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1.1. Research rationale 

 Natural organic matter (NOM) is ubiquitous in surface water supplies and is comprised of 

a heterogeneous mixture of organic compounds originating from allochthonous (terrestrially 

derived) or autochthonous (generated in the water column through biological activity) input (Croue 

et al., 2000; Zularisam et al., 2006). NOM is known to be very complex in nature with a wide 

range of molecular weight (MW) and functional groups (phenolic, hydroxyl, carbonyl, carboxylic 

acid) (Zularisam et al., 2006) and generally is classified in terms of humic acids (HA) and fulvic 

acids (FA), as well as non-humic fractions including carbohydrates, amino acids, and proteins 

(Sillanpää, 2014). Despite the complexity of NOM, humic acids are the largest constituent in 

freshwater and account for 50 to 90% (Artinger et al., 2000) of the organic carbon content. 

 For several decades, there have been increases in NOM concentration measured as 

dissolved organic carbon (DOC) or colour in surface waters, a phenomenon commonly referred to 

as brownification (

Skjelkvåle et al., 2005 Garmo et al., 2020; ). 

Brownification has been widespread throughout the northern hemisphere with one of the most 

reported drivers of browning being anthropogenic pressures such as the reversal of atmospheric 

acid (e.g., SO4) deposition. For example, 



 

 More recently, the importance of climate change (Finstad et al., 2016; Riise et al., 2018; 

Kopáček et al., 2019; Imtiazy et al., 2020; Meyer-Jacob et al., 2020; Marty et al., 2021; Nelson et 

al., 2021; Lepistö et al., 2021) and changing land use (e.g., Skerlep et al., 2020; Garmo et al., 2020; 

Kritzberg et al., 2020) have been highlighted as other drivers of brownification, particularly as 

atmospheric acid deposition stabilizes. According to Meyer-Jacob et al. (2019), climate change is 

forcing lakes to new ecological states, with lake water DOC concentrations exceeding pre-

industrial levels. 

Weyhenmeyer et al. (2016) predicted increases in lake color, which 

is controlled by water flushing through the landscape, in a worst-case climate scenario (32% 

increase in precipitation) and showed that color would increase by a factor of between 1.1 and 7.6, 

noting that it would impact the preparation of drinking water. 



NOM impacts virtually all aspects of drinking water treatment. For example, NOM is 

responsible for most of the chemical demand (e.g., coagulant, oxidant) during drinking water 

treatment. More specifically, humic-like NOM fractions with higher MW, aromaticity and 

hydrophobicity are most amenable to removal via enhanced coagulation, which is the major NOM 

removal process used in drinking water treatment (Edzwald, 1993; Sharp et al., 2006). The removal 

of NOM is typically driven by minimizing the formation of regulated DBPs, which are formed 

during chlorination when NOM is present. To date, there have been over 600 DBPs identified, 

although trihalomethanes (THMs) and haloacetic acids (HAAs) are the most commonly regulated 

(Richardson et al., 2007). Health Canada has established guidelines of 100 and 80 



1.2. Research questions 

This research was guided by the following research questions: 

1. How is water quality in drinking water reservoirs and surface waters in Nova Scotia 

responding to anthropogenic pressures such as atmospheric deposition and climate change? 

2. What are the vulnerabilities to surface drinking water treatment systems in Nova Scotia in 

response to changing source water quality, including brownification?   



1.3. Research objectives 

1.4. Organization of thesis 





A REVIEW OF LONG-TERM CHANGE IN SURFACE 
WATER NATURAL ORGANIC MATTER CONCENTRATION IN THE 
NORTHERN HEMISPHERE AND THE IMPLICATIONS FOR 
DRINKING WATER TREATMENT

2.1. Abstract 



2.2. Introduction  

 In response to concern over atmospheric acid deposition in the 1980s and 1990s, both 

national (the Eastern Canada Acid Rain Control Program, the United States Clean Air Act) and 

international (the United Nations Economic Commission for Europe [UN ECE] Convention on 

Long-Range Transboundary Air Pollution [LRTAP], the Canada-United States Air Quality 

Agreement) regulations have been implemented to reduce air emissions such as sulphur and 

nitrogen oxides. As a result, regions in both North America and Europe have shown massive 

reductions in SOx emissions followed by decreased sulfate deposition (Driscoll et al., 2016; Garmo 

et al., 2020; Stoddard et al., 1999). 





2.3. Methods 

2.4. Recovery from acidification and climate change contribute to widespread browning  





 



2.4.1. Chemical responses to recovery from acidification 
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2.4.2. Climate change and other processes drive browning as recovery processes stabilize 







2.5. Impacts of browning on surface water treatment 

2.5.1. Aspects of conventional drinking water treatment challenged by browning 
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2.5.2. Fluorescence-based NOM monitoring for source waters and treatment facilities 

impacted by browning 
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2.5.3. Water safety plans as a tool to understand treatment risk with browning supplies 



2.5.4. Catchment level strategies for adapting browning to surface water supplies 



2.5.5. Possible treatment adaptations for browning surface water supplies  





 

that the combination of ozone and biofiltration could yield DOC removals of 15-50%, and THM 

precursors by 40-80%. Ozone (O3) doses of 1-2 mg O3/mg TOC appeared to be effective for 

biodegradation of NOM before biofiltration (Basu et al., 2016). Similarly, Toor et al. (2007) used 

UV-peroxide (H2O2) followed by biologically active carbon (BAC) filtration to reduce TOC and 

DBPs by 43 and 52%, respectively. Beniwal et al. (2018) showed that pre-oxidation with O3 and 

H2O2/O3 enhanced DOC removal but the impact on DBP reduction was limited. Sidhu et al. (2018) 

showed that O3 and H2O2/O3 could improve DOC removal by 15 and 23%, respectively. In the 

same study, THMFP was reduced by 38 and 14% and HAAFP by 36 and 20% for O3 and H2O2/O3 

compared to BAC alone (Sidhu et al., 2018). Ødegaard et al. (2010) also discusses the application 

of oxidation and biofiltration for NOM removal in Norwegian surface waters, which have 

undergone substantial browning in recent decades. Slavik et al., (2021) recommend ozonation-

biofiltration as a promising strategy to cope with NOM-related climate-related challenges (e.g., 

changes in NOM properties due to increased solar radiation). In comparison to conventional NOM 



removal approaches, the addition of AOPs with biofiltration 







2.6. Conclusion 







3.1. Abstract 



3.2. Introduction 





In Fall 2012, previously unreported incidents of geosmin were identified 

in Pockwock Lake Wright et al., 2014). Prior to 2012, geosmin was not a water quality concern 

for Halifax Water. Consumer complaints regarding the earthy, musty smell of geosmin in treated 

tap water began in 2012, which initialized Halifax Water’s geosmin monitoring routine. 



3.3. Materials and methods 

3.3.1. Study sites  

3.3.2. Water quality analysis and data acquisition  





3.3.3. Atmospheric deposition and climate data 



3.3.4. Statistical methods 
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3.4.2. Abiotic indicators of recovery from acidification 
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3.4.3. Impact on plant operations 





 

 



The main genera of 

cyanobacteria that are known to contain geosmin-producing species are Anabaena, 

Aphanizomenon, Lyngba, Oscillatoria, Planktothrix, and Symploca (

). Although the preferred growth conditions vary by 

species and are dependent upon several environmental factors, it is generally known that 

cyanobacterial production of geosmin occurs at a pH between 6 and 9 at temperatures ranging 

between 15 and 30°C. Anabaena has been identified as the dominant geosmin producing species 

in the Pockwock watershed (Halifax Water, unpublished data). Anabaena has been reported to 

grow at pH 6 (Rao, 1989; Thomas et al., 2005) although lower pH values (i.e., pH<6) can be 

deleterious to the growth of Anabaena cyanobacteria ( ). In 2013, the pH 

in Pockwock Lake began seasonally approaching pH 6 (Figure S1 in SI) which coincided with the 

most prevalent occurrence of geosmin and the detection of Anabaena.  

geosmin has been abundant in the Great Lakes (Watson et al., 2008), a region 



that has been undergoing recovery from acidification (Keller et al., 2007). 

τ

τ



τ



3.5. Conclusion 
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4.3. Materials and methods 

4.3.1. Study area and sampling 



4.3.2. Water quality analysis and data acquisition 





4.3.3. Statistical analyses 



4.4. Results and discussion 

4.4.1. Water quality trends 











4.4.2. Colloid characterization via field flow fractionation 

















4.5. Implications for drinking water treatment  



4.6. Conclusion 





5.1. Abstract 



5.2. Introduction 

believed to be a result of 

multiple anthropogenic and climate stressors. Many studies (e.g., Skjelkvåle et al., 2005; Monteith 

et al., 2007; Anderson et al., 2017; Garmo et al., 2020; Redden et al., 2021; Anderson et al., 2023) 

have reported on brownification trends in surface waters in Europe and North America. 

Collectively, these studies have identified relationships between increased DOC concentration and 

lower levels of atmospheric acid deposition. More recently, the importance of climate change 

(Finstad et al., 2016; Riise et al., 2018; Kopáček et al., 2019; Imtiazy et al., 2020; Meyer-Jacob et 



al., 2020; Marty et al., 2021; Nelson et al., 2021; Lepistö et al., 2021) and changing land use (e.g., 

Skerlep et al., 2020; Garmo et al., 2020; Kritzberg et al., 2020) have been highlighted as additional 

drivers of increasing DOC concentration, particularly as acid deposition stabilizes. 





5.3. Materials and methods 

5.3.1. J.D. Kline Water Supply Plant and Pockwock Lake 



Analyte n Median Range 

pH 88 5.68 5.43-5.99 
Turbidity – NTU 88 0.56 0.34-1.7 

UV254 – cm-1 86 0.093 0.079-0.118 
TOC – mg/L 76 3.0 2.7-3.4 
DOC – mg/L 65 2.8 2.6-3.5 

SUVA – L-mg/m 65 3.1 2.6-3.6 
Total Mn – μg/L 86 59.0 22.4-686.6 

Dissolved Mn – μg/L 86 21.2 8.7-28.1 
Total Fe – μg/L 82 50.7 23.3-196.5 

Dissolved Fe – μg/L 82 15.0 7.5-37.7 
*Due to supply chain issues with DOC filter papers, there were fewer DOC measurements relative to TOC, during the study period.  

 





5.3.2. Experimental and operational procedures 



Phase Date (2022) 
Alum (mg/L) KMnO4 (mg/L)  

FSP 
train 

Adaptation 
train 

FSP 
train 

Adaptation 
train  

A July 5 – August 8 18 18 0.15 0.15  
B to October 2 18 30 0.15 0  
C October 3 to 

December 20 18 18-30* 0.15 0.15  



5.3.3. Analytical procedures 

μ

μ

μ



5.3.4. Statistical analyses 

5.4. Results and discussion 

5.4.1. Pilot-scale evaluation of brownification adaptation strategies for direct filtration 

facilities 

5.4.1.1. Implementing sedimentation and GAC adsorption for improving NOM removal 

Pilot scale direct filtration fed 18 mg/L of alum performed similarly to 

the FSP and was used as the basis of comparison for the adaptation train (Figure 15, Table D1 in 

Appendix D). Increasing the alum dose to 30 mg/L and utilizing sedimentation created a small but 



significant improvement to UV254 removal (



3, 

μ

μ μ μ

μ μ

μ μ μ μ μ

μ

μ



μ





the longest FRT (median 69.7 h, IQR 14.1 h) and highest

Assessing Fe and 





μ



), soluble Mn from the 

hypolimnion mobilizes throughout the water column (Tobiason et al., 2016) and would be the 

dominant form of Mn in the raw water. Eventually the Mn would return to its oxidized, colloidal 

state when the lake reaerates and there is no longer an anoxic zone in the hypolimnion. 
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5.5. Conclusion 





6.1. Conclusions 

This research was guided by the following research questions: 

1. How is water quality in drinking water reservoirs and surface waters in Nova Scotia 

responding to anthropogenic pressures such as atmospheric deposition and climate change? 

2. What are the vulnerabilities to surface drinking water treatment systems in Nova Scotia in 

response to changing source water quality, including brownification?   

 

6.1.1. Research Question 1: How is water quality in drinking water reservoirs and surface 

waters in Nova Scotia responding to anthropogenic pressures such as atmospheric 

deposition and climate change?  





6.1.2. Research Question 2: What are the vulnerabilities to surface drinking water 

treatment systems in Nova Scotia in response to changing source water quality, 

including brownification?   







6.2. Recommendations 

6.2.1. Recommendation 1: Integrated water quality monitoring that acknowledges 

atmospheric and climate processes  





Fluorescence is a valuable characterization tool that can 

provide a “fingerprint” of NOM (Yan et al., 2000), and a

Given 

that fluorescence spectroscopy has emerged as a valuable tool for the characterization and 

monitoring of NOM over the past decade(s), in addition to considerable uptake by the industry, 

there exist new opportunities for research investigating temporal changes in the nature of NOM in 

sources where long-term fluorescence datasets are available. Paired with climate and other water 

quality data, these datasets present an opportunity to further our understanding of brownification 

trends in drinking water supplies, as well as the ability to predict future relationships. Such 

predictions could help to inform future treatability studies for browning source waters.  



μ

6.2.2. Recommendation 2: Robust adaptation treatment solutions that consider source 

water complexities associated with climate and atmospheric processes 
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(Stoddard et 
al., 1999) 

Europe 
39 surface 

waters 
1980-
1989 

-0.8 to -3.8 

Seasonal 
Kendall 

μeq/L/year 
SO

4  lake 
concentration 

Seven of eight regions reported 
decreasing rates of acidic 

deposition. All regions of Europe 
showed recovery in alkalinity, 

while only one of five regions in 
North America were recovering – 
likely due to the decline in base-
cation concentrations exceeding 

decreases in sulfate 
concentrations. 

North 
America 

129 surface 
waters 

-1.2 to -1.7 
μeq/L/year 
SO

4  lake 
concentration 

Europe 
74 surface 

waters 
1990-
1995 
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μeq/L/year 
SO

4  lake 
concentration 

North 
America 

131 surface 
waters 

-0.9 to -5.8 
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SO
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concentration 

(Skjelkvåle et 
al., 2005) 
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73 surface 
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2001 

-1.68 to -
6.75 

Seasonal 
Kendall 

with simple 
linear 

regression 

μeq/L/year 
SO

4 
deposition 

Significant decreasing sulfate 
concentrations observed for 11 of 

the 12 geographical regions 
(divided geographically based on 
acid-sensitivity). Improvements 
in ANC and pH were observed 
on a wide spatial distribution in 

response to decreased acid 
deposition. 
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America 
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(Garmo et al., 
2014) 
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Increases in ANC, concomitant 
with decreases in sulfate 

deposition, were reported across 
all regions studied. 
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(Evans et al., 
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1971-
1988 to 
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ann 
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with Sen’s 

slope 
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NA 

Significant decreasing trends in 
sulfate were observed in 38 of 56  

sites. 27 sites had increasing 
ANC, and 19showed significant 

increases in pH. 

(Kopáček et 
al., 2006) 
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91 lakes 
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1994, 
2004 

~ -1.66 
NA 

μeq/L/year 
SO

4  lake 
concentration  

Atmospheric deposition of 
sulfate decreased by 

approximately 57% over the span  
of the study. No changes in ANC 
were observed from 1984-1994 

but did increase from 1994-2004.  

(Broadmeadow 
et al., 2019) 

UK 
12 streams 
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-1.694 
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μeq/L/year 
SO
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Significant declining trend in 
sulfate concentrations observed 

with corresponding and increases  
in pH and ‘charge-balance based’ 

ANC. 

 
(Kopáček et 

al., 2021) 
Poland, 
Slovakia 

30 lakes 
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2020 

-0.66 to -
1.68  

Linear 
regression 

μeq/L/year 
SO

4  lake 
concentration  

Declines in acid deposition 
contributed to recovery, and the 

effect of climate change on 
recovery increased since the 

2000’s.  

 
(M

oiseenko et 
al., 2022) 

Russia 
75 lakes 

1990-
2018 

NA 
NA 

NA 

Sulfate concentrations decreased  
significantly over the study 

period – in 1990 38% of lakes 
were dominated by sulfate, 
reducing to 8% by 2018. 

 

Canada 

(Keller et al., 
2019) 

Sudbury 
42 lakes 

1981-
2015 

-0.45 to -
0.17 

Linear 
mixed-
effect 
model 

mg/L/year 
SO

4  lake 
concentration  

Increasing trends in pH observed 
for all lakes studied with 

concomitant decline in regional 
sulfate deposition. 

(Clair et al., 
2011) 

Atlantic 
Canada 

66 lakes 
(since 1983) +  

25 lakes 
(starting 
1990) 

1983-
2007 

NA 
NA 

NA 

General negative trend in 
atmospheric sulfate deposition 

corresponded to decreasing lake 
sulfate concentration in all 
regions studied, although 

recovery was delayed due to 



acid-base characteristics of 
natural organic acids and 
concurrent reductions in 
dissolved base cations. 

(Houle et al., 
2003) 

Quebec 
43 lakes 

1985-
1999 

-2.9 to -3.6  
NA 

μeq/L/year 
SO

4  lake 
concentration  

Climate variations (i.e., higher 
annual temperatures) were more 
correlated to increasing pH and 

ANC than decreasing rate of 
sulfate deposition. However, 
sulfate deposition declined at 

40/43 lakes studied. 

(M
arty et al., 
2021) 

Quebec 
1 watershed 

1981-
2016 

-0.004 

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

M
g/L/year 

SO
4 stream 

concentration  

Stream concentrations within the 
watershed showed a 50% 

reduction over the study period. 

(Redden et al., 
2021) 

Nova Scotia 
60 lakes + 17 

rivers 
1985-
2016 

-0.0051 to 
-0.23 

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

mg/L/year 
SO

4  lake 
concentration  

Sulfate concentrations decreased 
in 60/62 lakes and 14/17 rivers, 
while pH increased in 55 lakes 

and 11 rivers. 

 

(Houle et al., 
2021) 

Atlantic 
Canada 

78 lakes 
1986-
2018 

-0.562 

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

μeq/L/year 
SO

4  wet 
deposition 

concentration  

Recovery was observed around 
the year 2000 with significant 
increase in pH, after which an 

increase in organic acidity 
decreases ANC recovery.  

(W
atmough et 

al., 2021) 
Ontario 

7 lakes 
1982-
2015 

-1.7 

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

μeq/L/year 
SO

4  lake 
concentration  

Increases in ANC, pH and 
alkalinity concomitant with 

decreases in sulfate deposition, 
were reported. 

(W
ebster et al., 

2021) 
Ontario 

9 catchments 
1982/83-
2017/18 

-0.071 

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

mg/L/year 
SO

4  wet 
deposition 

concentration  

Concentration of SO
4  decreased 

in all catchments, while and pH 
(8/9 catchments), alkalinity (6/9 

catchments), and ANC (6/9 
catchments) occurred in many 
catchments. DOC generally 

increased. 



(Hall et al., 
2021) 

Ontario 
44 lakes 

1981-
2018 

-0.24  

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

mg/L/year 
SO

4  lake 
concentration  

.Strong recovery from 
acidification was observed in the  
region evidenced by increases in 

pH and decreases in SO
4  

concentration.  

 
(Coutourier et 

al., 2022) 
Ontario 

15 lakes 
1980-
2017 

-0.07 to -
0.13 

M
ann 

Kendall 
with Sen’s 

slope 
estimator 

mg/L/year 
SO

4  lake 
concentration  

Evidence of recovery from 
acidification through abatement 

of SO2 deposition.  

Northeastern 
USA 

(Lawrence et 
al., 2011) 

Adirondacks  
12 streams 

1980-
2008 

NA 
NA 

NA 
Atmospheric sulfur decreased by  
50% in the region, resulting in 13 
meq/L increase in ANC and a pH 

increase of 0.28 units. 

(Driscoll et al., 
2003) 

Adirondacks  
17 lakes 

(from 1982) +  
35 lakes 
(1992) 

1982-
2000 

-1.53 to -
2.5 

NA 
μeq/L/year 
SO

4  lake 
concentration  

Decreases in sulfate and nitrate 
concentrations have resulted in 

increases in ANC and pH. 
Results suggested that chemical 
recovery of Adirondack Lakes 
will be several decades under 

current levels of acid deposition.  

(Burns et al., 
2006) 

Adirondack 
+ Catskill 

12 lakes + 5 
streams 

1984-
2001 

NA 
NA 

NA 

Decreasing sulfate, nitrate and 
base cation concentrations 

corresponded with increasing pH.  
ANC increased in around half of 

Adirondack lakes and one 
Catskill stream. 

(Strock et al., 
2014) 

New 
England 

31 lakes 

1990-
2010 

-1.88 to -
2.06 

Simple 
linear 

regression 

μeq/L/year 
SO

4  lake 
concentration  

Recovery of ANC and pH was 
variable in the two regions 

studied, likely due to depletion of  
base cations and dissolved 

organic carbon concentrations, 
despite accelerated reductions in 
atmospheric sulfate deposition 

since the 1980s. 

Adirondacks 
43 lakes 

-2.0 to -
2.62 

μeq/L/year 
SO

4  lake 
concentration  

(Stoddard et 
al., 2002) 

Adirondacks  
48 lakes 

1990-
2000 

-2.26 
Seasonal 
Kendall 

with Sen’s 

μeq/L/year 
SO

4  lake 
concentration  

Decreasing trends in sulfate 
concentrations, with 

corresponding increases in ANC,  
were observed for four of the five 

New 
England 

24 lakes 
-1.77 



N
orthern 

A
ppalachians  

9 stream
s 

-2.27 
slope 

estim
ator 

regions studied; how
ever, the 

decline in base cations likely 
lim

ited recovery of A
N

C
 and pH

.  
R

idge &
 

B
lue R

idge 
69 stream

s 
0.29 

U
pper 

M
idw

est 
38 lakes 

-3.36 

(W
aller et al., 
2012) 

A
dirondacks  

42 lakes 
1991-
2007 

-1.74 

M
ann 

K
endall 

w
ith Sen’s 
slope 

estim
ator 

μeq/L/year 
SO

4  lake 
concentration  

The num
ber of acidified lakes in 

the A
dirondacks has decreased 

from
 15.5%

 to 8.3%
 since the 

im
plem

entation of the A
cid R

ain  
Program

 and the N
itrogen 

B
udget Program

. D
ecreases in 

sulfate concentrations have 
generally corresponded w

ith 
increasing A

N
C

. 

(D
riscoll et al., 

2016) 
A

dirondacks  
48 lakes 

1992-
2013 

-0.99 to -4 
Seasonal 
K

endall  

μeq/L/year 
SO

4  lake 
concentration  

A
ll lakes show

ed significant 
declines in sulfate 

concentrations. 42 of 48 lakes 
reported increasing A

N
C

 and 33 
of 48 observed increases in pH

. 

 
(H

arm
on et al.,  

2021) 

Shenandoah 
N

ational 
Park 

13 stream
s 

1995-
2016 

-0.027 to -
0.14 

Seasonal 
K

endall 
w

ith Sen’s 
slope 

estim
ator 

μeq/L/year 
SO

4  
concentration  

M
inor change in A

N
C

 and 
sulfate concentration in acid 

sensitive w
atersheds and stream

s.   
 

   

Spatial 
scope 

Source 
R

egion 
N

 
lakes/stream

s  
D

uration 
of study  

M
agnitude 

of change 
(m

g 
D

O
C

/L/year)  

Type of statistic 
Evidence of chem

ical 
recovery from

 acidification  

G
lobal 

(Skjelkvåle et 
al., 2005) 

Europe 
73 surface 

w
aters 

1990-
2001 

0.05 to 0.13 
Seasonal K

endall w
ith sim

ple  
linear regression 

Ten of the tw
elve regions 

exhibited positive trends in 



N
orth 

A
m

erica 
116 surface 

w
aters 

-0.04 to 0.06 

D
O

C
 concentrations, w

ith six  
significant trends. Trends in 
sulfate concentrations for all 

ten regions w
ere negative and  

significant. 

(M
onteith et 

al., 2007) 

N
orth 

A
m

erican + 
Europe 

522 lakes 
1990-
2004 

~0.02 to 0.15  
M

ann K
endall w

ith Sen’s 
slope estim

ator 

W
ide-scale trends increasing 

trends in D
O

C
 concentrations 

can be explained by changes 
in deposition chem

istry and 
catchm

ent acid-sensitivity. 
D

O
C

 concentrations w
ere 

rising in proportion to 
declines in atm

ospheric 
sulfur deposition. 

(G
arm

o et al., 
2014) 

Europe 
73 surface 

w
aters 

1990-
2008 

0.04 to 0.11 

Seasonal K
endall w

ith Sen’s 
slope estim

ator 

A
cross all regions, 22%

 of 
surface w

aters exhibited 
significant increasing trends,  
w

here 76%
 w

ere increasing 
but not significant. D

O
C

 
trends w

ere strongly 
correlated w

ith deposition 
chem

istry. 

N
orth 

A
m

erica 
100 surface 

w
aters 

-0.02 to 0.06 

(G
arm

o, 2020) 
N

orth 
A

m
erican + 

Europe 

497 surface 
w

aters (13 
regions) 

1990-
2016 

0.03 to 0.11 
R

egional K
endall w

ith Sen’s 
slope estim

ator 

A
ll regions w

here data w
ere 

available, except the 
A

ppalachia region, exhibited  
increasing D

O
C

 
concentrations, w

hich w
as 

strongly correlated to 
deposition chem

istry and the  
sensitivity of the catchm

ent 
to said deposition. 

 
(R

odriguez-
C

ardona et al., 
2022) 

N
orthern 

hem
isphere 

74 stream
s 

1975 to 
2010-
2015 

-0.13 to 0.05 
(m

edian 
0.003) 

Sen’s slope estim
ator 

R
esults indicated that D

O
C

 
concentrations are 

experiencing fundam
ental 

change due to recovery from
 

atm
ospheric acid deposition. 

Europe 
(H

aaland et al.,  
2010) 

N
orw

ay 
4 lakes 

1983-
2008 

N
A

 
N

A
 

The observed long-term
 trend  

of increasing colored 
dissolved organic m

atter w
as  

found to be largely related to 



reductions in sulfate and 
chloride concentrations in 

precipitation. 

(K
opáček et 

al., 2006) 
Poland, 
Slovakia 

91 lakes 
1984, 
1994, 
2004 

N
A

 
N

A
 

C
oncentrations of D

O
C

 
increased in eight of ten Tatra  
forest lakes and decreased in 

tw
o. The increasing trend 
w

as likely a result of 
decreasing ionic strength 

from
 reduced acidic 

deposition. N
o tem

poral 
trends in D

O
C

 w
ere observed  

in alpine lakes. 

(D
e W

it et al., 
2007) 

N
orw

ay 
3 catchm

ents 
1985-
2003 

0.06 to 0.13 
M

ann K
endall w

ith Sen’s 
slope estim

ator 

Increases in TO
C

 
concentrations ranged from

 
14 to 36%

 over period of 
study and w

ere largely 
explained by reduction in 

atm
ospheric acid deposition. 

(Finstad et al., 
2016) 

N
orw

ay 
70 Lakes 

1986-
2013 

0.17 
M

ann K
endall w

ith Sen’s 
slope estim

ator 

G
eneral increasing trends in 

D
O

C
 w

ere observed over the  
regions studied, w

ith the 
strongest increases in m

ore 
acidified areas. The increase 

in D
O

C
 w

as largely 
attributed to reductions in 

sulfate deposition, how
ever 

clim
atic factors and land use 

changes also im
pact the level  

of organic m
atter in surface 

w
aters. 

(Evans &
 

M
onteith, 
2001) 

U
K

 
11 lakes + 11 

stream
s 

1988-
2000 

0.072 to 
0.7284 

Seasonal K
endall w

ith Sen’s 
slope estim

ator 

Significant increasing D
O

C
 

concentrations w
ere 

described in 20 of 22 
stream

s. Increases in sites 
unaffected by acidification 

suggest clim
atic factors also 

contributed to the positive 
trend. 



(D
avies et al., 

2005) 
U

K
 

11 lakes + 11 
stream

s 
1988-
2003 

0.06 to 0.48 
Seasonal K

endall 

Significant increases in D
O

C
 

concentrations w
ere observed 

at all sites; how
ever, both 

clim
ate and acid deposition 

drivers w
ere likely to 

influence the trends in 
organic concentration. 

(Forsius et al., 
2003) 

Finland 
163 lakes 

1990-
1999 

N
A

 
N

A
 

O
nly 10%

 of lakes had 
significant increases in TO

C
 

concentrations over the 
period of study. D

ecreasing 
trends w

ere observed in the 
C

entral Finland region. 

(Lepisto et al., 
2021) 

Finland 
12 catchm

ents  
1990-
2019 

0.09 to 0.38 
Seasonal K

endall w
ith Sen’s 

slope estim
ator 

TO
C

 increased in 7 to 10 out  
of 12 catchm

ents over the 30 
year study period and w

ere 
related to recovery and 

clim
ate.  

(Skjelkvåle et 
al., 2001) 

Finland, 
N

orw
ay, 

Sw
eden 

163 + 100 + 
81 lakes 

1990-
1999 

N
A

 
N

A
 

TO
C

 show
ed significant 

positive trends in 12%
 of 

lakes studied, largely situated  
in N

orw
ay. The increasing 

concentrations w
ere a likely 

result of regional changes in 
clim

ate. R
ecovery from

 
acidification m

ay have also 
im

pacted the lake chem
istry. 

(D
e W

it et al., 
2016) 

Finland, 
N

orw
ay, 

Sw
eden 

290 lakes + 
184 running 

w
aters 

1990-
2013 

N
A

 
N

A
 

Increasing trends in D
O

C
 

concentrations w
ere 

consistent across clim
ate 

gradients and catchm
ent 

sizes. M
edian concentrations  

increased by 1.4%
 per year, 

w
ith largest trends in areas 

w
ith steepest reductions in 

atm
ospheric sulfate 
deposition. 

(B
roadm

eadow
 

et al., 2019) 
U

K
 

12 stream
s 

1991-
2012 

N
A

 
N

A
 

Seven of the tw
elve stream

s 
indicated significant 

increases in D
O

C
, w

ith larger  



increases in forest 
catchm

ents. 

(H
ruška et al., 

2009) 
C

zech 
R

epublic 
2 catchm

ents 
1992-
2008 

0.42 and 0.43  
Seasonal M

ann K
endall 

D
O

C
 concentrations 

increased significantly in 
both catchm

ents, by 
approxim

ately 65%
, over the  

period of study. Increases 
w

ere associated w
ith 

declining ionic strength in the  
soil-w

ater caused by 
reductions in sulfate 

deposition. 

(K
opáček et 

al., 2019) 
Tatra 

M
ountains 

31 lakes 
1992-
2018 

0.007 to 
0.116 

Sim
ple linear regression 

H
ighest increase in lake D

O
C

 
concentrations occurred in 

regions w
ith acidic, soil-rich 

catchm
ents, suggesting that 

soil recovery from
 

acidification w
as one of the 

probable drivers of increased  
D

O
C

 export from
 catchm

ent 
soils into the receiving w

ater.  

(M
oiseenko et 

al., 2022) 
R

ussia 
75 lakes 

1990-
2018 

N
A

 
N

A
 

D
O

C
 concentrations 

increased above natural 
values or stabilized, as a 

result of reduced acid input 
and clim

ate w
arm

ing.  

(Evans et al., 
2005) 

U
K

 
11 lakes + 11 

stream
s 

1998-
2003 

0.06 to 0.51 
Seasonal K

endall w
ith Sen’s 

slope estim
ator 

A
verage D

O
C

 concentrations  
have increased by m

ore than 
90%

. The rises in organic 
concentrations have been 

largely associated to reduced  
sulfate in acidified w

aters 
and clim

ate factors in non-
acidified w

aters. 

C
anada 

(K
eller et al., 
2019) 

Sudbury 
42 lakes 

1981-
2015 

0.025 to 0.2 
Linear m

ixed effect m
odels 

The vast m
ajority (37/42) of 

the study lakes show
ed 

significant increasing 
concentrations of D

O
C

. This  
w

as attributed to reductions 



in sulfate deposition; 
however, climate factors are 
also likely to impact the level  

of organic matter. 

(M
eyer-Jacob 

et al., 2020) 
Sudbury, 
Ontario 

75 lakes 
1981-83 
to 2016-

18 
0.046 to 

0.023 
M

ann Kendall with Sen’s 
slope estimator 

DOC concentrations 
increased by 1.6 ± 1.0 mg/L 

in acid sensitive lakes and 0.9  
± 0.6 mg/L in buffered lakes 

over the period of study. 
Further, a diminishing 

influence of sulfate 
deposition was observed, 
suggesting climate drivers 
and vegetation cover are 
becoming increasingly 

influential on lake DOC 
concentrations. 

(W
atmough & 

Eimers, 2020) 
Ontario 

7 lakes 
1982-
2015 

0.02 to 0.07 
M

ann Kendall with Sen’s 
slope estimator 

Significant increasing trends 
in DOC were reported for all  

seven study lakes with 
concomitant significant 

declining trends in sulfate 
concentrations. Results 

determined that increasing 
DOC concentrations had a 

minimal impact on the delay 
of lake recovery. 

(Clair et al., 
2011) 

Atlantic 
Canada 

66 lakes 
(from 1983) +  

25 lakes 
(1990 

onward) 

1983-
2007 

NA 
NA 

Significant increasing DOC 
concentrations were observed  

in the four regions studied 
over the period of study, with  

one exception. Significant 
positive trends were reported  
for all four regions from 2000 

onward. 

(Imtiazy et al., 
2020) 

ELA, 
Ontario 

4 lakes 
1983-
2015 

NA 
NA 

No significant trend in DOC 
was observed in ELA lakes 
from 2000-2015, however 

increasing trends were 
reported from 1983-2000. 



Precipitation w
as the m

ain 
driver of D

O
C

 concentration,  
as opposed to sulfate 

deposition. 

(H
oule et al., 
2003) 

Q
uebec 

43 lakes 
1985-
1999 

~0.07 
N

A
 

O
f the 43 lakes m

onitored, 18  
displayed significant 

increases in D
O

C
 

concentrations w
ith a m

ean 
regional change of 13%

 over  
the period of study. 

(R
edden et al., 

2021) 
N

ova Scotia 
87 lakes + 17 

rivers 
1985-
2016 

N
A

 
N

A
 

A
pparent color has increased  

in 54 of 62 lakes and 13 of 17 
rivers. The increase in color 

w
as positively correlated 

w
ith alum

inum
 and iron 

concentrations, im
plying 

greater binding capacity for 
m

etals in surface w
aters. 

(Im
tiazy et al., 
2020) 

D
orset, 

O
ntario 

8 lakes 
1988-
2015 

0.1 
M

ultiple linear regression 

Increasing D
O

C
 w

as evident  
in both study regions, w

ith 
sulfate deposition and 

precipitation explaining 24-
54%

 and 21-49%
 of variance  

in D
O

C
 concentration over 

study period, respectively. 

(C
outure et al., 

2012) 
Q

uebec 
30 lakes 

1989-
2006 

0.05 
Seasonal K

endall 

Significant increases in D
O

C
 

concentrations w
ere observed 

in the m
ajority of the lakes 

studied. R
esults suggest 

concentrations w
ere driven 

by reduced sulfate deposition  
and long-term

 tem
perature 

variables. 

(Im
tiazy et al., 
2020) 

N
ova Scotia 

37 lakes 
2000-
2015 

0.11 
M

ultiple linear regression 

Increasing D
O

C
 w

as evident  
in both study regions, w

ith 
sulfate deposition and 

precipitation explaining 24-
54%

 and 21-49%
 of variance  

in D
O

C
 concentration over 

study period, respectively. 



 
(Houle et al., 

2021) 
Atlantic 
Canada 

78 lakes 
1986-
2018 

NA 
NA 

A portion of the study lakes 
showed increasing DOC over 
the study period, particularly 

after 2001. 

 
(W

ebster et al., 
2021) 

Ontario 
9 catchments 

1982/83-
2017/18 

0.13 (max) 
M

ann Kendall with Sen’s 
slope estimator 

DOC concentrations 
increased in 7 out o f9 

catchments and were linked 
to recovery from acidification 

and changing climate. 

 
(W

atmough et 
al., 2021) 

Ontario 
7 lakes 

1982-
2015 

0.03 
M

ann Kendall with Sen’s 
slope estimator 

DOC concentrations 
increased over the study 

period, with clear evidence of 
recovery after 2005 which 

aligned with dramatic 
declines in atmospheric 

deposition.  

 
(Hall et al., 

2021) 
Ontario 

44 lakes 
1981-
2018 

0.05 
M

ann Kendall with Sen’s 
slope estimator 

DOC concentration varied 
substantially, however 
increases in DOC were 

related to decreasing sulfate 
concentration and increasing 
pH. Atmospheric deposition 

and climate change were 
noted as primary mechanisms 

for increasing DOC.  

 
(Coutourier et 

al., 2022) 
Ontario 

15 lakes 
1980-
2017 

0.01 to 0.02 
M

ann Kendall with Sen’s 
slope estimator 

Increases in DOC coincided 
with decreases in sulfate 

deposition however 
differences in local drivers 

(regional climate, hydrology) 
can influence DOC.  

 
(M

arty et al., 
2021) 

Quebec 
1 watershed 

1981-
2016 

0.0625 
NA 

A decrease in sulfate 
deposition was related to 

increases in DOC, however 
the role of climate will 
increase in the future.  

Northeastern 
USA 

(Driscoll et al., 
2003) 

Adirondacks 
17 lakes 

(from 1982) + 
35 lakes 
(1992) 

1982-
2000 

0.0792 
NA 

All lakes reported significant 
decreases in sulfate 

concentration, however, only 
7 of 17 original study sites 



had significant increases in 
D

O
C

 concentrations. 
Increase in D

O
C

 
concentrations contributed to  

lim
ited increase in A

N
C

. 

(B
urns et al., 
2006) 

A
dirondacks 
+ C

atskill 
12 lakes + 5 

stream
s 

1984-
2001 

N
A

 
N

A
 

Significant increasing trends 
in D

O
C

 concentrations w
ere 

reported in 75%
 of the 

A
dirondack lakes and 80%

 of  
the C

atskill stream
s. 

(G
avin et al., 
2018) 

M
aine 

29 lakes 
1986-
2015 

0.12 
Sim

ple linear regression 

A
ll 29 lakes studied show

ed 
positive trends in D

O
C

, 
how

ever, only 19 lakes had 
significant increases. The 

strongest predictors of D
O

C
 

concentrations w
ere the lake 

sulfate concentration and 
clim

ate variables (e.g., air 
tem

perature). 

(Stoddard et 
al., 2002) 

A
dirondacks  

48 lakes 

1990-
2000 

0.06 

Seasonal K
endall w

ith Sen’s 
slope estim

ator 

Positive significant trends in 
D

O
C

 concentrations w
ere 

reported for three of the five 
regions studied. O

ne region 
exhibited an increasing, but 
not significant, trend. The 

largest rates of D
O

C
 increase  

w
ere observed at sites w

ith 
strongest decrease in sulfate 

deposition. 

N
ew

 
England 

24 lakes 
0.03 

N
orthern 

A
ppalachians  

9 stream
s 

0.03 

R
idge &

 
B

lue R
idge 

69 stream
s 

N
A

 

U
pper 

M
idw

est 
38 lakes 

0.06 

(W
aller et al., 
2012) 

A
dirondacks  

42 lakes 
1991-
2007 

0.03 
M

ann K
endall w

ith Sen’s 
slope estim

ator 

Increasing D
O

C
 

concentrations w
ere reported  

in 69%
 of the lakes for the 

entire period of study; 
how

ever, in the first 13 years  
(up to 2004), a larger 

percentage of lakes show
ed 

increasing trends (81%
). 



(D
riscoll et al., 

2016) 
A

dirondacks 
48 lakes 

1992-
2013 

N
A

 
N

A
 

D
O

C
 has significantly 

increased in 29 of the 28 
sites, w

hile tw
o exhibited 

decreasing trends. 

(SanC
lem

ents 
et al., 2012) 

M
aine 

9 lakes 
1993-
2009 

~0.1 
Sim

ple linear regression 

Five of the nine study lakes 
show

ed significant increasing 
D

O
C

 concentrations, three of 
w

hich exhibited significant 
negative correlations betw

een 
sulfate and D

O
C

 
concentration. Further, the 
five lakes w
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20 (4) 

 
10.5 (6.8)  

2007 
5.24 (0.13) 

0.33 (0.06) 
6.0

a, e 
16 (3) 

2.9
a, e 

 
2008 

5.23 (0.13) 
0.38 (0.05) 

6.0
a, e 

16 (4) 
2.9

a, e 
8.8 (7.1) 

2009 
5.16 (0.13) 

0.45 (0.08) 
4.0

a, e 
17 (5) 

2.5
a, e 

9.4 (7.3) 
2010 

5.39 (0.14) 
0.41 (0.07) 

4.0
b, e 

15 (5) 
2.82 (0.36) c, e 

10.9 (7.3) 
2011 

5.35 (0.11) 
0.40 (0.08) 

4.0
b, e 

19 (5) 
2.86 (0.16) c, e 

10.3 (6.9) 
2012 

5.47 (0.25) d 
0.44 (0.18) d 

3.9 (0.15) b, e 
19 (7) 

2.93 (0.28) d, e 
10.8 (7.4) 

2013 
5.73 (0.19) d 

0.35 (0.10) d 
3.8 (0.35) b, e 

19 (9) 
2.97 (0.18) d, e 

10.1 (7.1) 
2014 

5.65 (0.33) d 
0.35 (0.07) d 

3.1 (0.4) b, e 
19 (5) 

3.05 (0.26) d, e 
10.2 (7.1) 

2015 
5.54 (0.15) 

0.33 (0.07) 
3.3 (0.3) b, e 

21 (5) 
3.37 (0.20) c,e 

9.7 (7.2) 
U

npublished plant operations data unless otherw
ise specified;  

pH
, turbidity and color w

ere m
easured using benchtop probe, turbidim

eter or spectrophotom
eter unless otherw

ise specified 
 

Standard deviation given in parentheses 
 

aH
alifax W

ater A
nnual R

eport, reported as 'typical value; bH
alifax W

ater “W
aterTrax” database; cC

entre for W
ater R

esources Studies 
(C

W
R

S) N
O

M
 dataset; dStoddart and G

agnon, 2015; eIncom
plete year represented; fEnvironm

ent C
anada’s Freshw

ater Q
uality 

M
onitoring and Surveillance Program
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APPENDIX D: SUPPORTING DATA FOR CHAPTER 5 

 

 



Train 
n 

U
V

254 
(cm

-1) 
n  

U
V

254  
(%

 
R

em
oval) 

n  
D

O
C

 
(m

g/L) 
n 

D
O

C
 

(%
 

R
em

oval) 
n  

SU
V

A
  

(L-
m

g/m
) 

n 
SU

V
A

  
(%

 
R

em
oval) 

n  
TH

M
fp 

( μg/L) 
n 

H
A

A
fp 

( μg/L) 

FSP – 
R

aw
 W

ater 
43 

0.093 
(0.015) 

NA 
37 

3.0 (0.27) 
NA 

37 
3.3 

(0.28) 
NA 

3 
143.2 (4.6) 

3 
102.7 
(14.9) 

A
D

A
PT – R

aw
 

W
ater 

47 
0.094 

(0.017) 
NA 

39 
3.1 (0.37) 

NA 
39 

3.2 
(0.48) 

NA 
3 

143.3 
(15.1) 

3 
85.8 (3.9) 

FSP – 
Prefilter 

43 
0.031 

(0.003) 
41 

68.2 (5.4) 
32 

1.8 (0.17) 
31 

39.2 (4.1) 
27 

1.7 
(0.12) 

27 
47.1 (4.7) 

 
NA 

 
NA 

A
D

A
PT – 

Prefilter 
45 

0.028 
(0.004) 

42 
70.9 (5.3) 

32 
1.7 (0.17) 

31 
40.9 (5.6) 

26 
1.6 

(0.20) 
26 

47.6 (6.2) 
 

NA 
 

NA 

FSP – A
nt/Sand 

42 
0.029 

(0.005) 
 

40 
69.0 (4.5) 

36 
1.7 (0.17) 

36 
42.0 (2.6) 

32 
1.7 

(0.16) 
27 

48.3 (8.2) 
7 

58.9 (10.7) 
12 

23.9 (1.i8) 

A
D

A
PT – A

nt/Sand 
45 

0.027 
(0.006) 

43 
71.8 (5.2) 

38 
1.7 (0.18) 

38 
44.0 (4.9) 

28 
1.6 

(0.17) 
28 

47.8 (5.4) 
8 

54.6 (5.5) 
13 

22.5 (5.7) 
A

D
A

PT – 
G

A
C

/A
nt/Sand 

47 
0.023 

(0.004) 
44 

76.6 (4.8) 
40 

1.5 (0.12) 
39 

50.2 (5.3) 
29 

1.5 
(0.18) 

28 
49.4 (8.0) 

8 
41.5 (4.1) 

13 
18.5 (3.7) 

A
D

A
PT – 

G
A

C
/Sand 

45 
0.017 

(0.006) 
43 

82.7 (4.9) 
39 

1.2 (0.16) 
38 

58.8 (7.9) 
29 

1.3 
(0.27) 

28  
57.0 (13.1) 

8 
34.8 (3.1) 

13 
13.2 (3.3) 



 

Train 
Phase 

n 
Total 

Fe 
( μg/L) 

n 
Total Fe 

(%
 

R
em

oval)  
n 

D
issolved 

Fe 
( μg/L) 

n  

D
issolved 

Fe 
(%

 
R

em
oval)  

n 
Total 
M

n 
( μg/L) 

n 
Total M

n 
(%

 
R

em
oval)  

n 
 

D
issolved 

M
n 

( μg/L) 
n 

D
issolved  

M
n 

(%
 

R
em

oval)  

FSP – 
R

aw
 W

ater 

A 
10 

49.0 
(5.7) 

NA 

10 
17.8 
(7.7) 

NA 

11 
30.8 

(14.9) 
NA 

11 
14.3  
(5.2) 

NA 
B 

13 
37.2 

(24.1) 
13 

10.2 
(1.9) 

14 
102.0 
(209) 

14 
23.4  
(3.1) 

C 
15 

53.1 
(27.2) 

15 
22.6 

(11.2) 
16 

47.7 
(74.0) 

16 
17.9  
(7.7) 

A
D

A
PT – 

R
aw

 W
ater 

A 
14 

51.8 
(11.0) 

NA 

14 
17.9  
(7.6) 

NA 

14 
45.7 

(25.0) 
NA 

14 
24.0  
(3.5) 

NA 
B 

14 
48.9 

(55.9) 
14 

10.2  
(2.0) 

14 
98.9 

(195.3) 
14 

17.3  
(3.0) 

C 
15 

64.3 
(15.5) 

15 
20.7  
(9.3) 

16 
63.4 

(59.7) 
16 

23.7 
(2.3) 

FSP – 
Prefilter 

A 
10 

102.6 
(36.1) 

10 
-100.1 
(58.2) 

10 
3.5 

(0.52) 
10 

77.1  
(7.8) 

11 
84.7 

(23.5) 
11 

-176.1 
(143.1) 

11 
20.7  
(3.7) 

11 
5.9  

(3.7) 
B 

13 
89.9 

(38.5) 
13 

-110 
(236) 

13 
2.8  

(0.84) 
13 

70.7  
(6.3) 

14 
36.0 

(53.9) 
14 

64.0 
(103.1) 

14 
16.8  
(2.7) 

14 
-7.4 

(61.3) 
C 

15 
81.4 

(23.1) 
15 

-64.2 
(64.2) 

15 
3.9 

(2.0) 
15 

81.6 
 (9.9) 

16 
72.9 

(17.8) 
16 

-30.2 
(145.3) 

16 
12.7  
(2.8) 

16 
39.9 

(26.2) 

A
D

A
PT – 

Prefilter 

A 
14 

76.1 
(22.4) 

14 
-43.2 
(76.8) 

14 
3.4  

(0.8) 
14 

79.5 
(10.7) 

14 
86.6 

(63.8) 
14 

-83.8 
(147.2) 

14 
20.8  
(3.1) 

14 
11.7 

(11.8) 
B 

14 
71.0 
(8.3) 

14 
-34.3 

(128.5) 
14 

3.1  
(0.9) 

14 
67.9 

(11.3) 
14 

54.8 
(54.9) 

14 
54.2 

(110.8) 
14 

16.9  
(3.3) 

14 
-2.3 

(10.2) 
C 

15 
92.9 

(53.3) 
15 

-58.2 
(149.8) 

15 
3.5  

(3.1) 
15 

80.5 
(16.4) 

16 
99.5 

(55.6) 
16 

-2.7 
(117.9) 

16 
15.2  
(3.2) 

16 
35.7 

(23.3) 

FSP – 
A

nt/Sand 

A 
10 

3.3 
(0.6) 

10 
96.6  
(1.9)  

10 
3.4  

(0.4) 
10 

6.5  
(16.0) 

10 
23.2 
(2.0) 

11 
73.5  
(9.9) 

10 
22.4  
(1.7) 

11 
-10.3 
(16.3) 

B 
13 

2.8 
(0.9) 

13 
96.5  
(2.1) 

13 
2.6  

(0.6) 
13 

16.9 
(15.6) 

13 
16.7 
(3.6) 

14 
44.4 

(35.6) 
13 

16.1  
(2.6) 

14 
2.7  

(7.1) 
C 

15 
4.0 

(1.3) 
15 

95.5  
(1.7) 

15 
3.2  

(1.8) 
15 

4.3  
(17.8) 

16 
16.2 
(2.9) 

16 
78.4  
(5.3) 

16 
15.8  
(3.0) 

16 
-18.7 
(22.9) 

A
D

A
PT – 

A
nt/Sand 

A 
13 

3.4 
(0.7) 

14 
94.8  
(1.6) 

14 
3.3  

(0.6) 
14 

-4.4 
(21.8) 

14 
25.6 
(5.6) 

14 
72.2 

(13.1) 
13 

24.3  
(4.8) 

14 
-13.4 
(10.3) 



B 
14 

3.2 
(0.7) 

14 
95.3  
(1.1) 

14 
2.6  

(0.3) 
14 

15.7 
(26.7) 

13 
19.5 
(4.9) 

14 
56.1 

(53.1) 
13 

18,.6 
 (3.0) 

14 
-6.5 

(13.6) 
C 

15 
3.6 

(1.9) 
15 

96.1  
(4.4) 

15 
3.3  

(2.2) 
15 

9.3  
(12.5) 

16 
16.5 
(3.3) 

16 
83.2  
(9.3) 

16 
15.8  
(4.3) 

16 
1.5  

(26.2) 

A
D

A
PT – 

G
A

C
/A

nt/Sand  

A 
14 

3.4 
(0.5) 

14 
95.1  
(1.9) 

14 
3.4  

(0.8) 
14 

4.3  
(17.7) 

14 
27.2 
(3.7) 

14 
68.9 

(19.6) 
14 

27.8  
(4.0) 

14 
-29.3 
(22.6) 

B 
14 

3.1 
(0.7) 

14 
95.6  
(1.4) 

14 
2.6  

(0.4) 
14 

16.6 
(41.6) 

14 
22.5 
(7.3) 

14 
59.3 

(48.4) 
14 

23.4  
(7.5) 

14 
-12.6 
(19.5) 

C 
15 

3.7 
(1.7) 

15 
96.1  
(4.4) 

15 
3.4  

(1.5) 
15 

7.6  
(26.3) 

16 
18.1 
(6.6) 

16 
81.8 

(18.3) 
16 

18.8  
(6.7) 

16 
-23.2 
(23.5) 

A
D

A
PT – 

G
A

C
/Sand 

A 
14 

3.1 
(0.3) 

14 
95.1  
(1.3) 

14 
3.5  

(0.7) 
14 

9.3  
(33.9) 

13 
28.7 
(2.6) 

14 
68.8 

(25.2) 
14 

26.6  
(2.9) 

14 
-28.8 
(23.9) 

B 
14 

2.9 
(0.5) 

14 
96.0  
(0.9) 

14 
2.5  

(0.2) 
14 

18.5 
(25.6) 

13 
24.7 
(8.1) 

14 
56.4 

(50.6) 
14 

24.7  
(7.6) 

14 
-12.9 
(17.3) 

C 
15 

3.4 
(2.3) 

15 
95.9  
(3.7) 

15 
3.0  

(1.4) 
15 

14.3 
(19.8) 

16 
20.6 
(9.0) 

16 
77.2 

(22.1) 
16 

19.6  
(6.5) 

16 
-28.9 
(33.6) 

 

C
om

parison 
U

V
254  

(cm
-1) 

U
V

254  
(%

 R
em

oval) 
D

O
C

 
(m

g/L) 
D

O
C

  
(%

 R
em

oval) 
SU

V
A

  
(L-m

g/m
) 

SU
V

A
 

(%
 

R
em

oval) 

TH
M

fp 
( μg/L) 

H
A

A
fp 

( μg/L) 

FSP Prefilter vs. A
D

A
PT 

Prefilter  
0.01009* 

0.01209* 
0.04917 N.S.  

0.151 N.S. 
0.6159 N.S. 

0.8798 N.S. 
NA 

NA 
FSP A

nt/Sand vs. A
D

A
PT 

A
nt/Sand 

0.05456 N.S. 
0.294 N.S. 

0.344 N.S. 
0.2942* 

0.4315 N.S.  
0.576 N.S.  

0.2243 N.S. 
0.221 N.S. 

FSP A
nt/Sand vs. A

D
A

PT 
G

A
C

/A
nt/Sand 

6.387e-11*** 
7.174e-06*** 

5.096e-
10*** 

7.204e-06*** 
0.0004316*** 

0.06958 N.S. 
0.01767* 

2.493e-
05*** 

FSP A
nt/Sand vs. A

D
A

PT 
G

A
C

/Sand 
1.065e-13*** 

6.462e-08*** 
1.095e-
13*** 

1.642e-07*** 
2.124e-06*** 

0.001124** 
0.01767* 

2.493e-
05*** 

A
D

A
PT A

nt/Sand vs. 
A

D
A

PT G
A

C
/A

nt/Sand 
9.753e-08*** 

4.848e-05*** 
1.21e-08*** 

0.0001661*** 
0.008644** 

0.1582 N.S. 
0.01008* 

0.01034* 
A

D
A

PT A
nt/Sand vs. 

A
D

A
PT G

A
C

/Sand 
2.055e-13*** 

3.553e-08*** 
6.673e-
14*** 

1.088e-06*** 
2.176e-05*** 

0.002689** 
0.01008* 

5.094e-
05*** 

A
D

A
PT G

A
C

/A
nt/Sand vs. 

A
D

A
PT G

A
C

/Sand 
4.788e-10*** 

4.208e-05*** 
6.228e-
12*** 

5.93e-05*** 
0.0062** 

0.02975* 
0.01359* 

0.00012*** 
 



C
om

parison 
Phase 

Total Fe 
( μg/L) 

Total Fe 
(%

 
R

em
oval) 

D
issolved Fe 

( μg/L) 

D
issolved Fe 

(%
 

R
em

oval) 

Total M
n 

( μg/L) 
Total M

n 
(%

 R
em

oval) 
D

issolved M
n 

( μg/L) 
D

issolved M
n 

(%
 R

em
oval) 

FSP Prefilter vs. 
 A

D
A

PT Prefilter 

A 
0.04337* 

0.09516 
N.S. 

0.5387 N.S. 
0.6605 N.S.  

0.6774 N.S. 
0.7035 N.S.  

1 N.S.  
0.1688 N.S.  

B 
0.05527 

N.S. 
0.344 N.S. 

0.9034 N.S. 
0.7896 N.S. 

0.8722 N.S.  
0.9085 N.S. 

0.9817 N.S.  
0.1821 N.S.  

C 
0.8357 
N.S. 

0.9842 N.S.  
0.7716 N.S. 

0.7716 N.S.  
0.1576 N.S.  

0.8358 N.S. 
0.7716 N.S.  

0.4419 N.S.  

FSP A
nt/Sand vs.  

A
D

A
PT A

nt/Sand 

A 
0.6418 
N.S. 

0.06732 
N.S. 

0.8768 N.S. 
0.6418 N.S.  

0.4757 N.S. 
0.8768 N.S. 

0.4757 N.S.  
0.4025 N.S.  

B 
0.7196 
N.S. 

0.1662 N.S. 
0.7583 N.S. 

0.7196 N.S.  
0.04024* 

0.7196 N.S. 
0.3299 N.S. 

0.09059 N.S.  

C 
0.3738 
N.S.  

0.4408 N.S.  
0.89 N.S.  

0.6468 N.S. 
0.3964 N.S.  

0.2662 N.S.  
0.5847 N.S.  

0.02046* 

FSP A
nt/Sand vs.  

A
D

A
PT 

G
A

C
/A

nt/Sand 

A 
0.7474 
N.S.  

0.2081 N.S.  
0.9766 N.S.  

0.93 N.S.  
0.00375** 

0.7035 N.S. 
0.003107** 

0.00917** 

B 
0.9806 
N.S.  

0.2968 N.S.  
0.8651 N.S.  

1 N.S.  
0.008177** 

0.5768 N.S.  
0.005267** 

0.0002716*** 

C 
0.4891 
N.S.  

0.5665 N.S.  
0.7073 N.S.   

0.4306 N.S.  
0.0009745*** 

0.9549 N.S.  
0.00349** 

0.6494 N.S.  

FSP A
nt/Sand vs.  

A
D

A
PT 

G
A

C
/Sand 

A 
0.1629 
N.S. 

0.2512 N.S. 
0.9259 N.S. 

0.8768 N.S. 
0.001737** 

0.6869 N.S.  
0.006981** 

0.01006* 

B 
0.5727 
N.S. 

0.6816 N.S. 
0.6444 N.S. 

0.5383 N.S. 
0.002936** 

0.4119 N.S. 
0.002481** 

5.094e-05*** 

C 
0.5396 
N.S.  

0.5665 N.S. 
0.6783 N.S. 

0.229 N.S.  
0.0003191*** 

0.6109 N.S.  
0.001101** 

0.1672 N.S.  

A
D

A
PT A

nt/Sand  
vs. A

D
A

PT 
G

A
C

/A
nt/Sand 

A 
0.4233 
N.S. 

0.2159 N.S. 
0.7896 N.S. 

0.8271 N.S. 
0.04938* 

0.2541 N.S. 
0.0186* 

0.008177** 

B 
0.5441 
N.S. 

0.6104 N.S. 
0.4233 N.S. 

1 N.S. 
0.2159 N.S. 

0.7524 N.S. 
0.1264 N.S. 

0.1008 N.S. 

C 
0.9249 
N.S.  

0.9249 N.S. 
0.9249 N.S. 

0.5854 N.S. 
0.009832** 

0.1935 N.S. 
0.01849* 

0.004159** 

A
D

A
PT A

nt/Sand  
vs. A

D
A

PT 
G

A
C

/Sand 

A 
0.01594* 

0.09059 
N.S. 

0.6444 N.S. 
0.9183 N.S. 

0.05133 N.S. 
0.3299 N.S. 

0.02404* 
0.02745* 

B 
0.1239 
N.S. 

0.2184 N.S. 
0.2184 N.S. 

0.6081 N.S. 
0.137 N.S. 

0.356 N.S. 
0.08123 N.S. 

0.01833* 



C 
0.1095 
N.S.  

0.8127 N.S. 
0.02679* 

0.104 N.S. 
0.003937 N.S. 

0.1809 N.S. 
0.005702** 

0.004676** 

A
D

A
PT 

G
A

C
/A

nt/Sand vs. 
A

D
A

PT 
G

A
C

/Sand 

A 
0.2159 
N.S. 

0.6448 N.S. 
0.8651 N.S. 

0.8271 N.S. 
1 N.S. 

0.9034 N.S. 
0.7159 N.S. 

0.7159 N.S. 

B 
0.1667 
N.S. 

0.3693 N.S. 
0.7159 N.S.  

0.68 N.S. 
0.6104 N.S. 

0.5768 N.S. 
0.4233 N.S. 

0.4119 N.S. 

C 
0.06877 

N.S. 
0.9127 N.S. 

0.02679* 
0.3334 N.S. 

0.4397 N.S.  
0.7487 N.S. 

0.5194 N.S. 
0.407 N.S. 

 
 

 
 

 
 

 
 

 
 

       
 

 



 

 

 

 

 

 

 

 



Train n 
Turbidity 

(NTU) 
n FRT (h) n 

UFRV 
(m3/m2) 

n 
Headloss 

(m) 
FSP – 

Raw Water 
42 0.54 (0.22)  NA NA NA 

ADAPT – Raw 
Water 

46 0.58 (0.23)  NA NA NA 
FSP – 

Prefilter 
42 3.6 (1.1)  NA NA NA 

ADAPT – 
Prefilter 

44 3.0 (4.0)  NA NA NA 
FSP –  

Ant/Sand 
41 0.07 (0.04)  38 52.3 

(5.7)  38 230 (26.7)  38 2.0 (0.55)  
ADAPT – 
Ant/Sand 

44 0.07 (0.04)  30 66.1 
(23.75)  30 288 (103)  30 1.61 (0.75)  

ADAPT – 
GAC/Ant/Sand 

46 0.07 (0.04)  28 69.7 
(14.1)  28 313 (57.8)  28 1.98 (0.28)  

ADAPT – 
GAC/Sand 

44 0.07 (0.05)  28 58.1 
(15.1)  28 249 (65.9)  28 2.1 (0.11)  

 

Comparison 
Turbidity  

(NTU) 
FRT  
(h) 

UFRV  
(m3/m2) 

Headloss  
(m) 

FSP Prefilter vs. ADAPT Prefilter  0.2183 N.S. NA NA NA 
FSP Ant/Sand vs.  
ADAPT Ant/Sand 

0.2546 N.S. 0.00185** 0.001136** 0.03521* 
FSP Ant/Sand vs.  

ADAPT GAC/Ant/Sand 
0.2801 N.S. 5.089e-07*** 2.877e-07*** 0.8916 N.S. 

FSP Ant/Sand vs.  
ADAPT GAC/Sand 

0.7382 N.S. 0.07026 N.S. 0.06082 N.S. 0.035* 
ADAPT Ant/Sand vs.  

ADAPT GAC/Ant/Sand 
0.8086 N.S. 0.2123 N.S. 0.2278 N.S. 0.06079 N.S. 

ADAPT Ant/Sand vs.  
ADAPT GAC/Sand 

0.1803 N.S. 0.0927 N.S. 0.08553 N.S. 9.702e-05*** 
ADAPT GAC/Ant/Sand vs. 

ADAPT GAC/Sand 
0.2167 N.S. 0.001011** 0.0005286*** 0.002368** 

 

 




