
INFERENCE OF GENE COEVOLUTION BASED ON
PHYLOGENETIC PROFILES

by

Chaoyue Liu

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

September 2022

c© Copyright by Chaoyue Liu, 2022



To my parents, for their endless love, support, and encouragement.

To my beloved, for having you on this journey.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Phylogenetic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Phylogenetic Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Comparative Methods for binary traits . . . . . . . . . . . . . . . . . 5
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Abstract

Phylogenetic profiles, which summarize the presence and absence patterns of genes

in a set of genomes, can be used to identify genes that have correlated evolutionary

histories. However, comparative analysis of phylogenetic profiles should take into

account the phylogenetic effect under consideration. In this study, we developed

phylogenetic comparative methods to infer the gene coevolution.

We first proposed an approach that uses Pagel’s correlation model to infer the evo-

lutionary similarities between genes and a hierarchical-clustering approach to define

sets of genes with correlated distributions across the organisms. The results support

the assumption of our work that the genes with correlated evolutionary histories tend

to be functionally linked.

However, Pagel’s method is computationally expensive and tends to overestimate

the signal of coevolution. We developed a new coevolutionary model - the Commu-

nity Coevolution Model (CCM), which has the additional advantage of being able

to examine multiple genes as a community to reveal a more complete picture of the

dependency relationships. We also developed a simulation procedure to generate phy-

logenetic profiles of gene sets with correlated evolutionary trajectories and adjustable

strength of interactions. The results show that the CCM is more accurate than Pagel’s

method and other heuristic tree-aware methods and provides more biological insights

such as the evolutionary rates, significance levels and directions (positive/negative)

of interactions.

We also developed a matrix decomposition-based method (Chisq-PLR), especially

for large-scale analysis. Our method not only has computational speed that is com-

petitive with other heuristic methods but also gives support to better biological ex-

planations. This fast method can be used to pre-process large data sets to reduce the

number of computations that need to be carried out by CCM or other mechanistic

model based methods.
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Chapter 1

Introduction

Organismal traits can evolve in a coordinated way, with correlated patterns of gains

and losses reflecting important evolutionary associations. Discovering these associa-

tions can reveal important information about the functional and ecological linkages

among traits. Comparative studies can provide useful insights into selection and

adaptation of organismal traits in concert with their evolutionary history [82]. The

types of traits that can be assessed in this framework are broad and can include

morphology, behaviour, physiology, and ecology [70].

In this study, we treat an individual gene’s presence and absence as a trait dis-

tributed across a set of genomes. Genes can exhibit similar patterns of presence and

absence [72] due to correlated evolutionary processes of gains (resulting from lateral

gene transfer) and losses, for reasons such as participation in a common biochemical

pathway, physical linkage, or co-localization on a mobile genetic element such as a

plasmid [27, 12, 17]. Lateral gene transfer (LGT) refers to the movement of genetic

information between organisms other than by standard vertical transmission from

parent to offspring [65] and is an important force in microbial evolution enabling pro-

cesses such as adaptation to extreme environments [65, 32], and acquisition of new

metabolic functions [68]. Examination of these patterns can reveal important infor-

mation about related functions and common pathways of LGT. A well-established

approach to represent presence and absence patterns among genes is the construc-

tion of phylogenetic profiles, binary vectors that summarize the presence and absence

of genes across a set of genomes, effectively treating each gene as a separate trait

[71, 64, 60].

The success of phylogenetic profiling depends on the use of appropriate measures

to express the distance and similarity between profiles. However, because of phylo-

genetic similarity, closely related species are likely to share many traits as a result

of the process of descent with modification, which means that the gene distributions,

1
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which are part of a hierarchically structured phylogeny, cannot be regarded as inde-

pendent [26, 16, 54]. Figure 1.1 illustrates how the phylogenetic effect could impact

the comparative results. In Figure 1.1.a, two flagellar genes show substantial dis-

similarities in the clade which consists of closely related Clostridioides difficile, but

have strongly correlated patterns across the remainder of the tree. However, from the

evolutionary perspective, the drastic dissimilarity in the clade of C.difficile could be

potentially attributed to a single LGT event. The phylogenetic tree in this example is

highly skewed due to sampling bias and is obviously problematic for phylogeny-näıve

methods.

The phylogenetic effect could impact ordinary trees as well. Figure 1.1.b gives

another example with a more balanced phylogenetic tree compared to the tree in

Figure 1.1.a. Both pairs of genes in Figure 1.1.b have the exact same number of co-

occurrences, but pair 1 has the co-occurrences concentrated in one clade of the tree,

while the co-occurrences of pair 2 are spread across the tree. Both pairs will show the

same level of similarities for phylogenetic-näıve methods, but as other comparative

studies suggested [16, 91], pair 1 indicates a “within-clade pseudoreplication” scenario

which occurs when two traits have a single origin on the same lineage, and are then

inherited by nearly all species in the descendant clade, resulting in (almost) perfectly

co-distribution. On the other hand, pair 2 shows replicated co-occurrences across

the tree and suggests that the two genes share multiple gain and loss events and

therefore are more likely to have a genuine evolutionary association. Both examples

suggest that the phylogenetic effect should be taken into account while comparing the

phylogenetic profiles and one solution is to compare the phylogenetic profiles from an

evolutionary perspective.

In the remainder of this chapter, I will introduce in detail the three components

of this comparative study: phylogenetic tree, phylogenetic profiles, and comparative

methods for binary traits.

1.1 Phylogenetic Trees

A phylogenetic tree is a branching diagram depicting the evolutionary relationships

among different entities (such as genes, genomes, or species) constructed on the basis

of sequenced genomics data [25]. For the phylogenetic tree of five taxa shown in
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a)

C.difficile

Pair 1

gene 1

gene 2

Pair 2

b)

Figure 1.1: Illustration of phylogenetic effects in the comparison of phylogenetic pro-
files. a) Two correlated genes with a highly skewed phylogenetic tree. b) A pair
of genes (Pair 1) that have co-occurrences concentrated in one clade, and another
pair of genes (Pair 2) that have co-occurrences across the tree. Each row indicates a
phylogenetic profile where black bars represent presences.
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Figure 1.2, three basic components of the tree are the root (s0), nodes (s1, s2, . . . , s6),

and branch lengths (t1, t2, . . . , t6).

Figure 1.2: A phylogenetic tree with 4 tips: s0 represents the root of the tree, s1, s2
are two internal nodes and s3, s4, s5, s6 are 4 existing species. t1, t2, ..., t6 on each
branch indicate the branch lengths.

A phylogenetic tree can be rooted or unrooted. The root of the tree represents

the common ancestor of all entities in the tree. A rooted tree is often required by

model-based comparative methods since the rooted tree indicates the direction of

evolution. Unrooted trees only describe the relatedness between species but do not

make assumptions about the ancestral root. The most common way for rooting the

tree is to include distantly related organisms as outgroups in the data for constructing

the tree so that the root can be determined between the outgroups and the other taxa

[33].

The terminal nodes, also called the tips of the tree represent the observed entities

(genes, genomes, species, etc) that are used to construct the phylogeny. In a rooted

tree, each internal node is the branch point that indicates a divergence event and

represents the common ancestor of all taxa descended from the branch point.

Branch lengths represent the amount of evolutionary change over time, which are

usually expressed as the number of nucleotide or amino-acid substitutions per site.

Thus, longer branches indicate that more changes have occurred or more time has

elapsed.



5

1.2 Phylogenetic Profiles

As the number of fully sequenced genomes increases rapidly, the phylogenetic pro-

filing approach based on patterns of gene presence and absence across genomes has

become a promising strategy for the computational annotation of gene functions and

for better understanding their ecological roles [72, 66, 14, 54]. The underlying hy-

pothesis of the phylogenetic profiling approach is that functionally linked genes are

gained and lost together from genomes during evolution, and therefore, they could

have homologs in the same set of genomes which results in a correlation of their

phylogenetic distributions [72, 44].

The protein encoded by each gene in a fully sequenced genome can be assigned to

a specific set of proteins based on homology relationships. Homologs can be classi-

fied into paralogs and orthologs, depending on whether they arose by duplication or

speciation [47]. Orthologous genes that originated by vertical descent from a single

ancestral gene are considered to be more likely to share similar functions [47, 29], and

are the type of homologs we focused on in this study. The presence or absence of this

protein across genomes can then be represented by its phylogenetic profile, which can

be considered as a long binary sequence encoding the presence or absence of the gene

across a given set of genomes. As the illustration of constructing phylogenetic profiles

shown in Figure 1.3, homologous genes are first searched within each genome and then

phylogenetic profiles of genes are constructed on the basis of homology information

across genomes.

1.3 Comparative Methods for binary traits

1.3.1 Phylogeny-näıve Methods

In the application of using phylogenetic profiles to predict the functions of proteins,

Pellegrini et al.(1999) applied Hamming distance to measure the similarities between

two phylogenetic profiles [72, 44]. Hamming distance, also equivalent to Manhattan

distance for binary traits, is simply the number of bits that are different between two

binary vectors, which in this case, is the number of species that do not have the same

absence/presence patterns. Given the profiles of two genes across p genomes Ap×1
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g1

S1

S2

S3
g2

g4
g5

g3 g4

g1
g4

g2

Genomes:

Phylogenetic Profiles:

S1

S2

S3

g1 g2 g3 g4 g5

1

0

1

1

0

1

0

1

0

1

1

1

1

0

0

Figure 1.3: An illustration of phylogenetic profiles of five genes (g1, g2, g3, g4, g5) across
three genomes (S1, S2, S3).
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and Bp×1, the Hamming distance can be calculated as

d(A,B) =

p∑

i=1

|Ai −Bi|.

Besides being phylogeny näıve, the other obvious drawback of Hamming distance is

the lack of scaling, which does not take into account the total number of occurrences

present in the species.

The Jaccard index is a measure of similarity for two vectors with a range from

0 and 1. In comparing phylogenetic profiles, the Jaccard Index is the ratio of the

number of genomes that have both genes divided by the number of genomes that

have either of the genes. Given the profiles of two genes, the 2× 2 contingency table

can be constructed as below

B

1 0

A
1 a b

0 c d

and the Jaccard Index is defined as

J(A,B) =
a

a+ b+ c
.

The Jaccard Index only focuses on the similarity in the co-occurrences of two genes

and ignores genomes that do not contain any genes.

Mutual Information is a measure of the mutual dependence between two variables

in information theory and can be used to quantify the similarities between profiles

based on how much information can be gained from the knowledge that one gene is

present about the presence of another gene [97]. The mutual information for a pair

of genes A and B is defined as

I(A,B) =
∑

i,j∈{0,1}

pij(A,B) log2

pij(A,B)

pi(A)pj(B)
,

where p0 and p1 denote the fraction of presences and absences respectively in profiles.

In order to calculate the statistical significance of the similarities observed be-

tween two phylogenetic profiles, the Hypergeometric test can be applied based on

the combinations of presence and absence as shown in the contingency table above
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[16, 80]. The hypergeometric distribution is a discrete probability distribution that is

often used to describe the probability of number of successes within a fixed number of

independent draws without replacement [61]. Based on the contingency table above,

the probability of observed patterns can be calculated as

Pr(observed) =

(
a+b
a

)(
c+d
c

)
(
p
a+c

) , p = a+ b+ c+ d.

The Hypergeometric test assesses the extremeness of observed similarities between

profiles, so the P-value is calculated as the sum of the probabilities of all possible

realizations of more extreme patterns (more co-occurrences), which is the same as

a one-sided Fisher’s exact test. There are other metrics that can be used to score

similarity between two binary traits. The above four common ones are reviewed here

and are also compared in our study.

The standard metrics do not take into account phylogenetic effects and weight

each genome in the phylogenetic profile equally. Since closely related genomes are

more likely to share similar gene content, they are likely to have an outsized influence

on profile comparisons relative to their phylogenetic diversity as shown in Figure

1.1.a. The independence assumptions on genomes that these standard metrics are

based on are violated by the fact that genomes are connected by a phylogenetic tree,

thus application of these methods could lead to the biased inference results.

1.3.2 Heuristic Methods

Several heuristic approaches have been developed to account for phylogenetic effects

in profiles based upon the phylogeny-näıve metrics. Random sampling and shuffling

techniques can be used to form a null distribution of standard metrics to estimate

the statistical significance of the observed similarities as the example shown in Figure

1.4.a [42, 81]. A restrictive shuffling strategy that takes into consideration the lineages,

which shuffles only the taxa specific to a lineage, can further improve the accuracy of

the estimated null distribution for lineage-specific proteins [42]

von Mering et al. (2003) attempt to account for the phylogenetic effect by collaps-

ing the tree into a subtree based on a tree-guided selection of species. As illustrated

in Figure 1.4.b, if the species within the same clade have the same presence/absence

pattern for a pair of genes, this clade is collapsed into one single node and substituted
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1
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Figure 1.4: An illustration of three heuristic methods. a) Shuffling strategy to create
null distribution. b) Clade-adjustments method c) Runs-adjustment method.
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by their ancestral state.

Cokus et al. (2007) account for the underlying phylogeny by treating consecutive

matches between profiles as a run, which are collapsed to one single state, as shown

in Figure 1.4.c, then computing the similarity between phylogenetic profiles based on

the enumerated runs of consecutive matches [16]. The hypothesis is that the profiles

with many runs are more likely to evolve in a correlated fashion (e.g. Pair 1 in Figure

1.1.b) than the profiles in which all co-occurrences are concentrated in one lineage of

the tree (e.g. Pair 2 in Figure 1.1.b).

The shared underlying idea of these methods is the application of a weighting

scheme to the genomes in order to counteract phylogenetic effect. However, they are

ad hoc approaches that do not properly model the underlying evolutionary processes.

For example, counting the three consecutive co-occurrences as one run in Figure

1.4.c might be lacking in biological explanation, as these three genomes are relatively

distant with their last common ancestor being the root. The choice of the standard

metrics could also affect these heuristic methods and produce different results.

1.3.3 Probabilistic Methods based on Evolutionary Models

Evolutionary models aim to explain the distribution of genes by modeling the correla-

tion patterns of gain and loss on a phylogenetic tree. For discrete traits, a continuous-

time Markov chain with a finite state space is commonly used for modeling the evo-

lutionary history along the phylogenetic tree. A Markov chain is a stochastic process

in which the transition to the next state only depends on the current state.

Under the assumption of a Markov process, the transition probability of traits on

one branch only depends on the starting state of the branch and the evolutionary

time which is given by the branch length. In addition, the transition on each branch

is also assumed to be independent from other branches. To construct the likelihood

function of the tree for one realization of the evolutionary process, the straightforward

way is to take the product of the transition probabilities of all branches from the root

to the tips. However, the computation cost could be expensive as we need to sum

over all the possible combinations of the states at each internal node. The equation
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below shows the likelihood function for a simple tree in Figure 1.2:

L =
∑

s0

∑

s1

∑

s2

Ps0,s1(t1)Ps1,s3(t3)Ps1,s4(t4)

× Ps0,s2(t2)Ps2,s5(t5)Ps2,s6(t6),
(1.1)

where Psi,sj(tj) = eQt denotes the transition probability from state i to state j via a

branch of length t and Q is known as the instantaneous transition rate matrix.

The amount of computation using this straightforward way will increase exponen-

tially as the tree increases in size, but it can be reduced by applying Felsenstein’s

pruning algorithm [24]. The pruning algorithm is a dynamic programming approach

that takes advantage of the nested structure of the tree and computes the likelihood

of the tree recursively. By applying the pruning algorithm, the likelihood function L

can be reformatted as

L =
∑

s0

[(
∑

s1

Ps0,s1(t1)Ps1,s3(t3)Ps1,s4(t4))

× (
∑

s2

Ps0,s2(t2)Ps2,s5(t5)Ps2,s6(t6))].
(1.2)

In this way, the likelihoods for subtrees can be reused and the computation complexity

is reduced to linear.

The CoPAP (Coevolution of Presence-Absence Patterns) method models the evo-

lutionary process for each gene independently with a 2 by 2 transition rate matrix

Q (two states: 0 and 1) and then uses a stochastic mapping procedure to infer the

expected number of gain and loss events for each branch. Coevolutionary correlation

between genes is then calculated by computing Pearson’s correlation between the in-

ferred evolutionary histories based on simulations [14, 15]. Both CoPAP and Pagel’s

correlation test methods are based on this maximum likelihood framework with an

underlying continuous-time Markov process.

Pagel’s correlation approach specifically tests the evolutionary correlations be-

tween pairs of binary traits [66]. To characterize the discrete-trait evolution in Pagel’s

method, two continuous-time Markov models are contrasted: One model where the

two characters are assumed to evolve independently, and a second model where two

characters are assumed to evolve in a correlated way, possibly due to interactions.
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The hypothesis of correlated evolution is tested by comparing the fit of the two dif-

ferent models to the observed data set. Under the assumption that the two traits

evolve independently, the null model (independent evolution model) is a special case

of the alternative model (dependent evolution model), and the two models can be

assessed using a likelihood-ratio test. The dependent evolution model (8 parameters)

which has more degrees of freedom in the Q matrix will almost certainly have a higher

likelihood than the independent evolution model (4 parameters). Thus, the likelihood

ratios, which follow a χ2 distribution with four degrees of freedom (difference in pa-

rameters), will express the relative strength of the evolutionary dependencies between

genes.

CLIME (clustering by inferred models of evolution), another probabilistic method,

uses a different way to model the evolutionary process [51]. CLIME is a clustering

algorithm based on a hidden Markov model (HMM), to group genes into evolutionarily

conserved modules (ECMs) with the assumption that each gene has a single gain event

and zero or more loss events. The evolutionary model of each ECM is represented

by a single gain branch and a vector of loss probabilities for each branch. CLIME

first infers initial ECMs from the input gene set and then expands to other genes in

the data set by calculating the likelihood of each gene against inferred ECMs and

assigning the gene to the best-fitting ECM.

CLIME is specifically designed for eukaryotic data as it allows only one single gain

event, so it is likely less suitable for prokaryotic data that have high rates of gene

transfers. CoPAP assumes that the gain rate and loss rate independently vary among

genes rather than explicitly modeling the interactions during evolution. Although

Pagel’s correlation model outperformed CLIME and CoPAP in detecting functionally

linked genes in our study (Chapter 2), it still suffers from high computational cost

and has been criticized for its tendency to overestimate the signal of coevolution in

other studies [56, 95]. The features and computation information of the methods

reviewed together with the CCM developed in this thesis are summarized in Table

1.1.
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1.4 The Structure of the Thesis

In Chapter 2, we firstly apply Pagel’s coevolutionary model and hierarchical clus-

tering to analyze the gene set of the bacterium “Lachnospiraceae bacterium 3-1-

57FAA-CT1” (abbreviated as LZ), which was isolated from a biopsy retrieved from

the transverse colon of a female Crohn’s Disease patient at the time of colonoscopy.

LZ is of interest because its genome size is very large compared to most of its im-

mediate neighbours (6505 protein-coding genes as compared with a median of 3124

in our complete data set of Clostridia). The results of this study further support

the assumption of our work that the genes with correlated phylogenetic profiles also

tend to be functionally linked. This work has been published on Genome Biology and

Evolution (10, no. 9 (2018): 2255-2265).

In Chapter 3, we develop a new model-based comparative method - the Com-

munity Coevolution Model (CCM) to analyze the evolutionary associations among

genes based on phylogenetic profiles. In the CCM, genes are considered to evolve

as a community with interactions, and the transition rate for each trait depends on

the current states of other traits. Surpassing other comparative methods for pairwise

trait analysis, CCM has the additional advantage of being able to examine multiple

traits as a community to detect the conditionally independent links and reveal more

dependency relationships. For pair-wise comparisons, our method is more efficient

and approximately 5 times faster than Pagel’s method. We also develop a simula-

tion procedure to generate phylogenetic profiles with correlated evolutionary patterns

that can be used as benchmark data for evaluation purposes. This work has been

published online by Systematic Biology (10.1093/sysbio/syac052).

In Chapter 4, we propose another novel method based on matrix decomposition

to test the dependency between binary profiles conditioning on the tree topology.

Although our CCM model is computationally more efficient than Pagel’s method,

it cannot scale to larger datasets containing thousands of gene profiles due to the

quadratic scaling of pairwise comparisons. Our motivation for this study is to de-

velop a fast and accurate method that can pre-process a large data set to reduce the

number of computations that need to be carried out by CCM or another probabilistic

model based method. The existing heuristic methods such as the runs-adjustment

method, and the clade-adjustment method that empirically apply a weighting scheme
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to the genomes in order to counteract phylogenetic effects, are weak at biological in-

terpretations. Our approach considers the phylogenetic profile as containing two

components of information: one is the underlying phyletic pattern (P ) driven by the

phylogeny among species as the close related genomes that inherit from the close

common ancestors will tend to share similar gene content and thus the same genes

are more likely to be found in closely related genomes (row-wise); the other compo-

nent is unique information about individual genes (S) caused by their own gain/loss

events during evolution (column-wise). Then we can test the dependency between

a pair of profiles by conditioning on their predicted underlying phyletic pattern (P )

such that the genes are considered related only when their individual components

(S) show significant patterns. Our method not only has computational speed that is

competitive with other heuristic methods but also gives support to better biological

explanations to the data.

In Chapter 5, we summarize all the methods and analyses we have developed in

this thesis and discuss possible future work.



Chapter 2

Phylogenetic clustering of genes reveals shared evolutionary

trajectories and putative gene functions

2.1 Introduction

Lateral gene transfer (LGT) is an important force in microbial evolution, enabling

processes such as adaptation to extreme environments [65, 32], acquisition of new

metabolic functions [68], and defense against antimicrobial agents [7]. Coordinated

transfers of genes can enable rapid ecological shifts, and identification of sets of genes

implicated in these shifts can highlight the events that took place during the diversifi-

cation of prokaryotic groups, and suggest functional linkages between the implicated

genes. Given the large phylogenetic diversity of microorganisms that inhabit the hu-

man microbiome [93], and in many cases the uncertainty associated with their precise

ecological roles [19], augmenting comparative genomic and metagenomic analysis with

examination of LGT can produce more information about the capabilities of a given

microorganism. Although strong evidence exists for preferential patterns or “high-

ways” of gene sharing among specific groups of prokaryotes [8, 85], small amounts

of LGT connect many different taxonomic groups and the overall pattern of sharing

resembles a web rather than a clear reticulated tree [46]. These diffuse patterns,

coupled with the methodological challenges associated with LGT inference [74, 46],

make it difficult to identify sets of genes with similar evolutionary trajectories.

Many approaches have been used to identify sets of genes with similar evolutionary

histories. Puigbò et al. (2009) performed a comparative analysis of the topological

similarity among 6901 phylogenetic trees built for clusters of orthologous groups of

proteins representing a set of 100 prokaryotes, showing that LGT did not obscure a

significant central tendency so that a consistent phylogenetic signal still exists [75].

Kunin et al. (2005) applied tree reconstruction methods to infer vertical evolution-

ary inheritance and then detect LGT events by using an ancestral-state inference

16
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algorithm and estimated the number of genes exchanged across organisms using a

weighting scheme [49]. The results suggest genes might propagate across a micro-

biome rapidly, with certain organisms functioning as hubs in a broader LGT network.

Phylogenetic profiles [72] summarize the presence and absence of homologous genes

across a set of organisms, and have been used to identify laterally transferred genes

[65] and to predict the functions of hypothetical genes [71]. Differences in gene con-

tent between related species result from processes such as gene loss, duplication and

LGT, and proteins that are involved in similar biological processes may be gained and

lost together, leading to similar phylogenetic profiles. However, taxonomic sampling

can pose a serious challenge to the interpretation of phylogenetic profiles. Calculating

Manhattan or bit distances between pairs of profiles, for example, can be overly sim-

plistic because it weights each contributing genome equally. In a scenario where the

phylogenetic sampling of genomes is non-uniform, these distances will be unduly in-

fluenced by closely related genomes that have similar profiles due to common descent.

The most informative profiles will be those that are widely but sporadically dispersed

across very distantly related genomes, as their distribution will not be readily ex-

plained solely through a hypothesis of common descent. Vert (2002) [96] and Barker

and Pagel (2005) [6] applied phylogenetic reweighting schemes to the assessment and

comparison of phylogenetic profiles showing that the genes evolving in a correlated

fashion, also tend to be functionally linked.

CLIME [51], short for Clustering by Inferred Models of Evolution, was developed

to explicitly consider phylogenetic relationships among genes by inferring evolutionar-

ily conserved modules (ECMs) using a Bayesian mixture model. Each ECM represents

a tree-structured hidden Markov model with a single gain branch and branch-specific

gene loss probabilities. Then CLIME assigns genes within the genome to the most

likely ECM or a new ECM by comparing with a background null model using the

likelihood-ratio test. However, CLIME is based on models in which genes can emerge

only once and then be lost multiple times. Since the effect of LGT is to create multiple

apparent gene gains throughout a tree, the model of CLIME may not be appropriate

for modeling prokaryotic genes that are subject to significant amounts of LGT.

Here we propose a phylogenetic-profile-based method that uses phylogenetic mod-

eling to identify pairs of genes with similar historical patterns of gain and loss. Our
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approach uses the method of Pagel (1994) [66] to test hypotheses of correlated evo-

lution between pairs of genes. The statistics generated by this approach are used

to generate clusters using a hierarchical approach based on average linkage. The

resulting clusters can be evaluated in terms of the similarity of their phylogenetic

distributions, the functional similarity of the proteins in each cluster, and the phylo-

genetic trees built from different sets of proteins contained within the cluster, which

can be further used to detect LGT events and infer genomes evolution via tree recon-

struction methods. The main work flow of this study is shown in Figure 2.1.

One taxonomic group that has shown evidence for high levels of LGT is the class

Clostridia. As part of the Firmicutes phylum, the class is a significant component of

the human microbiome and contains an ecologically diverse set of organisms, includ-

ing the pathogens Clostridioides difficile (previously Clostridium difficile; a notorious

cause of nosocomial diarrhea), commensals from genera such as Roseburia and Fae-

calibacterium, and organisms that are less well understood [73, 3]. Commensurate

with its clinical importance, over 1000 genomes from class Clostridia have been se-

quenced at least in draft form, providing a rich resource for comparative genomics.

Here we apply our new method to a set of 687 genomes from class Clostridia, with

a particular focus on Lachnospiraceae bacterium 3-1-57FAA-CT1, a micro-organism

which was isolated from a patient with Crohn’s disease and has an abnormally large

genome for the group. Our method successfully recovers phylogenetically and func-

tionally cohesive clusters of genes, and highlights probable highways of gene sharing

that have shaped this genome and its close neighbours.

2.2 MATERIAL AND METHODS

2.2.1 Datasets

The bacterium “Lachnospiraceae bacterium 3-1-57FAA-CT1” lacks a formal taxo-

nomic designation, and we refer to in this paper as “LachnoZilla” or LZ. LZ was

isolated from a biopsy retrieved from the transverse colon of a female Crohn’s Dis-

ease patient aged 22 years at the time of colonoscopy. The patient was suffering a

flare at the time of colonoscopy and biopsy material recovered was taken from an
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Figure 2.1: Workflow of our weighted phylogenetic profile approach. Genome-
sequences are collected to construct the protein profiles and phylogenetic tree. Then,
Pagel’s likelihood method is implemented to calculate the evolutionary similarities
among genes and the hierarchical clustering approach is used to define sets of genes
with common distributions across the given genomes. An evaluation framework based
on the GO terms (biological process) is also developed to study the function associa-
tions in the clustering results. In addition, the individual trees of the members within
a same cluster are compared with detect potential LGT events.
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inflamed site. Isolation was carried out through serial dilution and culture on fas-

tidious anaerobe agar (Acumedia) containing 5% defibrinated sheep’s blood (Hemo-

stat Laboratories) with streak purification. gDNA was extracted using a Maxwell

16 instrument (Promega) according to manufacturer’s instructions. Sequencing was

performed at the Broad Institute, as part of the Human Microbiome Project Ref-

erence Genomes effort (http://www.hmpdacc.org/reference_genomes/reference_

genomes.php), generating sequence data to 140x coverage. The protein-coding genes

were predicted with Prodigal [40] and filtered to remove genes with ≥ 70% overlap to

tRNAs or rRNAs. The tRNAs were identified by tRNAscan-SE [55]. The rRNA genes

were predicted using RNAmmer [50]. The gene-product names were assigned based on

top BLAST hits against the UniProtKB/SwissProt protein database (≥ 70% identity

and ≥ 70% query coverage), and protein family profile search against the TIGRfam

HMMer equivalogs.

We retrieved all available completed and draft genomes from class Clostridia

(687 genomes including LZ; Table S1 available at https://doi.org/10.1093/gbe/

evy178#supplementary-data), and a set of eight outgroup genomes from class Bacilli

and phyla Actinobacteria and Proteobacteria which are used to root the phylogenetic

tree. All genome information used in this work were retrieved from the National

Center for Biotechnology Information on August 22, 2014.

2.2.2 Phylogenetic analysis and profile construction

We used a customized version of the AMPHORA2 pipeline [103] to construct a ref-

erence phylogeny based on concatenated, conserved protein sequences encoded by

the set of genomes. Complete protein sequences were searched against the set of

hidden Markov models (HMMs) specified by AMPHORA2, yielding a maximum of

31 protein sequences per genome. Each set of homologous proteins was aligned us-

ing the corresponding HMM, then trimmed to remove any column that had a scaled

alignment confidence score less than 7. Trimmed alignment files were then concate-

nated into a single alignment, with any missing genes represented in the alignment

using missing-data (i.e., gap) characters. Maximum-likelihood phylogenetic analysis

of this supermatrix was performed using RAxML-HPC version 7.2.5, using all default

http://www.hmpdacc.org/reference_genomes/reference_genomes.php
http://www.hmpdacc.org/reference_genomes/reference_genomes.php
https://doi.org/10.1093/gbe/evy178#supplementary-data
https://doi.org/10.1093/gbe/evy178#supplementary-data
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parameters and the “PROTCATLG” model of sequence substitution [87]. One hun-

dred bootstrap replicate alignments were generated using the SEQBOOT package of

PHYLIP version 3.695, and the resulting bootstrap support values mapped to the

appropriate bipartitions in the tree. The tree was rooted arbitrarily among the 8

outgroup taxa, providing a defined rooting of the clostridial subtree.

Phylogenetic profiles were constructed using rapsearch version 2.14 [104]. The

complete set of predicted LZ proteins was compared against all other genomes in the

data set, with an expectation-value threshold of 10−20. Profiles were interpreted as

presence/absence matrices, with no weighting of profiles by the number of matching

proteins in a given reference genome. Given the computational demands of the Pagel

method, we uniformly subsampled 73 random taxa in addition to LZ from the full

tree (Figure A.1), to produce a more tractable data set for cluster construction.

2.2.3 Modeling correlated patterns of evolution among sets of proteins

We used the BayesTraits software that implements the statistical approach of Pagel

(1994) to correct profiles for shared evolutionary history. This method aims to iden-

tify significant evolutionary correlations between two binary characters, which in our

case correspond to the presence or absence of two different homologous gene fam-

ilies, as represented by their phylogenetic profiles across a phylogenetic tree. To

characterize the discrete-trait evolution in this method, two continuous-time Markov

models are contrasted: one model where the two characters are assumed to evolve

independently, and a second model where two characters are assumed to evolve in a

correlated way, possibly due to interactions. The hypothesis of correlated evolution

is tested by comparing the fit of the two different models to the observed data set.

Under the assumption that the two characters evolve independently, the null model

(independent evolution model) is a special case of the alternative model (dependent

evolution model), and the two models can be assessed using a likelihood-ratio test.

The dependent-evolution model with more parameters will almost certainly have a

higher likelihood. Thus, the likelihood ratios, which follow a χ2 distribution with four

degrees of freedom (difference in parameters), will express the relative strength of the

evolutionary dependencies between genes.

We used the resulting likelihood ratios as the basis for a hierarchical clustering
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of all profiles. The likelihood ratios for all pairs of profiles were subtracted from the

largest such ratio to generate a symmetrical 2697× 2697 distance matrix. Clustering

of this distance matrix was performed using the method of between-group average

linkage (UPGMA). Specific clusters for analysis were generated by cutting the result-

ing dendrogram at different heights h.

2.2.4 Evaluation of profiles based on phylogenetic and functional

similarity

Gene Ontology (GO) is a widely used classification scheme that was also used in the

Critical Assessment of Functional Annotation (CAFA) large-scale evaluation exper-

iment [78]. To measure the performance of the clustering methods, we developed a

framework based on the biological process (BP) category from GO to evaluate the

clustering results. All the available GO annotation of the proteins in this study are

acquired from the Uniprot Knowledgebase (www.uniprot.org). To measure the bi-

ological significance, we evaluate the clusters from two directions: the quality of the

clustering and the enrichment of GO terms. To evaluate the performance of the hier-

archical clustering at different cutting heights, we calculate the mean of GO semantic

scores weighted by the sizes of clusters according to the G-SESAME method [99]

which accounts for the fraction of the aggregate contribution of all GO terms up to

the closest shared ancestor term. In order to quantify the extent to which the clusters

of co-evolved genes are functionally related, we performed a GO enrichment test for

the distribution of each GO term across the clusters of co-evolved genes. We adopted

the Pearson’s Chi-square statistic as our test statistic. However, the Chi-square dis-

tribution is not appropriate for this test because there are many gene clusters relative

to the number of members in each GO term, which will result in many clusters with

zero count of the considered GO term. To address this limitation, we used a re-

sampling technique to estimate the null distribution of Pearson’s Chi-square statistic

by randomly assigning 100,000 times all the GO terms to the clusters of genes with

the sizes given by the sizes of our clusters of co-evolved genes from the hierarchical

clustering methods. This test is similar to the hypergeometric tests but faster in

computation.

www.uniprot.org
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2.3 RESULTS

2.3.1 Genome phylogeny and profiles

All profiles were constructed from a set of 687 genomes, including LZ. A total of

21 genera were represented, with 38 genomes from genus Clostridium including 20

genomes of C. difficile. Seven genomes including LZ were not taxonomically assigned

at the genus level, although the SILVA taxonomy [77, 105] assigned LZ to the genus

Eisenbergiella. A total of 6505 profiles were constructed with these genomes, in-

cluding 2814 proteins unique to LZ (Figure 2.2a). A total of 2697 distinct profiles

were obtained (Figure 2.2b) based on the uniformly subsampled 74 genomes. Figure

2.3 illustrates the differences between the non-phylogenetic Manhattan distance and

Pagel’s likelihood based co-evolutionary method in contrasting the similarity of three

phylogenetic profiles to a reference profile.

2.3.2 Robustness of Pagel’s statistics

Different tree rootings and the randomness in computing the maximum-likelihood

estimators in Pagel’s software may affect the calculation of coevolutionary similarities,

which can result in inconsistent likelihood-ratio statistics for the same pair of genes.

To evaluate this instability, we reran the full data set using the other 2 tree-rooting

methods: MAD which is based on the minimum ancestor deviation [92], and the

näıve midpoint-rooting method. The likelihood-ratio statistics computed from three

different ways of tree-rooting all showed correlation scores > 0.9 (Figure 2.4. a-c).

The correlations are high despite the instability introduced by the errors involved in

the maximum-likelihood computation process. We can conclude from these results

that Pagel’s statistics are robust relative to different tree-rooting methods and the

errors introduced in the computation of MLEs.

2.3.3 Properties of clusters generated by the hierarchical method and

CLIME

In spite of the similar cluster-size distributions produced by our method and CLIME,

there are substantial differences in the clusters produced. We first used the weighted
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Figure 2.2: (a) Size distribution (number of presences) of 6505 profiles. (b) Size
distribution (number of presences) of 2697 unique profiles.
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Figure 2.3: Similarity of phylogenetic profiles (1, 2, 3) to a reference profile (R)
according to Pagel’s likelihood-ratio statistics and Manhattan distance scores. Gray
bars indicate the presence of a given gene in the genome that corresponds to the
phylogenetic tree on the left. When considering the Manhattan distance, Gene 2 is
the most similar to the reference profile, whereas Gene 1 has a very large Manhattan
distance due to its representation in a closely related set of Clostridioides difficile
genomes that do not contain genes in profile R. However, this drastic dissimilarity
can be attributed to a single LGT event, and Gene 1 is most similar to the reference
profile according to the likelihood-ratio statistic.
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average of the GO semantic similarity to compare the overall clustering results be-

tween two methods. The CLIME approach, which generates a single set of clusters,

yielded an average GO similarity within clusters of 0.61 (Figure 2.5). The hierar-

chical approach generated a large range of similarity values depending on the choice

of threshold, from 0.3 when the cutting height h = 100 to 0.85 when h = 60. Both

approaches generated similarity scores that were greater than random. The increase

in GO similarity with decreasing h is reasonable, since lower values of h produce clus-

ters with higher overall profile similarity. However, the cost of lower h is that fewer

profiles are assigned to nonsingleton clusters.

A key distinction between the hierarchical approach and CLIME is the treatment

of gene gain-and-loss events. CLIME allows only a single gain of a trait on the

phylogenetic tree. In cases where a gene has a sparse distribution due to LGT, the

CLIME model will be a poor fit. This is illustrated in Figure A.2, where a hierar-

chical cluster containing four profiles (Figure A.2a), all annotated with the mannose

metabolic (alpha-mannosidase activity) GO functional category, is split into four sin-

gleton clusters by CLIME. In spite of their similar phylogenetic distribution, CLIME’s

single-gain constraint assigns events to different parts of the tree (Figure A.25b-e),

yielding different historical inferences for these four profiles. We also compared to

another novel probabilistic evolutionary model CoPAP [14, 15] at different cut-offs

(Figure 2.6) and showed that our method performs significantly better than the other

two methods (Figure 2.7) via a permutation test.

However, the runtime of CoPAP is much faster than that of CLIME and our

method. The most time-consuming step of our method is calculating the Pagel statis-

tics. Each pairwise comparison of genes requires only a few seconds, but over 3 million

comparisons are needed to do comparisons over all 2600 genes. However, this step is

easy to run in parallel because the pairs of genes are independent. In our case, we

spent about 7 days by running 30 jobs in parallel. For the same data set, CoPAP

took around 3 hours using the web service developed by its authors and CLIME took

around 1 day running on a local computer.
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Figure 2.5: Comparison of functional-similarity scores within clusters. The similar-
ity was evaluated using Gene Ontology (GO) terms, for CLIME (dashed line) and
the hierarchical approach at different h thresholds (solid line). Gray lines show the
distribution of similarities obtained for five sets of clusters obtained by randomly
reassigning tip labels in the cluster tree.
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Figure 2.6: The performance of our method and CoPAP at different cut-offs. The x-
axis represents the average size of clusters generated by the corresponding cut-offs and
the y-axis is the weighted average GO score. The red, blue and black dots represent
our method, CLIME and CoPAP respectively. The three data points in the shaded
area are further studied using a significance test in Figure 2.7
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Figure 2.7: The significance of the performance of three clustering methods. The
histogram is generated by 100 randomized assignments of genes corresponding to the
size disbribution of CLIME’s clustering results. The three vertical lines represent
CoPAP, CLIME and our method at the cut-offs in the shaded area of Figure 2.6
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2.3.4 Biological significance

To test the biological significance of our clustering results, we implemented a GO

enrichment test by comparing the Pearson’s chi square statistics between the observed

gene clusters and 100,000 randomly generated clusters in the same size distributions.

We used the Benjamini-Hochberg FDR procedure to control for multiple tests. Figure

2.8 shows the significance of the non-rare GO terms (frequency ≥ 5) in our gene

set at different cutting heights of the hierarchical dendrogram (the details of the

test are provided in Table S2 available at https://doi.org/10.1093/gbe/evy178#

supplementary-data). Among those interesting gene clusters, we take the amino-

acid biosynthesis and motility-associated gene clusters as illustrative examples.

Figure 2.8: Adjusted P values of the nonrare GO terms obtained at different cutting
heights of the hierarchical dendrogram. Each dot represents a GO term with frequency
> 5 in our gene set at different cutting heights.

https://doi.org/10.1093/gbe/evy178#supplementary-data
https://doi.org/10.1093/gbe/evy178#supplementary-data
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2.3.5 Pathway mapping of an amino-acid biosynthesis cluster

From Figure 2.5, it is anticipated that many clusters will have a high degree of func-

tional cohesion based on the GO scores. However, examination of clusters with even

relatively low GO similarity scores still showed strong functional similarities in spite

of annotations with different terms. We examined in detail a cluster containing 28

distinct profiles, with a height of 100 and a GO score of 0.62 (Figure 2.9). A striking

property of this cluster is that it contains many profiles that either include or exclude

all of the 20 C. difficile genomes, whereas a phylogenetically näıve approach would

assign a great deal of significance to this difference. Although the GO terms in this

cluster are not identical, the majority of profiles assigned to the cluster are asso-

ciated with amino-acid biosynthesis. Several amino-acid biosynthesis pathways are

represented, including leucine, isoleucine, histidine, valine, tryptophan, glutamate /

glutamine, and cysteine. Many of these pathways are tightly interconnected, notably

valine and leucine, but some pathways, in particular histidine, are more distant. Fig-

ure A.4 shows how the proteins in this cluster connect in the corresponding “Valine,

Leucine and Isoleucine biosynthesis” and “Phenylalanine, Tyrosine and Tryptophan

biosynthesis” pathways (KEGG database).

2.3.6 Phylogenetic analysis of a motility-associated cluster

Figure 2.10 shows a functionally cohesive cluster consisting of the proteins related

to flagellar assembly and motility, and their corresponding phylogenetic profiles. In

addition to predicting the functions for unannotated genes in this cluster, we can also

infer LGT events based on the evolutionary pattern we found. The patchy distribu-

tion of flagellar gene profiles supports a history that includes many LGT events. To

assess the phylogenetic cohesion of the genes in this cluster, we constructed individ-

ual phylogenetic trees and compared them with the reference full tree. All flagellar

proteins from LZ were grouped with almost the same set of other genomes (Ta-

ble S3 available at https://doi.org/10.1093/gbe/evy178#supplementary-data):

Clostridium hylemonae DSM15053, Clostridiales bacterium VE202-28, Clostridiales

bacterium 1 7 47FAA, Clostridium bolteae 90B7, Clostridium bolteae 90B8, none of

which was a close neighbour in the reference tree or the SILVA taxonomy.

https://doi.org/10.1093/gbe/evy178#supplementary-data
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Figure 2.9: Structure, phylogenetic distribution and functional categories of a hierar-
chical cluster enriched in amino-acid biosynthesis proteins. Each column represents
a gene profile; the gray bars indicate the presence of genes and blanks indicate the
absence. The dendrogram on the left side is the phylogenetic tree of 74 genomes and
the dendrogram on the top is computed by the distance between the profiles. The
labels on the x-axis are the genes’ functional annotations retrieved from the UniProt
database.
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Figure 2.10: Structure, phylogenetic distribution and functional categories of a hier-
archical cluster enriched in flagellar motility proteins. Each column represents a gene
profile; the gray bars indicate the presence of genes and blanks indicate the absence.
The dendrogram on the left side is the phylogenetic tree of 74 genomes and the den-
drogram on the top is computed by the distance between the profiles. The labels on
the x-axis are the genes’ functional annotations retrieved from the UniProt database.
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2.3.7 Connections between LZ and C. bolteae

LZ has a large genome containing 6887 protein-coding genes, whereas the median

genome size in our data set is 3728 genes, and the mean genome size is 3580.4. One

possible explanation for this disparity is a genome expansion due to gene duplication

and LGT. The two strains of C. bolteae whose flagellar genes were proximal to those of

LZ may show similar evidence of LGT with LZ and its close relatives. To address this

possibility, we examined the homology-search results of LZ versus all genomes, and

defined criteria to represent “unexpected similarity” between LZ proteins and their

corresponding homologs in C. bolteae. We set threshold criteria that required the

e-values of the match between the LZ protein and the C. bolteae protein sequence be

less than 10−20, and also required that the C. bolteae protein rank within the top 20 of

all matches from a given LZ protein to the entire database of 687 genomes. We then

identified the corresponding profiles in our cluster tree, and implemented a binomial

test to identify clusters in which these proteins were significantly overrepresented.

Individual profiles of proteins belonging to the flagellar-associated cluster were

subjected to phylogenetic analysis. Each of the 36 profiles was first aligned using

MUSCLE version 3.7 [23] with default parameters. The resulting alignments were

used to infer phylogenetic trees using RAxML version 7.2.5, with the PROTGAM-

MALG model of sequence substitution. Using this approach, we identified the flagel-

lum / motility cluster and three additional clusters. Although each of these clusters

showed significant overrepresentation of the identified proteins, none was completely

homogeneous in this regard: however, a majority of profiles did contain representa-

tives from at least one of the two C. bolteae genomes (strain 90B7, 97.8%; strain

90B8, 89.6%). The predominant GO annotations within the three additional iden-

tified clusters comprised (i) relaxase/mobilization nuclease and ParB-like partition

proteins (Figure A.3a); (ii) sequence-specific DNA binding, ATPase activity, and

methyltransferase activity (Figure A.3b); and (iii) PAS domain S-box protein, two-

component system hybrid sensor kinases, response regulators, and diguanylate cyclase

(GGDEF) domain-containing proteins (Figure A.3c). Each cluster covers different

subsets of the sampled genomes, but in each case, it is difficult to explain the distri-

butions with only gene-loss events, suggesting an important role for LGT. Many of

the functional annotations of these proteins are very general, but cluster (i) suggests
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a possible role for plasmid-based transfer, and (ii) suggests that environmental sensi-

tivity and response may be adaptive in a niche occupied by LZ (and/or C. bolteae).

2.4 Discussion

Phylogenetic profiles were initially developed at a time when the relatively few se-

quenced genomes available were phylogenetically very diverse, and their similarity

due to common descent was not explicitly incorporated into profile-similarity calcu-

lations. However, the intensive focus on sequencing many strains of some named

species, notably those species that contain pathogenic isolates, has led to highly un-

even sampling across the breadth of microbial diversity. An example in our dataset

is the > 100 sequenced genomes of C. difficile, of which 21 were retained in our sub-

sampled dataset. Our new phylogenetic-profile-based clustering approach successfully

addresses these phylogenetic correlations using Pagel’s method for the comparative

analysis of discrete characters. The success of our approach is most striking in the

many instances we show where clustered profiles can differ in the presence or absence

of all 21 strains of C. difficile, whereas a phylogenetically näıve approach would as-

sign a very large distance between such profiles. Furthermore, by explicitly allowing

multiple gains of proteins in the tree rather than a single common ancestor followed

by potentially many gene losses, our method is more suitable than CLIME in the

analysis of LGT-prone prokaryotic genomes.

LZ has a very large genome relative to most other clostridia, and elucidating its

ecological role will be challenging. However, by examining a subset of its clusters, we

can identify not only specific functions that appear to be present in the genome of LZ,

but also identify sets of proteins with similar (but not identical) distributions. Our

analysis of even a small subset of LZ clusters shows a complex set of relationships with

other genomes, but also highlights the functional cohesion of our recovered clusters.

In the cases of amino-acid metabolism and flagellar / motility genes, complementary

evidence from pathway diagrams, genetic linkage, and phylogenetic trees supports our

inferred connections. We were also able to focus on a small subset of clusters in which

LZ appeared to have unusual patterns of similarity to C. bolteae; the identified genes

provided clues to transfer mechanisms, environmental adaptation, and potentially (in

the case of flagella) pathogenicity [88].
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Protein functional prediction is one of the greatest challenges in bioinformatics

[28, 84, 78]. Although we did not explore the effectiveness of this method in func-

tional prediction of proteins, the functional cohesion of many of our recovered clusters

suggests that it may have value as a predictive tool. Since we use the techniques that

are based only indirectly on homology search, it may prove to be complementary to

homology-based (PSI-BLAST) and other approaches.

Since more genomes provide more opportunities to differentiate profiles and give

further resolution to clusters, a method that can consider all available genomes would

be desirable. One significant limitation of our method is the heavy computational cost

of applying Pagel’s coevolutionary method to all pairs of distinct phylogenetic pro-

files: although our full dataset included 687 genomes, computational time limitations

restricted us to the analysis of a set of 74 genomes. Even this reduced computation

required a total of 13,000 CPU hours approximately on a Linux system. Our future

work will consider alternatives to Pagel’s method including phylogenetic regression

and HMMs that also take phylogenetic correlations into account, and heuristics to

subdivide the full tree into tractable subsets of taxa to perform the analysis, then

merge the results to obtain a full set of distances. However, our results on even a

small subset of available genomes demonstrate that our phylogenetic-profile-based

clustering method has the capacity to identify sets of genes with similar distributions

and evolutionary histories, with the potential to represent genomes as distinct com-

binations of these sets, thereby highlighting the important genetic and environmental

connections between them.

2.5 Author Contribution

This study extends the work done during my Master’s thesis by implementing an

improved framework for evaluating the performance of methods, adding result com-

parisons with other two methods: CLIME and CoPAP, testing the influence of tree

rooting and adding more detailed phylogenetic analysis.

Sequencing of the LZ genome was undertaken on behalf of the Human Microbiome

Project Consortium and generously supported by the NIH, NHGRI, and NIAID (U54-

HG004969 to the Broad Institute). We thank the members of the Broad Institute’s

Genome Sequencing, Assembly and Annotation Teams, including Sarah Young, Peg
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work, implemented the methods, conducted the analysis and wrote the manuscript.

Thanks to Benjamin Wright and Dr. Emma Allen-Vercoe for providing the LZ data

sets (the phylogenetic tree and phylogenetic profiles).



Chapter 3

The Community Coevolution Model with Application to the

Study of Evolutionary Relationships between Genes based

on Phylogenetic Profiles

3.1 Introduction

Comparative-genomic techniques can be used to identify homologous genes that un-

derpin a multitude of traits [48, 35]. Genes can exhibit similar patterns of presence

and absence [72] across a set of genomes for reasons such as participation in a common

biochemical pathway, physical linkage, or co-localization on a mobile genetic element

such as a plasmid [27, 12, 17]. Examination of these patterns can reveal important

information about related functions (e.g., participation in a common biochemical

pathway) and common pathways of lateral gene transfer (LGT). A well-established

approach to represent presence and absence patterns among genes is the construction

of phylogenetic profiles [71, 64, 60].

The success of phylogenetic profiling depends on the use of appropriate mea-

sures to express the distance and similarity between profiles. Approaches include the

Hamming distance [72], mutual information [39], Pearson correlation [81], and the

hypergeometric test [101]. Although effective, these approaches do not take phylo-

genetic effects into account. Since closely related genomes are more likely to share

similar gene content, they are likely to have an outsized influence on profile com-

parisons relative to their phylogenetic diversity. Thus, the genomes connected by the

phylogenetic tree are not independent [76], which will violate the assumptions of these

methods, and therefore skew results. Large genomic datasets are often imbalanced

due to high relative abundance or oversampling of certain genomes; for example, the

over-representation of pathogen isolates in the set of complete prokaryotic genome

sequences [2].

39
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Several heuristic approaches have been developed to account for phylogenetic ef-

fects in profiles. For example, [42] and [81] used a null distribution of the similarity

scores inferred by sampling the genomes to estimate the impacts of phylogenetic

correlation; while [97] corrected for biases in the number of sequenced genomes by

collapsing the genomes within the same clade into one single node if a specific gene

pair has the same phyletic pattern in these genomes. [16] first ordered the genomes

within profiles and enumerated runs of consecutive matches so that the co-occurrences

concentrated in part of the tree will be considered as only one run. The shared under-

lying idea of these methods is the application of a weighting scheme to the genomes

in order to counteract phylogenetic effects. These methods can be computationally

efficient and feasible for large-scale analysis [91, 89], but they are ad hoc approaches

that do not properly model the underlying evolutionary processes.

In contrast with weighting approaches, evolutionary models aim to explain the dis-

tribution of genes by modeling the correlation patterns of gain and loss on a phyloge-

netic tree. Model-based approaches include CoPAP which uses a stochastic mapping

approach to detect co-evolving gene families [14, 15], the CLustering by Inferred Mod-

els of Evolution (CLIME) algorithm that was developed to model gene evolution in

eukaryotes [51], and the Count software package for the analysis of numerical profiles

using phylogenetic birth-and-death models [18]. However, Count was not specifically

developed for binary traits; CLIME assumes that each gene has a single gain event in

evolution which is not suitable for prokaryotes which have high rates of gene trans-

fers [98]; and CoPAP assumes that the gain rate and loss rate independently vary

among genes rather than explicitly modeling the interactions during evolution. Pagel

[66] developed a likelihood-based co-evolutionary method that specifically tests the

evolutionary correlations between pairs of binary traits. In Pagel’s method, each pair

of binary traits is evaluated under both independent and dependent models, and a

likelihood ratio test is applied to infer whether there is significant evidence suggesting

two traits evolved dependently. Although Pagel’s correlation model performed well

in previous studies at detecting functionally linked genes [54, 6], Pagel’s method is

computationally expensive and it can not directly infer the direction (positive / neg-

ative) of the correlation. In addition, there is a more general concern regarding the

phylogenetic comparative methods represented by Pagel’s correlation model raised by
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[56] and [95] that comparative methods may overestimate the evidence for correlation

of the patterns caused by singular events which they refer to as Darwin’s scenario.

Darwin’s scenario occurs when two traits have a single origin on the same lineage,

and are then inherited by nearly all species in the descendant clade, resulting in (al-

most) perfectly co-distribution. This “within-clade pseudoreplication” could lead to

dubious conclusions such as a significant association between fur and middle earbone

[56].

Furthermore, most of the existing methods such as Pagel’s correlation method and

distance-based methods can only be applied to pairs of genes. However, studying phy-

logenetic profiles in higher-order groups (such as triplets and quadruplets) can offer

a more-sensitive approach to detecting complex patterns of correlation [102]. Direct-

coupling analysis (DCA) is a class of methods often used to infer direct relationships

between residues in biological sequences that can deal with conditional dependency

by taking the inverse of the covariance matrix, but it is mainly for continuous data

and phylogeny näıve, so it is highly dependent on the sampling of the genomes [62, 4].

Here we propose the Community Coevolution model, a new method that directly

infers the strength and direction of the interactions among genes during the evolu-

tionary process. For a pair of genes, CCM is more efficient in that it fits only one

model instead of three (one separate model for each gene and one dependent model)

in Pagel’s method and is approximately five times faster than Pagel’s method when

tested on phylogenetic trees with 500 tips (performed on a server running Linux with

a 2.67 GHz CPU and 18 GB RAM). Although maximum-likelihood estimation is still

a time-consuming procedure compared to other heuristic methods based on standard

metrics, our method provides more biological insights such as the evolutionary rates,

significance levels and directions (positive/negative) of interactions, and more im-

portantly, our method can be extended to model multiple genes as a community to

discover more-complex associations. We also develop a simulation procedure to gen-

erate phylogenetic profiles with adjustable extents of evolutionary interactions that

can be used as benchmark data for evaluating comparative methods.
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3.2 Materials and Methods

3.2.1 The Community Coevolution Model

In our community coevolution model (CCM), we consider whether sets of two or more

genes have potential associations on a given phylogenetic tree, in particular whether

the transition (gain or loss) of any gene within the community is affected by the

current states of other members. Associations between genes can be positive if genes

tend to be gained and lost together, and negative if the gain of some genes in a set

appears to be associated with the loss of others in the same set. Gene sets that show

evidence of associations are termed as a “community” in our model.

We formulate the transition rate τ for one gene as a function of its intrinsic rate

of gain and loss µ, and the association factor ω depending on the current states of all

other genes in the community,

τ = µ× ω. (3.1)

To further specify our model, we use the following notation:

n is the total number of genes in the community;

S = {S1, S2, ..., S2n} is the state space of a community consisting of n genes;

Si = {xi,k; k = 1, ..., n} is a vector of size n. xi,k denotes the state of the specific kth

gene when the community state is at Si. We define xi,k = −1 when the kth gene is

absent and 1 when the kth gene is present;

B = {βhk; k, h = 1, ..., n} is a symmetric n × n matrix whose off-diagonal entries

are the coefficients of interaction between every pair of genes and diagonal entries

indicate half the difference between the gain and loss rates of each gene;

A = {α1, α2, ..., αn} is a vector of size n containing the intrinsic rate which is the

mean of gain and loss rates for each gene;
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The instantaneous transition rate for a specific gene k when the whole gene com-

munity is in state Si is defined in the log scale as

log(τi,k) = αk − βkkxi,k −
n∑

h6=k

βhkxi,kxi,h (3.2)

Positive βhk means the kth and hth genes are positively associated, thus if the current

states of kth and hth genes are the same (xi,kxi,h = 1), the last term tends to reduce

the rate of change for gene k; and vice versa for negative values of βhk.

By taking the exponential of equation (3.2), we have the final model as

τi,k = exp(αk − βkkxi,k)︸ ︷︷ ︸
µ

· exp

(
−

n∑

h6=k

βhkxi,kxi,h

)

︸ ︷︷ ︸
ω

(3.3)

where the first part represents the intrinsic gain / loss rates of gene k and the latter

part represents the influence from the community.

We model the gene state changes along a phylogenetic tree as a continuous-time

Markov process, and assume the instantaneous rate for all transitions involving more

than one gene is 0. The transition rate matrix Q = {qij; i, j = 1, ..., 2n} , where

element qij denotes the rate of the community departing from state Si and arriving

in state Sj, can be constructed in accordance with the following rule,

qij =





τi,k, i 6= j and Si − Sj = ±2ek

−∑i′ 6=i qii′ , i = j

0, otherwise

(3.4)

where {ek; k = 1, ..., n} denote the standard basis vectors of all 0’s except the kth

element as 1 so that Si − Sj = ±2ek indicates that only the kth gene changes state.

3.2.2 Constructing the likelihood function given the tree

In addition to the Markov assumption, we also assume that transitions on separate

branches are independent. This means that the distribution of the state at the end of

a given branch depends only on the starting state of that branch. The computational

cost of constructing the likelihood function could be expensive as we need to sum

over all the possible combinations of the states at each internal node, but it can be
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reduced by applying Felsenstein’s pruning algorithm [24]. The pruning algorithm

is a dynamic-programming approach that takes advantage of the nested structure

of the tree and computes the likelihood for the given tree recursively. By applying

the pruning algorithm, the likelihood function L of the tree in Figure 3.1a can be

formatted as

L(Θ; T , X) =
∑

s0

[(∑

s1

Ps0,s1(b1)Ps1,s3(b3)Ps1,s4(b4)

)

×
(∑

s2

Ps0,s2(b2)Ps2,s5(b5)Ps2,s6(b6)

)]
.

(3.5)

In this way, the likelihoods for subtrees can be reused and the computational com-

plexity is reduced to linear in the number of leaves in the tree. Then the negative

log-likelihood function − log(L(Θ; T , X)) is minimized to acquire the maximum like-

lihood (ML) estimates of the parameters by using a quasi-Newton optimizer (nlminb

in R, version 4.0.2)[69].

3.2.3 Inference and Regularization of the Maximum Likelihood

Estimates

Due to the complexity of the likelihood function, it is necessary to assess whether

the optimizer is going to provide acceptable estimates. We examined two ways to

obtain the standard error of estimates: first, the parametric bootstrap method that

simulates a large number of profiles using the estimated parameters and calculates the

standard deviation of the estimates using the bootstrap samples; second, the analyti-

cal approach based on likelihood theory which utilizes the numerically approximated

Hessian matrix H of the objective function − log(L(Θ)), with the standard error given

as se =
√

diag(H−1). Using this estimated standard error, a Z-test is conducted to

obtain the p-value for the hypothesis βhk = 0. The bootstrap method is obviously

more time-consuming, but we can use the bootstrap to assess the accuracy of the

likelihood asymptotic for finite samples. The performance of these two methods is

compared in the Results section.

As tree and community size increases, the likelihood function can become ex-

tremely complicated. A potential problem with the MLE procedure is overshooting,

which happens when the parameter estimators diverge substantially from the true
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values due to a flat likelihood surface. To avoid the overshooting problem, we apply

l2-regularization on the parameters and have the penalized objective function

− log (L(Θ; T , X)) + λ ·
(
||Θ||22

)
, (3.6)

where λ is the tuning parameter. Unlike setting a boundary for parameters or allowing

a large error tolerance, which could cause an early stop of the optimization process

to avoid overshooting, the regularization approach leads to more stable estimations

by adding smoothness to the surface of the likelihood function.

The l2-regularization is not meant for model sparsity, but only for dealing with

computational issues of likelihood singularity in some occasional cases, and therefore

it is not needed in most analyses which avoids unnecessary bias. When it is needed, a

reasonable λ is desired to avoid the overshooting problem but without introducing too

much bias into the estimation. The condition number, which is the ratio of the largest

eigenvalue to the smallest of the Hessian matrix, describes the rate of convergence of

the optimization [90], and can be used as a guide to find a proper λ. To provide a rule

of thumb, we find that a condition number below 200 generally indicates a successful

convergence without the overshooting problem.

3.2.4 Simulation Procedures

To simulate the coevolutionary relationships among genes, we use the framework of

CCM that the transition rates of one gene depend on the states of other genes in the

community. The procedure for simulating the evolution of a gene community of size

n on one branch can be summarized as below:

Input: the starting state of the community S, a user-defined coefficient matrix Bn×n,

user-defined intrinsic rates A0 and branch length b.

1. Substitute the current states and user-defined parameters into Formula 3.3 to

calculate the current transition rate for each gene τh, h = 1, ..., n.

2. Sample the transition time for each gene from the exponential distribution,

th ∼ Exp(τh), h = 1, ..., n.

3. Find the gene k with the minimum transition time, Tmin = min{t1, t2, ..., tn}.
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Group 1

Group 2

Figure 3.1: (a) A phylogenetic tree with 4 tips: si represents the state at each node
and bi denotes the branch length. (b) An illustration of the simulation process on
one branch. S denotes the community states and T indicates the time that there is a
transition out of the current state. The process ends when the total transition time
is beyond the branch length. (c) A random realization of two groups of correlated
profiles of size 3 generated by our simulation procedure. The interaction coefficient
is set to be 1.5 within a group and 0 between groups. Each row is a profile and each
gray bar denotes presence of the gene.
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4. If Tmin ≤ b, update the state of gene k in S with the opposite state and if Tmin >

b, do not update the gene state. Then update the branch length b = b− Tmin.

5. Repeat steps 1-4 until b ≤ 0.

Output: the new state of the community S ′.

An illustration of the evolutionary process on one branch is shown in Figure 3.1b.

Then the end state Send will be the starting state for the next adjacent branches.

The same procedure will be applied to all branches sequentially from the root to the

tips. Figure 3.1c shows a simulation example of 6 genes in two groups of size 3 using

the interaction matrix which has within-group interaction coefficients equal to 1.5,

indicating strong relationships and between-group interaction coefficients equal to 0,

indicating independent evolution.

3.2.5 Analysis of genomes from class Clostridia

We applied our method to the draft assembly of the bacterium “Lachnospiraceae

bacterium 3-1-57FAA-CT1” (abbreviated as LZ), which was isolated from a biopsy

retrieved from the transverse colon of a female Crohn’s Disease patient at the time

of colonoscopy [54]. LZ is of interest because its genome size is very large compared

to most of its immediate neighbours (6505 protein-coding genes as compared with

a median of 3124 in our complete data set of Clostridia) and identifying sets of

genes with shared patterns of gain and loss may yield insights into its ecological role

in the host. 658 completed and draft genomes from class Clostridia were retrieved

from the National Center for Biotechnology Information (NCBI) for the comparative

analysis of LZ. The phylogenetic tree was built through the AMPHORA2 pipeline

[103] and RAxML-HPC [87] using their concatenated, conserved protein sequences

and another set of eight outgroup genomes from class Bacilli and phyla Actinobacteria

and Proteobacteria were used for rooting. The phylogenetic profiles were constructed

by comparing the complete set of LZ (6505 predicted genes) against all other genomes

using rapsearch [104]. Before our analysis, we firstly filtered out the genes that are

very rare (present in < 1% genomes) or very common (present in > 99% genomes)

and obtained the final data set of 3786 profiles. The Markov Clustering algorithm

(MCL) was also used to obtain clusters of genes. MCL is a graph-based clustering
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method that simulates random walks within the graph to reflect the cluster structure

based on the idea that random walks are more likely to stay in one natural cluster

than to move across clusters [22].

3.3 Results

3.3.1 Results on Simulated Data

Evaluation of model estimates

We first evaluated the performance of CCM on simulated data. We used the parame-

ters estimated from one pair of flagellar genes in the real data set, with profiles shown

in Figure 3.2a. We simulated 100 pairs of genes using the parameters estimated from

these two genes. The results are shown in Figure 3.2b. We see that the estimates are

distributed around the true parameter values. Furthermore, we compared the esti-

mates of the standard error based on the Hessian matrix and the parametric bootstrap

and Table 3.1 shows that the estimation results of two methods are consistent.

Table 3.1: Comparison of estimated standard error using the parametric bootstrap
and analytical Hessian methods based on the simulations in Figure 3.2.

α1 α2 β1 β2 β12

Bootstrap SE 0.282 0.215 0.107 0.099 0.090
Hessian SE 0.382 0.255 0.104 0.105 0.085

Detection of significant interactions between genes

We next used our simulation approach to examine the ability of the CCM to dis-

tinguish genes with associations from those that do not interact. To evaluate the

performance of CCM, we simulated 500 gene pairs with no interaction (β12 = 0)

as negatives and 500 gene pairs with interactions (β12 uniformly drawn between 0.2

and 0.5) as positives. Figure 3.2c shows the distributions of the estimated coeffi-

cients of interaction in two groups: the mean value for the “no interaction” group

is 0.0046 (± 0.0807) and for the “interaction” group is 0.3497 (± 0.1173). We also

compared the performance of Pagel’s correlation test method, the Jaccard Index

(= number of genomes that have both genes
number of genomes that have either of genes

) and two heuristic methods: hypergeometric
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Figure 3.2: Estimation of the parameters using simulated pairs: (a) Two phylogenetic
profiles from the real data set; (b) Estimated parameter values from CCM based on
100 simulated pairs using the parameters estimated from the two profiles in (a). The
“*” represents the true parameters used in simulation. Evaluation of the interaction
in pairs: (c) The distributions of the estimated coefficients of interaction of the “no
interaction” group and the “with interaction” group; (d) the ROC curves of detecting
the significant linkages by Jaccard Index, Pagel’s correlation method, clade-adjusted
mutual information and hypergeometric, run-adjusted hypergeometric and our CCM
model.
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with consecutive runs method [16] and mutual information with clade adjustment

method [97]. We evaluated both clade-adjusted and runs-adjusted methods with four

different metrics (Hamming, Jaccard Index, Hypergeometric test, and Mutual In-

formation) using simulated data and we found that the hypergeometric test works

best. Thus we also included the clade-adjusted Hypergeometric test for comparison

since it performed better than the method proposed in their original paper (clade-

adjusted mutual information). From the ROC curve shown in Figure 3.2d, our CCM

method obtained the highest AUC score of 0.9521 followed by Pagel’s correlation

model (0.8968), run-adjusted Hypergeometric (0.838), clade-adjusted Hypergeomet-

ric (0.7665), and clade-adjusted Mutual Information (0.7215). The Jaccard Index,

being a non-phylogenetic method had the lowest AUC score (0.609).
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Figure 3.3: Comparison between Darwin’s scenario and replicated co-occurrence: (a)
An example of Darwin’s scenario (Pair 1) and replicated co-occurrence (Pair 2); (b)
The distributions of the Z-scores ( β12

se(β12)
) for the two scenarios; (c) The distributions

of the estimated intrinsic rates for the two scenarios.
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Identifying Darwin’s scenario of co-distribution

Under Darwin’s scenario, there is a single concurrent origin for two genes leading to

the perfect co-distribution across all species within a clade as in the example shown

in Figure 3.3a. As Darwin’s scenario provides little evidence for coevolution, it is

of interest to distinguish such scenarios from a replicated co-evolution scenario that

has multiple disjoint instances of a given trait. Both scenarios are considered sig-

nificantly correlated by CCM due to their perfect co-distribution, but the replicated

co-evolution scenario yields stronger significance scores and has much higher intrinsic

rates. We demonstrate this difference using 100 simulated data sets. In each simula-

tion, we randomly generate a 100-tip tree, one pair of genes that have co-occurrences

concentrated in one random clade chosen uniformly across all clades as Darwin’s

scenario and another pair of genes that have same number of co-occurrences spread-

ing across the tree as the replicated co-distribution scenario. Although both scenarios

produce significant results (p-value< 0.005), replicated co-occurrence tends to achieve

greater significance scores (Fig. 3.3b). Very few of the Darwin scenarios would be

deemed significant in a real data analysis with correction for multiple testing. An-

other distinguishing feature between these scenarios is the estimated intrinsic rate α,

with gene pairs simulated under Darwin’s scenario having much lower estimates of α

(−0.88± 0.18) than under replicated co-evolution scenario (1.51± 0.29) as shown in

Figure 3.3c.

Modeling multiple genes as a community to reduce pairwise false-positive

links

Most comparative methods (e.g. Pagel’s method and all the methods based on dis-

tance or similarity metrics) use pairwise comparisons. By modeling more than two

genes as a community, the CCM can screen out false-positive links that can be caused

by genes that show pairwise evidence for co-evolution, but are conditionally inde-

pendent when other genes are taken into consideration. For example, consider a

community with the following structure:

3

1 2
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where gene 3 is directly related to both 1 and 2, but there is no direct connection

between gene 1 and gene 2. Pairwise methods will often falsely identify a significant

connection between genes 1 and 2. We simulated 100 triplets of genes with this

structure where gene 3 is moderately linked to gene 1 (β13 = 0.5), and is strongly

linked to gene 2 (β23 = 0.8), but gene 1 and gene 2 are independent conditional on

the presence of gene 3 (β12 = 0). As shown in Figure 3.4a, CCM correctly estimates

the true parameters. We also ran Pagel’s model over the same simulation data in

pairs (3 pairs for each group of 3 genes, so 300 pairwise comparisons in total). From

Figure 3.4b which shows the distribution of estimated p-values on the conditionally

independent linkage between gene 1 and gene 2, we can see that our method resulted

in the desired uniform distribution of p-values while Pagel’s method shows 76% of

estimates had p-value < 0.05.

Recovery of community structures

To evaluate the ability of CCM at recovering the relationships among more genes

within a community, we simulated four basic network topologies of a 5-node commu-

nity: 1) a line structure; 2) a partially connected network where node 3 acts as the

bridge that connects two subgroups; 3) a star structure where the node 3 acts as the

hub; and 4) a fully connected network. For each structure we simulated 100 datasets

with an interaction coefficient of 0.5 for all links. As shown in Figs. 3.4c-f, CCM

successfully reveals the linkages within the community. Unlike the pairwise methods

that will tend to result in a densely connected network due to false positives among

the conditionally independent pairs, our community model provides clear insights in

finding the importance of the members (e.g. hub genes), and complex dependency

structures within the community.

As community size increases, the Q matrix dimension increases quickly which

dramatically slows down the evaluation of the log-likelihood values. Thus our current

method can only handle a small number of genes in a community. Table 3.2 provides

the approximate running time of our program as a reference for different community

and tree sizes. For large groups, one strategy is to run all-vs-all pairwise comparisons

first to construct a gene interaction network, which is usually very densely linked at

this stage. We then run all the triplets within the network to remove the conditionally
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Figure 3.4: Evaluation of the conditionally independent links in the simulated triplets:
(a) Estimated parameter values from CCM based on 100 simulated triplets. The sign
“*” indicates the true parameters. (b) The p-values of the conditionally independent
pairs (gene 1 and 2) inferred by our CCM model and Pagel’s model. Simulation of
four association-network structures: c) line, d) partially connected, e) star and f) fully
connected. The networks on the left demonstrate the structures and the box-plots on
the right show the estimated coefficients of interactions within the community. All
the edges have an interaction coefficient (βij) of 0.5.
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independent links. We can continue to examine all the subnetworks of size 4 or 5 to

further prune the network to the desired sparsity.

Table 3.2: The approximate running time of the community coevolution model for
different sizes of tree and community performed on a server running Linux with 2.67
GHz CPU and 18 GB RAM. Abbreviations: s (second), m (minute) and h (hour)

Number of tips in tree
50 100 200 500 1000

Community
Size

2 0.67 s 1.11 s 1.90 s 3.76 s 8.55 s
3 2.24 s 2.90 s 5.04 s 11.22 s 22.76 s
4 7.73 s 9.86 s 17.33 s 40.02 s 1.19 m
5 31.04 s 52.37 s 1.60 m 4.93 m 6.60 m
6 3.65 m 7.82 m 12.50 m 22.91 m 40.31 m
7 15.3 m 26.43 m 37.89 m 1.25 h 2.43 h

Effect of tuning parameters

We also evaluated the influence of the tuning parameters on the MLEs. We simulated

100 gene pairs with random parameters and expected that the overshooting problem

may happen to some of the pairs. These problematic cases will have the estimations

of parameters far away from the true values, like the outliers in Figure 3.5. Then

we added the regularization term and increased the tuning parameter λ gradually.

For each simulated pair, the mean squared error (MSE = 1
5

∑5
i=1(θ̂i − θi)

2) of the

estimators (5 parameters for two genes) is reported. From Figure 3.5a, we can see that

the tuning parameters mainly have a large impact on those outliers. The condition

number plot (Fig. 3.5b) shows that when we increase the tuning parameter to make

the condition number of the Hessian matrix below 200, the overshooting problems

with those outliers were effectively solved.

3.3.2 Results on Prokaryotic Data

Model comparisons

The computational cost of running a single pairwise profile comparison using Pagel’s

model was around 15 seconds (performed on a server running Linux with a 2.67 GHz

CPU and 18 GB RAM). Since the entire dataset requires (
(
3786
2

)
= 7, 165, 005) such

comparisons, an exhaustive evaluation of Pagel’s method is infeasible. Instead, we
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Figure 3.5: Evaluation of the effect of different tuning parameters: (a) MSE of the
estimates for different tuning parameters. (b) The condition number of the Hessian
matrix which also stands for the largest convergence rate between estimated param-
eters against different tuning parameters.



56

focused on a complete pairwise evaluation of 50 adjacent genes to compare against

our coevolutionary model. The software we used to implement Pagel’s approach is

BayesTraitsV3 [59]. A comparison of the negative logarithm of the p-values inferred

by the two methods yielded a correlation coefficient of 0.741 as shown in Figure

3.6a (p-values have been adjusted for multiple correlated tests using the Benjamini-

Yekutieli (BY) method [9]). Applying a log p-value threshold of 6, we found that both

methods agreed on the significance or non-significance of 1188 (96.98 %) comparisons.

29 (2.37 %) comparisons gave a significant result with the Pagel test but not with the

coevolutionary model, while the opposite result was seen in the remaining 8 (0.65 %)

pairwise comparisons. After examining the discordant pairs in the top-left corner of

Figure 3.6a, we found that a common issue for Pagel’s model is that most of these

pairs reached the default maximum rate of 100 (the mean branch length of the tree

has been scaled to 0.1 as suggested by the authors [59]), which indicates that Pagel’s

dependent model may overestimate the likelihood of correlated evolution because

of overshooting and therefore detect more false-positive links. One example of the

estimated transition rates by the two methods is compared in Table 3.3. Pagel’s

dependent model has a strange transition rate matrix where the transition rate from

(0,0) to (0,1) is abnormally large (98.575) and the transition rate from (1,0) to (0,0)

is 0, which may suggest that Pagel’s eight-parameter dependent model may be over-

parametrized and therefore over-estimate the likelihood of dependent evolution.

We further evaluated the goodness-of-fit of the two methods to the real data by

comparing the likelihood scores. As shown in Figs. 3.6b-c, the CCM model obtains

a significantly lower negative log-likelihood than Pagel’s independent model (p-value

< 2.2 × 10−16) and dependent model (p-value = 0.00217), which suggests that our

model generally has better fit to the real data, even though our CCM model (5

parameters) has fewer parameters than Pagel’s dependent model (8 parameters).

Gene clustering based on significant pairwise linkages

To discover sets of genes that collectively show evidence of correlated gains and losses,

we performed a full pairwise comparison over the genes of LZ using CCM. There are

in total 1918 genes annotated with gene ontology (GO) biological process terms,

which were used to evaluate the gene functional similarities of the linkages and for
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Figure 3.6: (a) The comparison of significance of pairwise linkages by two meth-
ods: the horizontal axis is the −log10(p-value) of CCM and the vertical axis is the
−log10(p-value) of Pagel’s approach; the correlation between the p-values for the two
methods is 0.741. (b) - (c) The comparison of the goodness-of-fit of models to data
between the independent model (4 parameters), dependent model (8 parameters) and
our CCM model (5 parameters). The independent model and dependent model are
the two components of Pagel’s approach required for the likelihood ratio test.
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Table 3.3: The transition rate matrices inferred by Independent and Dependent mod-
els of Pagel’s method and the CCM. The gene pair (GI:511537597 and GI:496550319)
in this table is considered strongly correlated by Pagel’s method (p-value = 0.00011),
but not by the CCM (interaction coefficient = 0.0832; p-value=0.283).

(a) Independent Model
-log(likelihood) = 283.183

0, 0 0, 1 1, 0 1, 1
0, 0 − 2.143 0.506 0
0, 1 0.304 − 0 0.506
1, 0 1.866 0 − 2.143
1, 1 0 1.866 0.304 −

(b) Dependent Model
-log(likelihood) = 271.4941

0, 0 0, 1 1, 0 1, 1
0, 0 − 98.575 0.375 0
0, 1 10.190 − 0 0.447
1, 0 0 0 − 2.139
1, 1 0 2.267 0.0003 −

(c) CCM
-log(likelihood) = 283.015

0, 0 0, 1 1, 0 1, 1
0, 0 − 2.158 0.441 0
0, 1 0.335 − 0 0.521
1, 0 2.188 0 − 2.548
1, 1 0 1.853 0.284 −
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the GO enrichment analysis. All GO annotations of genes were retrieved from the

UniProt database [94]. We use Wang’s graph-based method [99] to measure the

semantic similarity of GO terms, which produces a score between 0 and 1 for a given

pair of GO terms and higher values represent more functional similarity [106, 99].

Figure 3.7 shows that the most significant linkages under our model are between

closely functionally related genes. Our results confirm the strong relationship between

evolutionary similarity and functional similarity between genes.
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Figure 3.7: The association between functional similarity and the strength of the
gene linkages detected by CCM. The horizontal axis shows the percentage of most
significant linkages used for evaluation and the vertical axis shows the mean of the GO
semantic similarity among the corresponding percentage of linkages. The horizontal
line indicates the average functional similarity among all genes.

To obtain the clusters of genes with highly correlated evolution, we firstly applied

a strict threshold (coefficient of interaction β12 > 0.75 and Z score > 7.5) on the

linkages to obtain a gene network which consists of 1401 vertices and 19,391 highly

significant (p-value< 6.37 × 10−14) edges (Fig. 3.8a). We further applied Markov

clustering with inflation parameter 1.5 on the network to provide a guidance for
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labeling the genes into clusters in the largest component (Fig. 3.8b). We reported

the GO enrichment analysis for all the clusters of size at least 5 in Supplementary

Table S2 available at https://doi.org/10.5061/dryad.p8cz8w9rd.

1

2

5

9 6

4

12

27

36

14 16 37

3

7

8

10

17 22 20 23 24 32 35

11

1

3
4

6

7

8

11

13

2

28

5

9

25

26 21

10

19

18

=>

b)a)

annotated with GO terms (BP)

unannotated

Figure 3.8: Visualization of the gene network: (a) The gene network obtained from
the full pairwise comparisons and labeled with the MCL clustering results. Black
vertices indicate the genes annotated with GO (BP) terms and gray vertices denote
unannotated genes. (b) shows a detailed structure inside the largest component in
(a). Each pie chart denotes the percentage of the annotated genes within each cluster.
Only the clusters of size > 5 are labeled for a clean visualization.

We do not expect profile similarity and clustering to align perfectly with partici-

pation in a common biological process, especially when biological processes are anno-

tated at very low levels of specificity (e.g., ‘transmembrane transport’). Nonetheless,

https://doi.org/10.5061/dryad.p8cz8w9rd
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we expect that many genes with common functions (such as transmembrane trans-

port, transcription, and carbohydrate metabolic process) will show similar distribu-

tions across genomes, reflecting processes such as hitchhiking on frequently transferred

mobile elements and coincidental loss of genes that collectively confer no selective ben-

efit. The flagellum cluster (Cluster 5) and amino-acid biosynthetic cluster (Cluster

6) were also discovered and examined in our previous study using Pagel’s correla-

tion method applied on a reduced data set (a 74-tip subtree). It was only possible

to analyze a reduced data set because of the computational cost of Pagel’s method,

and a phylogenetic analysis was also conducted to find potential evidence for lat-

eral gene transfers [54]. In this study, by applying our method to the full data set

(659 species), we discovered another candidate group of flagellar genes (Cluster 16)

which are much less common (found in only 45 genomes) compared to the genes

in Cluster 5 which are found in 396 genomes (Supplementary Table S2 available at

https://doi.org/10.5061/dryad.p8cz8w9rd).

The intrinsic rates inferred by CCM were consistent with distribution patterns

of genes in phylogenetic profiles. For example, the pattern in Cluster 4 appears to

be more consistent with Darwin’s scenario, which is consistent with its relatively low

intrinsic rate (Fig. 3.9). Clusters 29 and 33 have the largest estimated intrinsic

rates, and both show patchy distributions in the same very shallow clade in the

tree. This rapid gain and loss over a relatively short span in the tree is a possible

cause of the high rates. Cluster 36 (profiles in Fig. 3.10b) and Cluster 55 have the

largest estimated interaction coefficients (β) and they both show strong functional

associations according to their GO annotations as well. More detailed information

about clusters can be found in Supplementary Table S2 available at https://doi.

org/10.5061/dryad.p8cz8w9rd. To complete the analysis, we also provided a list of

GO predictions on 823 unannotated genes based on most interacting genes that have

known GOs and the results are summarized in Supplementary Table S3 available at

https://doi.org/10.5061/dryad.p8cz8w9rd.

Examples of inferred evolutionary relationships

The simulation results have shown that the pairwise comparisons could not detect the

conditionally independent linkages, so that using all-vs-all pairwise comparisons tends

https://doi.org/10.5061/dryad.p8cz8w9rd
https://doi.org/10.5061/dryad.p8cz8w9rd
https://doi.org/10.5061/dryad.p8cz8w9rd
https://doi.org/10.5061/dryad.p8cz8w9rd
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Figure 3.10: (a) The phylogenetic profiles of Cluster 49 are shown on the left. The
interaction coefficients estimated by simultaneously modeling five genes as a commu-
nity are shown on the right. (b) The phylogenetic profiles of Cluster 36 are shown on
the left. The interaction coefficients estimated by simultaneously modeling six genes
as a community are shown on the right. The gray cells indicate linkages that have
p-values > 0.05.
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to produce densely connected networks. For example, the five genes in Cluster 49 (Fig.

3.10a) are all related to iron-sulfur (Fe-S) assembly (three are annotated with “iron-

sulfur cluster assembly”, one is annotated with “cysteine metabolic process” and one

has no GO annotation but has the protein name “FeS assembly ATPase SufC”). The

pairwise comparisons suggest that the linkages between all five genes are extremely

strong (largest p-value 3.13× 10−9), which would lead to a fully connected network.

However, by modeling these five genes as a community, 4 out of 10 total linkages can

be removed as conditionally independent linkages (p-value > 0.05).

In other cases, the pairwise interactions are still significant even when we account

for conditional dependence. As an example, Cluster 36 consists of six genes which

are all annotated with GO term “alginic acid biosynthetic process”. The pairwise

comparisons show that all links between the six genes are highly significant (largest

p-value 6.43 × 10−12). By modeling these six genes simultaneously as a community,

only 3 out of 15 total linkages have a p-value > 0.05 as shown in Figure 3.10b.

Because the size of the transition matrix, and therefore the computational cost

of our method, increases exponentially with the number of genes, it is infeasible

to apply our method to large groups of genes. For large clusters, we get around

this issue by applying our method to smaller cliques within the network, and using

this to detect linkages that are conditionally independent. This is different from

directly removing linkages by thresholding, as it aims to only remove the “redundant”

linkages conditioning on other genes’ presences to reveal the refined structure rather

than to break the cluster into smaller groups. For example, we started from the

original network of Cluster 6 which consists of 32 amino-acid related genes and 381

highly significant linkages (p-value< 6.37 × 10−14) obtained from all-vs-all pairwise

comparisons (Fig. 3.11a). Then we applied CCM over all the triplets within this

network and some strong linkages became weakly significant due to the presence

of the third gene. We removed 272 such edges (p-value > 0.001 and interaction

coefficient (β) < 0.5) and obtained the refined network (Fig. 3.11b). For comparison,

we directly deleted the same number of edges from the original graph by increasing the

threshold (Fig. 3.11c). This results in a very different network structure consisting

of multiple densely connected components, rather than a more sparsely connected

network obtained using our method.
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Figure 3.11: Network analysis of the amino-acid gene cluster. (a) The original network
(Cluster 6) consists of 32 vertices and 381 highly significant (P-value< 6.37× 10−14)
edges based on the all-vs-all pairwise comparisons (b) Application of the CCM on
every triplet from network (a) followed by removal of the conditionally independent
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consists of 32 vertices and 109 edges. (c) Direct deletion of edges from (a) by thresh-
olding to retain the same number of edges as in (b). The cluster is disconnected into
two components and two singletons. The force-directed layout algorithm is used for
the network visualization.
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3.3.3 Analysis of Mitochondrial Respiratory Complex 1

Eukaryotic genes are less susceptible to LGT [43, 83], and we may therefore expect

significant differences in the performance of CCM between prokaryotic and eukaryotic

data. To evaluate the performance of CCM on eukaryotic data, we applied our CCM

method on a well-studied protein complex which consists of a total of 44 human genes

encoding Mitochondrial respiratory complex 1 [51, 34, 5]. The data sets we used are

published phylogenetic profiles and a species tree consisting of 138 diverse eukaryotes

and a prokaryote outgroup [51, 10]. We performed an all-vs-all comparison using

CCM to infer the interactions among 44 genes and illustrate the detailed relationships

within the complex with the average linkage hierarchical dendrogram as shown in Fig.

3.12. We also compared our results with CLIME, an approach to infer evolutionary

modules specifically for eukaryotic species which assumes that each gene must only

have one single gain event in evolution followed by zero or more loss events. CLIME

groups 20 of the 44 genes into four evolutionary modules (ECMs) with the remainder

as singletons with no assigned group as shown in Fig. 3.12 (the results of CLIME

are available at https://gene-clime.org/). Comparing our clustering results to the

detailed structure of complex I reported by Guo et al. (2017), we find a a single cluster

of size 21 encompassing 15 genes that all localize to the matrix arm of C1 including all

7 core subunits (NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS7, and

NDUFS8). The other main cluster includes 20 subunits, 15 of which localize on the

membrane arm. We also analyzed the estimated evolutionary rates and find that the

loss rates are significantly (p-value< 2.2×10−16) larger than the gain rates (Fig. 3.13),

which supports the idea that eukaryotic genes are much less mobile than prokaryotic

genes. To further study the structure of complex 1, we first obtained a network

consisting of 462 significant (p-value< 0.05) links that were inferred by full pairwise

comparisons using CCM. After pruning the network by removing the conditionally

independent links (p-value > 0.05) detected from all triplets, we obtained a more

sparse network consisting of 101 linkages (Fig. 3.14). We can observe two loosely

connected components in this network: one is mainly composed of more densely

linked subunits on the matrix arm with higher estimated values for the coefficients

of interaction, while the other component is mainly composed of the subunits on the

membrane arm. This network representation of the gene-interaction map shows more

https://gene-clime.org/
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comprehensive information about the gene evolutionary cohesiveness than the pure

clustering results in Fig. 3.12.
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Figure 3.12: Clustering of mitochondrial respiratory complex 1 genes: the heatmap
shows the phylogenetic profiles of 44 genes where black bars indicate presence. The
column labels give the information of subunits, names - location (M: Matrix, T:
Transmembrane, I: Intermembrane). The symbols below the gene names indicate
the four components inferred from CLIME and those without symbols below indicate
singletons. The dendrogram on the left indicates the eukaryotic tree and the names
of species are given on the right as the row labels; the dendrogram above shows the
hierarchical structure constructed with the estimated pairwise interactions by CCM.

3.4 Discussion

Identifying associations among traits is an important tool to generate hypotheses

about linkages between phenotypic, ecological, and genetic attributes. Often these

associations need to be further analyzed or tested experimentally to demonstrate
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Figure 3.13: The estimated intrinsic gain and loss rates of the complex I genes.
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Figure 3.14: Network analysis of the complex I genes. (a) The original network in-
ferred by full pairwise comparisons using CCM, which consists of 462 significant edges
(p-value < 0.05). (b) The links that are significantly conditionally dependent (p-value
< 0.05) in all triplets from network (a). The resulting network consists of 101 edges.
The edge thickness corresponds to the estimated strength of the interaction (βij).
Label colors indicate the locations of the subunits: Matrix (red), Transmembrane
(blue), and Intermembrane (purple).
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whether they have arisen due to selection or other factors [70]. Phylogenetic profiles

are a specialized type of trait representation that have been used for over 20 years as

a tool to explore and compare genomes; while they can be treated in a similar fashion

to other types of traits, the sequences, genetic linkage information, and functional

annotations associated with genes in a profile can be used to shed more light on evo-

lutionary hypotheses. Many studies suggest that phylogenetic relationships among

source genomes should be taken into account [54, 16, 15, 66]. Chapter 2 demonstrated

the utility of Pagel’s model [66] in identifying sets of genes with correlated evolution-

ary trajectories; however, this approach was computationally expensive and could not

infer the direction of the relationship. In this chapter, we proposed a new co-evolution

model, CCM, to detect genes with correlated evolutionary histories based on phylo-

genetic profiles. CCM was able to identify correlated genes as well as the direction of

the relationship (e.g. Fig. 3.10a) and ran five times faster than Pagel’s method when

tested on phylogenetic trees with 500 tips. The number of pairwise comparisons in-

creases quadratically with the number of genes to be considered, but the independence

of each comparison allows calculations to proceed in parallel. Heuristic methods can

be used to quickly subdivide genes into large clusters that can then be refined using

the CCM. Our model also has the ability to analyze the evolutionary relationships

among sets of genes of size greater than 2. Examining sets of size > 2 can provide a

more sparse gene network and greater insights into the complex relationships between

genes.

Based on CCM, we also developed a simulation procedure that can generate a set

of co-evolved profiles with interactions along a given phylogenetic tree. The strength

of the interactions during evolution is also adjustable. A common way to evaluate

comparative methods for detecting genes with correlated evolutionary histories is

measuring the functional similarities based on gene annotations such as GO terms

[78] and KEGG pathways [42]. However, such evaluation is subject to annotation

completeness and the correlated patterns may not always reflect shared function as

expressed by GO annotations. Our co-evolving simulation procedure provides a way

to generate benchmark data for evaluating the comparative methods.

In the simulation study, our method outperformed the non-phylogenetic method

(Jaccard Index) and the tree-aware methods (Pagel’s correlation model, run-adjusted
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methods, and clade-adjusted methods) in detecting the significant links (Fig. 3.2d).

We showed that our method can distinguish between Darwin’s scenario and the

replicated co-occurrence scenario (Fig. 3.3). We also demonstrated that pairwise

comparisons can not detect conditionally independent links and further showed the

performance of CCM in recovering the community structures (Fig. 3.4).

Finally, we applied our method to 3786 profiles across 659 genomes and the

results showed a strong positive relationship between the evolutionary similarity

and functional similarity (Fig. 3.9). We also identified the gene clusters with en-

riched functions (Supplementary Table S2 available at https://doi.org/10.5061/

dryad.p8cz8w9rd) that can be used to better understand the functional roles of

gene groups and predicted 823 unannotated genes based on their most interacting

genes with known GO annotations (Supplementary Table S3 available at https:

//doi.org/10.5061/dryad.p8cz8w9rd). We also demonstrated using CCM to re-

fine the network obtained from the pairwise comparisons by removing conditionally

independent linkages (Fig. 3.11). In addition to analyzing prokaryotic data, CCM

has also been successfully appplied to a eukaryotic data set of the well-studied Human

Complex I and the recovered associations mapped well onto the structural associa-

tions that exist in the complex (Figs. 3.12, 3.14). The results show that CCM as

a general comparative model can also be applied to eukaryotic data. Although our

method is specifically used to analyze the phylogenetic profiles in this study, we think

it can have wide applications in other fields such as to study phenotypes of species

[31], ecological habitats [26], and metagenomic profiling [1].

The uniqueness of the community coevolution model lies in the careful modeling

of each gene’s instantaneous gain and loss rates dependent on the current states of

other genes. In addition to improving our ability to identify related genes, the CCM

directly models the dependence between related genes in the evolutionary process.

The same idea can possibly be generalized to phylogenetic models to jointly estimate

the transition rate matrix of each site based on the current states of its neighbor

sites or other related sites. The dependence between different genes, or different sites

within a single gene, is an underexplored area in phylogeny and molecular evolution,

with the majority of models assuming independence of sites. By developing better-

fitting models that incorporate the dependence between different genes, we expect to

https://doi.org/10.5061/dryad.p8cz8w9rd
https://doi.org/10.5061/dryad.p8cz8w9rd
https://doi.org/10.5061/dryad.p8cz8w9rd
https://doi.org/10.5061/dryad.p8cz8w9rd
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gain insights into the mechanisms driving this dependence.

We also met a challenge in extending our method to directly model larger com-

munities. The state space S will increase exponentially as we include more genes into

the community. Currently, we have successfully tested our method on communities

of sizes less than ten, but two problems will arise if we include more genes: the huge

memory requirements to store the Q matrix of dimension 2n × 2n and the long com-

putation time for eigendecomposition of Q. We have found that if we reorder the

rows and columns of the transition matrix, there exists a recursive structure: the Q

matrix can be written as a block matrix of the form Q =

(
A B

B A

)
, where B is an

anti-diagonal matrix and A has the same recursive structure as Q, A =

(
A′ B′

B′ A′

)

(B′ is still an anti-diagonal matrix and A′ is a block matrix). We can solve the first

problem by storing the Q matrix as a sequence of small “blocks”, but we have not

found existing mathematical methods to solve the eigendecomposition of block matri-

ces with such recursive structures. Our future work will explore the possible solutions

to decompose the Q matrix more efficiently so that the CCM method is scalable.

3.5 Author Contribution

In this study, I participated in the design of the work, implemented the methods,

conducted the analysis and wrote the manuscript.

3.6 Software Availability

The R package evolCCM was written in R v4.0.2 and is available on Github (https:

//github.com/beiko-lab/evolCCM).

https://github.com/beiko-lab/evolCCM
https://github.com/beiko-lab/evolCCM


Chapter 4

Assessing the Dependency of Phylogenetic Profiles By

Conditioning on a Phylogenetic Tree

4.1 Introduction

Genes that show correlated patterns of gain or loss during their evolutionary process

can provide great insights in genomic analysis as they are more likely to have similar

functions or be involved in identical or related pathways [12, 17, 27]. Phylogenetic

profiles, which summarize the presence / absence of genes across a set of genomes,

are a commonly used method to study patterns of evolutionary relationships among

genes.

Many standard metrics, such as Hamming distance, Jaccard Index, Pearson’s

correlation, and Hypergeometric test, have been used to measure the (dis)similarities

between a pair of phylogenetic profiles [72, 39, 81, 101]. However, such metrics do

not consider phylogenetic correlations among species [30, 54]. This phylogenetic effect

refers to the tendency that the closely related genomes are more likely to share similar

gene content due to recent common ancestry [76, 57].

Some heuristic methods have been developed based on standard metrics to utilize

empirical techniques to remove the phylogenetic effect [45, 81, 97, 16]. The heuristic

methods are fast and scalable to large data sets, but lack biological interpretations.

In contrast, evolutionary model-based methods build probabilistic models on phylo-

genetic trees to describe the evolutionary process [15, 51, 66], and aim to incorporate

tree information, including divergence events represented by the tree topology and

the evolutionary dissimilarity represented by the branch lengths. These methods pro-

vide additional insights but suffer from computational issues due to the complexity of

the underlying models. Pagel’s correlation test [66] and the Community Coevolution

Model (CCM) [53] directly model the interactions between genes and provide the best

performance in detecting correlated genes as demonstrated in our previous simulation

73
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and empirical work [54, 53]. However, both approaches rely on complete all-against-

all comparisons between all profiles, which makes them impractical for analyzing large

datasets. In addition, except for phylogenetic-näıve methods that do not explicitly

use any tree information, the phylogenetic comparative methods rely on the given

phylogenetic trees to remove the phylogenetic effect, either using only a part of the

tree information (e.g. reduced trees, order of species) like heuristic methods or all

the tree information (e.g. tree topology, branch lengths). Thus a potential problem

with the phylogenetic comparative methods is the phylogenetic error or uncertainty

involved in data sampling, choice of substitution models, and incompletely resolved

clades [37, 79, 67, 52].

In this chapter, we propose a matrix-decomposition-based method to test the de-

pendency between binary profiles, conditioned on the tree topology. It is computation-

ally efficient for large-scale analyses, gives support to better biological explanations to

the data than heuristic methods and also works with or without a provided phyloge-

netic tree, which makes our method robust to phylogenetic uncertainties. Stemming

from similar ideas to phylogenetic inertia estimation methods [13, 21, 11, 20], our

approach considers the phylogenetic profile to contain two information components:

one is the underlying phyletic pattern (P ) driven by the phylogeny among species

as closely related genomes that inherit from close common ancestors will tend to

share similar gene content and thus a given gene is more likely to be found in closely

related genomes (row-wise); the other component is unique information about indi-

vidual genes (S) caused by their own gain/loss events during evolution (column-wise).

Then we can test the dependency between a pair of profiles by conditioning on their

predicted underlying phyletic pattern (P ) such that the genes are considered related

only when their individual components (S) show correlated patterns. We apply this

new method on both simulated data from CCM [53] and real data sets to evaluate

its ability to correctly discover the correlated genes after correction for phylogeny.

4.2 Methods

Our method consists of three major steps. First, the phylogenetic components are

inferred from the given phylogenetic tree. The phylogenetic eigenvector regression

(PVR) approach proposed by Diniz-Filho et al. (1998) is commonly used to quantify
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the phylogenetic components by applying principal coordinates analysis (PCoA) to a

phylogenetic distance matrix and has shown better estimates of phylogenetic intertia

than autoregressive methods [21, 13, 20]. We also propose another option to extract

phylogenetic components directly from the profiles, which makes our method robust

to the errors in estimating the phylogenetic trees. Second, the inferred phylogenetic

components are used to predict the expected presence/absence of each gene. Finally, a

dependency test based on a modified Pearson-Chisq statistics is implemented between

any pair of profiles conditioning on the predicted presences/absences. The method

of using the phylogenetic eigenvectors inferred from a reference tree is termed Chisq-

PyLR (modified Chi-square test by phylogeny-based logistic regression), while the

method of using the eigenvectors directly inferred from profiles is termed Chisq-PrLR

(modified Chi-square test by profile-based logistic regression). We will use Chisq-PLR

to refer to both methods.

4.2.1 Inferring the phylogenetic vectors from a reference tree or from

phylogenetic profiles

A phylogenetic tree describes the evolutionary relationships among a set of species or

individuals, where the tips of the tree represent the entities of interest and the branch

lengths indicate the extent of genetic divergence. Given a phylogenetic tree T with

m tips, we first calculate the patristic distance matrix Dm×m between every pair of

tips using the branch lengths. Then principal coordinates analysis (PCoA) is applied

to obtain phylogenetic eigenvectors. PCoA, also known as classical multidimensional

scaling (MDS) is a method used to map a distance matrix into a lower k-dimensional

Euclidean space so that the distances can be preserved as well as possible [107, 36].

The standard procedure of PCoA can be summarized as

1. Double-centering the distance matrix squared: Bm×m = −1
2
HD2

m×mH, where

D2 is the distance matrix squared and H = Im− 1
m
JJT with I being an m×m

identity matrix and J being an m× 1 vector of all ones.

2. Taking the eigendecomposition of the double-centered matrix Bm×m to acquire

the k largest eigenvalues and corresponding eigenvectors E = {e1, e2, ..., ek}.
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Thus, the eigenvectors E = {e1, e2, ..., ek} which contain the coordinate informa-

tion of species in the k-dimensional space preserve most of the phylogenetic relation-

ships among species, and the largest eigenvalues together with their corresponding

eigenvectors can be used to recover the major structures of the clades in the tree.

To determine the value of k, a common approach is to use a broken-stick model

which assumes that the total variance is randomly divided into pieces and then finds

the k components that exceed the expected proportions through the broken-stick

distribution [21, 41].

Inferring the phylogenetic vectors without an explicit reference tree

If no reference tree is given, we use an alternative approach that infers the phyloge-

netic vectors from the profiles directly. Given the binary matrix Ym×n which consists

of the phylogenetic profiles of n genes across m genomes, to infer the phylogenetic

eigenvectors, we can apply principal component analysis (PCA) to decompose the

profile matrix Ym×n into a set of k largest eigenvalues {α1, α2, ..., αk} and correspond-

ing left eigenvectors E = {e1, e2, ..., ek}.
This approach provides another option to examine the phylogenetic profiles when

the evolutionary tree is not available. However, it requires a sufficient number of

profiles to correctly reflect the phylogeny and the results could be impacted by large

number of lateral gene transfer events in the data. We suggest choosing a smaller

k compared to inferring the phylogenetic eigenvectors from the tree as the first few

principal components representing the major tree structures are less likely to be af-

fected by the abundance of unique phyletic patterns caused by lateral gene transfer

events.

4.2.2 Predicting the conditional probabilities of gene presence using

logistic regression

After extracting the phylogenetic eigenvectors, PVR [21] applies a multiple linear

regression of Y (traits) on these eigenvectors (X) to parse out the phylogenetic com-

ponent from the data. Then the fitted values Ŷ represent the phylogenetic component

P and the residuals ε = Y − Ŷ represent the specific component S. Although the

idea of PVR was originally used to analyze continuous traits, it can be extended to
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the binary case of phylogenetic profiles using logistic regression,

logit(pi) = log

(
pi

1− pi

)
= Xβi,

pi = Pr(Yi = 1|X)

where pi = {pis, s = 1, . . . ,m} is a vector of size m containing the element pis as

the probability of the ith gene present in the sth genome, the predictors X are the

inferred phylogenetic eigenvectors and the response variable Yi (i = 1, . . . , n) is the

phylogenetic profile of the ith gene.

Since the phylogenetic profiles may contain various amounts of phylogenetic in-

formation depending on the number of genes present in the profile and the location of

the presences across the tree, it is not necessary that all the k significant eigenvectors

chosen by the broken-stick model are used. For example, a perfect prediction of the

profile’s presense/absence could occur by the logistic regression model based on a

smaller number of eigenvectors for profiles of simple patterns (e.g., all presences are

concentrated in one branch), in which case, it becomes redundant to use more eigen-

vectors than needed in the logistic regression model. A criterion for model selection

such as AIC, BIC and adjusted R2 can be used to avoid over-fitting.

4.2.3 Testing the dependency between a pair of profiles

Pearson’s Chi-square test is a non-parametric statistical test that is commonly used for

testing for independence between categorical variables by evaluating how significantly

the observed frequency distribution differs from a distribution in which the variables

are independent. Given the profiles of two genes i and j, the contingency table

between two profiles summarizes the observed presence/absence distribution across

m species as below:

gene j

0 1 total

gene i
0 O00 O01 m0·

1 O10 O11 m1·

total m·0 m·1 m
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Pearson’s Chi-square test uses the marginal frequencies to calculate the expected

frequencies under the null hypothesis of the independence of two variables:

0 1

0 E00 = m0·×m·0
m

E01 = m0·×m·1
m

1 E10 = m1·×m·0
m

E11 = m1·×m·1
m

Then the Chi-square statistic is calculated as

X2 =
∑

h,k∈{0,1}

(Ohk − Ehk)2
Ehk

,

which follows a χ2 distribution with degree of freedom df = (2 − 1) × (2 − 1) = 1.

The problem with directly applying this generic Chi-square test in our phylogenetic

profile data is the assumption that the observations are independent is not satisfied,

because the species are correlated due to the underlying phylogeny.

Conditioning on the tree T , each entry of the phylogenetic profile of gene i can

be considered as an independent Bernoulli trial with probability pis|T , so the total

count of presences follows a Poisson distribution with mean
∑m

s=1 pis, which leads to

the approximate normal N(
∑m

s=1 pis,
∑m

s=1 pis) based on the General Central Limit

theorem. From the previous logistic regression, the fitted values p̂i and (1 − p̂i)

denote the predicted probabilities of presence and absence respectively of gene i across

m genomes conditioning on the tree T . For a pair of genes, gene i and gene j,

the observed frequencies {O00, O01, O10, O11} remain the usual counts of four states

between two genes across all genomes, but the expected frequencies can be calculated

by multiplying the predicted probabilities of the corresponding states under the null

hypothesis of independence and then summing the probabilities for all genomes:

0 1

0 E00 = (1− p̂i)
′(1− p̂j) E01 = (1− p̂i)

′p̂j

1 E10 = p̂′i(1− p̂j) E11 = p̂′ip̂j

The statistic X2 =
∑

h,k∈{0,1}
(Ohk−Ehk)

2

Ehk
, still follows a Chi-square distribution χ2

with 1 degree of freedom. This modified Chi-square statistic can be used to test the

independence of two genes conditioning on the phylogeny.
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4.3 Results

4.3.1 Simulation Results

In this simulation study, we used the CCM model [53] to generate phylogenetic profiles

to assess the performance of Chisq-PLR methods in correcting for phylogenetic effects

on two criteria: whether it reduces the false positive rate and whether it has greater

power in comparison with the phylogeny-näıve Pearson’s Chi-square test. We also

evaluated the impact of potential errors in the given tree on the performance of the

method by adding random SPR (Subtree pruning and rearrangement) operations [86].

An illustration of the methods

We first generated two separate pairs of phylogenetic profiles to illustrate how the

method dealt with the phylogenetic relationships among species. In Fig.4.1a, a pair of

independent genes were simulated and the generic Chi-square test wrongly detected it

as significant (P-value = 0.0007258) due to the co-occurrences in the closely related

genomes at the top region of the tree. Fig.4.1b gives a pair of correlated profiles

simulated by CCM with an interaction of strength 0.8, which show highly correlated

phyletic patterns across the tree except for the upper region. The Pearson’s Chi-

square test incorrectly classified this correlated pair (Fig.4.1b) as non-significant (α =

0.05) while our method correctly detected it to be strongly significant (P-value =

9.9789× 10−5).

Evaluating the Type I error

We further simulated 1000 independent gene pairs and applied Pearson’s Chi-square

test, Chisq-PyLR, and Chisq-PrLR on the data set to evaluate type I errors. Table 4.1

shows that the generic Chi-square test without correcting for phylogeny has a much

higher Type I error than our methods, and Chisq-PyLR and Chisq-PrLR perform

similarly. It is noted that with more phylogenetic eigenvectors included, the profile

patterns can be predicted better by these eigenvectors, leading to fewer significant

pairs and smaller type I errors. This tendency is also shown in the next assessment

of statistical power.
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(b) A pair of dependent genes

Figure 4.1: An illustration of the method using two simulated pairs. a) An example
of simulated independent pairs. b) An example of simulated highly correlated gene
pair (interaction coefficient of 0.8 in the CCM model).
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Table 4.1: Type I error evaluation using 1000 simulated independent pairs. The
number of eigenvectors k = 2 (rows marked in red) has the lowest average BIC of all
pairs for both methods.

P-value cutoffs
0.001 0.005 0.01 0.05 0.1 0.2

Pearson’s Chisq 0.164 0.255 0.297 0.45 0.536 0.623

Chisq-PyLR k = 1 0.062 0.127 0.165 0.315 0.397 0.5
Chisq-PyLR k = 2 0.002 0.007 0.023 0.084 0.16 0.298
Chisq-PyLR k = 3 0.002 0.007 0.018 0.079 0.148 0.278
Chisq-PyLR k = 4 0.001 0.006 0.022 0.075 0.137 0.247

Chisq-PrLR k = 1 0.009 0.03 0.043 0.118 0.191 0.314
Chisq-PrLR k = 2 0.002 0.013 0.025 0.08 0.148 0.287
Chisq-PrLR k = 3 0 0.003 0.013 0.054 0.11 0.238
Chisq-PrLR k = 4 0 0.003 0.007 0.04 0.086 0.193

Evaluating the statistical power

We further simulated 200 gene pairs for each value of the strength of interaction

ranging from 0 to 1.5 with a step size of 0.1 respectively (3200 pairs in total) to

assess the performance of methods in detecting true positives. We again used CCM

to provide a benchmark of ideal results as a comparison. Table 4.2 summarizes the

true positive rates of different methods at different P-value cutoffs. Both Chisq-PLR

methods (at k = 2) have power above 0.8 at P-value cutoff 0.05. The generic Chi-

square test has much higher true positive rates than even the CCM (the estimated

theoretical optimal method), which is not surprising because it tends to overestimate

the correlation signal between profiles as shown in Table 4.1.

We also examined the sensitivity of Chisq-PLR methods for interactions of differ-

ent strengths at significance level α = 0.1. As shown in Fig.4.2, the power of the test

increases as the interactions between genes become stronger, with both Chisq-PLR

methods achieving power above 0.8 at an interaction strength of 0.6.

Evaluating the effect of tree errors

Unlike other tree-aware methods, the Chisq-PrLR method can directly infer the phy-

logenetic eigenvectors from the observed profiles so it is immune to possible errors in
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Figure 4.2: Evaluation of the power of Chisq-PLR methods for different interaction
strength at significance level α = 0.1. The interaction strength of 0 indicates indepen-
dent gene pairs (true positive rate of 0). The colors of lines indicate three methods:
CCM (red), Chisq-PyLR (purple) and Chisq-PrLR (blue).
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Table 4.2: Power analysis using simulated data calculated from 3200 pairs of co-
evolved gene pairs with different interaction strengths. The number of eigenvectors
k = 2 (rows marked in red) has the lowest average BIC of all pairs for both methods.

P-value cutoffs
0.001 0.005 0.01 0.05 0.1 0.2

Pearson’s Chisq 0.818 0.848 0.863 0.91 0.929 0.945

Chisq-PyLR k = 1 0.678 0.76 0.793 0.885 0.915 0.944
Chisq-PyLR k = 2 0.56 0.675 0.724 0.856 0.89 0.935
Chisq-PyLR k = 3 0.444 0.576 0.636 0.796 0.845 0.904
Chisq-PyLR k = 4 0.307 0.447 0.521 0.701 0.784 0.86

Chisq-PrLR k = 1 0.702 0.808 0.846 0.923 0.947 0.965
Chisq-PrLR k = 2 0.513 0.649 0.699 0.833 0.884 0.936
Chisq-PrLR k = 3 0.395 0.537 0.601 0.768 0.851 0.913
Chisq-PrLR k = 4 0.271 0.414 0.492 0.706 0.795 0.883

CCM 0.608 0.783 0.852 0.959 0.984 0.997

the given tree. In this simulation, we first simulated 100 independent pairs using a

tree, then introduced errors by randomly adding SPR operations to that tree, and

lastly applied Chisq-PyLR with this altered tree. We examined the impact of different

numbers of SPR operations (from 1 to 10) on the false positive rates at significance

level α = 0.1 and repeated the simulation 20 times for each number of operations,

since the location where SPR occurs could have different effects. As shown in Figure

4.3, as more SPRs were introduced into the underlying tree, the false positive rates

increased and finally reached a level similar to that of the generic Chi-square test.

4.3.2 Results on the Clostridia data set

Data Sets

We first applied our method to the previously studied data set of the bacterium

“Lachnospiraceae bacterium 3-1-57FAA-CT1” (abbreviated as LZ) [54]. 658 com-

pleted and draft genomes from class Clostridia were retrieved from the National Cen-

ter for Biotechnology Information (NCBI) for the comparative analysis of LZ. The

phylogenetic profiles were constructed by comparing the complete set of LZ (6505

predicted genes) against all other genomes. Using the same filtering conditions as
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Figure 4.3: Evaluation of the effect of the errors in the tree on the performance of
Chisq-PyLR. The x-axis indicates the number of SPRs introduced to the given phylo-
genetic tree used by Chisq-PyLR. Y-axis indicates the false positive rates detected by
the Chisq-PyLR method implemented on the false tree. The horizontal lines indicate
the mean false positive rates of the generic Pearson’s Chi-square test (0.563± 0.054)
and Chisq-PrLR method (0.169± 0.036) respectively.
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for the analysis in CCM, we removed the genes that are very rare (present in < 1%

genomes) or very common (present in > 99% genomes) as these profiles do not contain

much evolutionary information and obtained the final data set of 3786 profiles.

The Chisq-PrLR method with the first principal eigenvector which explains 53.87%

of variance, was used to analyze this data set (a 659-tip phylogenetic tree and 3786

phylogenetic profiles). As shown in Fig.4.4, the first principal eigenvector inferred

from the profiles correctly extracted the major phylogenetic information such as the

close relatives in the C.difficile group.
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Figure 4.4: The first eigenvector inferred from the profiles, in comparison with the
full phylogenetic tree of 659 genomes.
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Method comparisons on the LZ data set

Here we used previously studied CCM results to examine the consistency of results

between Chisq-PrLR and CCM on the real data and its ability to recover the clustering

structure. To provide a clear visual comparison, we selected a random set of 100

genes from previously studied CCM clusters and implemented all vs all pairwise

comparisons. As shown in Fig.4.5, Chisq-PrLR identifies the same six major clusters

distributed along the diagonal of the heatmap as CCM, but in contrast, the generic

Chi-square test detected many significant pairs across the clusters that were not

found significant by CCM and did not show consistent clustering structures. A more

detailed comparison for all pairs among these 100 profiles between methods, is given

in Fig.4.6 and it shows the percentages of most correlated pairs detected by CCM that

are also detected by Chisq-PrLR. We calculated the coverage rate as |CCM ∩ Chisq-PrLR|
|CCM | ,

where | · | represents the number of pairs. The 100% coverage rate (top 10% in CCM

vs. top 30% in Chisq-PrLR) compared to 89.9% coverage (top 10% in CCM vs. top

50% in Chi-square) indicates that 10.1% of the strongest links detected by CCM

would not be detected by the generic Chi-sq test due to its not taking into account

phylogenetic effect. A rate of 0.9697 between the top 20% in CCM and the top 30%

in Chisq-PrLR suggests that to recover the most significant 20% of pairs under CCM,

instead of implementing an all-vs-all comparison among 100 genes, we can first run

Chisq-PrLR which has a running time of around two minutes (performed on a local

machine with a 2.5 GHz CPU and 16GB RAM) and then only examine the top 30%

of Chisq-PrLR results using CCM and it should produce almost the same result, but

could substantially reduce the running time.

4.3.3 Results on the COGs of 678 genomes from the Lachnospiraceae

family

Data Sets

In this application, we examined the full gene sets of 678 completed and draft genomes

from the Lachnospiraceae family which were all retrieved from NCBI. In total, 19336

COGs (clusters of orthologous groups) were constructed by searching all the genome
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Figure 4.5: Comparisons of clustering structure recovery between methods. The
dendrograms on the left and above are the hierarchical clustering dendrogram using
CCM’s pairwise comparison scores. The color in the heatmap indicates the signifi-
cance (-log(P-value)) of dependencies between genes (darker colors indicate stronger
dependencies). a) The comparison between CCM and Chisq-PrLR. b) The compari-
son between CCM and generic Chi-square test.
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Figure 4.6: Comparisons within highest correlated pairs detected by different meth-
ods. The y-axis indicates the coverage rate of pairs with the strongest correlation
detected by CCM that were also detected by Chisq-PrLR (a) and generic Chi-sq (b).

The coverage rate can be formulated as |CCM ∩ Chisq-PrLR|
|CCM | , where | · | represents the

number of pairs. The x-axis indicates the percentages of Chisq-PrLR (a) and generic
Chi-sq (b) used to make the comparisons with CCM.
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sequences against the eggNOG database which stores the previously studied ortholo-

gous groups and functional annotations [38]. The phylogenetic tree was constructed

using 46 core genes that are present in all genomes using IQ-TREE [63]. Eight

genomes from the Clostridia class were used as the outgroup species to root the phy-

logenetic tree. We further removed the COGs that are either too rare (present in

less than 1% of genomes) or too common (present in more than 90% of genomes) as

they contain little evolutionary information, to obtain the final data set of 10, 755

phylogenetic profiles.

An all-vs-all comparison was first performed among all profiles using Chisq-PyLR

using the first three principal eigenvectors from the tree, for a total of 57, 829, 635

pairwise comparisons, and was completed within 3 days on a server running Linux

with a 2.67 GHz CPU and 18 GB RAM. The distribution of P-values inferred by

Chisq-PyLR and Pearson’s Chi-square test is given in Figure 4.7 and shows that the

Chisq-PyLR method detected 2, 127, 944 more non-significant pairs (P-value > 0.01)

than Pearson’s Chi-square test. Pearson’s Chi-square test also detected 1, 172, 741

more strongly significant pairs (P-value < 1× 10−10).
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Figure 4.7: Distributions of the P-values (− log10) of all-vs-all comparisons. a) P-
values inferred by Chisq-PyLR. b) P-values inferred by Pearson’s Chi-square test.
All the P-values less than 1× 10−10 (including 0) are set to be 1× 10−10.

To examine the difference between the pairs inferred by the two methods, we ap-

plied the CCM method on a randomly sampled subset of 1000 non-significant pairs

(P-value > 0.01) inferred by Chisq-PyLR. Figure 4.8 supports the same conclusion

with the simulation results that the phylogeny-free Pearson’s Chi-square test tends
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to generate more false positive results. Within the 1000 randomly sampled non-

significant pairs (P-value > 0.01) inferred by Chisq-PyLR, the CCM method showed

consistent results with 49 pairs having P-values less than 0.01 and only 7 pairs ex-

ceeding the significance level of 0.001, while the Pearson’s Chi-square test detected

221 significantly correlated pairs (P-value < 0.01).

Examples of detected functional clusters

Studies [58, 100] have suggested that different functional gene clusters may have dif-

ferent strength of coevolutionary associations. Based on the 2011 COGs that are

classified into functional categories from the eggNOG database, Table 4.3 provides a

general summary of the functional categories and the corresponding significance of

association (the average of all pairwise chi-square statistics within a category). Ac-

cording to the mean and 5th percentile of the test statistics, the top three functional

categories that show the strongest associations are all related to “N: Cell motility”,

which is consistent with our previous studies in which the flagellar gene clusters were

detected as well as the category of “E: Amino acid transport and metabolism”. Note

that this summary in Table 4.3, based on functional categories, may be over gen-

eralized and the COGs in the same category could be further divided into smaller

clusters which would increase the significance level, such as the COGs related to “G:

Carbohydrate transport and metabolism” and “T: Signal transduction mechanisms”.

In our previous study, multiple significant gene clusters related to carbohydrate trans-

port and signal transduction were detected and those clusters also showed distinct

phyletic patterns.

To find the functionally associated gene clusters in this large dataset, we first ap-

plied hierarchcial clustering with Ward lineage on the chi-square statistics inferred for

57, 829, 635 pairs and then extracted 200 clusters. Figure 4.9 shows the distribution

of the sizes and cluster compactness (average test statistics) of these 200 clusters.

Except for one cluster of 1596 COGs, all other clusters are below 500 in size. The

network in Figure 4.10 which consists of 5675 non-singleton COGs and 69840 strong

significant links (Chi-square statistics > 100) provides an overview of the clustering

structure in the data.

Three examples of mid-sized clusters are given here. The cluster (id:1) in Figure
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domly sampled non-significant pairs (P-value > 0.01) inferred by Chisq-PyLR. a)
Distribution of the P-values (− log10) inferred by CCM. b) Distribution of the P-
values (− log10) inferred by Pearson’s Chi-square test.



91

Table 4.3: Summary of 2011 annotated COGs in terms of functional categories (or-
dered by mean test statistics). Frequency: the number of COGs annotated with the
corresponding functional category. Descriptive statistics: percentiles (5th and 10th),
mean and standard deviation of chi-square statistics inferred by Chisq-PyLR between
all COGs in the same functional category. Proportion: the proportion of significant
pairs within each functional category at the significance level of 0.001. The functional
categories consisting of multiple letters indicate the COGs are assigned into multiple
categories. Only functional categories with more than 10 COGs are reported.

Functional
Category

Description Frequency
5th

Percentile
10th

Percentile
Mean SD Proportion

N Cell motility 47 180.2639 173.5355 51.4452 66.9711 0.519
NT 10 190.7481 184.8269 35.963 68.3033 0.222
NU 21 88.6121 28.8996 15.367 40.2702 0.2238
H Coenzyme transport and metabolism 111 50.2794 32.048 13.2323 32.694 0.2834
G Carbohydrate transport and metabolism 180 49.8328 32.4412 12.6163 25.185 0.305
P Inorganic ion transport and metabolism 155 42.1033 26.8661 11.7659 33.057 0.2552
E Amino acid transport and metabolism 183 45.5988 29.4346 11.5605 26.8942 0.275
C Energy production and conversion 142 42.6275 27.602 10.5263 20.0917 0.2672

KT 15 33.1911 24.2891 10.1659 13.4139 0.3429
F Nucleotide transport and metabolism 60 40.362 23.0598 9.0483 19.9672 0.2056
I Lipid transport and metabolism 49 26.8406 17.2951 7.5604 22.9695 0.1726
Q Secondary metabolites biosynthesis, transport and catabolism 61 30.0744 17.4827 7.25164 17.7791 0.1743
T Signal transduction mechanisms 79 28.714 17.9663 6.9118 12.7692 0.1824
D Cell cycle control, cell division, chromosome partitioning 46 22.0844 14.9472 6.5338 13.6552 0.1604
J Translation, ribosomal structure and biogenesis 58 23.7671 14.8102 6.2871 17.1087 0.1488
O Posttranslational modification, protein turnover, chaperones 76 24.3818 15.7948 6.1246 18.9283 0.1393
M Cell wall/membrane/envelope biogenesis 130 24.1162 15.1342 5.7598 11.0261 0.1522
V Defense mechanisms 47 22.42 13.2397 5.6431 14.7632 0.136
U Intracellular trafficking, secretion, and vesicular transport 28 19.2776 11.6816 5.3919 17.6907 0.119
K Transcription 190 21.9949 12.601 4.9393 11.7957 0.116
L Replication, recombination and repair 213 18.8062 10.9203 4.7573 14.5683 0.0991

Total All annotated COGs 2011 29.4427 18.4821 6.9105 13.7137 0.1628
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Figure 4.9: 200 clusters generated by applying hierarchical clustering on the all-vs-
all pairwise chi-square statistics using Chisq-PyLR. The x-axis indicates the cluster
size in log scale and the y-axis indicates the average of chi-square statistics within the
cluster. Solid circles indicate that the clusters have more than 50% of COGs classified
into known functional categories. The labels of the points indicate the major (> 80%)
functional categories within the cluster.
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Figure 4.10: The network of 5675 COGs with 69840 strongly significant links (chi-
square statistics > 100) inferred by Chisq-PyLR. Blue vertices indicate the COGs
annotated with functional category and gray vertices indicate unclassified COGs.
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4.9 consists of 19 COGs (12 related to functional category “E: Amino acid transport

and metabolism”, 5 unknown) and their phylogenetic profiles in Figure 4.11 show a

complementary phyletic pattern within the cluster, which indicates a negative cor-

relation and was not often observed for the LZ dataset from the previous section.

Figure 4.12 shows the phylogenetic profiles of two clusters (id: 2 and 3 in Figure

4.9) each consisting of 7 COGs. Although 10 out of 14 COGs are classified into the

same functional category “L” (3 unknown), the COGs are clustered into two groups

and show two distinct patterns: one is relatively rare (present in an average of 79

genomes) and the other one is more common (present in an average of 208 genomes),

with no negative correlation shown between these two clusters.

S P S E E E S E
J S S K E E E

E
H

E
H E E E

Figure 4.11: Phylogenetic profile of a cluster of COGs (id:1) classified into functional
category “E”. Functional category “S” indicates unknown annotation. The tree on
the left is the phylogenetic tree with 200 random tips for illustration.
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Figure 4.12: Phylogenetic profiles of two clusters (id: 2 and 3) related to functional
category “L”. Functional category “S” indicates unknown annotation. The tree on
the left is the phylogenetic tree with 200 random tips for illustration.



96

4.4 Discussion

In this chapter, we proposed a matrix decomposition-based method to test the depen-

dency between binary profiles conditioning on the tree topology. Although our CCM

model is computationally more efficient than Pagel’s method, it still can not handle

large data sets since the number of pair-wise comparisons will increase quadratically.

Compared to other heursitic methods, our Chisq-PLR methods not only have com-

petitive running speed but also give support to better biological explanations for the

data.

We first used simulated data via the CCM framework to evaluate the perfor-

mance of Chisq-PLR. The results in Table 4.2 and 4.1 show that Chisq-PyLR and

Chisq-PrLR performed similarly and the type I error rates of both methods are much

lower than that of the phylogeny-naive Pearson’s Chi-square test, while still achiev-

ing a high statistical power (above 0.8). We also applied the Chisq-PrLR method on

the previously studied LZ data using CCM and showed that our method is able to

correctly recover a similar clustering structure to CCM. We further applied the Chisq-

PyLR method to the 10, 755 COGs of 678 genomes from the Lachnospiraceae family

to detect the functional gene clusters. All-vs-all comparisons of a total of 57, 829, 635

pairs, can be processed by our methods within 3 days on a server running Linux with

a 2.67 GHz CPU and 18 GB RAM. We first examined the strength of associations

between COGs in terms of annotated functional categories and found that the top

three functional categories that shows the most significant associations are all related

to “N: Cell motility”. We further explored the distribution of the strength of associ-

ations within 200 clusters discovered with hierarchical clustering and constructed a

network consisting of 5, 675 nodes with 69, 840 edges to provide an overview of the

clustering structure of COGs in these 678 Lachnospiraceae genomes.

4.5 Author Contribution

In this study, I participated in the design of the work, implemented the methods,

conducted the analysis and wrote the manuscript.



Chapter 5

Conclusions

Phylogenetic profiles, which summarize the presence and absence patterns of genes

in a set of genomes, can be used to identify genes that have correlated evolutionary

histories. Genes with common distributions are more likely to be functionally linked,

and in prokaryotes may highlight shared patterns of lateral gene transfer. However,

these distributions are impacted by phylogenetic relationships among genomes. In this

thesis, we developed three phylogenetic comparative methods to infer gene coevolution

and to discover clusters of genes that have correlated evolutionary relationships based

on phylogenetic profiles.

We first proposed an approach in Chapter 2 that uses Pagel’s correlation test to in-

fer the evolutionary similarities between genes and a hierarchical-clustering approach

to define sets of genes with common distributions across the organisms. We applied

this method to the LZ data set. LZ has a very large genome relative to most other

clostridia and elucidating its ecological role will be challenging. Our method success-

fully recovers phylogenetically and functionally cohesive gene clusters and highlights

probable highways of gene sharing that have shaped this genome and its close neigh-

bors. The results of this study further support the assumption of our work that the

genes with correlated phylogenetic profiles also tend to be functionally linked. One

significant limitation of this method is the heavy computational cost of applying

Pagel’s correlation model to all pairs of distinct phylogenetic profiles: although our

full dataset included 687 genomes, computational time limitations restricted us to the

analysis of a set of 74 genomes.

In Chapter 3, we proposed the Community Coevolution Model (CCM), a new

coevolutionary model to analyze the evolutionary associations among genes. In the

CCM, traits are considered to evolve as a community with interactions, and the

transition rate for each trait depends on the current states of other traits. CCM has

the additional advantage of being able to examine multiple traits as a community to

97
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reveal more dependency relationships. We also developed a simulation procedure to

generate phylogenetic profiles of gene sets with correlated distributions and adjustable

strength of interactions.

A simulation study demonstrates that CCM is more accurate than other methods

including the Jaccard Index and three tree-aware methods including Pagel’s corre-

lation test. The parameterization of CCM makes the interpretation of the relations

between genes more direct, which leads to Darwin’s scenario being identified easily

based on the estimated parameters. We showed that CCM is more efficient and fits

real data better than Pagel’s method resulting in higher likelihood scores with fewer

parameters. Our method is more efficient and approximately 5 times faster than

Pagel’s method and is able to examine the LZ data set with the full phylogenetic tree

of 659 genomes. We improved and completed the LZ data analysis by providing a

list of predictions on 823 unannotated genes in the LZ data set. We also applied the

CCM to 44 proteins in the well-studied Mitochondrial Respiratory Complex I and

recovered associations that mapped well onto the structural associations that exist

in the complex. The new results showed that our method as a general comparative

framework can still work well on eukaryotic data where lateral gene transfers are not

as prevalent as in prokaryotic genes.

Although in terms of pair-wise comparisons, the CCM model is more efficient

than Pagel’s method, it cannot scale to large datasets containing many thousands of

profiles due to the quadratic scaling of pairwise comparison. To handle large data sets,

we developed a fast matrix decomposition-based method (Chisq-PLR) in Chapter 4

to test the dependency between binary profiles conditioning on the tree topology. It

is computationally efficient for large-scale analyses, gives support to better biological

explanations to the data than heuristic methods, and also works with (Chisq-PyLR)

or without (Chisq-PrLR) a provided phylogenetic tree, which makes our method

robust to phylogenetic uncertainties. This fast method can be used to pre-process

the large data set to reduce the number of computations that need to be carried out

by CCM or another probabilistic model based method.

We first used simulated data via the CCM framework to assess the performance

of Chisq-PLR in correcting for phylogenetic effects and the results show that the type
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I error rates of the Chisq-PLR methods are much lower than that of the phylogeny-

näıve Pearson’s Chi-square test, while still achieving high statistical power. We also

applied the Chisq-PrLR method on a subset of the previously studied LZ data using

CCM and showed that the method is able to correctly recover a similar clustering

structure to CCM. We further applied the Chisq-PyLR method to the 10755 COGs of

678 genomes from the Lachnospiraceae family to detect the functional gene clusters.

All-vs-all comparisons of a total of 57, 829, 635 pairs, can be processed by our method

within 3 days on a server running Linux with a 2.67 GHz CPU and 18 GB RAM. We

further explored the distribution of the strength of associations within 200 clusters

discovered with hierarchical clustering and constructed a network consisting of 5675

nodes with 69840 edges to provide an overview of the clustering structure of COGs

in these 678 Lachnospiraceae genomes.

In this study, we mainly focused on developing the phylogenetic comparative meth-

ods with a given reference tree. However, the construction of phylogenetic trees may

involve error or uncertainty. Extending our methods to account for the uncertainty of

the input phylogenetic tree could be a possible future work. We also met a challenge

in extending our CCM model to directly model larger communities. The dimension

of the transition rate matrix Q in the CCM model will increase exponentially as we

include more genes into the community. However, this Q matrix is highly sparse and

we have found that if we reorder the rows and columns of the transition matrix, there

exists a recursive structure. Our future work will explore the possible solutions to

decompose the Q matrix more efficiently so that the CCM method is scalable.
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Figure A.1: Phylogenetic tree of 74 genomes used to build profiles, subsampled from
the full tree of 687 genomes.
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 Figure A.2: A hierarchical cluster that is split into singletons by CLIME. (a) Patterns

of presence and absence of four phylogenetic profiles across the 74 genomes in the

phylogenetic tree. (b-e) Mapping of each gene to the reference tree by CLIME.In

(b-e) figures, the tree is the phylogenetic tree of 74 genomes; the blue and red lines

represent gene gain and loss respectively; In the profiles, the dark blocks represent

the presence and the gray means absence.
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(c)

Figure A.3: Structure, phylogenetic distribution and functional categories of three

clusters with significant over representation of the identified proteins to the two strains

of C. bolteae. The three rows of black bars represent C. bolteae 90B7, C. bolteae 90B8

and LZ from top to bottom.
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     Figure A.4: The Amino-acid biosynthesis pathway map. The shaded boxes are the

functions covered in the detected gene cluster shown in Figure 2.9. Source: KEGG

PATHWAY (https://www.genome.jp/).
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