, but does so using o(n)-

bits for compressible texts with a length of n symbols [17].

The BWT is the last column of the Burrows-Wheeler Matrix (BWM) which is

computed by sorting the rotations (cyclic shifts) of the text. This column is used to

extract sub-strings or perform a full text reversal by performing backwards search,

which maps the position of a character in the BWT to the position of the character

immediately preceding it in the original text [12]. Ferragini and Manzini describe

how to compute this step as a last-to-first (LF) mapping between characters in the

1
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BWT (last column) and first column of the matrix in constant time [17]. LF-mapping

is used not only for extraction, but as the foundation to support further sub-string

queries.

LF steps and the FM-index is the basis for many key tools in computational ge-

nomics which operate over DNA sequences; FM-index based aligners such as Bowtie [33,

32] and BWA [35] see daily use in hospitals and clinics worldwide. By pre-processing

a reference genome into a text index, sampled short reads of DNA are aligned using

pattern matching and sequence alignment algorithms [32]. This is a success story for

compact data structures as they directly address the need for compressed represen-

tations of large DNA sequences

1.2 Computational Pan-genomics

Although standard FM-aligners perform compression, they still grow linearly with

the length of the input text. This is only sufficient for a reference of a few human

genomes. The 1000 genomes project [57] is an influential example of advancements

in the variety of sequenced genomes available. Since the original human genome

project [29], the collection of references is growing exponentially and significantly

outpacing Moore’s law [56]; advancements in memory technology are not sufficient to

make full use of these growing collections. Aligners which only use a few references

fail to capture the diversity between sequences in the collection and are susceptible

to errors [5].

Computational pan-genomics aims to utilize this information to avoid issues such

as reference bias where reads are misaligned since they are not well represented in

the reference. Surveys discuss this as a barrier to personalized medicine for some

ethnic groups (such as African, Central/South Asian, Indigenous, Latin American,

and Middle Eastern) whose genetic diversity is not sufficiently represented in the

standard reference [51] or even in public databases of genomes [30]. Certain popula-

tions have aimed to construct their own references, such as China (using a consensus

for Han individuals, China’s majority ethnic group at 92%) [59] and Denmark [40],

but it is not clear whether and how we can fairly represent multi-ethnic populations

with a single reference genome. Reference bias also affects disease identification and

the ability of alignment to adequately provide personalized medicine. Rare diseases
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fail to be diagnosed when mutation based variations cause reads to not align in the

reference [5].

Reference bias exhibits the downside of a single reference and motivates bioinfor-

maticians to develop tools which are able to capture the genetic diversity of humans

or other species. Although some problems are side-stepped by introducing more

computation, this solution limits who can access this technology, and the size of

these datasets is still outpacing hardware improvements. Because of the underlying

structure of these indexes, to improve on the approach necessitates using compact

data structures that can support these queries in even smaller space . Pan-genome

graphs represent commonalities and differences at the sequence level of genomic col-

lections [3], leveraging the 99.9% similarity across human genes [14]. Indexing pan-

genome graphs is the most publicized solution aiming to capture diversity by improv-

ing indexing and its data structures [54], but still has disadvantages in certain cases

due to fixed query size and requiring careful selection of introduced variation to avoid

prohibitively large indexes [50]. To provide an alternative with different functionality

than graphs, we can attempt to scale FM-Indexes to handle a representative sample

of a dozen genomes [13] or even thousands of references.

1.3 Run-Length FM-Indexes

To scale FM-indexes we can exploit that the fastest growing text collections are

highly repetitive. Genomic data is our motivating example, where one sequence can

be transformed into another with few modifications. Concatenating text collections

and computing its resulting BWT groups together characters whose context are sim-

ilar. For repetitive texts, this results in many characters in the BWT occurring in

runs ; adjacent characters are grouped since they occur with similar context in their

respective string among a highly repetitive collection. This is exploited in BWT com-

pression, but we can also support sub-string queries over the run-length compressed

Burrows-Wheeler Transform (RLBWT) [12] to obtain space bounded by the number

of runs r rather than the text length n. Where concatenating genomes increases n

linearly, in practice r grows sublinearily [20].

Text indexing based on the RLBWT for massive datasets was initiated by Mäkinen

et al. [55, 38] showing how to quickly count the number of occurrences of a pattern
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in runs-bounded space. Policriti and Prezza [48] augmented the approach by storing

sampled suffix array samples at the boundaries of runs in the BWT to locate one

position where a pattern ocurred in the text. Gagie, Navarro and Prezza [20] showed

how to locate all ocurrences of a pattern by using those sampled SA samples to

support ϕ: a function which steps forward and recovers other SA values given a

current position. This O(r)-space index was referred to as the r-index in reference

to its runs-bounded approach, and supports fast count and locate queries. Boucher

et al.’s prefix-free-parsing (PFP) [8] allows us to efficiently construct such indexes in

practice.

The r-index and other conventional RLBWT based indexes replicate the FM-index

and rely on its LF-mapping method. Conventionally this requires rank queries on a

bitvector; the rank at a position in a bitvector corresponds to the number of set bits

prior that position. The r-index approach marks the starting positions of runs in the

BWT in a length n bitvector. To get a runs-bounded approach, a sparse bitvector [47]

is used which achieves O(r)-space by compressing unset bits. However, rank queries

on sparse bitvectors inherit lower bounds from predecessor queries [6] and cannot be

computed in constant time like a traditional FM-Index. Many experts would have

probably agreed that we cannot perform LF steps in constant time over an RLBWT

because of this reliance on slow rank queries [11]. That is, until Nishimoto and Tabei

showed how to replace them with a theoretically more efficient approach [46] which

does not require rank queries over sparse bitvectors.

The r-index is O(r)-space and computes the LF-mapping in O(log log r)-time [20].

Nishimoto and Tabei’s data structure is also runs-bounded, but improves LF-mapping

to O(1)-time by adopting a table lookup approach [46]. Their move structure general-

izes for any permutation π which tends to be map in runs; i.e. where π(i+1) = π(i)+1

occurs often. This property holds not only for LF but also for ϕ with these mappings

correspond exactly to the r runs of the BWT. The r-index computes locate optimally

in O(r)-space, but Nishimoto and Tabei use the move data structure to also compute

count and extract queries in optimal time for a polylog(n) sized alphabets [46]. The

table lookup approach itself is not constant-time; instead theoretical guarantees are

met by bounding how many rows of the table are scanned when computing a single

LF-step.
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Although Nishimoto and Tabei’s result focuses on exact pattern matching queries,

LF-steps can be used to support approximate matching. Bannai, Gagie and I [4] de-

signed a variant of the r-index which computes maximal exact matches (MEMs) used

in approximate matching tools like BWA-MEM [34]. MEMs describe exact matching

sub-strings of a pattern which cannot be extended by lengthening the sub-string to

the left or right. Bannai et al.’s approach stores r thresholds in the RLBWT which,

given a position corresponding to a mismatch character when processing the pattern,

tell us whether to “jump” forwards or backwards to reorient in the BWT [4]. Rossi et

al. [52] showed how to find these thresholds using the longest common prefix (LCP)

array and gave a practical implementation constructed using PFP, which they called

MONI.

Rossi et al.’s MONI relies on access to a straight line program (SLP) to sup-

port random access to a text. Such an SLP can be constructed with significantly

less space than the r-index itself [19, 18] and is practical for pan-genomics. Where

MONI processes the pattern twice to compute matching statistics (MS), Boucher et

al.’s PHONI [7] allows for online computation by using the SLP to instead support

longest common extension (LCE) queries. Instead of computing MS, Ahmed et al.’s

SPUMONI [2, 1] index for targeted nanopore sequencing computes an approximation

called pseudo matching lengths (PMLs). SPUMONI relies on primarily LF-steps and

thresholds without use of LCEs, using its PMLs to rapidly eject “nontarget” DNA

molecules from the sequencer.

1.4 Contribution

The current state of FM-indexes over the RLBWT, specifically for pan-genomics,

necessitates the use of LF-mapping in nearly all cases, including alongside thresholds

when computing MS using MONI. Thresholds are a rather new approach and further

improvements are likely; however, improvements to LF-mapping in runs bounded

space is more surprising since rank queries on sparse bitvectors cannot improve past

theoretical bounds. A practical approach to Nishimoto and Tabei’s result provides an

opportunity for speed improvements that otherwise would not have been expected.

Their move structure applied to LF was first implemented1 as part of undergraduate

1To our colleagues best knowledge by monitoring public avenues.
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thesis work by myself and later presented at a workshop in 2021 [10], the same

year Nishimoto and Tabei’s original result was published [46]; although Nishimoto,

Kanda, and Tabei provided an implementation in 2022 [45]. Our approach through

this thesis is a static data structure, but this recent work by Nishimoto, Kanda, and

Tabei demonstrate that a dynamic approach can be obtained.

This preliminary implementation2 is the subject of Chapter 3, which includes the

surprising result that the structure computes LF efficiently even without constant-

time guarantees. Although we show LF to be worst case and average Ω(r)-time

using table-lookup, in practice the majority of steps do not require scanning any

additional rows of the table (on genomic data). As presented, our table representation

is an efficient introduction to both run-length indexing and a practical formulation of

Nishimoto and Tabei’s move structure. Its implementation is much faster than the

r-index in full text decompression or sampling LF-mapping steps; however it is much

larger due to storing uncompressed integers.

To further explore unbounded table lookup with LF, we can attempt to compress

components of the table. The destinations of run mappings and the RLBWT run-head

characters themselves can be efficiently compressed, which we explore in Chapter 4.

Rows of the table are broken into blocks to mitigate locality concerns and compressed

columnwise using various schemes. To experimentally verify the approach, count

queries are supported with table-lookup LF alongside sequential scanning and queries

on short uncompressed bitvectors. This index was published by myself3, Gagie, and

Rossi [11] and demonstrates that even without theoretical bounds, table-lookup can

be made competitive in time/space with the best existing methods on pan-genomic

data. However, we found that although the majority of scans were small, the worst

case increased as more sequences were added to the text.

Nishimoto and Tabei’s proof of a theoretical bound on scans can be reformulated

and parameterized [11] and illustrates a practical implementation of the approach

by splitting runs. However, it can double the size of the table in the worst case.

2This summarizes early results from Honours thesis work, but expands to include work presented
subsequently during Masters for workshop and conference presentations

3I was primary author/presenter and implemented the approach at
https://github.com/drnatebrown/r-index-f
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Chapter 5 explores alternatives to splitting by capping run lengths or sampling ta-

ble scans, but also implements the parameterized formulation4. It generalizes to any

permutation in constant-time and O(r)-space for the number of permutable runs.

Nisimoto, Kanda, and Tabei recently used a variation of the move structure to grad-

ually build the RLBWT character by character [45]; my method is an alternative

taking a pre-computed RLBWT and thus allowing construction using PFP or other

tools first. Experiments show that in practice we can achieve theoretical guarantees

without much space increase, but this does not have a large effect on count queries

explored in Chapter 4.

Successful implementations of table-lookup for LF were partially motivated by po-

tential improvements to MONI and its variants which rely on LF-mapping and thresh-

olds. In Chapter 6 we focus instead on improvements to the thresholds. Mart́ınez-

Guardiola, myself, Silva-Coira, et al. showed how to augment thresholds with ad-

ditional LCE information to avoid some LCE queries in practice when computing

MS online [41]. By storing the lower-bound on potential LCE queries at each run,

we avoid unnecessary computation in the mismatch case. This chapter focuses on

my role in the paper, explaining the approach and how to generate and compress

this additional information alongside the thresholds. Results show great speed gains

compared to the traditional one-pass MONI of Boucher et al. [7] with respect to the

additional space needed to store the augmented thresholds.

Demonstrating improvements in LF stepping and thresholds motivates new vari-

ants of tools which rely on them, such as MONI and SPUMONI. Chapter 7 explores

possibilities of applying these results to pan-genomic indexing tools and other future

work related to these improvements in run-length compressed data structures. To

understand these improvements, our journey proceeds with Chapter 2, introducing

background knowledge and notation required for the content of this thesis.

4Code available at https://github.com/drnatebrown/r-permute



Chapter 2

Preliminaries

This chapter focuses on introducing the relevant background needed to understand

the RLBWT and LF-mapping in motivation of table-lookup and MS-finding. Nota-

tion for strings is introduced to discuss the BWT and its relationship to the suffix

array through LF-mapping. We briefly remark on succinct data structures (bitvectors

supporting rank/select, wavelet trees) and integer encoding (delta codes, Elias-Fano

representations, and directly addressable codes) which are used in later sections.

Background specific to computing MS is reserved for Chapter 6. These topics are

covered in further detail in Compact Data Structures: A practical approach [44] by

Gonzalo Navarro. Implementations of these data structures can be found in the C++

SDSL library [21].

2.1 Notation

Unless otherwise specified, log is assumed to be base 2 and often describes entropy in

bits. The word RAM model of computation is used, in which we assume a computer

word of w = Θ(log n) for data of size n in memory. In this model, we assume all basic

arithmetic and logical bit operations can be performed in constant time. Addressing

any data element is also assumed to take constant time. This model is used only when

describing the space of indexes such as the r-index and Nishimoto and Tabei’s move

structure. For specific compression schemes, we will often use log and asympotic

notation to describe the number of bits needed to represent the data.

We use 0-based indexing for arrays in most cases; i.e. an array A[0..n − 1] of

n elements whose size is also given by the notation |A| = n. A string is an array

drawn from an alphabet of symbols. For our purposes, we assume the alphabet Σ

to be a totally ordered set of size |Σ| = σ; e.g. the lexicographic ordering of ASCII

characters with σ=128. For a string S[0..n− 1], substrings are represented as S[i..j]

and correspond to S[i], S[i + 1], ..., S[j]. Prefixes are substrings starting from the

8



9

beginning of the string, such as S[0..i], and suffixes are substrings to the end, such

as S[j..n− 1]. A subsequence is more general and does not have to be consecutive in

the array/string we describe it over.

For indexing problems, we refer to a text T [0..n−1] to be indexed and a substring

pattern P [0..m− 1] which is used to query the index. In these cases it is sufficient to

consider lexicographical order of ASCII characters; T [i] < T [j] represents T [i] being

lexicographically less than T [j]. Ordering on substrings maintains convention of left

to right character comparisons until they differ. The terminal character is a special

symbol of least order represented by $. A text T [0..n − 1] is assumed to end with

this character $; T [i] ̸= $ except when i = n − 1. This simplifies suffix ordering

since the n suffixes of T are now uniquely defined by the position of the terminal

character. This is used to compute the suffix array SA[0..n−1] for a text T [0..n−1]:

SA[i] stores the starting position of the lexicographically ith suffix in T . The longest

common prefix array LCP[1..n − 1] is associated with the SA1; LCP [i] stores the

longest common prefix of T [SA[i− 1]..n− 1] and T [SA[i]..n− 1]. A longest common

extension LCE(i, j) returns the longest common prefix of the suffixes T [i..n− 1] and

T [j..n− 1].

The rank of a character T [i] is the number of prior occurrences of that same

character in the range T [0..i − 1] of a text. In this sense, rank is 0-based, since the

first character in a text is of rank 0. The function rankc(i) answers this query for a

character c where we do not assume T [i] = c (it computes the occurrences of c prior

to i). The position of the ith occurrence of a character is denoted as selectc(i) = j

such that T [j] = c and rankc(j) = i−1. In this sense, select is 1-based. This notation

is adopted from literature on the subject [44] and is useful since it allows rank queries

to return 0 when there are no prior occurrences. Finding the character c of rank i is

given by selectc(i+1). Our notation of rank and select queries on symbols is heavily

related to bitvectors and other succinct data structures.

2.2 Compact Data Structures

Succinct data structures refer to data structures using logN + o(logN)-bits where N

is the total number of distinct objects that can be encoded and logN represents the

1LCP[0] can be defined as 0, but we exclude it from being indexed.
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worst case entropy [44]. For example, length n strings over an alphabet give N = σn

objects and worst case entropy of log σn = n log σ bits. Such data structures are

differentiated from compressed encodings by also supporting queries in-place with-

out requiring decompression [42]. Compact data structures refers to such compressed

space and fast query data structures more broadly (not necessarily fulfilling the suc-

cint worst case entropy defintion). Bitvectors consist of a bit array B[0..n − 1] over

the binary alphabet Σ = {0, 1} which support access, rank, and select queries. This

is consistent with our notation of rank/select over arbitrary alphabets, but we will

implicitly assume these queries are with respect to 1 bits when over bitvectors. Con-

ventional bitvectors initiated the study of succinct data structures [26], and they

support access/rank/select queries in constant time using n bits for the array and

o(n)-bits to support the queries.

A plain bitvector refers to a bitvector whose representation is in the order of n-

bits. A sparse bitvector instead optimizes space for the number of m set bits, with

the ones in this paper using 2m +m log n
m
-bits [47, 21] which is advantageous when

m ≪ n. Sparse bitvectors support select in constant time; however, rank queries

take O(log n
m
)-time and cannot be computed in constant time since they inherit lower

bounds from predecessor queries [6]. A wavelet tree supports access/rank/select over

arbitrary alphabets by storing a tree structure of bitvectors (either plain or sparse).

Each character is encoded to partition the alphabet; the tree has σ leaves where each

levels bitvector sets a 0 if the character is in the left subtree (and 1 for right subtree).

This recursive procedure using plain bitvectors can support access/rank/select in

O(log σ)-time in n log σ + o(n log σ) bits [43]. When σ = O(polylog(n)) = logO(1)n,

meaning a polylog(n) sized alphabet, we improve from O(log σ) to O(1)-time for

queries. Figure 2.1 shows a wavelet tree for an example string.

2.3 Integer Encoding

Given a sorted integer sequence (non-decreasing) delta codes compress based on gaps

between integers. For an array A[0..m−1] with maximum element n, consider marking

A[i] + i in a bitvector of length at most n+m supporting select queries; select(i)− i

computes the partial sum of 0s and returns the value (deltas are implicitly represented

by the number of 0s between set bits). When strictly increasing, we can mark A[i]
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Figure 2.1: For a string T = mississippi, its corresponding wavelet tree is shown
(copied from [31]).

in the bitvector reducing the length to solely n bits. This can be used efficiently

without change when gaps are small (e.g. Chapter 4), but it is often a component

of other compact data structures [44]. Elias-Fano representations store explicitly the
⌈

log n
m

⌉

lower bits of each integer and store the remaining bits (also a non-decreasing

sequence) using the simple approach using bitvectors [58]. The required select is

constant time on plain bitvectors; for increasing sequences we require at most 2m

bits for select on top of the explicit m log m
n

lower bits. This bound looks familiar;

select on sparse bitvectors is stored explicitly by using Elias-Fano representation on

the set bits and these terms are used interchangeably during later discussion.

To store any integer sequence A[0..n − 1] with maximum element U , we can

use a fixed length code using n ⌈logU⌉ bits. A variable length code attempts to

compress further by storing each integer in varying length based on their smallest bit

representation (e.g. Elias codes [16]) or statistics (e.g. Huffman codes [25]). Such

codes do not always support efficient direct access of any i-th element, depending on

sums of previous code lengths or sampling of these lengths [44]. Brisaboa et al.’s

directly addressable codes (DACs) allow practical direct access for variable length

codes without sampling [9]. It represents integers into chunks of size b; any chunk C1
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in the first sequence stores the least significant b bits of each integer, C2 stores the

next b bits for only integers that require it, and so on. A bitvector supporting rank is

stored with each chunk level which is set if that integer has a corresponding chunk at

the next level; we find the index needed at the next chunk level using a rank query.

Figure 2.2 shows the structure of the code. DACs, optimized with implementation

considerations, support direct access efficiently in practice for sequences with mostly

small values which we see in Chapters 4, 5, and 6.

Figure 2.2: Visualizes a directly addressable code. For an integer sequence C, the
first entry is represented using two chunks; we first load A1,1 and then the set bit B1,1

signals to also load A1,2 from the next level. (copied from [9]).

2.4 Burrows-Wheeler Transform

Given a text T [0..n− 1], the Burrows-Wheeler Matrix (BWM) is computed by sort-

ing the rotations (left cyclic shifts) of the text; the last column of this matrix is

the Burrows-Wheeler Transform (BWT) of the text [12]. Figure 2.3 illustrates the

process. Because of the terminal character, there are exactly n unique rotations of

the text. Any column of the BWM and specifically the BWT are permutations of

the original text since each of the n rotations place a character T [i] in each position

exactly once. Due to cyclic shifts, the preceding characters of a row in the BWT are

sorted by their right context (i.e. the characters in preceding columns of the BWM).

When context strongly predicts symbols in the text, they are grouped together in

the BWT, which allows various simple compression schemes such as move-to-front

or run-length encoding [12]. A run in the BWT is a sequence BWT[i..j] where
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BWT[i] = BWT[i + 1] = ... = BWT[j]. We usually assume runs to be maximal

such that neither BWT[i− 1] nor BWT[j +1] equals the run character BWT[i]. The

run-length encoded Burrows-Wheeler Transform (RLBWT) stores the r runs of the

BWT by their run-head characters and their run-lengths.

Figure 2.3: For a string T = abaaba$, the BWM is constructed by sorting its cyclic
rotations; the BWT is the last column (copied from [31]).

The BWM maintains the same order as the SA since we are essentially sorting

suffixes due to the terminal character. This defines BWT[i] to be the character

directly preceding SA[i] in the text2 such that BWT[i] = T [SA[i] − 1]. If we find

the position j of SA[i] − 1 in the suffix array, we can find BWT[j] = T [SA[i] − 2];

this mapping allows us to reverse the BWT and recover the original text (partially

or in full). The characters in the first column of the BWM, F [0..n− 1], are the first

characters of the sorted suffixes and are representative of SA in that F [ℓ] = T [SA[ℓ]];

finding the position of SA[i] − 1 in SA is equivalent to finding the position of the

character BWT[i] (with respect to ranks in T ) in the F column.

2.5 LF Mapping

Mapping the position of characters in the BWT (or last column L) to their corre-

sponding position in the F column is called the last-to-first (LF) mapping. By the

BWM, F corresponds to the sorted characters of T . The order of these characters

with respect to their rank depends on the comparisons of the succeeding characters

2For simplicity we ignore the boundary case SA[i] = 0, but note we can work modulo n such that
BWT[i] = T [SA[i]− 1] = T [−1] = T [n− 1], which in all cases will equal the terminal $
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in their BWM row (right context); hence, character occurrences in F are sorted by

right context. Since we established that L is also sorted by right context, we have

that character occurrences for each c ∈ Σ preserve the same ranked order in both L

and F . This allows us establish ranks in ascending order looking down L/F , which

simplifies F into ordered blocks of ascending rank for each character. If BWT[i] is

of rank j, then its position in F is the jth character in its corresponding F block.

Let C[0..σ − 1] be an array3 where C[c] is position of the first c in F . As Figure 2.4

visualizes, any LF mapping can be computed as LF(i) = C[BWT[i]] + rankBWT[i](i).

଴ଵ ଴ଶ ଵ଴ ଶ଴ ଷଵ ସ଴ ଴ଵ ଴ଵଶ ଴ଷ ଵଷ ଶସ ଷ

 

 

 

 

𝐶[T] = 9 

𝐿𝐹(1) = 𝐶[𝑇] + 𝑟𝑎𝑛𝑘்(1) = 10 

Figure 2.4: For a text T = GATTAGATACAT, the corresponding L = BWT and
F columns are shown in ascending rank order. An LF mapping is computed for a
character T of rank 1 in the L column by finding the 1st character in the block of T s
in F .

The FM-Index can store the ranks explicitly to achieve constant-time LF-mapping

[17], and a wavelet tree achieves the same for polylog sized alphabets. The r-index,

like other conventional indexes operating over the RLBWT in O(r)-space, stores

run-heads in a wavelet tree of size r, compresses the run-lengths, and marks the

starting positions of runs in a sparse bitvector [37]. This slightly more complicated

LF-mapping requires a rank query on the run positions; a sparse bitvector operation

which cannot achieve constant-time due to inheriting lower bounds from predecessor

3Any alphabet of size σ can be represented equivalently as Σ = {0, ..., σ − 1}
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queries [6]. The rank query itself in O(log logw(n/r))-time also determines the total

complexity of an LF step for conventional RLBWT indexes such as the r-index [20].

Although indexes using this sparse bitvector approach achieve O(r)-space compared

to O(n) for an FM-index, they lose the ability to backwards step using LF in constant

time.



Chapter 3

Table Lookup for LF

Conventional RLBWT indexes cannot perform LF-mappings in constant-time. Nishi-

moto and Tabei’s move structure shows how to do so by considering mapping as run-

intervals [46]. In this chapter, we introduce the approach using the formulation of

table-lookup. The notation and terminology in this section is altered from Nishimoto

and Tabei’s original result, but captures the same idea. By augmenting the RLBWT

with explicit pointer information for mapping runs, an O(r)-space lookup table can

be constructed. Brief remarks are made about generalizing this to any permutation

and constant-time guarantees, but this discussion is largely left for Chapter 5. Due

to sequential scanning in the unmodified table, LF is worst case Ω(r)-time, and even

average time Ω(r) on some strings. However, a simple implementation is is tested on

a real genomic dataset and shows that steps are efficient in practice.

3.1 LF Mapping Runs

Recall that a run BWT[i..j] is a contiguous same character sequence which we assume

to be maximal such that BWT[i − 1] and BWT[j + 1] cannot extend the run. For

any run, their ranks occur in ascending order; a property shared with these same

characters in the F column. As Figure 3.1 shows, any run in the BWT is found in

the F column as well. This observation gives an alternative to computing LF for

runs; if BWT[i] = BWT[i + 1] = c then LF(i + 1) = LF(i) + 1. This is proven

directly by our rank definitions, since rankc(i+1) = rankc(i)+1 implies LF(i+1) =

C[c] + rankc(i) + 1 = LF(i) + 1. Applying this property across an entire run allows

us to LF map runs directly.

For a run BWT[i..j] and a position q within that run, its LF-mapping can be

computed as LF(i)+(i− q). As Figure 3.2 shows, this reformulation computes LF by

first mapping the run-head and then computing successive positions as offsets of that

initial mapping. Computing LF(i) still requires a character rank query, but what if

16
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Figure 3.1: Each run in L can be
found permuted in F . The posi-
tion indicates where the kth run
of L is found in the F column.
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Figure 3.2: The LF mapping of a
run can be reformulated as first
mapping the representative run-
head position and then computing
the succeeding positions as offsets.

we stored LF(i) explicitly? For q occurring in a run starting at i, we compute its

offset q − i and access our stored LF (i), each of which is a constant-time operation.

There are at most r positions where LF(i+1) ̸= LF(i)+1, which corresponds exactly

to the runs of the RLBWT. Thus we store the LF-mapping of each run-head position

of the RLBWT in O(r)-space.

To perform successive LF permutations, i.e. LF(j) where j = LF(i), we need to

find the run containing j to access the table. Doing so with a predecessor query is not

constant-time in O(r)-space. Instead we store the r run-head mapping destinations

(run containing LF(i)) alongside the run-head positions i and their mappings LF(i).

To maintain the functionality of the RLBWT, we store these columns alongside the

run-head characters c and the run-lengths ℓ. For a value q in run starting at i, we

compute LF(q) = LF(i)+ (q− i), and then access the run containing LF(i) to find its
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run-head position i′ and length ℓ′. If LF (q) < i′ + ℓ′, then this permutation crosses

the boundary of LF (i)’s containing run k′. We proceed by checking k′ + 1 and its

length and so on, scanning until we find the run containing LF(q). Each access is

constant-time, since our scan is sequential. Since all other operations are constant

time, the number of scans bounds the complexity of LF.

3.2 Permutations in O(r)-space

Nishimoto and Tabei’s result, as we have introduced through LF, can be generalized

to any permutation. The intuition, as Figure 3.3 visualizes, is when a permutation is

“runny”, such that it can be represented by relatively few contiguous sequences with

elements which are also permuted consecutively, we can permute over these blocks

instead of each position individually. Let π be a permutation over {0, ..., n− 1} and

S be the r values of i such that π(i − 1) ̸= π(i) − 1 or i = 0. We store an O(r)-

space table in which a row j consists of a 4-tuple: the jth value i in S; π(i); the

predecessor j′ of π(i) in S; and the length of the permuted subsequence starting at i.

This is analogous to our LF representation, and we equivalently evaluate for position

q with predecessor i as π(q) = π(i)+ (q− i). To find the predecessor of π(q), we scan

sequentially in the table from j′ until we find the correct position.

Since we perform a linear scan over our O(r)-space table, we may have to access

Ω(r) entries in the worst case. It is possible to find worst case examples in which the

average time across all permutations is Ω(r). Figure 3.4 shows an example for LF

in which BWT[0..n − 1] = (bc)n/10 · a4n/5 with r = n/5 + 1 runs. For 3n
5

of possible

LF steps, we scan r − 1 rows. A string producing a similar result can be produced;

start with a randomly generated binary string over Σ = {b, c} and then interleave

four consecutive a’s in between each original character. We have 4n
5

a characters,

and the number of runs of the BWT cannot be much less than the number of runs

in the original sequence; otherwise, we could improve run-length compression for any

random sequence by interleaving characters. The expected runs of a random binary

string is half its length, n
10
, and thus mapping to a characters requires crossing a

factor of r boundaries similar to Figure 3.4; in expectation we can produce a string

requiring average time Ω(r) for LF steps.

Most queries of RLBWT based pan-genomics indexes can be supported using LF,
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Figure 3.3: For any “runny” per-
mutation, we can attempt to per-
mute its blocks of runs instead of
individual positions.

𝑳 𝑭𝑏 𝑎𝑐 𝑎𝑏 𝑎𝑐 𝑎⋮ ⋮𝑎 𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑎⋮ ⋮𝑎 𝑏⋮ ⋮𝑎 𝑏𝑎 𝑐⋮ ⋮𝑎 𝑐

                    

 

𝑛5 
𝑛5 

3𝑛5  

𝑛10 𝑛10 

𝐵𝑊𝑇 = (𝑏𝑐) 𝑛10(𝑎)4𝑛5  𝐿𝐹(𝑛/5) = 0 

Figure 3.4: For a BWT[0..n − 1] = (bc)n/10 ·
a4n/5, any LF step among 3n

5
a positions re-

quires scanning r − 1 rows.

rank/select over the run-heads with a wavelet tree, and the ϕ function and its inverse

ϕ−1. For a position i and SA[i] value, ϕ gives the preceding value ϕ[i] = SA[i − 1]

in the SA. We have shown LF has r such permutable runs, and run-heads are easily

stored in O(r)-space. Since BWT[i] = BWT[i + 1] implies LF(i + 1) = LF (i) then

SA[LF(i)] = ϕ(SA[LF (i+ 1)]). As Figure 3.5 illustrates, this implies

ϕ(SA[i+ 1]) = SA[i] = SA[LF(i)] + 1 = ϕ(SA[LF(i+ 1)]) + 1 = ϕ(SA[i+ 1]− 1) + 1

and choosing i′ = SA[i + 1] − 1 gives ϕ(i′ + 1) = ϕ(i) + 1. Thus, there are also at

most r values for which ϕ(i′ + 1) ̸= ϕ(i′) + 1 and Nishimoto and Tabei’s approach

gives us LF, ϕ and ϕ−1 in O(r)-space. By inserting additional rows into the table,

Nishimoto and Tabei show how to make them constant-time (proof in Chapter 5),

but potentially double the size of the table [46].
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SA[i + 2]

SA[i] = φ(SA[i + 1])

SA[i + 1]

SA[i− 1]

SA[LF(i)] = SA[i]− 1 = φ(SA[LF(i) + 1])

SA[LF(i) + 1] = SA[LF(i + 1)] = SA[i + 1]− 1

SA[LF(i)− 1]

SA[LF(i) + 2]

...

...

...

BWT[i− 1]

BWT[i + 2]

BWT[i] = c

BWT[i + 1] = c

BWT[LF(i)− 1]

BWT[LF(i)]

BWT[LF(i) + 1]

BWT[LF(i) + 2]

...

...

...

BWT LF SA

Figure 3.5: Illustrates that given BWT [i] = BWT [i+1] it follows that ϕ(SA[i+1]) =
ϕ(SA[i+ 1]− 1) + 1 (figure from [11]).

3.3 Table-Lookup with Runs/Offsets

To evaluate the practicality of table-lookup, we move towards an implementation

without constant-time bounds; we predict in practice that the balancing of runs in

L and F will lead to few scans on real datasets. Storing run-head positions i and

LF(i) requires r log n bits. Instead, we can replace them by directly storing the offsets

LF(i) − i′ where i′ is the first position in the run containing LF(i). This moves us

towards a positional structure where a position q is associated with pair (k, d) such

that the kth run contains q and d is the offset of q in that run. Where k′ is the

stored run containing the mapping of the kth run-head and d′ is the offset of the

mapping within that run, then LF(q) = LF(k, d) = (k′, d + d′). To find the correct

run containing k′ with offset d + d′, we sequentially scan while truncating the offset

until we find a run whose length contains it; a reformulation identical to the prior

approach.

For the kth run, we now store the run-head character c, the run-length ℓ, the
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destination of its run-head mapping k′, and the offset of this mapping d′ within that

run. Where explicit storing of run-head positions i and LF(i) required log n bits

each, we can now store mappings k′ in log r bits each, lengths whose sum is at most

n, and offsets in log n bits each (which should be smaller in practice). Further, our

notion of LF is now over positions k and d where k lets us access a table entry and

d describes which character in a run we’d like to map. Figure 3.6 shows a completed

table for our altered approach. This formulation of LF given by our table-lookup is

straightforward to implement.

 

 

 

Figure 3.6: A completed table-lookup approach to LF, where the run/offset positional
approach with respect to the L column is shown. For the first run of T s of length 3,
we see its first character maps to run 5 with offset 0.

3.4 LF Table in Practice

Given a constructed RLBWT, we build our table using a two pass scan of Algo-

rithm A.1 (in Appendix); first read the characters and lengths, then compute their

containing runs and offsets from σ stacks each holding the next position for each

run-head character in L. The LF-mapping given a run k and offset d is computed

using the sequential scan of Algorithm A.2 (in Appendix) which truncates offsets
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while checking rows of the table. The approach was implemented in C++1 using a

naive representation of one byte for characters and 64-bit integers for other fields;

each stored as a row to preserve locality during steps.

To compare the speed of table-lookup, we experiment against conventional LF

steps using the r-index method [20]; rle-string supporting rank/select on run-

heads with sparse bitvectors marking run-head positions and lengths. A reference

text containing 1370 E. Coli genomes (total file size 7GB) is described in Table 3.1.

We measure the time to invert the text completely starting at the first position

which precedes the terminal character and LF step n times until wrap around to

the terminal character. A randomly sampled 100,000,000 LF steps (using Mersenne-

Twister pseudo-random generation with a seed of 23) are also measured. C++ code

was compiled with flags -O3 -DNDEBUG -funroll-loops -msse4.2. We performed

our experiments on a Linux server with an Intel® Xeon® Silver 4214 CPU running

at 2.20GHz with 32 cores and 100 GB of memory.

n 7,071,536,291
r 80,621,220
n/r 87.7131
log(r) 26.2647
log(n/r) 6.4547

Table 3.1: For a con-
catenated text of 1370
E. coli genomes, the
length n of their con-
catenation and runs r in
their BWT with related
stats.

Metric table-lookup rle-string

Construction (s) 21.68 14.47
Load (s) 9.98 0.46
Invert Time (s) 1,943.98 12,372.30
Invert Avg. (ns) 274 1,749
Sample Time (s) 10.57 176.66
Sample Avg. (ns) 106 1,766
Size (GB) 2.56 0.18

Table 3.2: Results comparing times in seconds s and nano-
seconds ns for constructing, loading, and performing LF
steps for table-lookup and rle-string. Size is disk
space in GB of the data structures.

Table 3.2 shows the results of experiments for table-lookup and rle-string:

the average time per step for inversion/samples (using wall time), and the construc-

tion/load time for each method when an RLBWT is given (using Unix’s usr/bin/time).

The lookup approach is 6.38 times faster for inversion and 16.66 faster for sampled

steps on average. Figure 3.7 shows that the number of scans across all LF steps is

1Code available at https://github.com/drnatebrown/r-index-f/blob/master/include/r_

index_f/LF_table.hpp
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small2; 76% require no scans and 98% less than 5, with long scans increasingly rare de-

spite a maximum scan of 1620. However, table-lookup was 14.08 times larger than

rle-string and slower in construction/loading. Despite being O(r)-space, storing

integers is costly and motivates the compression schemes of the next chapter.

Figure 3.7: The number of scans ∆k required to perform LF steps for 1370 E. coli
genomes. Left plot is restricted to range 0..10 and right from range 10..100. We note
longer scans (with max 1620) similarly become decreasingly rare.

2Results from fellow student Sana Kashgouli’s thesis shows that linear scans for ϕ are not as
quick in practice.



Chapter 4

Compressed LF Table

The approach of Chapter 3 suggests that table lookup for LF can be efficient in

practice on a genomic dataset even without constant-time guarantees. However, our

simple formulation is large, requiring integer values to be stored. For pan-genomics

datasets this size is not competitive with other approaches. In this chapter, we

explore how to compress the table while supporting count queries (which rely on LF

steps). Compressing the table column-wise is effective, but for locality concerns this

is done while breaking rows of the table into blocks. Experiments show our approach

can be made competitive in time/space with other methods. This Chapter’s results

correspond heavily to “RLBWT Tricks”1 by myself, Travis Gagie, and Massimiliano

Rossi [11].

4.1 Count Queries

Count queries are efficiently computed using the full SA[0..n − 1] by using binary

search to find the range of suffixes which share the pattern as a prefix [39]. The

FM-index finds this same range by backwards searching through the BWT for a

pattern P [0..m−1] by starting at its smallest suffix and increasing suffix lengths [17].

Starting at the range of P [m − 1], which is easily found using the representation of

the F column, we backwards step for the next character P [m−2] for the first and last

occurrence in that range of the BWT. It follows that the next range are all suffixes

beginning with the pattern processed so far. Continuing this approach, right to left

over the pattern, we return the length of the final range, or 0 if we fail to find any

matching occurrences.

Since rank operations are directly computed during LF steps for an FM-index or

conventional RLBWT based approaches, finding the start and end characters for a

range is simple. For table-mapping, one option is a linear scan that is worst case

1This section does not contain self citations.

24
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O(r)-time. Alternatively, we can suport rank/select over the run-head characters

quicky using a wavelet tree. For a character c and current range [s, e], assume we

know s belongs to run js and e belongs to je (we do not need to know s and e).

Then the next range starts at BWT[LF(s′)] where s′ is the first character in js′ =

selectc(rankc(js+1)). Symmetrically, the next interval ends at LF(e′) where e′ is the

last character in the run je′ = selectc(rankc(je)). Since our table-lookup computes

LF using run/offsets, we also sample run-head positions to recover s and e at the final

stage and return the count.

4.2 Column-Wise Compression

A row of our LF table appears to have no simple properties to exploit for compression.

Instead, we apply column-wise compression. The components of our table in columns

becomes: characters R[0..r − 1] where R[i] is the distinct character of the ith run,

lengths Len[0..r−1] of runs, destinations K[0..r−1] where K[i] is the run containing

i’s run-head mapping, and D[0..r − 1] corresponding to the offset of that run-head

mapping in the containing run. The sampled run-head positions (an increasing inte-

ger sequence) needed for calculating the final count are stored in a sparse bitvector

supporting rank. However, we require a rank to change run/offset into index only

after performing all LF steps.

Our formulation of rank will require rank/select on the run-heads R[0..r − 1].

A wavelet tree achieves this whilst providing compression, and building it Huffman

shaped [37] optimizes queries for high-frequency characters. However, for datasets of

small alphabets, we could ignore a tree structure and store an r length bitvector for

each distinct character which marks where they occur. Genomic datasets in practice

may support queries on only a few characters, i.e. the nucleobases {A,C,G, T} for

DNA alignment. In this case, using 4r bits is not much worse than the 2r bits needed

for their smallest encoding when compared to the total size of the index (where

other components such as length require r log n bits to encode). The operations

rank/select/access are constant time on our full bitvectors, and should be faster than

a wavelet tree in practice.

Both lengths Lens[0..r − 1] and offsets D[0..r − 1] have similar properties. Each

offset cannot be longer than the length that contains it; the average of the offsets
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is always less than the average length. Further, the sum of lengths cannot exceed

n. Despite both requiring worst case log n bits per element we expect the median to

be comparatively small even on repetitive datasets based on prior experiments [52].

Our “naive” approach is to compress them both using DACs, allowing direct access

which is fast and compact for integers whose bit representation is small. We use

the implementation of SDSL [21] which adopts Brisboa et al.’s [9] approach using

dynamic programming to choose the optimal chunk sizes at each level. Preliminary

experiments found this implementation to be more efficient on average than using a

fixed chunk size.

4.2.1 Run-Head Mappings

The run-head mapping destinationsK[0..r−1] do not form a non-decreasing sequence.

However, as Figure 4.1 visualizes, the subsequences of K corresponding to each of

the σ distinct characters form non-decreasing sequences. For a character c, we have

that R[i] = R[j] where i < j with rankc(i) < rankc(j) and thus their containing

run-head destinations follow K[i] ≤ K[j] (they could map to the same run, in which

case D[i] < D[j]). If we reduce the alphabet to chosen queryable characters (e.g.

{A,C,G, T}) like we discussed on the run-heads we similarly require subsequences

for only the chosen characters (all LF steps during count queries involve characters

occurring in the pattern).

Various delta encoding schemes (see Chapter 2) apply to our decomposition of

K[0..r − 1] into σ non-decreasing subsequences Kc[0..rc − 1] for distinct characters c

with rc run-head occurrences. Although Elias-Fano coding could be used, the simpler

approach for prefix sum of deltas using bitvectors should be faster and still sufficiently

small; we mark at most r positions Kc[i] + i in a bitvector of at most size r + r,

achieving worst case O(r) bits for each subsequence. We can also store the first

value Kc[0] explicitly as a base to our bitvectors. To illustrate, consider sequence

Kc[11, 16, 19, 21]; we store Kc[0] = 11 and bitvector

10000010001001

and compute select(k)− k to return the numbers of 0s before the kth set bit (the 0s
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Figure 4.1: Highlighted LF-mappings of run-heads (destinations) for character A
form a non-decreasing subsequence; this is true for all σ characters because of rank
properties.

between each bit representing the delta values). For position i = 2, we have

Kc[0] + select(i+ 1)− (i+ 1) = 11 + 11− 3 = 19 = Kc[i]

where i corresponds to the (i+ 1)th bit due to 1-based select.

To compare the bitvector approach, we consider two alternatives. A relatively

simple approach is to store deltas in a DAC (since values should be small on average)

and sample values at a constant rate so retrieving the prefix sum is a bounded scan.

Sampling and DACs can also be used in a linear interpolation approach. We sample

values in Kc at rate s, so each position i with value y has a prior sample x and next

sample z. Assuming a linear increase between samples, we define a weighted average

ϵ = x+ (z − x) · (i− s · (⌊i/s⌋)/s)

and store the difference ∆ = y − ϵ in a DAC. Given i and s, we lookup x, y, and

compute ϵ; we recover y by accessing ∆ and adding the difference ϵ. We expect ∆

values to be small if growth between samples is linear, and can store a bitvector

marking positive/negative sign to ensure recovery is still correct.
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4.2.2 Table Blocking

Column-wise compression schemes for each element of the table save space, but they

might affect locality. Where storing entries in a row should be stored contiguously in

memory, each compressed column will likely not maintain locality per access. To at-

tempt to mitigate these concerns, we consider partitioning the table rows into blocks

of size B. Using fixed B, modular arithmetic is constant-time and allows easy re-

duction of positions into their corrct block and position. In order to maintain rank

over the run-heads R, for each distinct character we store the position of the first run

preceding the start block and following the end of the block. This scheme also aligns

with compression of run-head destinations, storing the value of the first value in a

block for each character since subsequent values are non-decreasing. Figure 4.2 shows

experiments on block size using pan-genomic datasets explained in the subsequent

section. The best block sizes are very large and do not fit in high-level cache, but we

find B = 220 to achieve the best space and choose it for our experiments.
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Figure 4.2: For pan-genomic data introduced subsequently, the time/space vs choice
of block size is shown. Dashed line represents the chosen default of 220. Rightmost
value represents storing the entire table without blocking (one block).

The implementation hierarchy is shown in Figure 4.3; our proposed choices for

compression of columns, queryable alphabet reduction, and table blocking are sum-

marized. These choices were found during preliminary experimentation to achieve
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better results in query time for counting than the methods which were not chosen.2
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Figure 4.3: Shows hierarchy of implementation, outlining choices for constructing the
table. Solid lines show required components; dotted lines denote that one can be
chosen. Shaded nodes show paths that are presented in Section 4.3

4.3 Experiments

Our code was written in C++ and compiled with flags -O3 -DNDEBUG -funroll-loops

-msse4.2 using data structures from sdsl-lite [21]. We performed our experiments

on a server with an Intel® Xeon® Silver 4214 CPU running at 2.20GHz with 32 cores

and 100 GB of memory. Our code is available at https://github.com/drnatebrown/

r-index-f.git. Count query times were measured using Google Benchmark3, and

construction with the Unix /usr/bin/time. Our benchmarks only discuss the average

time to compute the queries and do not involve statistical analysis.

2The source code still implements all the approaches shown in Figure 4.3.
3Available at https://github.com/google/benchmark.
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4.3.1 Data Structures

For our table lookup implementations, we partition into blocks of size B = 220 and

sample every 16th run-head position into a sparse bitvector. Since worst case scans

and lengths/offsets are affected by the maximum run-length, we also explore vari-

ations capping run sizes by splitting runs into multiple rows. We compared the

following data structures:

lookup-bv table-lookup with bitvector marking deltas with 0s, recovered with select.

lookup-int table-lookup with linear interpolation between sampled values.

lookup-dac table-lookup with DACs storing deltas with sample rate 5.

lookup-split2 table-lookup using lookup-bv where runs larger than twice the average

length n/r are split.

lookup-split5 table-lookup identical to lookup-split2, except runs larger than five

times the average length n/r are split.

wt-fbb fixed-block boosting wavelet tree of [22] using default parameters; implemen-

tation at https://github.com/dominikkempa/faster-minuter.

rle-string run-length encoded string of the r-index [20]; implementation based off

https://github.com/nicolaprezza/r-index.

RLCSA the BWT component4 of the run-length encoded compressed suffix ar-

ray of [38] using default parameters; implementation at https://github.com/

adamnovak/rlcsa.

4.3.2 Datasets

We tested our data structures for construction and query on 4 collections of 128,

256, 512 and 1000 haplotypes of chromosome 19 from the 1000 Genomes Project [57]

(chr19) and 4 collections of 100k, 200k, 300k, 400k SARS-CoV2 genomes from the

EBI’s COVID-19 data portal [24]5 (Sars-CoV2). Each set is a superset of the previous

one, with their BWT computed by concatenating the sequences in the collection. Our

goal with these datasets is to verify the ability of the index to handle human DNA

for alignment and viral genomes for classification. However, we have not attempted

to use full human genomes and larger collections, or even other genomic data; we

4We build the data structure without suffix-array sampling.
5The complete list of accession numbers is reported in the repository.
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aim to show only that our data structures are practical to motivate further work for

full-scale applications. Table 4.1 describes the lengths n and ratio n/r of the datasets.

Name Description Copies n/106 n/r
chr19 Human chromosome 19 128 7568.01 222.24
chr19 Human chromosome 19 256 15136.04 424.93
chr19 Human chromosome 19 512 30272.08 771.54
chr19 Human chromosome 19 1,000 59125.12 1287.38
Sars-CoV2 Sars-CoV2 genomes database 100,000 2979.01 881.16
Sars-CoV2 Sars-CoV2 genomes database 200,000 5958.35 977.19
Sars-CoV2 Sars-CoV2 genomes database 300,000 8944.37 1178.00
Sars-CoV2 Sars-CoV2 genomes database 400,000 11931.17 1328.92

Table 4.1: Table of the different datasets. In column 1 and 2 we report the name and
description of the datasets, in column 3 we report the number of sequences in the
collection, in column 4 we report the length of the file, and in column 5 the ratio of
the length to the number of runs in the BWT.

4.3.3 Construction

In Figure 4.4 we report the time and memory for construction of the data structures

for the chr19 and Sars-CoV2 datasets. RLCSA is omitted, since it is the only data

structure not built using prefix free parsing (PFP) [8], and its construction time far

exceeded the other methods.
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Figure 4.4: Construction for chr19 of 128, 256, 512 and 1000 copies (left) and
Sars-CoV2 of 100k, 200k, 300k and 400k copies (right). Copies increase for an in-
stance plotted left to right. For chr19 we partially omit wt-fbb for being magnitudes
larger than other values (approximately 4 times slower and larger than lookup-bv

for 512 copies and similarly 5 times slower and 7 times larger for 1000).
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4.3.4 Query

To query the data structures we performed counting queries for 10000 randomly

chosen substrings each of length 10, 100, 1000 and 10000. In Figure 4.5 and 4.6 we

report the time and memory for querying of the data structures for the chr19 and

Sars-CoV2 datasets respectively.

4.4 Discussion

For table lookup implementations, lookup-bv and its variants (lookup-split2 and

lookup-split5) perform better than lookup-int, lookup-dac in time and space.

For query lengths greater than 10 on chr19, lookup-bv variants are faster and larger

than rle-string, while slower and smaller than RLCSA; we occupy a time/space

trade-off between these implementations. The space of wt-fbb makes it an outlier

despite best speeds for various queries.

On Sars-CoV2, table-lookup performs well on queries of length 10, with lookup-

split2 the fastest implementation and other approaches competitive in both time and

space. For query lengths greater than 10, the non-splitting approaches (lookup-bv,

lookup-int, lookup-dac) are slowest. With splitting approaches, we are comparable

to rle-string in time but worse in space. Although again an outlier in space,

wt-fbb performs fastest, with RLCSA occuping the least space with comparable speed

to wt-fbb.

For construction, table-lookup approaches are slower than rle-string across all

data. Across all table-lookup approaches lookup-bv and its variants are the definitive

choice in both space and construction time. RLCSA is more space-efficient and faster

on Sars-CoV2 where and is a clear winner across all of the data structures in the

experiment. This motivates table lookup to also speed up RLCSA; however, we note

adding support for ϕ and ϕ−1 (thus, supporting locate) to RLCSA is still an open

problem.

4.5 Worst Case Scans

Our run capping approaches are superior to lookup-bv for long query lengths and

as n/r rises. Figure 4.7 shows the number of scans required across LF steps during
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Figure 4.5: The time per query to count the occurrences of 128, 256, 512 and 1000
copies of chr19 for 10000 randomly-chosen substrings of length 10, 100, 1000 and
10000 each. Copies for a single line are read from largest number of copies to smallest,
left to right. The x axis is logarithmically scaled with base 2.
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count queries of length 100 for chr19. Although the distribution is similar across all

copies near zero (majority requiring few rows to be scanned) worst cases become more

prevalent and longer as the number of copies grows. This formulation of table-lookup

is still competitive on pan-genomic datasets evaluated, but alternative formulations to

support count could improve time/space. Due to success of run capping and evidence

that increasingly repetitive text collections (growing n/r) cause longer and more likely

scans, we are motivated to explore methods to bound them, such as Nishimoto and

Tabei’s constant-time theoretical guarantee [46].
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Figure 4.7: Frequencies in percentage of runs scanned for LF steps required across
10000 count queries of length 100 for 128, 256, 512 and 1000 copies of chr19. Left
plot shows steps scanning 0 to 9 rows; right plot shows all scans (log scaled).

4.6 Profiling Components

Computing count queries requires each component of the table; the columns and our

methods of compressing them. We time each component for a step of each count

query to identify which components are slower for more repetitive datasets. Where

a step corresponds to shrinking of the count range with LF, each component is mea-

sured when it is used: run-heads for access/rank/select, destinations for one access,

offsets for one access, lengths for access during scans. Figure 4.8 shows the results

for increasingly repetitive text collections for chr-19 using lookup-bv. Although all

components are slower as the average run increases, the time spent scanning and ac-

cessing lengths grows dis-proportionally larger. Longer runs both increase the longest

scan, but also increase the access time using a DAC to retrieve their lengths.
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Chapter 5

Runny Permutations

Using a table-lookup approach for LF is practically efficient within our experiments

on genomic data, but is still subject to worst case Ω(r) scans. On these pan-genomic

datasets the majority of steps require no scans, but increasingly repetitive texts cause

the worst cases to grow. In this chapter, we discuss simple methods to bound scans

given our framework which motivates a true row splitting approach. Nishimoto and

Tabei’s result is presented which splits runs to achieve constant-time LF steps in

O(r)-space [46]. Our formulation hints at how we can actually perform this splitting

procedure; for any “runny permutation” which has r runs which are permuted in

sequence we insert boundaries using its inverse permutation to achieve constant-time

mappings. A practical implementation is given, and we explore its effects on our

compressed table in computing count queries.

5.1 Bounding Scans

Results in Chapter 4 showed that naively splitting runs based on a maximum allowed

length outperformed the default method in speed. The worst case scan cannot be

worse than the longest run; a length ℓ run in the F column cannot cross more than

ℓ boundaries in the L column. However, our naive run splitting also shortens the

lengths of runs and thus the chunk level required during DAC access. Note that

we can also support permutations in O(r)-space using our table by storing a sparse

bitvector of runs and O(log log r)-time rank to find predecessors. As an alternative

to motivate row splitting, consider directly bounding maximum scans by addressing

what causes them; offsets into a run in F which cross many run boundaries from the

destination run of an LF-mapping.

To avoid introducing rows into the table, consider sampling offsets which intersect

run boundaries. Figure 5.1 visualizes sampling every xth value corresponding to a

run-head position. By supporting predecessor queries on these samples, we can skip

37



38

some scans; if our offset has the pth value as predecessor we skip p · x table entries

and scan at most x additional rows. Across all runs, we sample at most r/x entries

since each sampled offset corresponds to a distinct run in L. Using a simple method

like binary search we improve the worst-case scan to O(log r)-time whilst maintaining

O(r)-space. In practice, sampling plain bitvectors may be even faster while still small.

Using the uncompressed formulation of Chapter 3 we invert a salmonella reference

genome from the NCBI repository [15] with n = 145594456 and r = 12823512.

Table 5.1 shows that despite theoretical improvements, average results are slower;

it is likely that introducing such an approach slows down the average case which is

already very fast.

Figure 5.1: Sample every xth
offset dtotal which crosses a
boundary.

Search Bitvector Unsampled

x = 2
Time (s) 28.9127 33.6014 20.5741
Space (GB) 0.3585 0.3750 0.3206

x = 4
Time (s) 25.4598 27.3216 20.5741
Space (GB) 0.3242 0.3261 0.3206

x = 8
Time (s) 23.4447 22.6571 20.5741
Space (GB) 0.3208 0.3210 0.3206

x = 16
Time (s) 21.0462 21.2288 20.5741
Space (GB) 0.3206 0.3206 0.3206

Table 5.1: Results of offset sampling with rate x for
inversion of a full salmonella genome using either
binary search or a plain bitvector to find predeces-
sors.

5.2 Row Splitting

Storing accessory data structures with runs to bound scans affects our efficient cases

when scans are low. Instead, consider splitting rows at these positions where offsets

cross boundaries. If we split rows when their corresponding run in F crosses bound-

aries, we limit the length of that scan without changing the approach for unrelated

runs. However, it is not clear if this solution works naively; Figure 5.2 shows that

every row that is split also introduces another boundary for a run in F to cross. The
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result of Nishitomo and Tabei proves that a splitting procedure will finish while in-

serting O(r) rows into the table [46]. To see when this procedure converges, consider

it as an interval weight problem between bitvectors P marking run-head positions in L

and Q marking the corresponding positions in F . Figure 5.3 shows the corresponding

bitvectors given L and F .

 

 Figure 5.2: Inserting a bound-
ary also splits a run found us-
ing the inverse permutation.

 

 
Figure 5.3: Converts runs in L and Q
into their corresponding bitvectors mark-
ing run-head positions.

Using bitvectors, bounding a scan becomes limiting the maximum number of bits

in P that overlap an interval in Q; let this number be the weight of an interval.

Inserting a bit into Q distributes the weight across the split intervals, but also intro-

duces a bit in P that affects the weight of another run. Since it introduces only one

bit, each step increases the set bits of both P and Q by only one; let Pi and Qi be

these bitvectors after i insertions. For a parameter d and intervals with weight w ≥ d
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consider inserting at the dth bit P covering an interval in Q such that the interval is

split into one of weight d and one of weight w − d ≥ d. Let the set Ei store intervals

in Qi with weight ≥ d after i insertions. This set must also have increased by at least

i; with each step the first split interval of weight d replaces the original interval, but

we also must include1 the second of weight w − d ≥ d since w ≥ 2d.

Let |Pi| denote the number of set bits in Pi (or any bitvector). The intervals

corresponding to the set Ei contains at least d|Ei| set bits and after inserting i bits

we have that |P | ≥ d|Ei|. However, since |Ei| ≥ i then |Pi| ≥ d · i; it follows that we

eventually reach an i where splitting any interval would exceed the bits in Pi and thus

it must be of weight strictly less than 2d. If we initially have |P0| = r set bits, then

for any i we have |Pi| = r+ i ≤ d · i, so r ≥ i(d− 1) and hence i ≤ r
d−1

. This ensures

all interval weights are less than 2d after at most r
d−1

steps; for sufficiently small d we

achieve O(1)-time permutations in O(r)-space using Nishimoto and Tabei’s result [46].

Where the initial proof uses a fixed d = 2 [46], our formulation is parameterized for

time/space trade-off. Theorem 1 uses our discussion to give a formal proof for any

permutation by adapting Nishimoto and Tabei’s theorem [46] to our framework while

introducing our parameter d.

Theorem 1 (Permutation Scanning). Let π be a permutation on {0, . . . , n− 1},

P = {0} ∪ {i : 0 < i ≤ n− 1, π(i) ̸= π(i− 1) + 1} ,

and Q = {π(i) : i ∈ P}. For any integer d ≥ 2, we can construct P ′ with

P ⊆ P ′ ⊆ {0, . . . , n− 1} and Q′ = {π(i) : i ∈ P ′} such that

• if q, q′ ∈ Q′ and q is the predecessor of q′ in Q′, then |[q, q′) ∩ P ′| < 2d,

• |P ′| ≤ d|P |
d−1

.

Proof. We start by setting P0 = P and Q0 = Q and let |P | = r. Suppose at some

point we have Pi and Qi = {π(i) : i ∈ Pi}. If there do not exist q, q′ ∈ Qi such that

q is the predecessor of q′ in Qi and |[q, q
′)∩Pi| ≥ 2d, then we stop and return P ′ = Pi

and Q′ = Qi; otherwise, we choose some such q and q′.

1We could increase by two because of the set bit in Pi, but this does not affect the proof.
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We choose the (d+1)st largest element p in [q, q′)∩Pi and set Pi+1 = Pi∪{π
−1(p)}

and Qi+1 = Qi ∪ {p} = {π(i) : i ∈ Pi+1}. Since q < p < q′ we have p ̸∈ Qi and so

π−1(p) ̸∈ Pi. Therefore, |Pi+1| = |Pi|+ 1 and so, by induction, |Pi+1| = |P |+ i+ 1.

Let Ei be the set of intervals [u, u′) such that u, u′ ∈ Qi and u is the predecessor

of u′ in Qi and |[u, u
′) ∩ Pi| ≥ d, and let Ei+1 be the set of intervals [u, u′) such that

u, u′ ∈ Qi+1 and u is the predecessor of u′ in Qi+1 and |[u, u′) ∩ Pi+1| ≥ d. When

π−1(p) does not increase |Ei+1|, we have Ei+1 = (Ei\{[q, q
′)}) ∪ {[q, p), [p, q′)}, then

|Ei+1| = |Ei|+ 1 and, by induction, |Ei+1| ≥ i+ 1.

Since the intervals in Ei+1 are disjoint and each contain at least d elements of Pi+1,

we have |Pi+1| ≥ d|Ei+1| ≥ d(i + 1). Since |Pi+1| = r + i + 1 and |Pi+1| ≥ d(i + 1),

we have r + i+ 1 ≥ d(i+ 1) and thus i+ 1 ≤ r
d−1

and |Pi+1| = |P |+ i+ 1 ≤ d|P |
d−1

. It

follows that we find P ′ and Q′ after at most r
d−1

steps.

5.3 Practical Implementation

Formulating scanning as an interval weight problem using the proof of Theorem 1

illustrates how to perform row splitting in practice. Once we obtain P ′, splitting

maximal runs when constructing the table ensures a maximum scan given by our

choice of d. To support π−1 we can use a specific approach such as LF−1 = FL

using character ranks; however to support any permutation we can similarly create a

table-lookup for π−1 in O(r)-space. Note that using our boundary sampling, we can

reduce scans to O(log log r)-time if we store samples in sparse bitvectors. Given π

we construct P and Q as sparse bitvectors and support rank/select, since performing

π−1 requires the predecessor and offset of a position in Q. To efficiently identify when

an interval should be split we require a data structure which updates weights.

To identify intervals in Qi which have weight w ≥ 2d we maintain a maximum pri-

ority queue H storing the starting positions of intervals ordered by weights. However,

inserting a bit has many effects: reducing the weight to d for the current interval,

inserting a new interval of weight w − d, and incrementing the weight of another

interval where we set a bit in Pi+1. Our approach is to use an indexable queue based

on code by Sedgewick and Wayne [53]; we use an O(r)-space heap and an O(r)-space

hash map to support indexing into the heap. Priority queue operations for insert and
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updating the maximum element are worst case O(log r)-time, with expected O(log r)-

time for update due to using the hash function. Taking the maximum element gives

us the position in Q and its weight w.

To split for some interval position q ∈ Qi with weight w ≥ 2d we need to find the

(d+1)st bit in Pi starting at q; we first find the predecessor ppred = Pi.rank(q) of q in Pi

and then the position to insert into Q at p = Pi.select(qpred+d). We proceed by insert-

ing into Pi+1 using π−1 and updating H; however rank/select on Pi and Qi must be

dynamic since we are inserting bits at each step. Prezza’s DYNAMIC library [49] aug-

ments a B-tree to provide a dynamic sparse bitvector supporting insert/rank/select

in O(log r)-time and similar compression to our static sparse bitvector. Performing

O(r) total steps, this algorithm performs splitting in expected O(r log r)-time2 and

O(r)-space. If we replace sparse bitvectors with plain ones it results in O(n)-space but

also O(n)-time for splitting due to initialization stages; however, this option might be

feasible depending on the dataset. Nishimoto, Kanda, and Tabei show how to split

to achieve constant-time LF in worst case O(n+ r log r)-time and O(r log n) bits [45],

but do so dynamically while building the RLBWT; our approach is a static alterna-

tive which used after other RLBWT construction methods. The splitting procedure

is described in Appendix Algorithm A.3.

5.4 LF Experiments

To evaluate the result we perform row splitting with LF on the chr19 dataset from

Section 4.3, using 16, 32, 64, 128, 256, 512, and 1000 sequences, as increasing repti-

tiveness causes longer worst case scans. We experiment with splitting parameter d in

{2, 4, 8, 16, 32, 64, 128, 256, 512} (since larger d do not introduce any new rows) and

measure the wall time and memory needed to perform the splitting. To evaluate in

practice, we use lookup-bv both with and without splitting to compute count queries

for chr19 of 128, 256, 512, and 1000 copies and randomly sampled patterns of length

10, 100, 1000 and 10000 (akin to Section 4.3).

Our code was written in C++ and compiled with flags -O3 -DNDEBUG -funroll-

loops -msse4.2 using data structures from sdsl-lite [21] and DYNAMIC [49]. We

2Worst case O(r2 log r)-time due to hash map; we note that alternatives to the indexed heap such
as a balanced binary search tree would improve to worst case O(r log r)-time.
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performed our experiments on a server with an Intel® Xeon® Gold 6248R CPU

running at 3.00GHz with 48 cores and 1536 GiB of memory. Splitting code is available

at https://github.com/drnatebrown/r-permute.

5.4.1 Splitting

To evaluate the affect on maximum scans, we perform splitting for various choice of d

on sequences of chr19. However, using sparse bitvectors for P/Q and their dynamic

variants caused slow runtimes which were did not finish in the allowed time for large

datasets. Instead, we sacrifice space by using plain bitvectors to obtain splitting

results quicker. Figure 5.4 shows the result of splitting for chr19 of 16, 32, 64, 128,

256, 512, and 1000 copies. Table 5.2 shows the memory and time required for splitting

parameter d = 2. We note that performing splitting for multiple d is quicker, since

the initialization of the data structures is slower than the splitting procedure itself.
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Figure 5.4: Shows the effect of performing splitting for different choice of parameter d
(shown in legend). Left plot shows the maximum scan before (dashed line) and after
splitting across sequences of chr19. Right plot shows percentage increase of table
rows resulting from splitting.
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# seq. in T 16 32 64 128 256 512 1000

n/106 946.01 1892.01 3784.01 7568.01 15136.04 30272.08 59125.12
r/104 3240.02 3282.51 3334.06 3405.40 3561.98 3923.60 4592.68
Inititialization (s) 113.05 211.375 422.845 842.825 1705.44 3574.17 7396.98
Splitting (s) 46.2267 74.5394 125.788 231.538 465.058 949.25 1826.87
Memory (GB) 4.45 5.36 7.14 10.70 18.19 32.76 59.78

Table 5.2: Time/Memory needed to perform splitting on chr19. Initialization builds
data structures and splitting perform the procedure.

5.4.2 Queries

To query the data structures we performed counting queries for 10000 randomly

chosen substrings each of length 10, 100, 1000 and 10000. We build lookup-bv

using splitting which is denoted by lookup-bv-d where d is the splitting parameter.

These approaches are compared against lookup-bv without splitting and rle-string

from Section 4.3. Figure 5.5 reports the time and memory for querying of the data

structures on chr19. We discuss by comparing the average query times directly

without further statistical analysis.

5.5 Discussion

A splitting parameter of d = 16 bounds the worst scan from up to over 1200 on chr19

to 31 while only increasing the rows of the table by a fraction of a percent, roughly

0.4%. Higher choices of d eliminates the worst case to give constant time mapping

with only a negligible practical increase to the table size. When computing count

queries, d = 2 and d = 4 are faster on average than no splitting or other choice of

d; on our data d = 4 is a small increase in space but shows a speed improvement.

However, the overall speed improvement is not easily noticeable with splitting, and on

the most repetitive datasets rle-string outperforms in both space and time. This

result does support that, even without splitting, LF steps are practically similar to

constant-time approaches on this data; however splitting does not solve performance

issues on very repetitive datasets.

Other components of the index could be investigated to see if table-lookup can

improve in this respect. Since our count queries require more than just LF, splitting

should be investigated in an isolated context. Repetitiveness increases the access

time in our DACs for lengths/offsets so we may consider removing them by storing i
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run-head positions and the explicit position of LF(i) instead of our run/offset pairs.

Compressing the destinations of LF(i) can be copied from Chapter 4, and it follows

that LF(i) itself also forms σ non-decreasing subsequences. The run-head positions

i can be stored in a sparse bitvector and recovered in constant time. Note that we

do not need lengths, since our scan is identical when over the run-head positions.

Similarly, we find offsets easily since we now operate with a full position j with

predecessor at run-head position i. This approach is not as suitable for the table

blocking of Chapter 4, but our block sizes did not prove to be useful on our test data.

Although our splitting procedure using dynamic bitvectors is O(r)-space and ex-

pected O(r log r)-time in theory, the implementation of necessary data structures

needs improvement since we cannot efficiently use a runs-bounded approach. In par-

ticular, the dynamic approaches used still require O(n)-time for initialization and

using the sparse variants in O(r)-space proved too slow in our experiments. The

proposed approach follows easily from our proof, but an algorithm which does not

use such heavy compression as bitvectors may prove more efficient while still being

O(r)-space.

For instance, consider storing the L set bit positions in a balanced binary search

tree (BST) and F nodes in a balanced BST holding set bit positions, interval weights,

and a pointer to the first set bit contained in the F interval in L’s BST. By maintaining

a queue of nodes in F with weight ≥ 2d we can perform the necessary predecessor

queries on the BST in O(log r)-time and O(r)-space. To find the splitting position,

we start at the pointer to the first covering node in L for a node in F and search L

tree nodes to find the dth in O(d)-time. Storing the inverse permutation of the set bit

also allows us to compute any inverse by scanning nodes akin to table-lookup or using

an O(log r)-time predecessor query. This simple approach requires storing of integer

values and pointers, but should be easy to implement in practice to provide a worst

case O(r)-space and O(r log r)-time algorithm for splitting with efficient run-time.



Chapter 6

Pan-genomic Matching Statistics

Backwards search using LF allows us to compute exact matching queries for a pattern,

such as count and locate. However, approximate pattern matching is often more

important in bioinformatics. When a pattern does not match exactly, we can still

describe substrings which do using matching statistics (MS). This Chapter describes

how to generate MS on pan-genomics datasets using runs-compressed data structures.

Past runs-compressed indexes for MS depend on LF steps and SA samples, but also

thresholds or LCE queries to reorient in the BWT when a character mismatches.

We describe how to augment thresholds with additional LCE information to speed

up computation of matching statistics by avoiding unnecessary LCE queries. This

Chapter covers “Augmented Thresholds for MONI”1 by Mart́ınez-Guardiola, myself,

Silva-Coira, et al. [41].

6.1 Matching Statistics

The matching statistics (MS) describe which substrings of a pattern match in a text.

We define the matching statistics of a pattern P [0..m− 1] with respect to T [0..n− 1]

as an array MS[0..m− 1] where MS[i].pos is the starting position in T of the longest

prefix of P [i..m − 1] occurring in T and MS[i].len is the length of that prefix [7].

When there are multiple occurrences of a longest prefix P [i..m − 1] in T , MS[i].pos

can be any such position. Figure 6.1 shows possible matching statistics of an example

pattern. Computing MS has many useful applications in bioinformatics [36]; particu-

larly, maximal exact matches can be easily computed from MS and are used for DNA

alignment in tools such as BWA-MEM [34]. For pan-genomic text collections, Bannai

et al. [4] described how to compute MS using a variant of the r-index.

The key idea behind Bannai et al.’s index is to store r threshold positions alongside

the r-index; one between each pair of same character runs in the BWT. Given a

1This section does not contain self citations.
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Figure 6.1: For the given pattern P and text T , visualizes the matching statistics
MS; for P [i..m− 1], MS[i].pos gives the positions of the longest matching prefix wrt.
T and MS[i].len gives the length of that match.

position corresponding to a mismatch character when processing the pattern, the

threshold tells us whether to “jump” forwards or backwards to reorient in the BWT.

The approach of Bannai et al. is not a true runs-bounded index, since it requires fast

random access to T of which there is no known solution in worst case O(r)-space.

However, Gagie et al. [19, 18] showed how we can use the same prefix-free parsing

(PFP) used to efficiently build large indexes to also build a straight-line program

(SLP); a context free-grammar that generates exactly one string. Their SLP supports

fast random access while operating on a compressed text and thus takes much less

space than the r-index itself in practice. Rossi et al. gave an implementation called

MONI by providing an algorithm to find thresholds using the longest common prefix

(LCP) array and PFP [52].

MONI makes two passes over the pattern; one right-to-left to generate the MS

positions using LF steps and SA samples at run boundaries, and one left-to-right to

find the lengths using random access with the SLP [52]. Boucher et al.’s PHONI [7]

instead uses the SLP to support longest common extension (LCE) queries to gener-

ate both during the first pass. Since we can reorient based on which position gives

the longer LCE, we can also omit thresholds. This online approach is advantageous

in certain salutations since the first pass buffers a significant amount of data; using

one pass reduces the workspace and allows us to run more queries in parallel. Us-

ing one-pass also suits applications which are inherently online, such as SPUMONI 2

2SPUMONI does not generate MS, but an approximation, removing the SLP and SA samples to
save space [2].
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and its targeted sequencing of DNA strands as they are emitted from nanopore se-

quencers [2, 1]. LCE queries are only needed for mismatch cases; most characters in

P are processed using efficient LF steps and SA samples. However, the LCE queries

it does compute dominate the query time [7].

6.2 Computing MS

A threshold between two consecutive same character runs BWT[s1..e1] and BWT[s2..e2]

is defined to be a position t with e1 < t ≤ s2 such that

LCE(SA[e1], SA[j]) ≥ LCE(SA[j], SA[s2])

if j < t, and

LCE(SA[e1], SA[j]) ≤ LCE(SA[j], SA[s2])

if j ≥ t. Bannai et al. did not describe how to find the thresholds [4], but Rossi

et al. showed they could be computed as the minimum in LCP[e1 + 1..s2]. Intu-

itively, this is since LCE(SA[e1], SA[k]) for k from s2 up to e1 are non-decreasing,

and similarly for LCE(SA[k], SA[s2]) with k from e1 down to s2. For simplicity, let

LCEe1(k) = LCE(SA[e1], SA[k]) and LCEs2(k) = LCE(SA[k], SA[s2]). Figure 6.2

shows the threshold position between runs for an example text.

Assume we have already computed MS[i+1].pos and the position j of its preceding

character T [MS[i + 1].pos− 1] in the BWT. As Figure 6.1 hinted, if BWT[j] = P [i]

then MS[i].pos = MS[i+1].pos−1 since the character preceding our current matching

position in the text equals the preceding character that we process to extend our suffix

of P . We continue by computing the position of T [MS[i+1].pos−1] in the BWT given

by LF(j). If BWT[j] ̸= P [i] then3 e1 < j < s2 where e1 is the last occurrence of P [i]

in the BWT and s2 is the next, corresponding to runs BWT[s1..e1] and BWT[s2..e2].

By definition of the BWT and thresholds, if j < t for the corresponding threshold

e1 < t ≤ s2 then a prefix of T [SA[e1]..n−1] is a longest match for P [i..m−1]; if j ≥ t

then a prefix of T [SA[s2]..n− 1] is longest match for P [i..m− 1]. Since e1 and s2 are

run boundaries, we have SA[e1] and SA[s2] stored and can reorient in the BWT to

find the position of a longest match by “jumping” based on the threshold and taking

3Assuming that P [i] occurs again in the text in either direction for simplicity.
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k BWT[k] T [SA[k]..n] LCP[k] LCEe1(k) LCEs2(k)
...

...
...

...
...

...
1234 A GAGACATCA... - - -

e1 = 1235 A GATACATTA... - - -
1236 C GATAGATTA... 4 4 3
1237 G GATATAGAA... 4 4 3
1238 G GATCCAATA... 3 3 3

t = 1239 G GATTACATA... 3 3 6
1240 T GATTACTTA... 6 3 6
1241 T GATTAGATA... 5 3 6

s2 = 1242 A GATTATCAT... 5 - -
1243 A GATTATGAA... - - -
...

...
...

...
...

...

Figure 6.2: For positions e1 < k < s2 between a pair of same character runs of A,
shows the threshold position t at a minimum in the LCP array. The LCEs between
these run boundaries for k visualizes why this threshold describes which run boundary
gives a longer LCE.

the corresponding sampled SA value. That is, if j < t then MS[i].pos = SA[e1] and

we continue with the position of T [SA[e1] − 1] in the BWT given by LF(e1), and if

j ≥ t then MS[i].pos = SA[s2] and we continue with the position of T [SA[s2] − 1] in

the BWT given by LF(s2).

After finding the MS positions during a right-to-left pass, MONI finds the lengths

by performing a left-to-right pass over the pattern to extend the matches using the

SLP (comparable to an LCE). PHONI instead computes them alongside the po-

sitions using LCE queries during the first pass. Assume that we have computed

MS[i+1].len alongside MS[i+1].pos and the position j of T [MS[i+1].pos− 1] in the

BWT. If BWT[j] = P [i] then we extend our match by exactly that character and set

MS[i].len = MS[i+ 1].len+ 1. Instead, if j < t then we set

MS[i].len = min(LCE(MS[i+ 1].pos, SA[e1]),MS[i+ 1].len) + 1

since we can only take the LCE up to the length we have matched so far if it is

less, increasing by 1 for the matching character BWT[e1] that precedes T [SA[e1]].

Similarly, if j ≥ t then we set

MS[i].len = min(LCE(MS[i+ 1].pos, SA[s2]),MS[i+ 1].len) + 1
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and in both cases continue with an LF step. Further, if we compute both LCE(MS[i+

1].pos, SA[e1]) and LCE(MS[i+1].pos, SA[s2]) then we know which position provides

a longer match without needing to store the threshold. However, MONI stores thresh-

olds to perform only one LCE during its second pass to recover the lengths; thresholds

do not take much space compared to the RLBWT and the SA samples, whereas LCE

queries are slow when compared to LF steps [7].

6.3 Augmented Thresholds

In practice, mismatch cases will occur in bunches on genomic datasets; if P [i] is a

sequencing error or part of a variation not present in T then we are likely to find a

short match when jumping and experience many mismatches for subsequent processed

characters of P until we have built enough context to reorient in the BWT. In this

scenario, we will have short longest matches and perform LCEs in rapid succession

(or threshold jumps) until the matches are long enough that we are likely to find

characters of P which do match. Since the length of the longest matches can only

increment for each character processed in P in this case, while performing LCEs in

rapid succession we expect MS[i+1].len to be smaller than the computed LCE query

that we compare it to. Since we often end up setting MS[i].len = MS[i + 1].len + 1

for mismatch cases in this scenario, we are motivated to investigate if all these LCE

queries are necessary.

Consider storing the threshold t between two consecutive same character runs

BWT[s1..e1] and BWT[s2..e2] while supporting LCE queries. For any j < t we have

LCEe1(j) ≤ LCEe1(t−1); this is easily seen when considering LCEs as range minimum

queries (RMQs) over the LCP array with min LCP[e1+1..j] ≤ minLCP[e1+1..t− 1]

since e1 < j < t. Similarly, if j ≥ t then LCEs2(j) ≤ LCEs2(t). These threshold LCEs

are a lower bound for LCE queries we will compute on either side of the threshold.

Suppose we have MS[i+1].len when P [i] = BWT[e1] = BWT[s2] and j is the position

of T [MS[i+ 1].pos− 1] in the BWT with e1 < j < s2. If j < t and

MS[i+ 1].len ≤ LCEe1(t− 1),

or j ≥ t and

MS[i+ 1].len ≤ LCEs2(t)
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k SA[k] BWT[k] T [SA[k]..n]
...

...
...

...
1234 8765 A GAGACATCA...

e1 = 1235 1519 A GATACATTA...

1236 5450 C GATAGATTA...

j = 1237 1004 G GATATAGAA...

1238 4242 G GATCCAATA...

t = 1239 3110 G GATTACATA...

1240 1102 T GATTACTTA...

1241 1978 T GATTAGATA...

s2 = 1242 2505 A GATTATCAT...

1243 2022 A GATTATGAA...
...

...
...

...

Figure 6.3: If MS[i+ 1].len ≤ LCEe1(t− 1) then, since LCEe1(t− 1) ≤ LCEe1(j), we
have MS[i + 1].len ≤ LCEe1(j) and we can safely set MS[i].len = MS[i + 1].len + 1.
For example, if MS[i+1].len = 3 for the above diagram, then since LCEe1(t−1) = 3
is a lower bound on LCEe1(j) so it cannot be smaller than MS[i+ 1].len; we skip an
LCE and set MS[i].len = 3 + 1.

then as Figure 6.3 explains we can set MS[i+1].len = MS[i].len+1 without computing

any LCE queries. By storing the values LCEe1(t−1) and LCEs2(t) (i.e. the threshold

LCEs) explicitly alongside thresholds, we obtain augmented thresholds which allow us

to filter out unnecessary LCE queries. Appendix Algorithm A.4 shows the complete

algorithm.

We can compute threshold LCEs using LCE queries if we have the SA values for

threshold positions. However, their relationship to thresholds allows us to compute

both simultaneously using the procedure of MONI with PFP. Rossi et al. observed

that we can set t to be the position of min(LCP[e1 + 1..s2]), which they support

space-efficiently through PFP and a range-minimum data structure over the LCP

array [52]. Since our LCE queries are also defined as RMQs over the LCP array, we

can utilise the minimum information of thresholds to find min(LCP[e1 + 1..t − 1])

and min(LCP[t + 1..s2]). When a threshold position is updated to t′ by finding a

new minimum, then the last minimum must be min(LCP[e1 + 1..t′ − 1]). Similarly,

the second minimum after t′ must be min(LCP[t′ + 1..s2]). These minimums can

be computed alongside the thresholds by updating until the final t is found and
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performing RMQs when necessary. With this slight modification, the augmented

thresholds can be efficiently computed using PFP in a similar manner to MONI.

6.4 Experiments

We compare the time and memory for querying using augmented thresholds against

the one-pass approach of PHONI. To mitigate the size increase of augmented thresh-

olds, we explore techniques for space-efficiency. Any single threshold LCE can be

stored in lg n-bits (since they inherit LCP bounds); however, many values tend to

be smaller than others [28] and in practice our LCE values represent minimums over

ranges of the LCP array. Further, some threshold LCEs can be ignored: if t = s2

then for any position j (with e1 < j < s2) we always have j < t so we jump up

to e1 and the other threshold LCE is never used, and similarly for t = e1 + 1 and

always jumping down. Thus, we can safely ignore these values, choosing to “zero”

them to not store any value at all. Thresholds form σ increasing subsequences which

we compress by storing them in σ sparse bitvectors.

The variants of augmented thresholds differ in storing the threshold LCEs; we

compare them against PHONI:

• PHONI: Standard version of one-pass MONI described as PHONIstd in original

paper [7].

• Aug-Full: One-pass MS using augmented thresholds, using lg n-bits per thresh-

old LCE stored

• Aug-1: Above, but restricting threshold LCEs to one byte. On overflow, we

default to using an LCE query.

• Aug-BV-Full: Stores bitvector marking which threshold LCEs are used, storing

these values in lg n-bits and accessed using a rank query.

• Aug-BV-1: As above, but ignores storing values greater than one byte (default

to LCE query).

• Aug-DAC: Stores threshold LCEs using a directly addressable code (DAC)

• Aug-BV-DAC: Same as Aug-BV-Full, but substituting in a DAC to store values.

The approach was implemented in C++ and compiled with flags -O3 -DNDEBUG

-funroll-loops -msse4.2; the code is available at https://github.com/drnatebr
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# n/106 r/104 n/r SLPcomp [MB] SLPplain [MB]
16 946.01 3240.02 29.20 36.10 70.54
32 1892.01 3282.51 57.64 37.80 74.75
64 3784.01 3334.06 113.50 39.48 79.84
128 7568.01 3405.40 222.24 42.11 88.89
256 15136.04 3561.98 424.93 47.43 102.52
512 30272.08 3923.60 771.54 58.00 131.09
1,000 59125.12 4592.68 1287.38 80.63 186.98

Table 6.1: Table summarizing the datasets and sizes of SLPs built over them. The
first column describes the number of concatenated sequences of chr19. SLP sizes are
measured in megabytes [MB].

own/aug_phoni and is based on the original one-pass MONI code at https://github.

com/koeppl/phoni. All experiments were executed single-threaded on a server with

an Intel(R) Xeon(R) Bronze 3204 CPU and 512 GiB RAM.

We re-ran Boucher et al.’s query experiments from the original PHONI paper using

the same datasets; chromosome 19 haplotypes (chr19) for concatenations of 16, 32,

64, 128, 256, 512, and 1000 sequences. We query the data structure with 10 distinct

chr19 sequences as patterns. To support random access and LCE queries efficiently

we construct SLPs; SLPcomp over the compressed text of the original PHONI exper-

iments, SLPplain over the uncompressed text [18]. The datasets and SLP sizes are

reported in Table 6.1. The average query times (computing MS for a single pattern)

are shown in Figure 6.4 with results for both SLP types in distinct plots. Figure 6.5

shows the disk sizes for all variants using both SLP types. We use the average wall

time for discussion.

6.5 Discussion

Variants using augmented thresholds are always faster on average than PHONI but al-

ways larger. Introducing the SLPplain speeds up LCE queries for all methods; although

SLPplain can be over twice as large as SLPcomp (Table 6.1) the difference is smaller

when compared to the total index sizes shown in Figure 6.5. This LCE speedup

reduces the gap between query times compared to PHONI, since it spends a larger

percentage of execution on them; however, the LCE queries skipped by augmented

thresholds still result in faster executions.
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Figure 6.4: The average query time across data structures to compute MS using 10
distinct chr19 sequences against 16, 32, 64, 128, 256, 512, and 1000 sequences of
chr19. Solid lines use SLPcomp, dashed lines using SLPplain (focus of right plot).

We highlight some standout variants when compared to PHONI for the largest text

size (1000 sequences of chr19). Aug-DAC is among the fastest approaches regardless

SLP: 48.37% faster and 22.89% larger for SLPcomp, and 22.92% faster and 19.97%

larger for SLPplain. This is a significant improvement compared to the original PHONI

method (SLPcomp) and a direct time/space tradeoff when using SLPplain. The success

of this variant aligns with expectation: the DAC is engineered for the LCP array

which has small values on average. Threshold LCEs consist of small LCP values

and zeroes which results in high compression and fast access on average. Aug-1 is in

the smallest class: 40.22% faster and only 14.60% larger for SLPcomp, while 19.95%

faster and 12.66% larger for SLPplain. Although Aug-Full is in the fastest class with

Aug-DAC, it is much larger. Other variants fall between these approaches in both time

and space.

When compared to the original one-pass MONI of Boucher et. al (PHONI with



56

16 32 64 128 256 512 1000
# seq. in T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
m

em
or

y 
[G

B]
Aug-BV-Full
Aug-BV-1
Aug-DAC
Aug-BV-DAC
Aug-Full
Aug-1
PHONI
Compressed SLP
Plain SLP

16 32 64 128 256 512 1000
# seq. in T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

m
em

or
y 

[G
B]

Disk Size

Figure 6.5: The disk size in GB for each data structure built on 16, 32, 64, 128, 256,
512, and 1000 sequences of chr19. Solid lines use SLPcomp (focus of left plot), dashed
lines using SLPplain (focus of right plot). PHONI using SLPcomp is included on right to
visualize the size difference of SLP choices.

SLPcomp), our best augmented threshold approaches showed over 40% speed improve-

ments with under 20% space increase on the largest dataset with similar results

across all data. Our applied compression schemes are space-efficient whilst still being

faster on average than PHONI on the tested data. Introducing an uncompressed SLP

(SLPplain) was experimentally shown to benefit both LCE and total query speed while

requiring a small size increase. Using this SLPplain, augmented thresholds allow at

worst a direct time/space tradeoff (increase speed/space by ≈ 20%) with some results

gaining more in speed than the additional space required to store them.
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Conclusion

In this thesis we described recent approaches in run-length compressed data struc-

tures for pan-genomic text indexing related to the BWT. Nishimoto and Tabei’s

constant-time data structure [46] for permutations was introduced and formulated as

a simple table-lookup approach which is O(r)-space for LF steps. We showed that

without bounds the approach can be worst case Ω(r) on average for LF but that the

approach is efficient in practice without introducing their theoretical bounds. The

simple implementation as presented in Chapter 3 is much faster than conventional

methods relying on sparse bitvectors to compute LF steps in runs-bounded space,

but is much larger due to storing uncompressed integers.

The table can be compressed column-wise and, with slight modification, supports

computing of count queries. This index, using our reduced alphabet and bitvector

compression for run-head mapping destinations, is competitive in time/space with

the best existing methods for pan-genomic data. However, long scans for comput-

ing LF were encountered during computation. We provided motivation for bound-

ing the scans necessary during table lookup steps, and reformulated Nishimoto and

Tabei’s constant-time proof [46] using table row splitting to include a parameter for

a time/space tradeoff. This proof illustrates how to perform splitting in practice; we

experiment with our approach which succesfully bounds scans with minimal space

increase, but it does not have a large effect on count query time.

Generating matching statistics for pan-genomic datasets using the RLBWT re-

lies on LF steps and thresholds/LCE queries. By exploiting both two-pass [52] and

one-pass [7] methods to compute the matching statistics we observed that threshold

jumping and resulting LCE queries tend to occur in bunches on genomic data; by

augmenting thresholds with additional LCE information we avoid unnecessary LCE

queries in a one-pass approach. These threshold LCEs can be efficiently compressed

alongside thresholds, and result in faster computation on average when compared to

57
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the prior one-pass method on pan-genomic datasets. For example, Using a directly

addressable code to compress these threshold LCEs gave a result which on average

achieves a larger percentage speed improvement when compared to additional space

used. An auxiliary result showed that using a plain SLP greatly improves the speed

of LCE queries when compared to the space required to store it.

7.1 Future Work

The discussion of Chapter 4 opens the question of implementing table-lookup along-

side other data structures, such as RLCSA, or for other permutations, such as ϕ.

Alternative compression and table schemes may result in better results when block-

ing rows of the table for locality. This discussion might involve investigating the

ability of table blocks to be distributed over multiple compute nodes; a result that

seems obtainable based on the outlined structure. Chapter 5 shows that the row

splitting procedure as described using bitvectors may not be practical given current

implementations. The proposed approach supporting operations using balanced bi-

nary search trees should be implemented and experimentally evaluated, alongside

other alternatives such as modifying splitting of a dynamic RLBWT [45] to the static

case. Our results focus on count queries; splitting isolated to LF steps only or other

queries could be useful. The easily compressible alternative without lengths/offsets

suggested at the end of Chapter 5 may have use cases over our approach.

Pan-genomics matching statistics tools rely primarily on LF steps, thresholds and

LCEs. Our first result show methods to improve the speed of LF steps, and our second

result shows how to improve thresholds and speed up LCE queries. Combining these

methods should result in an even faster approach; it remains to be shown if this can

made space efficient. In the case of tools such as SPUMONI which rely only on LF

steps and thresholds, our results could be applied to improve the speed and accuracy

of its targeted sequencing approach. To evaluate feasibility, compressing thresholds

alongside our table, with or without splitting, can be explored; specifically, testing

which table formulation is best if we aim to use thresholds. In general, experiments

included in this thesis suggest that our data structures will scale for pan-genomics

using even hundreds of human genomes; however, future work should evaluate the
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feasibility in practice on such large datasets while exploring applications to alterna-

tives in text indexing. This involves not just using these data structures for DNA

alignment, but further applications within or even beyond genomics.
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Appendix A

Pseudocode

A.1 Construction [Chapter 3]

Algorithm 1 LF-table Construction

Input RLBWT[0..r − 1], RLBWT[i].c is character, RLBWT[i].ℓ is length

1: table[0..r − 1]← {}

2: positions[1..|Σ|]← {} ▷ Character indexed array of queues

3: for k ∈ 0..r − 1 do

4: table[k].c = RLBWT[k].c

5: table[k].ℓ = RLBWT[k].ℓ

6: positions[RLBWT[k].c].enqueue(i)

7: end for

8: k ← 0

9: obvL, obvF ← 0 ▷ Number of characters of L/F column seen

10: for i ∈ {0..σ − 1 do

11: while |positions[i]| > 0 do

12: pos← positions[i].dequeue()

13: table[pos].k ← k

14: table[pos].d← obvF − obvL

15: obvF ← obvF + table[pos].ℓ

16: while obvF ≥ obvL + table[k].ℓ do

17: obvL ← obvL + table[k].ℓ

18: k ← k + 1

19: end while

20: end while

21: end for

return table[0..r − 1]
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A.2 Table-Lookup for LF-Mapping [Chapter 3]

Algorithm 2 LF Mapping

Input (k, d)

1: k′ ← table[k].k

2: d′ ← table[k].d+ d

3: while d′ ≥ table[k′].ℓ do

4: d′ ← d′ − table[k′].ℓ

5: k′ ← k′ + 1

6: end while

return (k′, d′)
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A.3 Row Splitting [Chapter 5]

Algorithm 3 Interval Weight Bounding

Input P,Q, d, π−1

1: P ′ ← P

2: Q′ ← Q

3: H.init(P,Q)

4: (q, w)← H.max()

5: while w ≥ 2d do

6: ppred ← P ′.pred(q)

7: p← P ′.select(ppred + d)

8: Q′[p]← 1

9: x← π(p)−1

10: P ′[x]← 1

11: H.update(q, d) ▷ Update interval at q to have weight d

12: H.insert(p, w − d)

13: xQ ← Q′.select(Q′.pred(x))

14: H.update(xQ, H.weight(xQ) + 1)

15: (q, w)← H.max()

16: end while

return P ′
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A.4 Aug-Moni [Chapter 6]

Algorithm 4 Computes MS with augmented thresholds

1: j ← BWT.selectP [m](1)

2: MS[m]← (pos : SA[j], len : 1)

3: for i = m− 1 down to 1 do

4: if BWT[j] = P [i] then

5: MS[i]← (pos : MS[i+ 1].pos− 1, len : MS[i+ 1].len + 1)

6: else

7: c← BWT.rankP [i](j)

8: e1 ← BWT.selectP [i](c)

9: s2 ← BWT.selectP [i](c+ 1)

10: x← BWT.run of position(s2) ▷ Position s2 belongs to the xth run

11: t← thresholds[x]

12: if j < t then ▷ thr lcee stores LCE(SA[e1], SA[t− 1])

13: if MS[i+ 1].len ≤ thr lcee[x] then

14: MS[i].len← MS[i+ 1].len + 1

15: else

16: MS[i].len← min(MS[i+ 1].len,LCE(SA[e1],MS[i+ 1].pos)) + 1

17: end if

18: MS[i].pos← SA[e1]

19: j ← LF(e1)

20: else ▷ thr lces stores LCE(SA[t], SA[s2])

21: if MS[i+ 1].len ≤ thr lces[x] then

22: MS[i].len← MS[i+ 1].len + 1

23: else

24: MS[i].len← min(MS[i+ 1].len,LCE(SA[s2],MS[i+ 1].pos)) + 1

25: end if

26: MS[i].pos← SA[s2]

27: j ← LF(s2)

28: end if

29: end if

30: end for
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