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Abstract

People in venues like casinos play games on Electronic Gaming Machines (EGMs).

These machines do not record information about players, such as their playing expe-

rience. The gaming industry is keen on learning about the different types of player

behaviors and what leads to these behaviors. In this thesis, we justify an assump-

tion and define whether or not a player had a positive experience during the session

based on play session attributes. Furthermore, we identify the factors and their im-

portance that contribute to a positive experience using Interpretable AI. We classify

player sessions using a Decision Tree, Logistic Regression, and Explainable Boosting

Machine (EBM) to gain insights into the factors used for prediction. EBM gave a

comparable performance to that of a state-of-art model with high interpretability and

accuracy of 95%. This understanding will provide insights into game performance as

well as responsible gaming behaviors. Moreover, to acquire a good evaluation of a

machine learning model as a viable alternative for real-world players, we train models

that mimic player behavior. We use K-means to cluster different playing behaviors

and determine termination states for one of the playing behaviors for Reinforcement

Learning. We implemented PPO and ACKTR models to generate the playing be-

havior, with the agents being rewarded based on their proximity to the termination

states. ACKTR performed well as the playing behavior generated by this model were

statistically matching the real-world players behavior within the selected cluster.
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Chapter 1

Introduction

This chapter explains the motivation behind this thesis, provides an overview of the

research and elucidates the contributions of this thesis. This chapter will also provide

an outline of this thesis.

1.1 Motivation

Electronic Gaming Machine (EGM), which are gambling machines installed in a range

of locations such as casinos, bars, and hotels, have become more and more popular, at-

tracting the attention of not just the gaming industry but also of the government and

researchers. The availability of gambling activities has increased thanks to internet

gaming [20]. According to the 2018 Canadian Community Health Survey (CCHS),

nearly two-thirds (64.5%) of Canadians aged 15 or older (18.9 million) reported gam-

bling at least once in the previous year [62]. These games are highly addictive as

there is a chance of winning a high amount of money in a short duration. People

continue to spend time and money on gambling even though it affects them men-

tally and financially, this is called problem gambling [42, 69]. The government is

working to tackle this problem by promoting responsible gambling resources, while

researchers have conducted studies [3, 49, 54, 15] to identify the gamblers at-risk of

problem gambling. Most of the work in this field has been done on limiting problem

gambling, however, the gambling industry is interested in learning the psychological

traits that contribute to a positive gaming experience in order to enhance the gam-

ing experience of those players who are not having fun. Due to privacy concerns of

people, this can not be done by survey. Also, generating virtual players that mimic

the real-world players can help industry and research test experiments and conduct a

detailed behavioral analysis to understand the behavioral patterns in-depth without

identifying the person. Future behavior in the particular situation of a real player

could be anticipated using this virtual player.

1
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1.2 Research Overview

The major challenge in working with EGM data is that they are anonymous, which

means that these machines do not keep any identifying information about the players

in their logs and that they do not distinguish between various players’ sessions. In

this research, we are using sessions that were sessionized based on balance, and the

pauses taken while playing [34], however, these sessions do not contain how was the

experience of the player.

We need to address a few research problems in order to categorize the sessions

based on the player’s experience, classify them, and simulate player behavior using

only the characteristics recorded by EGM:

1. What reasonable assumption should be considered while attempting to define

the player experience?

2. Are there any interpretable models that can justify the assumption taken in the

previous question while also accurately classifying the sessions?

3. What strategy may be utilized to comprehend the EGM’s complicated environ-

ment and mimic the behavior of a real-world player?

To categorize the sessions based on the player’s experience, assumptions were made

regarding the amount of time the player spent playing and the total amount of money

taken out of and placed back into the machine. Obviously, the player who cashes out

more than cash in are having a positive experience and we are also considering the

fact that the player is playing for a longer duration and is having fun. To find the

factors that are influencing the positive behavior and classify these labelled sessions,

we used interpretable AI models such as Logistic Regression (LR), Decision Tree

(DT), and Explainable Boosting Machine (EBM). LR gives the weightage of each

factor contributing to the prediction, while DT gives the flow of feature selection

based on decision rules to classify a session with a positive or a negative experience.

To get the advantages of both models, we trained LR on the features selected by the

DT. However, EBM not only performed better at classifying the sessions due to its

boosting mechanics but also provided insights into all features contributing towards

the final prediction.
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Furthermore, we developed agents using Reinforcement Learning (RL) to produce

such sessions in order to mimic the behavior of real-world EGM players. To mimic

one particular player’s behavior, we have to separate all types of behaviors. We used

an unsupervised learning algorithm, namely K-means for grouping the sessions with

similar behavior of players. This similarity is measured using Euclidean distance.

Moreover, for replicating a particular behavior we are defining termination states

using some selected features and values from one cluster. These termination states

are used for reward calculation of the RL models, which get higher rewards as the

RL agent approaches towards these termination states. The closeness of the current

state of the agent to the termination states is measured by Euclidean distance. We

trained two RL algorithms, PPO and ACKTR, to generate sessions with a particular

behavior. Both the models performed well as they generated sessions with behavior

similar to the selected player’s cluster. ACKTR did extremely well at changing the

wager considering all aspects of the environment which is a necessary step in order

to mimic the behavior of a real-world player.

1.3 Contributions

The four most important contributions of this thesis are as follows:

1. Identifying the factors and their importance in influencing a positive experience

of the player playing on EGM. This could help the industry build a better

experience for the player.

2. Finding the best performing machine learning model to classify the experience

of players.

3. Creating alternatives for real-world players by mimicking their behavior using

reinforcement learning.

4. Finding the best reinforcement learning algorithm to generate playing sessions

matching statistically with the real-player behavior.
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1.4 Thesis Outline

The remaining parts of this thesis are outlined in this section as follows:

Chapter 2 discusses the background and related work. It starts by reviewing

gambling behavior studies and explains the working of supervised and unsupervised

learning algorithms along with the reinforcement learning algorithm used in this the-

sis. It further explains how to interpret supervised learning algorithms.

Chapter 3 explains the extraction of new features and removing the invalid ses-

sions. It discusses labelling a session with positive or negative experiences sessions.

Furthermore, it interprets models to find the most important factors responsible for

a positive experience and compares the models to find the best model for classifying

these sessions.

Chapter 4 discusses the transformation of skewed data. It then explains the group-

ing of players with similar behavior using the clustering technique. It then discusses

the determining termination states for the calculation of reward in the reinforcement

learning models. Lastly, it explains the generation of sessions and provides a com-

parison with the original sessions.

Chapter 5 concludes this thesis by highlighting the main finding of this thesis and

providing directions for future work.



Chapter 2

Background and Related Work

In this chapter, we explain key concepts needed to understand the background and

provide insights into the related work of the methods used in this study. To begin, we

will discuss gambling behavioral studies and how it is applied to EGM data. Second,

we will review the concepts of Interpretable AI and how it can provide insight into

predictive models. Finally, we will go over the concept of Reinforcement Learning

and explain how it works to learn gambling behavior.

2.1 EGM Player Behavioral Analysis

Electronic Gaming Machine (EGM) [39] are a common type of gambling machine

found in casinos, clubs, and other public areas where people congregate for recreation.

Although these devices, which use sophisticated technology, are actually computers,

many of them still have reels that purport to spin and are evocative of earlier gambling

machines. A random number generator is the base of every EGM. The computer

retrieves the numbers created at that moment and transforms them into a display

on the screen when a button or touch screen is pressed. The numbers represent a

location on a reel map (the quantity and arrangement of symbols on each virtual reel)

and a pay table (the payouts for any combination of symbols appearing on a line).

For instance, the pay table will be used to map the random process’s generation of

three cherries to a payout of, say, two credits. These machines don’t keep track of

most of the play data and are stateless. Loyalty cards [65] is a major update that

certain venues have implemented that are used to track customer information in the

casino. As a result, well-formed data that takes into account playing sessions, games

played, and money spent is produced. With this, the sessionizing task is entirely

relinquished, as well as a history of user play data is also provided. Loyalty cards are

not required and are not even used by the majority of venues [29], therefore typical

data processing is still in use.

5
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Latifi [34] did excellent work at sessionizing user datasets. EGM logs are made

up of game data that is gathered during playtime along with additional meta data.

No user ID or other attribute that can be used to identify users is included in these

logs. Although there are instances where some players play with two machines si-

multaneously, the fundamental understanding is that a player only uses one machine.

The sessionizing process is intuitively based on two reliable assumptions. The first

assumption is that a cash-in is there before the start of each game session. The second

assumption is that a gaming session ends either when a player cashes out almost all of

their winnings or when they play almost all of their remaining credits before turning

the machine off. The first assumption was not subject to any threshold consideration,

but the second assumption required to take into account of minimum cash balance

and idle time threshold values. When the time gap exceeds the idle time threshold

and the machine credit is less than the minimum credit, the session is declared ter-

minated using these two thresholds. In order to secure some wins, it is assumed that

numerous cash-outs are permitted within a session. The researcher experiments show

that sessions with the actual player session duration are derived when the idle time of

the machine is about a few minutes and a minimal amount of money in the machine

is around a couple of dollars and cents. Our research will use data that has been

sessionized using this method, hence this study is important to us.

Intensive research and studies have been done on detecting the persona of gamblers

and predicting gamblers at-risk of problem gambling [3, 49, 54, 15]. Typically problem

gamblers struggle to control their urges to gamble excessively, regardless of the harm

that their behavior may inflict on others (such as family, friends, or coworkers) and

also frequently occurs in conjunction with other negative habits such as food disorders

and substance abuse [51, 42, 10]. To detect problem gamblers, researchers have

used unsupervised learning techniques like clustering to identify various gambling

behaviors. The identification of a new group of players who probably developed a

medium risk of disordered gambling behavior that was not recognized by Braverman

and Shaffer [15] was made possible by the indicators proposed by Adami et al. [3]

based on wager volatility over time and the number of different games played on the

website.
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Mosquera and Keselj [49] worked on EGM data and since player identity infor-

mation is not contained in EGM data, they assumed sessions contain relevant game-

play classes, and the session starts with no money and ends with either winning

or no winning to cash out. They also used the k-means algorithm and criteria like

Braverman [14] to identify clusters. For comparing different clusters, they performed

ANOVA and Tukey’s Honestly Significant Difference (HSD) test. Latifi [34] suggested

using DBSCAN, which may identify results that K-means cannot identify, and can

be used prior to K-means to further refine the results. Although the research uses a

Multivariate Convolutional LSTM neural network to quickly classify playstyle, it does

not significantly improve performance when more than 40 transactions are analyzed.

The inability of the models to be interpreted is a drawback of this study.

In order to determine the significance of knowledge extraction and algorithm in-

terpretability, as described by Percy et al. [57], the researchers conducted a survey of

the participants during a similar presentation at the 2016 New Horizons in Responsi-

ble Gambling conference. When asked which option they would prefer—a model that

gave a 75% correct assessment that was completely interpretable and accountable, or

a responsible gambling assessment algorithm that provided a 90% accurate assessment

of problem gambling risk which they were unable to comprehend. Only 20% preferred

the model with more accuracy, with 70% choosing to give up 15 percent more accu-

rate model for better interpretability (10% were unsure or thought it depended on

the situation). Sarkar et al. [64] work focuses on data obtained from the regulated

Internet gambling jurisdiction of Ontario, Canada. TREPAN [17] is an algorithm

that induces a decision tree that approximates neural network with a high degree of

fidelity. Unlike Percy et al. [57], who only used TREPAN on neural networks, they

also used it on random forests. Furthermore, they came to the conclusion that while

random forests produce the most accurate predictions, a neural network produced

the decision tree that performed the best. This appeared to offer the best accuracy-

to-interpretability trade-off in this research since it was using a simpler form of rules

than other best performing trees. Though TREPAN gave the promising results, we

propose to use Explainable Boosting Machine (EBM) , which is relatively simpler,

more accurate, and faster to execute the model. Harsh et al. [22] built a simulation

of a financial trading app to help analysis risk-taking and enjoyment characteristics
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in investing app behaviors.

The advancement in the deep neural network has brought tremendous growth in

the field of Reinforcement Learning (RL). Deep learning makes it possible for RL

to scale to previously unsolvable decision-making issues; i.e., situations with high-

dimensional state and action spaces [7]. Researchers have applied deep reinforcement

learning (DRL) to a wide range of domains, such as robotics [35, 36] and video

games [47, 73, 56, 74]. In the disciplines of psychology and neuroscience, human

decision-making has been researched for years. Evidence that the brain uses rein-

forcement learning algorithms was found when it was discovered that there was a

relationship between dopaminergic neuron activity in brain activity and reward pre-

diction errors [68]. Inspired from Sergey et al. work [35], Wu and Izawa [76] studied

incorporating the emotion of regret into reinforcement learning formulation and in-

vestigated how regret affects motivation and reinforcement learning in the application

of problem gambling. They mathematically defined the term ‘regret’ as a maximum

reward minus the current reward. By limiting the incentive for lower rewards, regret

can increase learning for the optimal solution while decreasing learning for a sub-

optimal solution. Their suggested algorithm, regret reinforcement learning, exhibited

behavior similar to that of addicted gamblers by choosing a high-risk, high-reward

option when a high reward was discovered by chance. Another approach, Inverse

Reinforcement Learning (IRL) [53], which extracts the reward function of a prob-

lem given observation and optimal behavior, uses this learned reward function as is

if the subject agent shares the same environment, actions, and goals as the other,

otherwise it continues to provide a useful basis when the agent specifications differ

mildly [5]. Although IRL has been used to infer human goals and modeling behav-

ior [9, 72, 32, 33, 52, 30], it requires well-defined environment and optimal behavior

trajectories which is difficult to produce from EGM.

2.2 Supervised Learning

Supervised learning is a form of machine learning where the algorithm needs labelled

data, also known as tagged data, for training. The term “labelled data” refers to data

that has been assigned a label or tag (target variable). When training is finished, only

input data points are provided to the algorithm to check whether the predicted label
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matches the original label. This is done to assess how well the algorithm is working.

This is also known as test data or unseen data. The objective of supervised learning

algorithms is to train a function that can map input features to their appropriate

labels and also generalize well to unseen data.

There are basically two types of supervised learning:

• Regression: It creates a function that demonstrates the connection between

its continuous target variable and its input variables. It is commonly used for

forecasting sales revenue, market trend, etc.

• Classification: The target variable used in classification are categorical in na-

ture. These models take the input variables and predict the type of category it

belongs to. For example, predicting an e-mail is spam or ham.

We will only briefly describe a few of the classification models that were used in

this study due to its limited scope.

2.2.1 Classification

In this section, we will briefly go through the classification model used during this

research.

Logistic Regression

Logistic Regression (LR) is a statistical model that estimates the probability of the

target variable upon a given input. This algorithm is mainly used for binary classifi-

cation. It is a linear regression model [70] extension for the categorization issue. The

model only predicts values between 0 and 1, since the model gives the probability of a

category. The main difference between linear regression and logistic regression is that

it uses a natural logarithm of odds, which is calculated by dividing the probability of

success by the probability of failure, as a coefficient. The logistic function is defined

as:

logistic(x) =
1

1 + exp(−x)
(2.1)
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As this function returns values between 0 and 1, we need to select a threshold value

above which it is classified as category 1 otherwise classified as category 2. Commonly

the threshold value is set to 0.5. This is also known as the decision boundary.

There are three types of logistic regression:

1. Binary logistic regression: In this method, there are only two possible categories

for the target variable. For instance, the type of cancer is benign and malignant.

2. Multinomial logistic regression: In this type, the target variable contains three

or more possible categories with no set rank. For example, a vehicle could be a

car, truck, or bus.

3. Ordinal logistic regression: In this kind, the target variable could fall into three

or more different categories, but in a particular order. For example, a review of

a restaurant from 1 to 5.

The cost function for linear regression is mean squared error. This will be a non-

convex function of parameters if this is used for logistic regression which may result

in being stuck at local minima. To resolve this issue, we use log loss, also known as

cross-entropy loss. The cost function of logistic function [50] is defined as:

J(Θ) =
1

m

∑︂
[−y(i) log(hΘ(x

(i)))− (1− y(i)) log(1− hΘ(x
(i)))] (2.2)

Decision Tree

Decision Tree (DT) is a non-parametric algorithm meaning it does not make strong

assumptions about input and output mapping functions. It is used for both classi-

fication and regression tasks. It has a tree-like structure, as the name would imply,

with a root node, internal nodes, branches, and leaf nodes. The root node and the

internal nodes represent the features, while the branches show the rules or decisions,

and the leaf nodes show the outcome of the decision tree. It finds the optimal split

points using the divided and conquer method by conducting a greedy search. The

process of dividing the tree is done in a recursive fashion. The purity of the leaf node

is given by the number of categories present within that particular node. The node

is called pure if all the data point in that node is classified in a single category. The
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purity depends largely on the complexity of the tree, but if the tree is too complex, it

may lead to a problem known as overfitting [13]. Pruning, which is a technique that

crops the branches which split the features that are not important, is used to lower

the complexity of the tree and avoid overfitting. To get the best split and features,

a decision tree can use multiple techniques like Information Gain, Information Gain

Ratio, and Gini Index.

To understand Information Gain, we need to define Entropy. Entropy in simple

words could be defined as a measure of the impurity of a set containing multiple

categories of data points. In other words, given a node containing p positive and n

negative data points then the entropy of that node is given by the formula:

Entropy = −p log2(p)− n log2(n) (2.3)

This formula could be generalized to:

H(D) = −
c∑︂

i=1

pi log2 pi (2.4)

where, entropy H is given by the probability of category i from the set of categories

c in the given dataset D.

Information Gain (IG) measures the change in entropy based on the particular

features before and after the splitting of the dataset. The split will be optimally

determined by the feature that has the maximum information gain since it performs

the best job of classifying the training data in accordance with its intended category.

The Information Gain is represented by the formula:

IG(D,A) = H(D)−
∑︂

vϵV alues(A)

|Dv|
|D|

×H(Dv) (2.5)

where, v represent the value in the attribute A in the given dataset D.

Since Information Gain selects the features with multiple unique values, Informa-

tion Gain Ratio (IGR) is used as it reduces bias by scaling Information Gain by the

entropy.

IGR =
IG

Entropy
(2.6)

Gini Index is the probability that a randomly chosen data point in the dataset
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would be wrongly classified. The formula of the Gini Index is given as:

GiniIndex = 1−
n∑︂

i=1

(pi)
2 (2.7)

where, pi is the probability of a data point being classified into a particular category.

Gini index value is in the range from 0 to 1, where 0 represents that all the data

points belong to one particular category while 1 indicates the random distribution of

data points among multiple categories. The Gini index of a value of 0.5 represents

categories that are equally distributed.

Explainable Boosting Machine

Explainable Boosting Machine (EBM) [55] is a glass-box model, which has high in-

terpretability along with accuracy as state-of-the-art machine learning algorithms

like Random Forest and Boosted Trees. The idea behind the EBM was inspired by

Generalized Additive Model (GAM) [26]. GAM is represented in the form:

g(E[y]) = β0 +
∑︂

fi(xj) (2.8)

where, the GAM is adjusted to various models, such as regression or classification,

through the link function g.

The problem with GAM is that it ignores the effects of co-linearity between fea-

tures. To overcome this issue, GA2M [40] was introduced with the functionality of

pairwise interaction which is in a form

g(E[y]) = β0 +
∑︂

fi(xj) +
∑︂

fij(xi, xj) (2.9)

EBM learns this function f of GA2M using the latest machine learning technique

called gradient boosting. This is the major difference between these two algorithms.

EBM is trained in the same way as gradient boosting, but with some notable differ-

ences. They are trained with many small trees, and each tree is trying to comprehend

the mistakes done by the tree before it. The boosting method is meticulously limited

to training on a single feature at a time in round-robin form with a very low learning

rate, making the order of the features irrelevant. Due to this, more number of iter-

ations are required compared to typical gradient boosting algorithms like XGBoost.

The algorithm is parallelizable and is faster compared to GA2M.
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After collecting all the trees, we group them based on a feature to produce con-

tribution plots or lookup tables for each feature. They keep track of how much each

feature value contributed to the final prediction. They are basically the function f in

the equation 2.9, learned by boosting. To make a prediction, each feature’s lookup

table is used to get their contribution, which is then added up and simply pass to the

link function g to compute the final prediction. This makes EBM execute very fast

at the prediction time.

2.3 Unsupervised Learning

Unsupervised learning is a type of machine learning that groups similar data points

without any supervision or labelled data. Unlike supervised learning, it does not have

any labels to differentiate one data point from another, it uses the underlining struc-

ture of the data and finds patterns to make groups with alike data points. Clustering

and dimensionality reduction [23] are two extremely basic yet well-known examples

of unsupervised learning.

2.3.1 Clustering

Clustering is the most common unsupervised learning technique used to segregate

the data points into different groups, also called clusters, such the homogeneity of

data points within the cluster is high. Although the clustering process is not sim-

ple or widely acknowledged, we try to explain the commonly procedure [78] taken.

Firstly, the features are selected and some are transformed which affects clustering a

lot [28, 12, 27]. Secondly, the clustering algorithm is designed and selected by defining

criterion and proximity measures. The next step is to validate the cluster using some

testing criteria [46, 27]. Finally, the clusters are analyzed to get some meaningful

insights.

There are many types of clustering algorithms based on various measures and

criteria [60, 21, 46, 27, 28]. We will briefly describe the K-means algorithm as it has

shown promising results for detecting EGM player behaviors [34, 49].
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K-means

K-means is the most frequently used clustering algorithm for grouping data points

into clusters. The K in K-means stands for the number of clusters which is a hyper-

parameter meaning it is a user defined number. There are multiple ways [59, 31] to

come up with the optimal value of K, but the most common technique used is the

elbow method [45, 18]. This algorithm first selects theK points randomly that acts as

the centroids of clusters. It then calculates the distance, generally Euclidean distance,

between each data point and the centroids and assigns the data points to the cluster

with the smallest distance. New centroid values of each cluster are calculated by

averaging all the data points within the cluster after they are assigned to a particular

cluster, this describes the ‘means’ part of K-means. This procedure is repeated until

there is no change in the centroids’ value or there is a small change in the values of

centroids from the previous iteration.

K-means is a very simple algorithm to implement and scales to large datasets,

but the cluster depends largely on the initial values of centroids selected. To tackle

this problem, K-means++ [6] was introduced that initialize only the first centroid

randomly while selecting all other centroids such that they are farthest from each

other. Despite the fact that it’s computationally more expensive than K-means, but

this results in a better selection of clusters.

2.4 Interpretable AI

Industries are not only looking for models with more accuracy but also are inter-

ested in understanding the reasons behind the results of the models. This is where

Interpretable AI comes in, which explains the underneath working of the models in

a form that is understandable by humans. The degree of interpretability is measured

by how well the decision made by the model is comprehensible to humans. The need

for interpretability arises from incompleteness in problem formalization [19]. Machine

learning models are not always to be trusted as these models might be considering

some features in another way that humans might assume those features should be

used, this may lead models to be biased. Though some industries may not require

the models to be interpretable, but in a field like healthcare, interpretability could be
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found very useful.

Interpretable AI has given promising results in understanding gambler behav-

ior [57, 64]. Gambling companies and government can use this understanding of the

behavior to tackle problem gambling and make sure of responsible gambling prac-

tices. Interpretable AI is used in this research to find the factors that are influencing

player behavior to play for a longer duration which could help the gambling industry

to identify factors to make the player play for a longer time to increase their revenue

and also can help gamblers at-risk.

2.4.1 Accuracy-Interpretability Trade-off

It’s very difficult to have models with high accuracy and high interpretability, for ex-

ample, Neural Networks give high accuracy, but due to their complexity, they are very

difficult to interpret, while on the other hand, Decision Trees are relatively simpler

models, but with low accuracy. The trade-off between accuracy and interpretability

has been shown by Figure 2.1.

Figure 2.1: Accuracy-Interpretability Trade-off

There are some problems that require sophisticated deep neural networks to solve,
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such as text or image processing. Using techniques like LIME [61] and Shapley

values [41] on a black-box model that has already been trained can help make it

interpretable. LIME work as a surrogate model, which is trained on top of the black-

box to approximate its predictions. It can only explain one prediction at a time

as it uses interpretable models as surrogate models. Shapley values calculate the

contribution of each feature toward the prediction. This gives a global interpretation

of the model. Though both these methods are used extensively by researchers, a

LIME approximation could be inaccurate resulting in bad interpretation and Shapley

values are difficult and computationally expensive to compute with high numbers of

features. So to overcome this trade-off, we can use Explainable Boosting Machine

(EBM), which gives high accuracy along with high interpretability. We will shortly

explain how this algorithm could be interpreted.

2.4.2 Interpretable Algorithms

In this section, we will briefly discuss how to interpret algorithms that have been used

in this research.

Logistic Regression

As the logistic function (equation 2.1) output the probability, the coefficients or

weights are not linearly associated with the prediction like linear regression. So in

logistic regression, a change in a feature by one unit changes the odds ratio (multi-

plicative) by a factor of exp(βj) [48]. The log odds ratio is increased by the value of

the associated weight for each unit change in xj. This could be defined as:

Odds Ratio = exp(βj). (2.10)

Logistic regression is highly interpretable, but its lacks of performance produce a

model with lower accuracy as depicted by Figure 2.1.

Decision Trees

Decision Trees are made of rules and features, so they are very easy to interpret. The

branches indicate which sections you are looking at as you proceed through the nodes,



17

starting with the root node. When you arrive at the leaf node, the node notifies you

of the anticipated result. All the branches are connected by ‘AND’ [48].

In a decision tree, a feature’s overall relevance can be calculated by checking the

variance or Gini index in relation to the parent node for each split for which the

feature was applied. All importance is scaled to a total of 100. As a result, it is

possible to interpret each importance as a portion of the overall model importance.

Explainable Boosting Machine

Explainable Boosting Machine (EBM) are some of the exception models of accuracy-

interpretability trade-off (Figure 2.1), as they are highly interpretable models with

high accuracy. As discussed in section 2.2.1, EBM creates a lookup table for each

feature, which is then plotted for visualization and interpretability. Each feature

contributes separately toward the prediction and as EBM is an additive model, the

importance of the features and their impact can be depicted.

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning in which an agent

(learner) acts in a specific circumstance to maximize reward. It learns the best policy

(behavior) within an environment by taking the best action for a specific situation in

order to obtain the biggest reward, but it must think about the fact that the future

reward and situation are also dependent on it. The two most crucial distinguishing

properties of reinforcement learning are trial-and-error search and delayed reward [71].

The Figure 2.2 shows the general flow of a reinforcement learning model. Here the

action is the move that an agent can make from its available action space. The state

represents the current circumstance that is given by the environment. Finally, the

reward is the immediate gain earned by the agent upon action performed.
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Figure 2.2: Reinforcement Learning Model

The trade-off between exploration and exploitation is one of the difficulties that

reinforcement learning faces, as opposed to other types of learning. A reinforcement

learning agent must favor actions that it has previously done and proven to be effective

in creating rewards if it wants to gain a lot of rewards. However, it must try acts that

it has never chosen before in order to find such actions. The agent must exploit the

advantage of its past experiences in an attempt to benefit, but it must also explore

making better decision-making in the future. The main goal of an RL algorithm is

to find a balance between exploration and exploitation.

2.5.1 Elements of Reinforcement Learning

A reinforcement learning system primarily consists of four subelements: a policy, a

reward signal, a value function, and, if present, a model of the environment [71].

1. Policy: A policy is a mapping between perceived environmental states and the

actions that should be taken when those states are present. The policy may be

as straightforward as a function or lookup table in some circumstances, while

in others it may need complex computations like a search procedure. Policies

may, in general, be stochastic, defining probability for every action. In simpler

words, a policy defines the behavior of an agent at a specific moment.
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2. Reward signal: The agent’s primary goal is to increase its overall reward over

the long term. The key driver behind changing the policy is the reward signal; if

a policy selected action is followed by a little reward, the policy may be modified

to choose a different action in that circumstance in the future. Reward signals

could, in general, be stochastic functions of the environment’s state and the

actions conducted.

3. Value function: A value function explains what is beneficial over the long

term, while the reward signal thinks for the current state. A state’s value can

be thought of as the total amount of reward that the agent can anticipate

accumulating in the future, beginning from that state. Not the highest reward,

but the highest value states are what we aim to achieve and select agent action

on because they will ultimately yield the greatest rewards for us.

4. Model: This is something that imitates the behavior of the environment or, to

put it more broadly, something that enables predictions about the future behav-

ior of the environment. Models are used for planning, which we define as any

method of selecting a course of action by factoring in potential future circum-

stances before they actually occur. Model-based approaches to reinforcement

learning are distinguished from simpler model-free approaches that explicitly

rely on trial-and-error learning by their use of models and planning.

2.5.2 How does Reinforcement Learning Work

When an agent interacts with an environment, at each time step t, the agent obtains

a state st in a state space S and chooses an action at at from an action space A,

following a policy π(at|st), receives a reward rt, and transitions to the next state st+1,

according to the environment dynamics, or model, for reward function R(s, a) and

state transition probability P (st+1|st, at) respectively. In an episodic problem, this

process continues until the agent reaches a terminal state, and then it restarts. The

return, equation 2.11, is the discounted, accumulated reward with the discount factor

γ ϵ [0, 1] [38].

Rt =
∞∑︂
k=0

γkrt+k (2.11)
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It is possible to model reinforcement learning problems as a Markov Decision

Process (MDP) using Markov property [43], which states that the future states are

only dependent on its current state; hence, given the present, the future is independent

of the past. The topic is referred to as a finite MDP if the state and action spaces

are finite. MDP can be defined as a 5 elements tuple (S,A, P,R, γ) [11]. It assumes

that the outcome of an action taken in a given state depends only on the current

state-action pair and not on the past states and actions [79], that is,

P(St+1|St, at, St−1, at−1, ..., S0, a0) = P(St+1|St, at). (2.12)

The formulation of the policy is the aim of reinforcement learning algorithms. A

policy π is a function that identifies the course of action to be taken in each state

in order to accomplish the goal of maximizing the cumulative discounted reward

(equation 2.11) [25]. To find the optimal policy π∗, we first need to find the value

function. A value function is a prediction of the expected, accumulative, discounted,

future reward, measuring how good is each state, or state-action pair [37]. The state

value,

vπ(s) = E[Rt|st = s] where Rt =
∞∑︂
k=0

γkrt+k, (2.13)

is the expected return for following policy π from state s. The action value,

qπ(s, a) = E[Rt|st = s, at = a] (2.14)

is the expected return for selecting action a in state s and then following policy π.

Value function vπ(s) decomposes into the Bellman equation:

vπ(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]. (2.15)

An optimal state value,

v∗(s) = max
π

vπ(s) = max
a

qπ∗(s, a), (2.16)

is the maximum state value achievable by any policy for state s, which decomposes

into the Bellman equation:

v∗(s) = max
a

∑︂
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]. (2.17)
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Action value function qπ(s, a) decomposes into the Bellman equation:

qπ(s, a) =
∑︂
s′,r

p(s′, r|s, a)[r + γ
∑︂
a′

π(a′|s′)qπ(s′, a′)]. (2.18)

An optimal action value function,

q∗(s, a) = max
π

qπ(s, a), (2.19)

is the maximum action value achievable by any policy for state s and action a, which

decomposes into the Bellman equation:

q∗(s, a) =
∑︂
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]. (2.20)

Optimal policies have the same optimal action value function q∗.

2.5.3 Reinforcement Learning Algorithms

Proximal Policy Optimization

Model-free policy search techniques, such as policy gradient approaches, are helpful

for updating the policy [58], but the problem with policy gradient is finding the right

step size for updation, as they are sensitive. To eliminate this problem, researchers

came up with an approach called Trust Region Policy Optimization (TRPO) [66],

which applied a trust region restriction to the objective function in order to reduce

the KL divergence between the existing and new policies to make sure that the new

policies are not too far from the old policies. Theoretically, this can be supported by

demonstrating that improving the policy within the trust region results in a guaran-

teed improvement in monotonic performance. TRPO is computationally inefficient

for large-scale tasks, and when applied to sophisticated network architectures, it is

challenging to scale up for those situations [75]. By using a clipping technique to

avoid totally imposing the hard restriction, Proximal Policy Optimization (PPO) [67]

greatly decreases complexity and is able to employ a first-order optimizer, such as the

Gradient Descent method, to optimize the objective function which is defined as:

LCLIP (θ) = ˆ︁Et[min(rt(θ) ˆ︁At, clip(rt(θ), 1− ϵ, 1 + ϵ) ˆ︁At)], (2.21)
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where θ is policy parameter, ˆ︁Et is the expectation over time t, rt is the probability

ratio of old and new policies, ˆ︁At is the estimated advantage at time t, and ϵ is a hyper-

parameter. By attempting to remove the reward for moving the policy away from the

previous one when the probability ratio between them is outside of a clipping range,

this objective function eliminates the KL constraint of TRPO while maintaining the

execution of a Trust Region update.

PPO performs better overall for a broad range of tasks and is relatively easy to

implement and tune while preserving the stability and reliability of a TRPO.

Actor Critic using Kronecker-Factored Trust Region

Actor Critic using Kronecker-Factored Trust Region (ACKTR) [77] uses actor-critic

methods in which the actor performs an action while the critic estimates the value

function, distributed Kronecker factorization [44], and trust region optimization [66].

It creates a scalable approximation of the natural gradient using the Kronecker-

Factored Approximated Curvature (K-FAC) [44, 24]. K-FAC uses a Kronecker-

factored approximation to the Fisher matrix to perform efficient approximate natural

gradient updates. It approximate small block Fl corresponding to layer l as ˆ︁Fl by

calculating:

Fl ≈ E[aaT ]⊗ E[∇sL(∇sL)
T ] := A⊗ S := ˆ︁Fl (2.22)

By assuming that there is no correlation between the second-order statistics of the

activations and the backpropagate derivatives, this approximation can be understood.

The Fisher metric for RL objectives is defined as:

F = Ep(τ)[∇θ log π(at|st)(∇θ log π(at|st))T ], (2.23)

where p(τ) is the distribution of trajectories stated as:

p(s0)
T∏︂
t=0

π(at|st)p(st+1|st, at). (2.24)

The Fisher matrix is used to update both the actor and the critic by approximating

it by applying K-FAC. ACKTR then applies trust region formulation of K-FAC [8]

to update the policy distribution. With both discrete and continuous action spaces,
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ACKTR is adaptable to learning the model’s action probability distribution from

an observation. It returns the probability mass for discrete action spaces whereas it

returns the probability density for continuous action spaces [16].



Chapter 3

Identifying Importance of Enjoyment Factors

Many people play EGM every day; some of them play for longer periods of time,

while others simply play for a brief duration. The gaming venues and companies and

other stakeholders have an interest in discovering what motivates these players to

play for longer periods of time. Though playing for a longer period of time does not

always imply that the player is having fun; the player may simply be playing more to

make up for the lost money. The goal of this study is to determine the significance

of factors that promote a longer duration of playing that the player enjoys.

In this chapter, we will discuss the process of identifying the importance of en-

joyment factors. Figure 3.1 shows the flow of this process. It proceeds by discussing

how features were extracted from data and preprocessed, followed by a detailed data

analysis. Following that, we will go over some of the assumptions that were used to

determine whether or not the player enjoyed the session. Furthermore, it interprets

the machine learning models and compares results using evaluation metrics.

Figure 3.1: Factors Identification Flow

24
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3.1 Dataset Description

The data collected by EGM is anonymous in order to safeguard the privacy of those

who use it. This makes working with EGM data challenging. For this study, we

will use game data that has been sessionized using the sessionization approach [34]

explained in section 2.1. EGM data has a fairly limited set of information such as

transaction type, transaction amount, transaction timestamp, and amount machine

returns on that transaction, though additional features can be derived using these

features, as explained in the next section.

3.1.1 Feature Engineering and Cleaning

Many characteristics have been extracted from the sessions’ initial features. Some of

these features are mentioned and explained in Table 3.1.

Attribute Explanation
Reward % of wins, where win is greater than wager, # of wins (>wager) divided by number of wagers
Losses Disguised as Wins % of wins, where win is less than wager, # of wins (<wager) divided by number of wagers
Illusion of Control Number of times the player changed wager
Bonus Round Frequency of bonus rounds
Total cash in amount The total amount of money inserted by the player in the machine during a play session
Average primary wager The average primary wager in a play session
Number of distinct primary wagers Number of distinct primary wagers in the session
Session length Elapsed time is the amount of time that passes from the start of a session to the end of the session.
Average time between spins The average of the time difference between consecutive spins
Total cash out Total cash out in a session
Starting cash in Total amount of cash in at the start of the session before he starts playing
Additional cash in Total amount of additional cash in after a player starts playing
Loss Percentage Total number of loss divided by total number of wagers
Intensity Intensity (wagers/minute) in a session
Cash out occurrence flag A flag to specify whether a player cashed out or ran out of money
Cash out to cash in ratio The ratio of cash out to cash in
Number of cash in Number of times a player inserted money in a machine
Pause to Session Duration Ratio Sum of pause time divided by the total session duration
Payout to Wager (PW) ratio Total payout divided by total wager in a session

Table 3.1: Features Explanation

These extra features, such as intensity, which defines how fast or slow a player

plays, help in understanding player behavior.
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Figure 3.2: Distribution of Session Duration

Some of the sessions were classified with a very long duration which spans multiple

days, which is evident from the Figure 3.2 which shows the distribution of the session

duration. To identify such invalid sessions, we are assuming that if a session with a

Pause to Session Duration (PS) ratio is more than equal to 0.5, meaning that if a

person has taken pauses of more than 50% of the session duration, then that session

is considered as an invalid session. From all the sessions, 5.2% of sessions have a PS

ratio of more than equal to 0.5. All these sessions are considered to be invalid and

removed from the dataset.

In an ideal scenario, the user would start with no money in the machine credit

meter, but we’ll assume the session starts with less than a $1 as there might be some

money left in the machine by the previous user. Around 3360, or 11% of sessions,

had a dollar or more at the start. These sessions were deemed invalid. Only a

few sessions had more than 1000 transactions, while the majority of them had less

than 500 transactions. Additionally, sessions with fewer than ten transactions were

excluded because they provide little information on the user’s behavior.
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Figure 3.3: Number of Transaction with Session Duration

Figure 3.3 compares session time versus the number of transactions with invalid

sessions, defined as sessions with a PS ratio of more than 0.5 and one or more dollars

prior to the commencement of the session. The chart shows that, despite the low

number of transactions, session time was excessive in several sessions. After exclud-

ing the invalid sessions, the right figure (genuine sessions) indicates a clear positive

correlation between the number of transactions and session length.

3.2 Data Preparation

Generally, characteristics in the dataset have various scales of range; for example, cash

in amount is normally greater than transaction number since both of these features

are recorded in different units. As a result, if these features are fed into the predictive

model as is, the model will be biased toward the characteristic with the larger scale.

To address this issue, normalization is performed, which scales all features to the

same range. Although there are several types of normalizing methods, the following

two are the most commonly utilized.

1. Min-Max Normalization: The values are scaled from 0 to 1 using this tech-

nique. It maintains the relationships between the original data values, though

it reduces the impact of outliers.

xscaled =
x− xmin

xmax − xmin

(3.1)
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2. Z-Score Normalization: It normalize the data such that the mean (µ) of the

feature distribution is 0 and the standard deviation (σ) is 1.

z =
x− µ

σ
(3.2)

We have chosen the z-score normalization as it does not suppress the outliers.

3.3 Data Analysis

Data Analysis is an important step to perform visualization of data to get insights

into data.

Figure 3.4: Bonus Round and Secondary Game Distribution

It is interesting to note that more than half of the sessions included bonus rounds.

In addition, only 15.1% of sessions had participants playing a secondary game, while

the rest of the sessions had no secondary games.
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Figure 3.5: Session Intervals Distribution

Sessions were segmented into multiple session duration intervals (Figure 3.5) to

have a better understanding of the factors impacting session duration. Intervals of

2–5 minutes and 5–15 minutes have nearly equal percentages of sessions, so we can

estimate that roughly 60% of people play for 2–15 minutes, while 19.3play for only

0–2 minutes. About 4.6% and 1.9% of people, respectively, play lengthier sessions

spanning 30–60 minutes and more than 1 hour.

Most individuals prefer to add cash to the machine with notes rather than coins

or tickets, as seen in Figure 3.6. Furthermore, approximately 55% of people do not

cash out at the end of the session, which could be because they have lost all of their

money and the machine credit has zeroed out or because they have a few cents or

dollars left in the machine and do not consider cashing out.
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Figure 3.6: Distribution of Cash In and Cash Out

Figure 3.7 shows the correlation heatmap of all the features. This plot shows the

pairwise linear relationship between features. There are many features having a high

correlation with each other.

Figure 3.7: Correlation Heatmap
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Figure 3.8: Total Cash In to Total Cash Out

We can see from the Figure 3.8 that players who have cashed in more than 1000

dollars have a lower chance of cashing out in that session. Furthermore, some people

who played for over an hour and cashed in over 1000 dollars, lost all of their money

in games or did not cash out at the end of the session.

The Cash Out to Cash In (COCI) ratio is an important element that tells us

how much money the player took out of the machine at the end of the session in

comparison to how much money was put into the machine. The Figure 3.9 illustrates

that when the player plays for a longer period of time, the odds of receiving a larger

return grow, but if the player plays for more than an hour, the COCI ratio declines.
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Figure 3.9: Cash Out to Cash In Ratio Distribution Over Session Interval

The Average Credit to Cash In (ACCI) ratio indicates how the player performs

over time, as credit value may increase or decrease as the session progresses. According

to Figure 3.10, players that fall into the middle session intervals of 5 to 30 minutes

perform well overall.
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Figure 3.10: Average Credit to Cash In Ratio Distribution Over Session Interval

3.4 Labelling Sessions

EGM does not capture the player’s experience of the session, that is, whether the

player enjoyed it or not, while recording the logs. To identify each session as positive

to indicate that the player enjoyed the session or negative to indicate that the player

did not enjoy the session, we will make some assumptions, which we will discuss in

the next section.

3.4.1 Segmenting Sessions

We consider two essential features in our assumptions to segment the sessions into

positive and negative sessions: session length or duration and cash out to cash in

(COCI) ratio, as these features can be considered indications of player enjoyment.

We are considering these features in different ways in both the assumptions which are

as follows.
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Assumption 1: Time-based Only (TBO) Session Segmentation

In the assumption 1, all sessions with a session duration of more than 5 minutes

would be labeled as positive, while all other sessions were labeled negative. This

implies that the player who played for more than 5 minutes enjoyed the game, as the

intuition behind this is that the person is playing for a longer period of time because

they are enjoying the session. After applying the assumption, Figure 3.11 depicts the

segmentation of sessions into positive and negative sessions. There are around 48.1%

positive sessions and 51.9% negative sessions.

Figure 3.11: TBO sessions distribution

Assumption 2: Time-based and Cash Out to Cash In ratio (TB-COCI)

Session Segmentation

Assumption 1 simply assumes that players who play for a longer period of time enjoy

the session; however, this is not always the case, as some players tend to stop playing

under 5 minutes upon receiving more money than they initially cashed in, which may

be an enjoyable session for them. Along with session duration, we are considering the

COCI ratio in this assumption. The assumption here is that sessions with a COCI

ratio of more than 1, regardless of session duration, are labeled positive; additionally,

sessions with a duration greater than 10 minutes are labeled positive; and finally, all

other sessions are labeled negative. The COCI ratio ensures that the sessions with

players earning more money than they invested are marked positive. Figure 3.12

illustrates the bifurcation of sessions into positive and negative sessions. There are
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about 33.8% sessions identified as positive, whereas negative sessions account for

66.2%.

Figure 3.12: TB-COCI sessions distribution

Now that all the sessions are labelled, we can use these sessions in interpretable

AI to determine what features are essential for classifying sessions.

3.5 Evaluation Metrics

There are numerous methods for assessing the quality of a classification model. Accu-

racy, F1-score, precision, recall, Receiver Operating Characteristic (ROC), or Area

Under Curve (AUC) are all ways to quantify performance. These metrics can also

be used to compare multiple models in order to determine which model performs the

best. In this study, we will evaluate accuracy, precision, recall, and the F1-score to

assess the performance of the models.

• Accuracy: It just evaluates how often the classifier predicts successfully. The

accuracy of a prediction can be defined as the ratio of correct predictions to

total predictions made. It is given by the equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

• Precision: It is a ratio of true positives (TP) among all positives predicted by

the model that reflects how many of the accurately predicted occurrences were
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truly positive. When False Positives (FP) are more of a concern than False

Negatives (FN), precision comes in handy. It is defined by the formula:

Precision =
TP

TP + FP
(3.4)

• Recall: It is a ratio of true positives (TP) among all actual positives present

in the dataset. It can be used to determine when a False Negative is more

worrying than a False Positive. The equation to calculate recall is:

Recall =
TP

TP + FN
(3.5)

• F1-score: It is the harmonic mean of precision and recall. The greater the F1

score, the better our model performs. The F1-score range is [0,1]. It is given

by the equation:

F1 = 2× Precision×Recall

Precision+Recall
(3.6)

3.6 Results and Discussion

In this section, we will discuss the results and interpret machine learning algorithms

on the assumptions discussed in section 3.4.1.

3.6.1 Interpreting Models

Due to the fact that we labeled sessions based on session duration and COCI ratio,

features that had a high correlation with these features were not employed while

training the models to prevent bias.

Logistic Regression

Logistic Regression (LR) is the simplest algorithm used to predict the probability

of the session being positive or negative. The algorithm was implemented with the

L2 regularization [63]. It gives high importance to the features that are impacting

more on the outcome of the model. In TBO (Figure 3.13a), the number of times a
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player cashed in has the biggest positive coefficient, indicating that when players are

having a good time, they put more money into the machine. The ACCI ratio, which

reflects how well the player is performing during the session, has a positive effect

on the player’s mood as well. Players who wager more than they cash in may have

a terrible overall experience because they may lose the money they may have won.

In TB-COCI with the different assumption (Figure 3.13b), the ACCI ratio has been

given more importance than the number of times player cash in, as it considers that

overall performance defines enjoyment of the player rather than cash in numbers.

(a) TBO

(b) TB-COCI

Figure 3.13: Feature Importance given by Logistic Regression

Decision Tree

Though LR gives the importance of the features to define the enjoyment of a player in

a session, but it does not give more details about how the feature was used. Decision

Tree (DT) infer simple decision rules from the features which makes them very easy

to interpret. We trained DT with the max-dept of 3 to keep it relatively simple to
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interpret and we used gini as the criterion to measure the quality of the split. As

shown in Figure 3.14a of TBO, DT uses bonus win percentage as the first feature to

decide if the session is on the positive side or the negative. If the bonus win percentage

is less than 1.2, the additional number of times the player cashed in is checked, else,

the Payout to Wager (PW) ratio is checked to see if the player has won enough

money that they have waged. Overall, if the player is winning more bonus rounds

and getting more payout than they have waged in the other rounds that shows that

the player is enjoying, while if the bonus win percentage is less and the player is not

adding more cash in the machine shows that the player was not enjoying the session.

The second assumption, TB-COCI, Figure 3.14b, also uses bonus win percentage as

the initial feature for split, though the percentage value is 14.3 in the decision rule.

DTs are very easy to follow to find out if the session will fall under the positive or

negative category.

(a) TBO

(b) TB-COCI

Figure 3.14: Decision Tree
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Using Decision Tree Features in Logistic Regression

DT gives the flow of the feature used and how they are defined in the rule, but it

does not give how much these features impact the decision of the model. To get the

advantages of both DT and LR, we passed the feature used in the DT to the LR to

get the weightage of each feature in predicting the enjoyability of a player.

(a) TBO
(b) TB-COCI

Figure 3.15: Coefficients of Features after applying Logistic Regression on Decision
Tree Features

For TBO, the 5 features used by the decision tree were used to train logistic

regression. Additional cashed in has the highest coefficient of around 4.70, followed by

total cashed in with 1.52. This shows that if a player adds more cash to the machine,

then that player is enjoying the game more. While on the other hand, in TB-COCI,

the ACCI ratio is having high coefficient representing the overall performance of the

player is affecting more to the mood of the player.

Explainable Boosting Machine

The previous algorithms are interpretable, but they do not perform as high as a

black-box model. Explainable Boosting Machine (EBM) solves this problem by giv-

ing accuracy as state-of-art black-box models along with interpretability. We used

interpretML API [1] to implement EBM, which produces nice visualization of each

feature contribution towards the final prediction.
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(a) TBO

(b) TB-COCI

Figure 3.16: Feature Importance given by Explainable Boosting Machine

In TBO, lots of importance is given to the Payout to Wager (PW) ratio by the

model, which is illustrated by Figure 3.16a. This means that a slight change in the

PW ratio will highly affect the outcome of the model. The other features that were

considered important by the model were the Wager to Cash In (WCI) ratio, net loss,

number of times the player cashed in, and the average wager used in the primary

game. Figure 3.17a shows how the final prediction of the model is affected by the top

4 most important features. We can notice a clear decrease and increase in the score

with the increasing value of the WCI ratio and the numbers of cash in, respectively.

There is a threshold value for the PW ratio and the net loss till which the score is

increasing or decreases but after the threshold value, the score changes in the opposite

direction than before.
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(a) TBO

(b) TB-COCI

Figure 3.17: Top 4 Important Features

COCI ratio was identified as the most important feature by the EBM in TB-COCI

for the prediction, as depicted in Figure 3.16b. The other features related to wagers

and winning also contributed more to decide if the player was enjoying the session

or not. How the change in the values of the top 4 important features is affecting the

score of the model has been illustrated by Figure 3.17b. The ACCI ratio, average win

percentage, and bonus win percentage show a positive correlation with the enjoyment

of the player, while the increase in the WCI ratio is affecting the score negatively.
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3.6.2 Model Comparison

To find out the best performing model and which assumption gave a better result, we

compared the evaluation metrics. For evaluating how well the model predicted each

session enjoyability and checking if the model was biased towards any class, we used

precision, recall, and f1-score. For comparing the overall performance of the models,

we used accuracy. We evaluated these models on test data, which was not used while

training the models. Table 3.2 and Figure 3.18 show each model performance for

both assumptions.

TBO TB-COCI
Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

LR 0.89 0.89 0.89 0.89 0.92 0.91 0.92 0.93
DT 0.86 0.86 0.86 0.86 0.82 0.85 0.83 0.84

DT→LR 0.82 0.82 0.82 0.82 0.86 0.84 0.85 0.87
EBM 0.98 0.98 0.98 0.98 0.94 0.94 0.94 0.95

Table 3.2: Models Performance

Figure 3.18: Models Performance

In both assumptions, EBM outperformed all other models, with an accuracy of

98% in TBO and 95% in TB-COCI. Even though LR was a simpler model than DT, it

performed marginally better in both assumptions. After applying LR to the features

used by the DT in the decision rules, the accuracy in TBO lowers by 4% to that of the

DT, which was 86%, while the accuracy in TB-COCI increased by 3% to that of the

DT. Based on the precision, recall, and F1-score, we can state that all of the models

performed a good job of differentiating the enjoyability of the player’s session, with
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EBM showing the most potential for measuring player enjoyability solely on session

data.



Chapter 4

Players Behavior Generation

In the previous chapter, we used interpretable AI to determine which features drive

the enjoyment in the player experience, causing them to play for a longer period of

time while playing on an EGM. Though the interpretable AI helped us to understand

the reason behind the overall player behavior, but that’s not enough to recreate the

player behavior as the behavior of the player may depend on different situations.

In this chapter, we will discuss how we detected playstyles using the clustering

technique. Furthermore, we will use one of the playstyle clustered data in our Re-

inforcement Learning (RL) model to mimic the behavior of players in that cluster.

We will also discuss how we identified termination states where the players within

this cluster end their session by deciding playing further is not worth it. Finally, the

sessions generated by the RL are compared with the selected cluster session data.

Figure 4.1 illustrated the flow of tasks performed for generating players behavior.

44
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Figure 4.1: Player Behavior Generation Flowchart

4.1 Dataset Description

The data we will be using is from a less sophisticated EGM game compared to the

game data which was used in the interpretable AI study in the previous chapter.

This game does not have any bonus rounds or secondary game round, which makes

the implementation of RL simpler. There are around 27,027 sessions in the dataset.

Features were extracted from these session data as discussed in section 3.1.1.
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4.2 Feature Selection and Data Transformation

For detecting the playstyles of the player, we have used only a few features similar to

that were used by Mosquera and Keselj [49] in the clustering algorithms. Table 4.1

shows the selected features for clustering and their statistics measures. It is clear

from Table 4.1 that the data is skewed to the right showing a non-normal sample

distribution.

Features Mean Std. Dev. Min 1st Qrt. Median 3rd Qrt Max
Win % 0.21 0.04 0.04 0.18 0.21 0.23 0.48

Loss Disguised as Win 0.10 0.03 0 0.08 0.10 0.11 0.44
Illusion of Control % 0.04 0.06 0 0.01 0.03 0.05 0.64
Number of Wagers 259.72 377.32 4 67 145 301 9945

Intensity 0.25 0.09 0.001 0.22 0.25 0.29 1.68

Table 4.1: Features Statistics Measures

To address the skewness of the data, there are several data transformation tech-

niques such as:

• Log Transformation: It simply takes the logarithm of the values in the fea-

tures, which is defined as:

y = log (y), (4.1)

• Square Root Transformation: It takes the square root to transform the

values in the features, which is represented as:

y =
√
y, (4.2)

• Box-Cox Transformation: It transforms non-normal features to a normal

distribution. The equation for transformation is defined as:

y(λ) =

{︄
yλ−1
λ

, if λ ̸= 0

log (y), if λ = 0
(4.3)

where λ is the transformation parameter.

We tried all the mentioned techniques to transform the feature, illustrated by

Figure 4.2. With the Box-Cox transformation, the skewness coefficient value was
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closest to zero; as a result, it was chosen. The Q-Q plot analysis also shows the normal

distribution of the data following the transformation. The z-score normalization

technique was then used to normalize the transformed data.

Figure 4.2: Data Transformation
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4.3 Clustering

We used the K-means clustering method with random initialization to identify dif-

ferent types of gambling behavior or playstyles. Clustering algorithms, in general,

divide data into k groups or clusters by analyzing cases in a data set; cases that

appear similar to others are grouped together [69]. A dissimilarity function is used to

define these clusters. There are numerous methods for clustering data, with k-means

clustering being one of the most widely used.

Figure 4.3: Elbow Method

The number of clusters is the only major hyper-parameter that needs to be tuned

for this algorithm, which can be determined through Elbow method. This algorithm

is linear in complexity and scales well to big data. The dataset was clustered by

changing the value of k from 5 to 20 to identify a stable and suitable solution for k

as shown in Figure 4.3. The optimal value of k was found to be 9 which was then

verified using silhouette analysis (Figure 4.4). The dissimilarity of data objects was

calculated in this study based on the distance between pairs of data objects using the

Euclidean distance on the normalized dataset.
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Figure 4.4: Silhouette Analysis

Figure 4.5 represents the overall distribution of sessions in each cluster. Clusters

1, 4, 5, and 6 have nearly identical numbers of player sessions, whereas other clusters

have fewer sessions.

Figure 4.5: Distribution of Clusters

Figure 4.6 illustrates the distribution of all features in clusters. Many features
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have a low standard deviation (black bar on the plot), indicating that the values

within the clusters are close to each other and the clusters are correctly formed.

Figure 4.6: Distribution of Features
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To mimic one of the playstyles, we selected a cluster from among all clusters that

represent a group of players with similar playstyles. For this study, we chose cluster

number 4, which contains 4483 sessions. This cluster represents intense gamblers,

with a mean of 0.26 bets per second, who are unconcerned about losing a lot of

money, as evidenced by an 82% loss.

4.4 Identifying Termination States

We want to find the termination states, where the player decides that continuing

the session is not worth it, and train an RL model based on these states. The

endpoints are the 25th, 50th, and 75th percentiles because they represent the majority

of the distribution of the clusters and show the general playing style of the players

within this cluster. The figures 4.7, 4.8, 4.9 show the distance between the value of

a feature and its specific termination value that is 25th, 50th, and 75th percentiles,

respectively. This distance is calculated by averaging 100 players’ session features and

then calculating the Euclidean distance for each transaction performed by the player

with the termination value; i.e., the distance is calculated as the player progresses

through the game. We chose win percentage, loss percentage, loss disguised as a win,

PW ratio, and the illusion of control termination values in the termination states for

training the RL model because they have a smooth decreasing curve, indicating a

common playing style among players in this cluster.

Figure 4.7: Distance with 25th Percentile (Q1)
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Figure 4.8: Distance with Median

Figure 4.9: Distance with 75th Percentile (Q3)

4.5 Reinforcement Learning

In this section, we will briefly discuss the action space, state space, and reward used

in the RL model for generating player behavior sessions.

4.5.1 Action Space

The agent can mainly take two types of actions that are either it can make a wager

or cash out. The agent also has to decide the amount of money to wager. As in the

real EGM game, the agent can also only bet 2, 4, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50,
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60, 70, 80, 90, and 100 dollars. If the agent decides to cash out, it will cash out all of

the money in the machine because the majority of the players in the original cluster

only cashed out once.

4.5.2 State/Observation Space

The agent looks at the observation space in order to take action. Initially, the agent

gets some random credit in the machine to start with as we have no cash in action.

The agent considers the amount waged and received in the previous transaction, the

current credit amount in the machine, the win percentage, the loss percentage, the

loss disguised as a win, the payout to the wager, and the illusion of control. The

agent uses these features to predict which actions will result in a higher reward and

acts accordingly.

4.5.3 Reward

The agent’s goal is to maximize the total reward of the game episode. If an agent

makes an invalid move (for example, wagering more than credit) for each step, it

will be penalized by 15. If the Euclidean distance between the termination state and

the current state decreases, the agent receives a reward of 1. If the agent cashes out

from the machine, he receives 15 as a reward. If the Euclidean distance between the

current state and the termination state is less than 2, it receives a reward of 5.

4.6 Results and Discussion

The RL models were used to generate sessions simulating player behavior. We trained

PPO2, which is implemented for GPU by OpenAI, and for multiprocessing, it uses

vectorized environments compared to PPO1 which uses MPI [2], and ACKTR for

around 1 million iterations.

We generated around 1000 sessions of agents playing the game by both models.

These session data were then used to compute the win percentage, loss percentage,

loss disguised as a win, and PW ratio (see description in Table 3.1). To evaluate

the model’s performance, we compared statistical measures like the minimum, 25th

percentile, median, 75th percentile, and maximum values of the features and the
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real player cluster to see if the model’s agent playstyle matched with the real player

playstyle of the selected cluster.

Figure 4.10 shows that both ACKTR and PPO2 generated sessions that are very

similar to those of real players. We can see that the 25th percentile, median, and 75th

percentile values of both models are nearly identical to those of the original cluster

for all the selected features. Figure 4.11 depicts the distribution comparison. We can

see that the distribution of sessions generated by both models is similar to that of

the original cluster. ACKTR depicted the wager features more accurately, such as

the number of unique wagers, average wager, and the illusion of control, because the

agent learned to change the wager, whereas the PPO2 agent played the entire session

with only one wager value. ACKTR agent was intelligently changing the wager value

depending on the losses and the wins to gain maximum reward out of the session.

PPO2 was better than ACKTR in playing for a longer time, as PPO2 produced

sessions with a number of wagers of around 200, while ACKTR produce sessions with

a maximum of 100 numbers of wagers.
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Figure 4.10: Statistical Measures Comparison
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Figure 4.11: Features Distribution Comparison



Chapter 5

Conclusion and Future Work

In this chapter, we will conclude this research by discussing the main research out-

comes in relation to the research objectives and questions, as well as discussing their

significance and contribution. We will also briefly discuss the shortcomings of this

research and provide suggestions for future work.

5.1 Addressing Research Problems

The following research problems were addressed by the analysis of session data and

experiments implemented in this thesis:

1. What reasonable assumption should be considered while attempting to define

the player experience?

Given the characteristics of the players, two assumptions were used to categorize

sessions with the players’ experience: Time-based Only (TBO) and Time-based

and Cash Out to Cash In ratio (TB-COCI).

2. Are there any interpretable models that can justify the assumption taken in the

previous question while also accurately classifying the sessions?

The Logistic Regression (LR), Decision Tree (DT), and Explainable Boosting

Machine (EBM) provided insights into factors responsible for the positive expe-

rience and justified the TB-COCI assumption based on the importance of the

features toward prediction. EBM performed efficiently in classifying the session

experience.

3. What strategy may be utilized to comprehend the EGM’s complicated environ-

ment and mimic the behavior of a real-world player?

Reinforcement Learning (RL), Proximal Policy Optimization (PPO) and Actor

Critic using Kronecker-Factored Trust Region (ACKTR), were used to train

57
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an agent to learn a simplified version of the EGM environment and generate

playing behavior that mimics that of real-world players.

5.2 Importance of Factors in Player Positive Experience

5.2.1 Conclusion

This study aimed to justify an assumption for labelling whether or not a player enjoyed

during the session and identifying the factors responsible for a positive experience

while playing on EGM. Upon interpreting the models, it was found that assumption 2,

which was TB-COCI, justifies the positive experience of a player as the importance

given to the features by the models on TB-COCI was more cogent than TBO. The

player experience is primarily influenced by factors such as bonus win rate, average

wins in the primary game, additional cash in done by the player, and ACCI ratio.

Furthermore, the DT and EBM performed better at classifying sessions in TBO than

in TB-COCI, while the other two models performed better in TB-COCI. When LR

was applied to the features chosen by DT, the overall performance in classifying the

session improved, and it not only provides insights into the flow of the features, but

also the weightage of each feature towards the predictions. The results indicate in

both the assumptions, TBO and TB-COCI, EBM was giving a performance to that

of state-of-art models along with a high interpretation of each feature contributing to

the final prediction.

5.2.2 Limitations

The features chosen for the assumptions taken into account may not necessarily re-

flect actual enjoyment since it looks at behavioral patterns. Furthermore, the player

experience may be influenced by external elements that are not taken into considera-

tion in this study, such as the ambiance of the venues where the players are playing.

Furthermore, the correlations between the characteristics and the player experience

may be underdetermined by unforeseeable factors such as the player’s motivations,

like whether they play for money or for fun.
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5.2.3 Future Work

For future research, labelling sessions with the experience that players had while

playing the game could be done by collecting surveys at the end of the sessions,

though this may be challenging because individuals desire privacy at places where

EGMs are installed. Furthermore, in the assumption, a different set of behavioral

attributes could be employed to label and classify sessions. Additionally, a linear

function might be created utilizing the model insights to predict the real-time enjoy-

ability of the players. Moreover, Neural Additive Models (NAM) [4] could be used

which incorporate some of the expressivity of deep neural networks with the inherent

intelligibility of generalized additive models. Lastly, this study could be used on the

different kinds of EGM games, and it will be interesting to understand how the same

player’s experience changes with different games.

5.3 Mimicking Player Behavior

5.3.1 Conclusion

This study further mimics player behavior to obtain a good evaluation of a reinforce-

ment learning model as a feasible substitute for real-world players. K-means gave

an excellent separation of the player behaviors. We selected the cluster with intense

gamblers and their behavioral attributes used to define the termination states for the

RL model. The reward for the agents was calculated based on the Euclidean dis-

tance between the current state and the termination states. Both the models, PPO2

and ACKTR, succeeded in producing behavior similar to that of the selected cluster

behavior. Though PPO2 was able to produce sessions with longer duration or more

number of wagers, ACKTR slightly outperformed PPO2 as the ACKTR agent was

intelligently able to change wager values during the session, which is an important

attribute to say that the agent mimicked the player behavior.

5.3.2 Limitations

The RL algorithms employed to mimic player behavior in this study were only used

for one playstyle, hence they may not be generalizable to other playstyles. Since the

RL models have not been tested in production, they may be subject to unforeseen
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limitations.

5.3.3 Future Work

For future work, a different clustering algorithm could be used to have a better distinc-

tion of the behaviors of the player. We can include more features in the termination

states, this might make the agent behave more like real-player as it will have more

behavioral attributes to think about. It will be interesting to see how the agent will

behave by tweaking the reward function from using the Euclidean distance to some

other distance. Currently, the model does not have a cash in action as it starts with

some random number credit in the machine, this action could be added so that it is

performed by the agent, and also the agent could be modeled so it can perform some

intermediate cash in and cash out based on the net loss of the session. Finally, it will

be interesting to change this EGM environment to simulate it as a video game such

as Atari games.
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