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Abstract

This dissertation investigates the design aspects of an adaptive cross-layer architec-

ture to optimize the energy efficiency, the spectral efficiency, and the reliability of

underwater acoustic multihop relaying networks by utilizing channel state informa-

tion (CSI). Specifically, an energy efficient channel-aware routing protocol for reliably

relaying data packets, as well as a media access control to maximize the network

throughput and maintain connectivity are described. These tasks are approached

by predicting CSI using a novel data-driven probabilistic model. As the main con-

tribution, a CSI acquisition approach based on a Markov chain process is proposed

that exploits information from the physical environmental conditions, including the

tide phase and flow, to improve the accuracy of channel characteristics predictions.

Specifically, the method is intended to obtain the channel characteristics, including

the gain, delay, Doppler spread, as well as the standard deviation of intrapaths delays

in time varying conditions. The correlation between different oceanic processes and

the acoustic channel characteristics is investigated to define a set of tide-dependent

states corresponding to a particular channel condition. To analyze the impact of flow

and surface elevation variations, channel soundings from a 34-day sea trial conducted

in Grand Passage, Nova Scotia, are applied to a parametric model of the propagation

channel. The probabilistic parametric model forms a data set by characterizing the

time varying channel impulse response and by describing the channel tapped-delay

structure statistically as a function of the tide phase. The proposed Markov chain is

driven by the measured channel data set and predicts the future channel characteris-

tics one tide cycle ahead.

Finally, predicted small-scale statistics are incorporated into an analytical channel

model to estimate channel impulse responses in a mobile scenario.

To validate the accuracy of the proposed method, the predicted channel charac-

teristics are compared to the channel measurements obtained in a 566 meters channel

in Grand Passage, Nova Scotia, from September 22, 2018, to October 25, 2018.
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Chapter 1

Introduction

The deep ocean is largely unexplored and is often considered the last frontier on

Earth. Deploying underwater acoustic networks (UWANs) has been studied to enable

data collection from remote sensors in deep oceans and to facilitate a wide range of

underwater sensing and monitoring applications in commercial, scientific, and military

sectors.

UWANs can support various offshore industries: in the oil and gas and aquaculture

sectors, UWANs can enable exploration, instrument monitoring, pipeline inspection,

pollution control, and climate recording. Additionally, acoustic sensors can be de-

ployed in remote ocean areas to monitor subsea activity, such as the presence of

vessels, marine life, debris, or seismic activity. To provide more flexibility to the

networks, Autonomous Underwater Vehicles (AUVs) can be used to enable dynami-

cally changing networks and offer the ability to perform large-area surveillance using

mobile platforms.

The feasibility of most of the above applications requires UWANs to meet certain

levels of reliability as well as spectral and energy efficiency. However, UWANs present

many challenges from a communications point of view due to the temporal variations

of channel characteristics including channels gain, delay and Doppler spread. In

an UWAN, the acoustic nodes’ (ANs’) routing layer, media access control (MAC),

and physical layer parameters need to be designed and adapted with respect to time

varying channels conditions. The performance of an adaptive network depends on the

accurate channel state prediction and reconfiguration capability of the communication

stack.

This chapter is organized as follows. Next, in Section 1.1, key challenges and

the state-of-art in UWANs will be presented; then, in Section 1.2, the optimization

aspects of UWANs using channel adaptation is addressed, and the role of CSI acqui-

sition in adaptation is explained; in Section 1.3, the main contributions of this study
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in enabling adaptive UWANs using a practical channel state information (CSI) acqui-

sition scheme is introduced, then, in Section 1.4, the organization of this dissertation

is presented.

1.1 Background

To enable underwater communication, acoustic propagation is generally adopted be-

cause low-frequency sound can easily travel several kilometers. Modern underwater

communication technology was developed during the Second World War for military

purposes. One of the first underwater communication systems was the underwa-

ter telephone, developed in 1945 in the United States for communicating with sub-

marines [1]. This device used a single-sideband (SSB) suppressed carrier amplitude

modulation in the 8 kHz to 11 kHz frequency range and was capable of sending

acoustic signals over several kilometers. The availability of compact digital signal

processors (DSPs) during the past two decades advanced the development of under-

water acoustic communication systems and enabled many modulation methods and

techniques developed for radio communications to be adopted for underwater acoustic

communications systems [2, 3, 4].

Acoustic waves are not the only means of underwater communication but are the

best-known form of long-distance communication in underwater. The high attenua-

tion of radio frequency (RF), optical, and magneto-inductive (MI) signals in seawater

leaves acoustic propagation as the only feasible option to transmit underwater signals

over distances in excess of one hundred meters. Table 1.1 compares different means

of underwater communication.

The acoustic link is cheaper and more practical than cabled or tethered links.

However, the acoustic channel features time varying multipath fading, frequency-

dependent transmission loss, and high propagation delay, which make it a challenging

medium for communication [5].

Multipath arrival greatly affects the acoustic signal as it propagates through the

water. By definition, in a multipath channel, signals received at a receiver are the

superposition of multiple acoustic waves from different paths. Each path arrives with

a unique amplitude, phase, and angle of arrival. For example, Figure 1.1 shows a

representation of the rays that combine at the receiver in a shallow environment;
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Table 1.1: Comparison of underwater MI, EM, acoustic, and optical communica-
tions [3]

Communication
mean

Propagation
speed

Data rates Communication
ranges

Channel dependency

MI 3× 107 m/s ∼ Mb/s 10−100 m Conductivity
RF 3 ×107 m/s ∼ Mb/s ≤ 10 m Conductivity, multi-

path
Acoustic 1500 m/s ∼ kb/s ∼ km Multipath, Doppler,

temperature, pres-
sure, salinity, envi-
ronmental conditions

Optical 3 ×107 m/s ∼ Mb/s 10−100 m Light scattering, line
of sight communica-
tion, ambient light
noise

when the signal arrives at the receiver by two or more different paths, and when at

least one path’s length is changing, the non-coherent combination multipaths results

in a frequency selective fading channel [6]. Partial cancellation of the signal by itself

is formed by frequency-selective fading channel [7].

Figure 1.1: Simulation of a 566-meter channel ray traces by Bellhop for a deployment
in the Bay of Fundy, Nova Scotia.

The acoustic channel is also subject to time-variance. The time varying fading

effect in an acoustic channel can be categorized in two different time scales: large-scale

and small-scale fading effects [8].

Large-scale effects are assumed to be slow, long-term trends that impact the locally

averaged received signal power, causing it to vary over extended periods ranging from

several minutes to hours [9]. Channel variations caused by large-scale phenomena are

influenced by changes in sound speed profile, drifting of the transmitter or receiver,



4

changes in water temperature, and in sea level due to tides [10]. In contrast, we

refer to rapid fluctuations of the received signal strength over a very short period

of time in the order of a few symbols duration or travel distances in the order of a

few wavelengths as a small-scale effect [11]. Small-scale effects are mainly induced

by reflection, scattering and motion-induced Doppler shifts of acoustic waves at the

surface, bottom, and any surrounding objects. Both multipath propagation, as well

as refraction, produce time dispersion in the received signal. This phenomenon also

combines with strong physical environmental conditions such as flow and tide which

cause significant channel variations.

Figure 1.2 shows a stochastic model of a time varying channel developed in [12],

which captures the effect of physical environment variations including tides on channel

gain.
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Figure 1.2: Stochastic modelling of Small-scale and Large-scale fading [12].

In addition to challenges imposed by large-scale and small-scale effects, an under-

water acoustic channel (UWAC) is severely bandwidth limited due to its frequency-

dependent transmission loss. Frequency-dependent transmission loss is primarily due

to viscosity and the relaxation of B(OH)3 and MgSO4 present in seawater and imposes

significant constraints on the achievable throughput of UWANs [13]. Furthermore,

propagation delay in UWACs introduces unique problems in channel access manage-

ment in multi-user UWANs. Sound propagates underwater at a very low speed of ap-

proximately 1500 m/s, when compared to RF in terrestrial communication networks.

Because of the properties of the underwater acoustic channel, available networks pro-

tocols in terrestrial wireless networks are not fit for UWANs.

With the increased interest in deploying underwater infrastructure, UWANs at-

tracted a lot of attention. UWANs are constituted heterogeneous sensors, including
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fixed nodes, AUVs, sink nodes, or surface gateways to collect data for various appli-

cations [14]

Many network strategies have been studied for UWANs in recent years. A rep-

resentative deployment for the UWAN [15] is depicted in Figure. 1.3; it consists of

acoustic nodes (ANs) as well as cluster heads that also act as underwater gateways

(UWGs). The UWGs relay the underwater sensor data to the surface buoys. Surface

buoys are also equipped with a long-range radio or satellite transceiver to communi-

cate with an onshore sink or a surface sink.

Acoustic
 Nodes

Cluster Head Autonomous 
Underwater
Vehicle

Surface Buoy
Radio Link

Satellite Link

Onshore Base

Figure 1.3: Representation of a reference single-hop UWAN architecture [15].

Due to the unique characteristics of acoustic channels, designing reliable and effi-

cient networking protocols, e.g., medium access control (MAC) and routing protocols

for UWANs have their unique challenges compared to terrestrial networks.

Some of the major challenges in the design of UWANs are [4]:

• The available bandwidth is severely limited which constrains the exchange of

network management packets.

• The underwater channel is severely impaired, especially due to multipath and

fading which increases packet loss and re-transmission requests.

• Propagation delay in underwater is five orders of magnitude higher than in

radio frequency(RF) terrestrial channels, and extremely variable [16]. High

propagation delay increases the channel access waiting time and significantly

increases latency.
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• High bit error rate (BER) and temporary losses of connectivity (shadow zones)

between nodes can be experienced, due to the extreme characteristics of the

underwater channel.

• Battery power is limited and usually batteries cannot be recharged. Limited

battery magnifies the importance of energy efficient network protocols.

An adaptive communication stack can optimize the reliability, the spectral effi-

ciency and the energy efficiency of UWANs [17] by reconfiguring parameters includ-

ing the modulation level, the sub-carriers bandwidth, the transmit power, the guard

band duration, etc. according to the channel conditions. Adaptability requires precise

channel state information (CSI) including channel gain, delay, Doppler spread and

multipath structure at the transmitter. Precise CSI acquisition plays an important

role in enabling adaptability and improving UWANs’ efficiency.

1.2 Problem Statement

The deployment of underwater networks (UWAN) has been attracting significant

interest to develop remote underwater sensing and monitoring technologies. Under-

water acoustic propagation offers an opportune medium for subsea communication

over kilometers.

Specifically, recent coastal development and the use of AUVs in shallow water,

where the typical depth is about 10–100 meters, provide new opportunities in vari-

ous industrial and military sectors. The shallow ocean is an exceedingly complicated

place, and temporal channel variations impact the reliability and spectral efficiency

of underwater acoustic (UWA) networks. Temporal variations of underwater acous-

tic channels introduce significant challenges for reliable transmission, channel access

control, collision avoidance, and routing in the deployment of UWANs in shallow

waters.

The time varying physical oceanographic processes induce amplitude and delay

variations in the propagation channel and motion (including surface variations and

secondary effects from flow) introduce additional random Doppler frequency shifts.

Conventional approaches for reliable underwater communication in time varying fad-

ing channels consider the worst-case channel condition to define the physical and
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MAC layer parameters leading to inefficient use of spectrum resources and high en-

ergy consumption.

The time constants that govern the channel characteristics depend on the un-

derlying physical phenomena. To predict the channel characteristics reliably, it is

important to gather information about the time varying physical environmental con-

ditions that influence the channel statistics. The physical environmental factors that

govern the UWA channel variations can be categorized in three classes: 1) a pri-

ori known deterministic physical and geometric conditions including channel depth,

range, and bathymetry; 2) slow varying conditions that can be measured in real-

time and which are caused by changes in, e.g., sound speed profile, as seasonal water

temperate changes, drifting of the transmitter or receiver, as well as changes in sea

level due to tides; and 3) random varying oceanic processes such as, surface rough-

ness, random ocean turbulence as well as scattering. These effects can be represented

statistically using a small-scale channel model [10].

Knowledge of the physical environment and acoustic channel fading characteristics

can be used to adapt physical and MAC layers to channel variations and optimize the

spectral and energy efficiency of UWA systems [17]. Specifically, in shallow conditions,

the channel characteristics can vary significantly with the tide and flow, emphasizing

using a context-aware prediction scheme.

To deploy multiuser networks, channel access and a routing protocol must be

defined to meet the UWA channel conditions and communications requirements.

The general aim of this research work is studying design aspects of a cross-layer

approach in which UWANs dynamically adapt their communication stack with the

time varying characteristics of the channel [18]. Accurate predictions of channel

state information (CSI) at the transmitter are crucial to design a cross-layer acoustic

communication system.

To enable an adaptive underwater network, three main objectives are defined in

this work:

1. Define and demonstrate through simulation a routing algorithm to extend the

range of the network with minimal energy consumption.

2. Define and demonstrate through simulation a protocol to allow spectrally effi-

cient sharing of the resources in a network.
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Figure 1.4: Cross-layer Architecture.

3. Define an algorithm to predict in real-time the channel characteristics between

the nodes given a scarce set of measurements, and a priori known environmental

conditions.

1.3 Contributions

Three major contributions are highlighted in this thesis.

As a first contribution, a network architecture is proposed for UWANs in Chap-

ter 3. Here, an energy-efficient flooding routing protocol is defined in Section 3.2.1 for

exchanging network control messages, and a channel-aware multihop relaying rout-

ing is introduced for data transmission in Section 3.2.2. Next, to maximize resource

allocations and ensure connectivity between the relays, a channel-aware MAC layer

is proposed to share the acoustic resources while avoiding collisions within the net-

work. The proposed channel-aware routing protocols optimize reliability and energy

efficiency, and the proposed MAC scheme maximizes channel utilization and ensures

connectivity in the UWAN framework. The work described in Chapter 3 contains

material presented at the following conferences and published in the Computer and

Telecommunications Networking Journal by Elsevier:

• H. Ghannadrezaii, J-F Bousquet, “Maximizing Network Coverage in a Mul-

tichannel Short-range Underwater Acoustic Sensor Network”, Computer Net-

works, Volume 160, 4 September 2019, Pages 1-10.
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• H. Ghannadrezaii, J-F Bousquet, “FHSS-BFSK Janus-Based protocol for Un-

derwater Hybrid Cellular-Ad hoc Network”, “2018 CMOS Congress”, 10-14 Jun

2018, Halifax, Canada.

• H. Ghannadrezaii, J-F Bousquet, “Securing Janus-Based Flooding Routing Pro-

tocol for Underwater Acoustic Networks”, “OCEAN 2018”, October 22 – 25,

2018, Charleston, USA.

The second contribution of this study is to provide an accurate modeling solution

for CSI in an environment with strong tidal currents. The proposed statistical data

analysis from a sea trial in Grand Passage implies that the complex random surface

process induced by the physical environmental conditions governs the fast-changing

channel characteristic. Our proposed CSI acquisition model takes into account the

tide level to identify different channel states. Specifically, in each state, the channel

is characterized statistically using key parameters, including gain, delay, Doppler

spread, and variance of intrapath delays. Considering different states for the channel

optimizes prediction accuracy and reduces model error.

Toward this goal, first, the role of the intrapaths statistics on the channel char-

acteristics is reviewed. Then, the impact of surface elevation variations on the path

statistics is identified. A data set from experimental data, including the large data

set obtained over a 34-day sea trial channel-sounding data set, is compressed to gen-

erate a parametric model of the channel. For this purpose, real channel estimations

extracted from a set of probing sequences are used.

The work described in Chapter 4 contains material presented at the following

conferences and is under review in the IEEE Journal of Oceanic Engineering:

• J. MacDonald, H. Ghannadrezaii, JF. Bousquet, D. Barclay “Analysis of the

Impact of Flow on the Underwater Acoustic Channel”, Oceans 2021.

• H. Ghannadrezaii, J-F Bousquet, “Channel Quality Prediction for Adaptive

Underwater Acoustic Communication”, Ucomms 2020, Lerici, Italy, September

2020.

• H. Ghannadrezaii, J-F Bousquet, “Cross-layer Design for Software-defined Un-

derwater Acoustic Networking”, “OCEANS 2019”, Marseille, France.
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As a third contribution, a novel multi-layer Markov process is used to predict the

channel characteristics in different tide phases. Each layer of the proposed Markov

chain predicts the channel gain, delay, Doppler spread, and intrapaths statistics in

one tide phase. Compared to other proposed models, the significance of this model is

context awareness, which takes into account the tide phase and considers 25 different

phases for the channel during 24 hours. By tracking the deterministic physical en-

vironmental conditions to define different phases, the prediction model has achieved

significant accuracy. The predicted small-scale statistics will be incorporated into a

large-scale analytical model to find the channel state information (CSI) at least one

travel time ahead of transmission.

To validate the accuracy of the proposed method, the predicted channel charac-

teristics are compared to the channel measurements obtained in a 566 meters channel

in Grand Passage, Nova Scotia.

Finally, a methodology to estimate the CSI for a mobile AUV is presented. Here,

a channel tracking model is developed, which incorporates data-driven small-scale

statistics into an analytical channel model to estimate the channel impulse responses

(CIRs). The communication performance of the estimated channel is evaluated for

24 hours for an OFDM link between a fixed node and a mobile AUV node. The BER

performance of the acoustic link is demonstrated in different signal-to-noise ratios.

The work described in Chapter 5 contains materials that is currently under internal

review for the following publication:

• H. Ghannadrezaii, J-F Bousquet “Channel State Information Acquisition for

Adaptive Underwater Acoustic Communication”, IEEE Journal of Oceanic En-

gineering, May 2022.

• H. Ghannadrezaii, J-F Bousquet, “Performance Evaluation of Acoustic Link in

High flow Tidal Environment ”, Computer Networks, September 2022.

1.4 Outline of Dissertation

This dissertation is organized as follows. In Chapter 2, a detailed review of key

aspects of UWAN is provided. Then in Chapter 3, a Media Access Control (MAC)

protocol and a channel-aware multihop relaying routing protocol are proposed to
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optimize reliability and energy efficiency in UWANs. The proposed MAC protocol

ensures that ANs within the transmitting range of each other do not utilize the

same frequency channels and are allocated at least one channel to maintain network

connectivity. In Chapter 4 the impact of specific physical environment processes on a

statistical channel model is presented, and a parametric data-driven model is used to

statistically characterize the channel power delay profile in different tide phases. In

Chapter 5, a Markov process is presented that predicts the channel characteristics in

future tide phases. Here a channel simulator is presented that estimates the CIRs for a

mobile AUV by incorporating the small-scale channel statistics; finally, in Chapter 6,

conclusions are presented.



Chapter 2

An Adaptive Cross-Layer Design for Underwater Acoustic

Networking

Over the past decade, new adaptive wireless technologies such as Software Defined

Networks [19] and Adaptive 5G [20, 21] have been successfully utilized and have im-

proved the spectral and energy efficiency of terrestrial networks. However, challenges

in UWAC, inlcuding the time varying frequency selective fading and the frequency

dependant transmission loss has thwarted the widescale development of UWANs. In-

deed, conventional UWANs remain spectrally inefficient with low reliability and high

energy consumption [22, 23]. The temporal variation of the underwater acoustic

channel emphasizes the importance of adaptive underwater communication stacks.

Particularly, the lower layers, including the physical layer, the MAC layer and the

routing layer should be adaptable to the time varying channel conditions [17].

Various physical, routing and media access control schemes for UWANs have been

proposed for over a decade now [24, 25, 26]. Among all the solutions, cross layer

designs that can exploit the channel information [27] received the most attention.

In this chapter, first in Section 2.1, my proposed cross-layer design is described;

then, in Section 2.2, an acoustic channel transfer function will be reviewed and the CSI

parameters of interest will be described; in Section 2.3, key modulation techniques to

enable reliable transmission underwater are presented, and the role of CSI to optimize

the physical layer is shown; then in Section 2.4 the current state-of-the-art in channel

aware MAC for will be presented and the existing network architectures to enable

multihop relaying will be reviewed; finally in Section 2.5, Janus protocol to enable

interoperability among different nodes are briefly reviewed.

2.1 Cross-layer Service Optimization

Cross-layer design is defined by exchanging information between layers for optimum

use of network resources and achieving high adaptability. In cross-layer design, each

12



13

layer is characterized by a few key input variables and control settings. The input

variables are passed to other layers to determine the best adaptation rules for their

control settings with regard to the current network and channel status [28]. Cross-

layer design is usually formulated as an optimization problem, with optimization

variables and constraints from multiple layers. Solving the optimization problem

provides the optimal values for the control settings in the layers.

Cross-layer approaches to optimize power consumption and spectral efficiency have

been discussed in recent years [29, 30].

In this work, a cross-layer service, as shown in Figure 2.1 is considered to opti-

mize each layer. The finite state design approach to re-configurable parameters in

each layer enables each layer to change from one state to another in response to a

channel state and reduce the cross-layer service computation complexity to a lookup

table. However, the set of configurable variable states should be derived and defined

concerning the application’s objective function and channel states.

Figure 2.1: Cross-layer Service re-configures layers dynamically using acquired CSI
and preset states according to user application.

The cross-layer service optimization consists of three elements: an objective func-

tion, a set of configurable variables, and a set of constraints. They are defined as

follows:

1. The objective function is defined to maximize the bit rate or to minimize

the energy per bit consumption while maintaining a target BER. The objective
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function is defined according to the communication link requirement. Depend-

ing on the network application, maximization of the bit rate can outweigh the

minimization of the energy per bit consumption or vice versa. A trade-off is de-

fined based on the network application. In this work, two use cases are defined:

(a) Data collection sensor networks that can be applied in the oil and gas

industry, for ocean pollution monitoring and for aquaculture; this appli-

cation requires to maintain a modest transmission bit rate and is defined

to minimize the overall energy consumption per bit for a target BER to

increase battery usage.

(b) High throughput data streaming communication like voice or video trans-

mission application need relatively high end-to-end bit rate, without con-

straint on energy efficiency.

2. The set of constraints are imposed by the time varying channel conditions

and by the equipment capabilities. The channel conditions impose a set of

constraints, for example, the channel’s delay spread, gain, and Doppler spread.

Additionally, constraints imposed by equipment are defined based on the man-

ufacturer operating frequency and bandwidth, maximum transmit power, hy-

drophone sensitivity and battery life.

3. The set of configurable variables in the physical, MAC layer and routing

layer that are updated according to the constraints to optimize the objective

function.

The OFDM physical layer’s design parameters include sub-carrier bandwidth,

number of subcarriers, inverse fast Fourier transform (IFFT)/fast Fourier trans-

form (FFT) block size, CP size, symbol rate, symbol duration, modulation level,

code rate, guard interval, and transmitting power. To satisfy the channel con-

straints to have a reliable transmission for example in OFDM systems, the cyclic

prefix (CP) length needs to be larger than the maximum excess delay of the

channel. As defined in [31], maximum excess delay, is the relative time dif-

ference between the first signal component arriving at the receiver to the last

component whose power level is above some threshold. If this information is
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not available, the worst-case channel condition is used for system design, which

makes the CP a significant portion of the transmitted data. One way to in-

crease the spectral efficiency is to adapt the length of the CP to the changing

multipath conditions, which requires channel excess delay knowledge [32].

In multihop UWANs, the physical layer, the MAC protocol, and the relaying

design schemes can influence the network throughput and energy efficiency.

Channel conditions which the CSI represents, play the main role in defining con-

straints. Following, we will review UWAC time varying characteristics.

2.2 Acoustic Communication Channel Model and Properties

In this section, we review underwater acoustic channel and characterize CSI. Firstly,

the channel transfer function will be represented and then the frequency and time

dispersion will be characterized, secondly, the impact of time-variance on channel

properties including channel gain, delay spread, Doppler spread and coherence band-

width will be described.

Acoustic Channel Transfer Function

The UWAC is characterized by a transmission loss that mainly depends on absorption,

distance, signal frequency, temperature and pressure [33].

One of the widely used model for absorption is the Thorp’s formula described

in [34] and is expressed as

α(f) = A1P1
f1 f 2

f1
2 + f 2

+ A2P2
A2

P2

f2f
2

f2
2f 2

+ A3P3f
3 dB/km (2.1)

where α(f) is the absorption as a function of frequency and f is the signal frequency in

kHz. The coefficients A1 to A3 and P1 to P3 represent the effects of water temperature

and pressure respectively and f1 and f2 are the relaxation frequencies of boric acid

and magnesium.

Transmission loss increases with range and frequency, limiting the useful band-

width. Bandwidth limitation and spectral efficiency is a considerable limitation on

design of UWAN and determines the range and data-rate of an acoustic link.



16

The sound speed, c, is another decisive parameter in acoustic propagation which

is a function of temperature, salinity, and pressure. In seawater it ranges between

1450 m/s and 1570 m/s [35]. We can calculate the speed of UWA waves (denoted by

c) empirically as

c = 1448.96 + 4.591T − 5.304× 10−2T 2 + 2.374× 10−4T 3 + 1.340(S − 35)

+ 1.630× 10−2z+1.675× 10−7z2− 1.025× 10−2T (S− 35)− 7.139× 10−13Tz3 m/s

(2.2)

where T , S, and z denote the temperature in Celsius, the salinity in parts per thou-

sand, and the depth in meters, respectively [36].

The sound speed profile (SSP) shown in Figure 2.2 is a representative SSP mea-

sured throughout the experiments on the South shore of Nova Scotia during the

DalComms1 sea trial in July 2017. This result shows the variability in the SSP as a

function of depth [37]. Generally, the largest sound speed variations happen near the

surface, where the daily heating and cooling, precipitation, and the wind affect the

mixed layer temperature, salinity, and depth [34]. In a shallow water environment, a

large portion of the water column may be affected by the SSP variations, increasing

the complexity of the time varying channel model.

The transfer function of a time varying channel between the transmitter and

receiver at a particular discrete-time realization t ∈ Tn can be described by [6]

H(f, t) =
∑
p

hp(t)γ̃p(f, t)e
−j2πfτp(t), (2.3)

where hp(t) is the large-scale gain, τp(t) is the large-scale delay and γp(f, t) is the

overall small-scale fading coefficient of path p. The time varying large-scale gain of

path p is defined as

hp(t) = h̄P
1√

(1 + ∆lp(t)

l̄p
)kαp(f)

∆lp(t)
, (2.4)

where in (2.4) , h̄p is the nominal path gain and ∆lp(t) = lp(t) − l̄p describes the

variations of the path length in unit of meter. Accordingly, lp(t) is the large-scale

path length and l̄p represents the nominal path length, αp(f) is the absorption loss
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Figure 2.2: 70 SSP measured throughout the experiments in the south shore of Nova
Scotia during the DalComms1 sea trial between 26-28 July 2017 [37].

coefficient for path p within the signal frequency which can be obtained in dB/km

using Thorp’s empirical formula, and k is the spreading factor [38, 36].

The large-scale delay of path p, τp(t), in the channel realization t ∈ [0, T ] can be

modelled as

τp(t) = τ̄p −
∫ t

x=0

avp(x)dx, (2.5)

where τ̄p is the nominal delay of path p and an additional term
∫ t

x=0
av(x)dx describes

the overall vehicular or drifting motion at the time of the observation [5].

The system motion modelled by a linear Doppler scaling factor av(t) [13] corre-

sponds to the linear path length variation with equivalent speed vdp longitudinal to

the propagation path. The linear Doppler scaling factor is defined as

avp(t) =
vdp(t)

c̄p
. (2.6)
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Here, c̄p is the average speed that is experienced by acoustic waves in path p.

As acoustic waves travel in different water depth and temperature layers, it experi-

ences different speeds, and waves of sound always bend toward the region of lower

propagation speed, obeying Snell’s law.

For a scenario involving a mobile transmitter or receiver, the relative speed vdp

associated to the path p can be defined as

vdp = vtd cos(θp − θtd)− vrd cos(θp + θrd). (2.7)

Note that vtd is the transmitter vehicular speed in the direction of θtd with respect

to the horizontal point toward the receiver, and vrd is the receivers vehicular speed in

the direction of θrd with respect to the horizontal point toward the transmitter. Also,

θP is the grazing angle associated with the pth propagation path [6].

Parameters in the commonly used Equation (2.3) have been categorized into three

types; nominal channel parameters, large-scale parameters, and small scale parame-

ters.

The nominal path length l̄p can be calculated using a ray-tracing algorithm such

as Bellhop [34]. The slow varying large-scale parameters focus on characterizing

channel variations that are influenced by changes in sound speed profile, drifting of

transmitter/ receiver, changes in water temperature, and sea level, e.g., due to tides or

currents. Correspondingly, the fast varying small-scale parameters focus on statistical

characterization of random effects such as scattering, refraction, and motion/ flow-

induced Doppler that influence the instantaneous channel response [16].

While nominal and large-scale channel models can provide useful channel state

information for adaptive power control applications, they do not offer accurate CSI

estimates to mitigate frequency selective fading. Random small-scale effects, includ-

ing random scattering and motion/ displacement induced Doppler, are the key factors

responsible for fast variations of the channel frequency response during a communi-

cation transaction.

Following the small-scale fading coefficient will be characterized and the correla-

tion between intra-paths statistics and small-scale fading properties will be explained.
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Small-scale Fading Characterisation

Small-scale effect including scattering and motion-induced Doppler shifting are the

key factors which are responsible for fast variations of the channel frequency response

during a communication transaction.

For each path p at a time realization of t, γ̃p(f, t) is the overall path small-scale

fading coefficient that can be modelled by

γ̃p(f, t) = γp(f, t)e
j2πapft, (2.8)

where γp(f, t) is small-scale path coefficient and ap is the overall Doppler scaling

factor for path p which captures the relative motion between the transmitter and the

receiver.

Three types of motion influence the Doppler factor: 1) unintentional transmit-

ter/receiver motion, i.e., drifting, which induces adp a drifting Doppler scaling factor;

2) intentional transmitter/receiver motion, i.e., vehicular motion, which induces ve-

hicular Doppler scaling factor av ; and 3) waves, i.e., surface motion, which induces

surface Doppler scaling factor asp as expressed in [6].

A channel path can be assumed as a bundle of intra paths and according to the

ray theory the transmitted signal in the path can be assumed as a cluster of rays [39],

where hp,i are intra paths or micropaths small-scale gains and τp,i = τp + δτp,i are

the intra-paths small scale delays. The intrapaths delays are random variables with

distribution of δτp,i which accounts for the random placement of scattering points

within scattering fields in the surface, bottom or any other object in the propagation

path.

Accordingly, the small-scale fading coefficient of path p can be expressed as

γp(f) = γp,0 +
∑
i≥1

γp,ie
−j2πfδτp,i (2.9)

where γp,0 represents the relative coefficient of the stable path with δτp,0 = 0.

In general small scale coefficient γp(f) has a complex Gaussian distribution with

mean γ̄p(f) and variance of 2σ2
P (f). While the γ̄p(f)capture location uncertainty,

the 2σ2
P (f) are influenced by the changing environmental conditions (e.g., surface
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roughness that changes with the wind/wave activity). Both sets of parameters can

thus change over prolonged intervals of time.

The path statistics in Equation 2.9 including γ̄p(f) and 2σ2
P (f) can be determined

experimentally if the intra-path delays distribution of δτp,i and intrapaths gain hp,i

statistics are known.

Finding the intrapaths delays structure and their impact on the channel frequency

response is one of the main objectives of this research. One of the potential techniques

to find statistical property of the intra paths delays is fitting the intrapath delays

samples to a Gaussian distribution to find variance of intrapath delays distribution

which will be discussed in detail in Chapter 4

2.2.1 Channel State Information Representation

The channel quality can be expressed in term of set of parameters which are addressed

here as the CSI. The channel quality depends heavily on the channel gain, delay and

Doppler spread [16].

Following we will discuss these parameters and acquire them analytically from

channel transfer function.

Channel Gain: Since the channel H(f, tn), tn ∈ T is frequency selective, the

overall channel instantaneous gain G(tn) over the band width B at time tn can be

calculated from

G(tn) =
1

B

∫ f0+B

f0

|H(f, tn)|2df, (2.10)

By averaging the instantaneous channel gain over longer large-scale interval t ∈
[0, T ] or several seconds we can obtain large-scale channel gain

G = E{g(t)} (2.11)

Delay Spread: The delay spread is used to measure the channel time dispersion

in multipath environment, often defined as the time between the first significant path

arrival and the last significant path arrival. Delay spread imposed by multipaths

has a significant impact on intersymbol interference (ISI). The delay spread leads to

time dispersion and frequency-selective fading. The time dispersive properties of wide
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band multipath channels are most commonly quantified by their mean excess delay

τ̄ and RMS delay spread τRMS. The mean excess delay is the first moment of the

power delay profile. Each cluster of arrivals has different dispersion properties. We

can define the RMS delay spread τRMS for cluster p as

τRMSp =
√

τ̄ 2p − (τ̄p)2, (2.12)

where

τ̄ 2p =

∑
i hp,i

2τp, i
2∑

i hp,i
2 , (2.13)

and

τ̄p =

∑
i hp,i

2τp,i∑
i hp,i

2 , (2.14)

where hp,i is the gain of intra-paths within cluster p.

The maximum excess delay of the power delay profile for path p is defined to be

the time delay during which multipath energy falls to X dB below the maximum.

The maximum excess delay can be written as τp,x−τp,0, where τp,0 is the first arriving

signal and is the maximum delay at which a multipath component is within X dB of

the strongest arriving multipath signal.

Time and Frequency Correlation of the Channel: In addition to the fre-

quency selectivity of the channel, time-variance impacts the statistics over time. The

correlation of the scattering coefficients γ(f) over the time of ∆t is described by

Rp(f,∆t) = E{γp(f, t+∆t)γ∗
q (t)}. (2.15)

As explained in [6], the correlation of the channel over time is related to the effec-

tive Doppler spread of a path. The Doppler spread is a parameter that describes the

frequency dispersion of acoustic channel. Doppler spread imposes inter-carrier inter-

ference (ICI) and is an impairment well known to degrade performance of Orthogonal

Frequency Division Multiplexing (OFDM) transmissions. Effective Doppler spread of

a path characterized by the small-scale coefficient γp(f, t) using

E{γp(f, t+∆t)γ∗
q (t)} ≈ 2σ2

p(f)e
−πBp(f)∆t, (2.16)
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where

BP (f) = (2πfσδp)
2Bδp. (2.17)

In (2.17), Bp(f) is the effective Doppler bandwidth or Doppler spread of the path

coefficient γp(f, t). Also, Bδp is the 3-dB bandwidth of the power spectral density

(PSD) of the intra-path distribution of δτp,i(t). Moreover, σ2
δp

is the variance of the

intra-path distribution δτp,i(t). The approximation is valid for ∆t << 1/Bδp . Note

that, as such, the frequency correlation of the small-scale path coefficient depends on

Doppler spread of the path coefficient γp(f, t) and variance of paths.

Figure 2.3 shows time and frequency dispersion of an acoustic channel.

dB

(a) Channel impulse response evolution of
a 1 km acoustic channel over six minutes.

dB

(b) Delay-Doppler dispersion of a 1 km
acoustic channel over six minutes.

Figure 2.3: Dispersion of a 1 km acoustic channel in time and frequency, UW-
STREAM Lab Seaport Deployments, Halifax, NS., 2015.

Coherence Bandwidth: Analogous to the delay spread parameters in the time

domain, the coherence bandwidth is used to characterize the channel in the frequency

domain. The RMS delay spread and coherence bandwidth are inversely proportional

to one another.

While the delay spread is a natural phenomenon caused by reflected and scattered

propagation paths in the acoustic channel, the coherence bandwidth, is a defined

relation derived from the rms delay spread. The coherence bandwidth, can be derived

from the RMS delay spread and channel frequency correlation. Coherence bandwidth

is a statistical measure of the range of frequencies over which the channel can be



23

considered "flat".

This is an important parameter in defining subcarriers bandwidth in an OFDM

system.

The analytic issue of coherence bandwidth was first studied by Jakes [40], where by

assuming homogeneous scattering, the coherence bandwidth of a channel is inversely

proportional to its RMS delay spread as expressed by

Bc ∝ 1

τRMS
, (2.18)

where τRMS denotes the RMS delay spread.

However, based on experimental data, Rappaport and Lee modified Jakes’ for-

mula to obtain a formula for coherence bandwidth which was initially developed for

Wide-Sense Stationary (WSS) frequency-nonselective (narrowband) Rayleigh fading

channels by

If the coherence bandwidth is defined as the bandwidth over which the frequency

correlation function is above 0.9, then the coherence bandwidth is approximately

Bc ≈ 1

50τRMS
, for η0 = 0.9 (2.19)

This formula resembles the original one by Jakes except a different scaling factor,

which depends on the preset CSI level η0 for frequency correlation.

If the definition is relaxed so that the frequency correlation function is above 0.5.

then the coherence bandwidth is approximately

Bc ≈ 1

5τRMS
, for η0 = 0.5 (2.20)

Assuming a WSS rayleigh fading for a wide band underwater acoustic channel is

not a valid assumption and Bc should be calculated from the measured base band

channel impulse responses (CIRs). The coherence bandwidth Bc can be calculated

as the width of spaced frequency correlation function, Rp(∆f, t) at a given threshold

ηT [41].

Frequency correlation function is a key function involved in expressing a channel

quality over the proposed transmission bandwidth. If there is significant degradation

in this correlation, time varying signal distortion and time varying ISI will occur [42].
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The frequency correlation of the small-scale path coefficients is described by the func-

tion

η = Rp(∆f, t) = E{γp(f +∆f, t)γ∗
q (t)}

= E{[γp(f +∆f)− γ̄(f +∆f)][γp(f)− γ̄p(f)]
∗} (2.21)

2.3 Adaptive Physical Layer in Underwater acoustic Networks

The deployment of underwater networks with reliable, energy efficient and low la-

tency communication links is key to enable the deployment of remote underwater

sensing and monitoring instruments [12]. For reliable and energy efficient UWANs,

several cross-layer optimizations have been proposed to configure the physical layer

of individual nodes. This section presents common physical layer and signal modula-

tion techniques that are most frequently employed in UWA communication systems

and suggests an adaptive approach based on OFDM physical layer. In general the

proposed modulations for UWA communication systems can be classified in two cat-

egories: non-coherent and noherent modulation, as will be explained here.

Non-coherent modulation

By definition, for a non-coherent digital modulation technique, there is no need for

the two carriers (at the transmitter and receiver) to be phase aligned.

In UWA communication systems non-coherent detection of frequency shift key-

ing (FSK) signals has been used widely for channels exhibiting rapid phase variation

such as the long and medium range shallow water channels. To overcome the inter-

symbol interference (ISI) the noncoherent systems employ signal design with guard

times which are inserted between successive pulses to ensure that all the reverbera-

tion will vanish before each subsequent pulse is to be received. The insertion of guard

times results in a reduction of the available data throughput. In addition, due to the

fact that fading is correlated among frequencies separated by less than the coherence

bandwidth (the inverse of the multipath spread), it is desired that only those fre-

quency channels separated by more than this amount be used at the same time. This



25

requirement also reduces the system efficiency. Noncoherent FSK is a good solution

for applications where moderate data rates and robust performance are required [43].

In underwater communication systems, FSK has been extended to include fre-

quency hopping (FH). Specifically, FH-BFSK has been selected for its robustness in

harsh UW acoustic propagation environment and for its simplicity of implementation

[44]. FH-BFSK is a non-coherent physical encoding technique, and is already used

in commercially-produced modems. It is also robust to packet collision, supporting

a degree of multiple simultaneous access that is valuable in a simple protocol with a

limited medium access control complexity [45].

Frequency hopping spreads the signal in frequency and time to mitigate the effects

of the variable multipath. The hopping pattern must be known at the transmitter

and receiver to spread and despread the signal. Figure 2.4 shows an example of

frequency hopping for BFSK modulation. The green symbols are transmitted at the

different sub-carrier frequencies according to a pre-defined hopping sequence. Tc is

the hop period during which the carrier frequency stays constant. T is the symbol

period, Tb is the bit period, W is the spread bandwidth, Wd is the symbol bandwidth,

and in this example there are L = 4 frequency hopping levels, between which the

carrier switches. By increasing the frequency hopping levels’ counts, and reducing

the hop period, constrained on the bandwidth, robustness against eavesdropping is

improved [46].

Figure 2.4: Frequency Hopping in FH-BFSK system.

Let’s define the FSK output waveform as

sd(t) = A cos(2π(f0 + 0.5(bi + 1)∆f)t), for iTb < t < (i+ 1)Tb, (2.22)

where f0 is the carrier frequency, ∆f is the separation between the FSK sub-carriers,
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bi is the ith bit, and T is the duration of the single bit.

Then, the upconverted output of the FH-FSK system given a hop frequency fi for

bit index i is equal to

p(t) = R{A cos(2π(f0 + 0.5(bi + 1)∆f)t) exp(2πfit)} (2.23)

When the signal is received at the receiver, the original bit value bi can be re-

covered by following the reverse process, as long as the sender and the receiver are

synchronized with respect to the pseudo-noise sequence [47].

A key parameter to achieve reliable non-coherent communication in a highly dis-

torting environment is such that the symbol time must be much greater than the

multipath delay spread, τRMS. In FH-BFSK systems, the tone duration should be

longer than the delay spread. This results in narrow frequency bands, which are

subject to frequency selective fading. To minimize the sensitivity to Doppler shift,

a wider frequency bin, larger than the expected Doppler shift estimation should be

used. This minimizes the frequency selective fading but causes inter-symbol inter-

ference unless a sufficient guard time is considered in the signal design. Also BER

increases due to frequency collision, as a small number of frequency bins are available.

The performance of FH-FSK clearly depends on the multipath delay spread and the

ability to estimate the Doppler shift. Despite its robustness, an FH-BFSK system

has poor bandwidth and power efficiency [48].

Coherent modulation

Over the past decades, phase-coherent modulation techniques such as phase-shift

keying (PSK) and quadrature amplitude modulations (QAM) have attracted a lot of

attention to increase the bandwidth efficiency of UWA communication systems. While

phase-coherent modulations are bandwidth-efficient methods and have successfully

been tested on a variety of channels. However, in some applications, unpredictable

motion of the receiver and transmitter, as well as changes in the transmission medium,

cause severe phase fluctuations. This is the main reason coherent communications

are often not considered feasible [49]. One of the widely used coherent modulations

in UWA communication is OFDM system.
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Orthogonal Frequency Division Multiplexing

An OFDM signal contains a sum of subcarriers that are phase shift keying (PSK) or

quadrature amplitude modulation (QAM) modulation. Each parallel data transmis-

sion is modulated by different carrier frequencies using modulations such as PSK or

QAM scheme. Also to reduce the complexity of OFDM implementation, the IFFT

and FFT are employed to replace the banks of sinusoidal generator for the modula-

tion and demodulation. In general, an OFDM system at least contains the function

of parallel transmission, signal mapping and IFFT/FFT. Figure 2.5 illustrates the

block diagram of a discrete-time FFT-based OFDM systems model
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Figure 2.5: Block Diagram of an OFDM system [7].

The input binary information d0, d1, · · · is converted from serial to parallel and

then modulated, for example, using PSK/QAM. The parallel data is converted to N

parallel symbols, which are applied to an IFFT. The last Ncp outputs of the IFFT are

pre-pended at the end of the vector. This is the cyclic prefix. With a cyclic prefix,

the complete OFDM symbol c(t) is transmitted over a discrete-time channel. At the

receiver, the received data r0, r1, · · · , rN−1 are converted from serial to parallel, and

the cyclic prefix is deleted. Next, after the parallel r0, r1, · · · , rn−1 is retrieved by a

FFT block. The OFDM Frequency Domain Equalizer block equalizes the OFDM data

using channel estimates [50, 51] and, then, X̂0, X̂1, · · · demapped with corresponding
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scheme to obtain the estimated data [52] and finally converted from parallel to serial

data d̂0, d̂1, · · · as output data.

Over the last two decades OFDM systems have been widely studied for use in

UWA communication because of their high bandwidth efficiency and robustness to

channels that exhibit long delay spreads and frequency selectivity [53]. However,

OFDM systems are known to be sensitive to the UWAC time varying conditions and

their performance depends on the accuracy of transmitters knowledge from the chan-

nel. Specifically, motion-induced random Doppler frequency shifts result in nonuni-

form frequency shift across the signal bandwidth and impose inter-carrier interference

(ICI). Also, the delay spread in a time varying channel leads to time dispersion re-

sult in inter-symbol interference (ISI) and frequency-selective fading. To mitigate the

channel impairments on OFDM systems performance adaptable OFDM systems has

been studied.

In [13], the design aspects for adaptive modulation based on OFDM for under-

water acoustic (UWA) communications are explored. The authors investigated the

possibility of predicting a UWA channel at least one travel time ahead. The Matching

Pursuit algorithm is used to identify path coefficients. Then, assuming that the chan-

nel is predicted one travel time ahead, expressions for the BER of each subcarrier are

obtained. From these expressions, a set of thresholds is obtained that determine the

modulation level and the power needed on each subcarrier to maximize the through-

put while keeping the average BER at a target level. Spectrum efficient adaptive

schemes are also applied to allocate the modulation and the power across the OFDM

subcarriers. Energy efficiency has been studied widely in recent years for OFDM

systems [54, 55, 56]. In [57], for each node, the physical layer parameters are adjusted

to optimize the average transmission energy per bit in the network. In order to im-

prove energy efficiency, the CSI can be used at the transmitter to optimize the power

efficiency.

2.3.1 Adaptive OFDM Based Physical Layer

An acoustic channel can impact an OFDM system performance by imposing fre-

quency dependant transmission loss, intersymbol interference (ISI) and intercarrier

interference (ICI).



29

The main advantage of OFDM over single-carrier schemes is its ability to cope

with severe channel conditions. At the physical layer, it is possible to increase the the

number of useful information bits delivered by reducing the cyclic prefix (CP) length

or guard bands in OFDM systems or improve the power efficiency by decreasing the

transmission power when the channel condition allows.

In OFDM systems, the cyclic prefix (CP) length needs to be larger than the

maximum excess delay of the channel. If this information is not available, the worst-

case channel condition is used for system design, which makes the CP a significant

portion of the transmitted data. One way to increase the spectral efficiency is to

adapt the length of the CP to the changing multipath conditions, which requires

channel excess delay knowledge [32].

The OFDM physical layer design parameters include sub-carrier bandwidth, num-

ber of subcarriers, cyclic prefix size, symbol rate, symbol duration, modulation level,

code rate, guard interval, presence of pilot tones, and transmitting power.

An OFDM system can simply redefine the number of carriers, i.e., the size of

the FFT or cyclic prefix size to mitigate ISI [8]. Also, FFT-based processing is

computationally efficient to implement OFDM. Which makes it a good candidate to

be employed in adaptive underwater acoustic system [58, 59, 60].

An adaptive OFDM system can utilize CSI to mitigate the frequency selectivity

effect of channel in the physical layer. Accordingly the following conditions need to

be considered in OFDM signal design:

• The symbol duration Ts must be chosen such that Ts << 1/νRMS, where νRMS

is the channel Doppler spread. The symbol duration should be kept smaller

than the minimum channel coherence time.

• The sub-carrier separation is generally designed such that ∆f << 1/νRMS.

• The OFDM cyclic prefix duration TCP ≥ τRMS to prevent ISI due to delay

spread

• TCP∆f << 1 for spectral efficiency improvement.

Most of the objective functions that have been considered for adaptive communica-

tion can be roughly divided into two categories: i) very robust, low rate modulations



30

reaching a rate in the order of hundreds of bits/s, exploiting long-lasting symbols

and various types of spread spectrum modulations; ii) high data rate modulations

for short/medium distance connections, reaching nominal data rates of hundreds of

kbit/s [61]. For the first category FH-BFSK attracted many attentions and is used

as a standard in Janus [62, 63, 64]. In the second category of solutions which trying

to achieve higher spectral efficiency, OFDM modulation has emerged as a promising

solution for UWA communications [65] and attracted a lot of attentions for its adap-

tation capabilities [66, 5, 67]. Both of these approaches have capabilities to be used

in multi-user networks and adapt to channel impairments.

2.4 Adaptive Multihop UWAN

There have been extensive works to investigate multiple users and relay deployment

problems in underwater acoustic networks from different perspectives, e.g., energy

efficiency, reliability and latency. Over the past twenty years, various UWAN topolo-

gies and protocols have been proposed. In the UWAN, the challenges related to long

end-to-end latency, high energy consumption, dynamic network topology and short

network lifetime are much more important that in conventional terrestrial networks.

To realize a high data rate, energy-efficient end-to-end communication link over

large areas spanning several square kilometers, more recently, the emphasis has shifted

toward multi-hop relaying networking as a means to provide wider area coverage [68].

Here, we focus on underwater distributed multi-hop scenarios. A multi-hop peer-to-

peer network is formed by establishing communication links only between neighboring

nodes. Messages are transferred from source to destination by hopping packets from

node to node [69]. Deploying relays to shorten the hop distance can expand the

effective bandwidth and reduce the transmit power of each hop [70].

Figure 2.6 depicts a distributed multihop relaying topology for data collections

scenarios where nodes can be deployed in a relatively large area, and supported by a

surface sink node.

Following, we will review the currently proposed MAC and multihop relaying

schemes for UWANs.
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Figure 2.6: Illustration of a distributed underwater network topology.

2.4.1 Media Access Control in UWAN

In this section we will review multiple access methods for UWANs and then suggest a

framework to use CSI in an adaptive OFDM-Based MAC for network nodes in data

collection applications.

One of the main challenges to enable UWA networking is to design an efficient

MAC protocol tailored to the harsh underwater acoustic environment.

Various MAC protocols are proposed for energy and channel utilization optimiza-

tion [71, 72].

A general classification of MAC protocols proposed for UWANs is presented in

Figure 2.7.

MAC
Protocols

Random
Access

Reservation-
Based

Channelization

Aloha

CSMA

CSMA/CA

Centralized

Distributed

FDMA

TDMA

CDMA

Figure 2.7: General classification of MAC protocols [4].
.

With regards to the MAC protocol, initially, random access based solutions such
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as Slotted-ALOHA were adopted [73]. In a centralized topology, the sink node coor-

dinates and provides access to the channel with the multiple users. A slotted Aloha

MAC suits centralized topologies because of its low collision probability and high

throughput. Centralized channel access management and synchronization by a cluster

head has low complexity and energy dissipation, many challenges arise with such an

architecture. As such, when there is excessive nodes, the cluster head sub-net run out

of channel access time-slots and some nodes within the cluster head’s can get access

to the channel. Alternatively, in self-organized ad hoc networks, to access the media,

the unslotted Aloha MAC with Carrier-sense multiple access with collision avoidance

(CSMA-CA) mechanism can be considered by the UWA nodes. In Ad hoc networks

Unslotted Aloha is preferred because it is scalable and does not require handshaking

and global synchronization. However, the distributed channel access methods are

usually more complex and required excessive controlling messages within the network

to reserve a channel and avoid collision [74] The throughput of Slotted-ALOHA can

be improved by introducing a guard time. In [75] two variants of Aloha are designed

with collision avoidance capability to achieve a better performance.

Since random access-based approaches cannot effectively avoid collisions in dis-

tributed networks, some studies have explored reservation based or handshake- based

MAC with contention. In order to improve the energy efficiency some floor acquisi-

tion multiple access (FAMA) schemes proposed which combines both carrier sensing

(CS) and a ready to send (RTS)/ clear to send (CTS) exchange between the source

and receiver prior to data transmission [76]. Multiple Access with Collision Avoidance

(MACA) based protocols also studies for long propagation delay networks [77].

Channelization is a conventional method for multiple access control. The most

common channelization methods are time division multiple access (TDMA), code

division multiple access (CDMA) and frequency division multiple access (FDMA).

There are many TDMA-based MAC protocols that jointly use other MAC mechanisms

such as scheduling and reservation in a multi-hop network. For example, for time

slot allocation, the WA-TDMA (Wave-like Amendment-based TDMA) [78] starts

allocation from the central node to outward nodes in a form of wave-like proliferation

to shorten network initialization time. In comparison, with the LT-MAC (Location-

based TDMA MAC) [79] for a stationary meshed UWAN, each node circulates the



33

transmission permission according to a pre-determined sequence to shorten waiting

time. Time slot assignment depends on the positions of related nodes. Slot length is

decided dynamically according to traffic loads of the local node and its neighbors.

Other techniques have also been proposed combining TDMA on multi-hop net-

works. Transmit Delay Allocation MAC (TDA-MAC) and Accelerated TDA-MAC

(ATDA-MAC) are capable of providing TDMA-based channel access to the network

nodes without the need for centralized clock synchronization[80]. However, a large

protocol overheard is generated to spread position and traffic load information. A

relatively high propagation delay, long time guards and large signaling overhead [81]

disputes the usefulness of TDMA particularly for networks covering vast areas.

As an alternative to TDMA, several proposals try to take advantages of the fea-

tures of CDMA. In [82] a CDMA (using chaotic codes) relies on a closed-loop strategy

based on measurements sent back by the receivers. Each receiver periodically collects

information on the channel state. This information is then provided to the neigh-

bors by transmitting short ACK/NACK messages. A MAC protocol jointly using

CSMA/CA and CDMA is discussed in [83] for a star-topology, aimed at simultane-

ous transmissions without using RTS/CTS to avoid long handshaking delay. The

power control required with CDMA usually implies a star topology with a single

base-station receiver, rather than an arbitrary distributed topology. Also, CDMA

suffers from severe channel reverberation that may lead to degradation of the code

correlation properties.

An orthogonal frequency-division multiple access (OFDMA) based MAC protocol

named G-MAC proposed in [84] which leverages dynamic sub-channel allocation and

transmission power adjustment. G-MAC is a multichannel MAC protocol dedicated

for using in underwater centralized networks, which aims to maximize the network’s

goodput. To solve the optimal problem, G-MAC allows for concurrent data transmis-

sions by applying Nash equilibrium to allocate transmission subchannel and related

power adjustment. The convergence of the iterative process is arguable, especially in

time varying environment.

Despite all the efforts in recent years to design underwater networking proto-

cols and establishing a reliable and low latency end-to-end link from the underwater

acoustic node to the surface sink nodes, the inherent characteristics of the multipath
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underwater acoustic channel, including its time-variance and its long propagation de-

lay as well as limited battery and limited bandwidth introduces important challenges.

Although OFDMA based MAC have been described, there are only a few studies

that have been conducted to predict signal propagation and channel properties from

the transmitter to the receiver and utilize this information in adaptive underwater

acoustic OFDM signal generation and networking [66]. Filling this gap is the primary

motivation of this study.

To enable adaptable OFDMA based MAC a metric is required to optimize the

MAC layer. The available bandwidth for underwater acoustic (UWA) communication

and networks is very limited, and frequency reuse is one of the important techniques

to improve spectrum efficiency and system capacity. However, the long propagation

delay and limited bandwidth of UWACs, the contention based algorithms with hand-

shaking and random access-based MAC protocols do not perform efficiently. Using

a collision-free frequency reuse approach is therefore considered to achieve high per-

formance by avoiding the collisions at the MAC layer. Graph coloring techniques

are promising technique to achieve as many concurrent conflict-free transmissions as

possible in any two-hop neighbourhood as will be described in Section 3.3.

In the MAC layer, the network throughput can be increased by maximizing the

channel utilization, and the useful information bits increases by avoiding packet loss

in collisions.

The power control can also be combined by frequency reuse to limit the carrier

sense range mitigate interference in multiple access problem. Figure 2.8 shows a graph

coloring scheme with adaptive power control to allocate sub-carrier in OFDM-based

networks using the predicted CSI.

2.4.2 Efficient Multihop Relaying in UWAN

In the UWAN, the challenges related to long end-to-end latency, high energy consump-

tion, dynamic network topology and short network lifetime are much more important

that in conventional terrestrial networks. There have been extensive works to in-

vestigate relay deployment problems in underwater acoustic networks from different

perspectives, e.g., energy efficiency, reliability and latency.

The topologies to interconnect underwater acoustic nodes can be categorized based
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Figure 2.8: Frequency reuse based on Graph colouring to assign sub carriers accom-
panied by power control to avoid interference in multihop relaying.

on three categories: centralized, distributed, and multihop relaying [85].

In a centralized topology the covered area is limited and all the traffic goes through

the cluster head node. As such, when there is excessive traffic, when the channel

quality is poor or when the cluster head node is unavailable, the cluster head sub-net

becomes unresponsive and all the nodes within the cluster head’s coverage lose their

connection.

A fully connected distributed peer-to-peer topology can also be used that provides

peer-to-peer links between every node of the network. Such a topology eliminates the

need for routing. However, the output power needed for communicating with widely

separated nodes is excessive. Also, a node that is trying to send packets to a far-end

node can interfere with a neighboring node.

Multihop relaying networks are formed by establishing communication links only

between neighboring nodes and messages are transferred from source to destination

by hopping packets from node to node. Multihop networks can cover relatively larger

areas since the network range is determined by the number of nodes rather than the

individual acoustic nodes.

However, as the number of hops increases, the packet delay also increases and

special attention should be given to applications that are sensitive to delays. Selecting

the minimum number of hops in relaying can save energy, and selecting relays with

better link quality will increase the reliability and avoid retransmissions.

Flooding routing and relay selection protocols have been studied extensively.

EFlood described in [86] is a broadcast protocol where a node immediately re-transmits
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a received packet unless it is a duplicate. In EFlood, a node waits for a random du-

ration before forwarding the packet. This random time depends on the network

topology and on the packet transmission delay. As demonstrated in [86] the flooding-

based protocol with multiple alternative paths can improve the packet delivery ratio

(PDR) and latency in harsh underwater environment [46] compared to peer-to-peer

relaying protocols. However in flooding based protocols more nodes forward pack-

ets and their overall energy consumption are significantly higher than peer-to-peer

relaying protocols.

Recently, several proposals have adopted OFDMA for UWANs. The main issues

addressed for OFDMA include sub-channel allocation, adaptability and energy effi-

ciency. In [87] an OFDMA MAC which employs a joint relay selection and power

allocation based on the handshake mechanism in a multi-hop network. Accordingly,

a Particle Swarm Optimization algorithm is used to allocate the power on all sub-

channels of each node; to reduce the network energy consumption while obtaining

a large network throughput. Priority is set for each one-hop node according to the

delay information. The authors considered propagation delay and energy efficiency

for optimization, however the channel condition is not taken into consideration.

Among all the solutions, one that stands out in terms of overall remarkable perfor-

mance is the Channel-aware Routing Protocol (CARP), using link quality informa-

tion for successful data delivery to the sink[88]. Nodes are selected as relays based on

their link quality, hop count and residual energy. CARP utilizes a channel reservation

mechanism such as RTS/CTS for channel access and for selecting packet relays (cross

layer design). For this reason, while being reliable and limiting packet collisions, it in-

curs noticeable latency. Also, in networks with high traffic, nodes often fail to obtain

rights to access the channel, which results in low packet delivery ratio.

To improve energy efficiency, several routing protocols [89] have been proposed to

seek the shortest path to forward data.

An adaptive clustering algorithm for multi-hop UWANs is proposed in [90] to

optimize the energy consumption in an OFDM network with the coverage area of 10×
10 km2 with 50 nodes. The proposed energy optimization clustering algorithm scheme

considers multiple factors, such as the number of neighbor nodes, the residual energy

of each node, the motion of the nodes caused by the ocean currents, and the distance
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between the sink node and each underwater node. However, channel impairments are

not taken into account, and only the absorption coefficient and aggregate of ambient

noise are considered in the channel model.

In comparison, in [88] a channel-aware routing protocol (CARP) is proposed to

exploit channel quality information for data forwarding. However, because the chan-

nel is time-variant, the routing protocol must be re-trained at a frequent interval. To

predict the conditions between the nodes in a UWAN, a real-time ray-tracing channel

simulator can be embedded on the nodes as was described in [67]. However, it is

well known that channel simulators have limited reliability, particularly in shallow

time-variant environments.

In [91], network nodes obtain the channel quality by attempting different relay

options over time. The packets are re-transmitted until they are received success-

fully, and a reinforcement learning approach is used to select the best forwarding

relay. However, the re-transmissions may cause excessive spectrum usage as well as

significant energy consumption. Furthermore, the link quality may change with time,

and the optimization process may never converge.

An adaptive Deep Q-Network-based energy- and latency-aware routing protocol to

prolong network lifetimes in UWANs proposed in [92]. However, here also the channel

time varying conditions are not addressed, and the reward-based learning algorithm is

based on iterative training. The convergence and performance of iterative algorithms

in time varying environments are disputable. Due to variant nature of UWAC, it is

important to define an adaptable communication stack, such that the physical layer ,

and the medium access control can adapt to channel and topology varying conditions.

2.5 A Review on Janus Protocol for Interoperability

To break the interoperability barrier and enable collaborative underwater communi-

cations, the Janus baseline packet structure, which is a NATO standard for digital

underwater communications is introduced. Using a standardized protocol enables

communication and packet forwarding among heterogeneous nodes [62]. As defined

in the standard [63], the packet contains 64 bits, consisting of a 34-bit application

data block (ADB) that is determined by the acoustic node. The ADB first 8 bits are

for channel reservation and beacon and the remaining 26 ADB bits are node data.
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The packet is assembled according to the bit allocation shown in Figure 2.9.

Figure 2.9: Janus Packet Bits 1 to 64.

A Janus baseline packet can also be complemented by a cargo section of arbitrary

length. The system also employs a 1/2 rate convolutional encoder [93] that is applied

to the 64 bits of Janus packet and is intended to combat the channel multipath

interference as well as fading. Prior to encoding, 8 zeros are added to the data

to flush the encoder, which will be discarded at the receiver. The total number of

symbols output by the 1/2 rate convolutional encoder then becomes 2×(64 + 8) =

144 [64]. A fixed preamble of 32 chips is employed for detection and synchronization.

As such, altogether a Janus packet comprises 176 chips. So, each packet duration is

equal to 2,288 msec without the optional cargo.

2.6 Summary

In this chapter, adaptive cross-layer design for UWA has been discussed. First, a

cross-layer design is defined for optimum network resource use and high adaptability.

Then, underwater acoustic channel characteristics and CSI definition are presented in

the second Section. The third Section presents the common physical layer and signal

modulation techniques most frequently employed in UWA communication systems.

The fourth Section reviewed multiple access methods for UWANs and proposed a

framework to use CSI in adaptive OFDM-Based network nodes. Finally, in the last

Section, Janus baseline packet structure is reviewed as a NATO standard protocol for

digital underwater communications.



Chapter 3

Routing and Channel Allocation in Multihop Relaying

Network

The temporal and spatial variations of UWA channels, particularly in shallow water,

necessitate the design of dedicated network protocols for UWANs. To enable under-

water acoustic networking, it is important to design the communication stack to be

adaptable to time varying channel conditions. Although there is a significant amount

of work has been performed in recent years towards the deployment of UWANs, there

is still a gap that needs to be filled to address the routing and media access control

problems in UWANs.

In this chapter, first in Section 3.1, a network architecture for adaptive multihop

UWANs is proposed. Then in Section 3.2 an optimized flooding routing protocol to

exchange network control messages and a channel-aware routing protocol to relay data

packets are proposed. Then in Section 3.3 a channel-aware MAC scheme is proposed

to allocate available channels while avoiding collision and maintaining connectivity

within the multihop relaying network.

3.1 An Architecture for Adaptive Multihop UWANs

In this section, an architecture for the proposed UWAN is described. Typically, a

clustered topology in which acoustic nodes are interconnected to a sink node is sug-

gested for UWANs [15, 94, 95]. Instead, in this work, within each cluster a distributed

multi-hop network topology is assumed to extend the network coverage and includes

multiple fixed and mobile acoustic nodes. Similarly, each cluster of nodes is supported

by a sink node. The significance of the proposed model is considering the acoustic

link quality and the minimum re-transmissions as a benchmark for relay selection in

multi-hop relaying. In the proposed network, it is assumed that each node knows

its depth, as well as the sea bottom bathymetry. Also, the local sound speed profile

(SSP) is available at each node.

39
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The proposed communication system structure requires two phases for communi-

cation. First, an initial network control phase that provides a priori knowledge about

the topology and potential routes to the nodes in the cluster. The network control

phase is initiated by a beacon signal from the sink node. Second, a data transmission

phase in which multi-hop relaying is used to forward data packets from the trans-

mitter node to the sink node. Figure 3.1 illustrates the two network communication

phases.

Figure 3.1: Illustration of control and data transmission phases.

In the network control phase, each AN acquires priori knowledge about the net-

work using periodic beacon signals. These beacons are discovery messages and are

initiated to broadcast from the sink node to train a channel prediction model at each

receiving node. Using a beacon forwarding strategy described in [96], each receiving

relay node piggybacks its ID on the received beacon and broadcasts it again. The

network discovery beacons are short messages which are broadcast using the flooding

routing protocol [46].

As illustrated in Figure 3.1, during the network control phase a discovery message

is forwarded from the sink node to all cluster nodes through relay nodes. The discov-

ery messages provide each node the information about its neighbors. As such each

node can learn about the existence of the possible routes to the sink node by reading

the sink node’s ID in the received beacons. The beacons can also be used to obtain

information about the location of the different nodes.

It is also assumed that the physical environment parameters are available at each

node. Then, each AN estimates the channel impulse response to its next one-hop
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relays using a built-in Bellhop software and stores in memory a channel samples

window of the most recent channel impulse impulses, this will be described in 5.3.

Specifically, each transmitter node i) simulates the channel condition of its one-hop

relay nodes, and ii) weighs each link to its one-hop neighbors, as will be explained in

Section 5. Then, the transmitter node selects the optimal next hop relay according

to the highest channel quality weight to send its data packets.

3.2 Multihop Relaying in UWAN

Multihop relaying [97] is considered the preferred network topology to cover large ar-

eas underwater, but the efficiency and practicality of the provided solutions are ques-

tionable. In this section, two multihop relaying schemes are proposed for UWANs.

First, in Section 3.2.1, the design approach for a proposed Optimized Flooding Rout-

ing Algorithm is to achieve high reliability while optimizing energy compared to sim-

ilar approaches. Second, in Section 3.2.2, a multihop channel-aware relaying scheme

is suggested, which considers the link quality as a metric for relay selection.

3.2.1 Optimized Flooding Routing Algorithm

The main challenge for a collaborative routing design in an UWAN is to obtain a

high packet delivery ratio (PDR) with low end-to-end latency and energy per bit

consumption.

Flooding-based routing protocols have attracted a lot of attention as a reliable

solution for multi-hop UWAN due to their low latency and high packet delivery ratio

(PDR) [46]. In this section, a flooding routing algorithm is described to optimize the

PDR without excessive packet relaying to save energy.

In Figure 3.2, an illustration of the flooding routing in the ad hoc mode where a

packet is forwarded from the source to the destination node by broadcasting through

multiple relay nodes is illustrated.

To manage the routing, each node has a unique 8-bit identifier included in the

packet’s header. The source and relay nodes that forward the packet fill this field

with their own identifier. The packet’s intended destination node is also specified by

a second 8-bit identifier, which is intended to be left unchanged during the routing.

Furthermore, a 5-bit packet index is included to indicate the number of consecutive
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Figure 3.2: Flooding Routing in Ad hoc mode Topology.

transmitted packets, and is reset after every 32 cycles. To avoid excessive packet

forwarding in the network a 3-bit local hop counter Hr is also defined at relay r. The

size of local hop counter depends on the distance between two relay and destination

nodes in the network and relay’s acoustic transmission range, as will be explained

later. These 22 bits are added to the Janus packet optional user defined cargo, thus

increasing the original 64-bit packet size by 34%.

To calculate the local hop count, each node has a location table in its memory

that stores its estimated distances from other nodes in the network. This information

is updated every TD seconds, depending on the velocity of the mobile nodes.

When a source node has data to send and the sink node is out of reach, it sends

the packets to the ad hoc mode MAC layer to format the header and manage access

to the media.

The relay node r buffers its incoming packets and classifies them by their sequence

number and sorts according to their maximum received signal strength. The relay

node accepts packets for Tr = RT/v seconds after receiving the first packet, where RT

is its maximum transmission range and v is the speed of sound. After a timeout Tr

is expired, the relay node decodes the first packets in each class and detects the CRC

errors. If itself was not the intended destination, it acts as a relay node and sends

them to the MAC layer. Otherwise, it stops relaying and returns the ACK beacon.

Before forwarding the packets, the relay node senses the channel. If it is available,

then it broadcasts a beacon to notify the neighbors about channel reservation. This
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beacon is also an acknowledge for the received packets and includes their sequence

numbers. If the previous relay node r − 1 does not receive the ACK of a sent packet

after a timeout of TACK = 2((n+ 1)− ith) · (RT/v) seconds, it resends the ith packet

again for a maximum 3 times. Once an ACK is received by relay node r − 1, the

buffers can be discarded from the received packets.

To implement the routing algorithm, we use the fact that, for a given arc between

a source and destination node, the maximum area covered is when the arc length is

equal to that of a half circle. Then, to maintain network connectivity in the area

using the minimum number of hops, a local hop count is calculated based on the

length of the arc of a semicircle. The semicircle diameter is the distance between the

source and destination node. At each relay r, the local hop count Hr is calculated as

Hr =

⌈
π ·Dr

2RT

⌉
, (3.1)

where Dr is the Euclidean distance between the relay and destination,⌈· · · ⌉ is the

ceiling math operator, and RT is the transmission range.

For the first hop, r = 1 and the repetition flag as defined in the Janus packet

cargo is cleared while the forwarding capability flag is set to one. After sensing the

channel availability, the source node broadcasts an ad hoc mode demand beacon to

its neighbors to reserve the channel. Then, after a configuration back-off time of

Tc, the source node sends its packets. If the channel is occupied, the source node

will make a second attempt after a channel back off time-out according to a backoff

mechanism [98]. When a relay node r receives a packet, it checks the forwarding

capability and repetition flags. When the forwarding capability is set, the relay r is

allowed to forward the packet. The cleared repetition flag indicates that the packet

is sent from the source node. In this scenario, the relay node can override the waiting

time for receiving relayed copies. Also, the relay node checks the destination ID and

calculates its distance Dr to the destination node to find its local hop count from

Eq. (3.1).

Specifically, relay node i extracts Hr−i from the packet received from the previous

relay r−1, then calculates Hr−i·RT and compares it to its own Dr. If Dr < (Hr−i· RT ),

then the relay r updates Hr using its Dr from Eq. 3.1, sets the repetition flag and

clears the forwarding flag. Otherwise the forwarding flag remains set. After setting
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the flags and reserving the channel, the relay node broadcasts the packet.

If a relay node receives a packet with a cleared forwarding flag and Dr > (Hr−i·RT )

or Hr−i = 0, it stops broadcasting the packet. Also, if Dr < (Hr−i · RT ), the node

increments Hr−i by one and broadcasts the packet with the forwarding flag cleared.

Next the performance of the presented algorithm to save energy and avoiding excessive

packets forwarding will be evaluated by simulation .

Optimized Flooding Routing Simulation

In Figure 3.3 a simulation of the proposed flooding routing algorithm is illustrated. In

this setting 40 nodes are randomly distributed in a 100 by 100 kilometers area. The

Euclidean distance between the source and destination nodes is DS= 62.45 km and the

acoustic transmission range is assumed to be RT= 20 km. From Eq. (3.1), the initial

local hop is calculated to be five and it is updated as explained in each relay node until

relaying converges to the destination. As shown in Figure 3.3 the relay nodes which

are further from the destination compared to their previous relays clear the forwarding

flag so that when the packet is forwarded away from the destination, the relaying is

terminated. In this example, the packet is forwarded 71 times in the network by 28

nodes including the source and destination. Compared to common flooding routing

where packets are forwarded 100 times by 37 nodes in the same conditions, this

algorithm performed 29% better in term of reducing the forwarding times for the

packet in the network and 24% better to reduce the number of participating relay

nodes.

The multi-cast relaying mechanism required for flooding, significantly raises the

energy demand. Also, excessive packet broadcasting increases the probability of col-

lisions.

3.2.2 Channel Aware Relay Selection

The channel-aware routing protocols [88] are another promising routing scheme that

exploits channel quality information for data forwarding.

The ANs are equipped with an out-of-band beacon generator to send discovery

messages and busy tones. The network coverage is extended using multi-hop relaying

between the ANs. When a transmitter node has packets to send after a collision
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Figure 3.3: Optimized flooding routing model simulation.

detection backoff time TL [99], it reserves the channel using a silence request to its

neighbors and forwards its packets by sending them to its optimum neighbor relay

node. The nodes are assumed to perform the synchronization based on a synchro-

nization pattern taken from the received signal. The synchronization algorithm are

assumed based on the correlation principle [100].

The varying ocean environment as well as differences in temperature, salinity and

pressure for different water depth levels cause the acoustic rays to refract, which

results changes in their path lengths. Accordingly, a time varying mutipath fading

channel that is accompanied with large delay spread and Doppler spread is formed.

As shown in the following Chapter 4, an analytical channel model tracks channel

variations in shallow water. Then, the overall gain and root mean square (RMS)

probability density function for a channel between two neighbor nodes will be calcu-

lated.

The communication quality of the acoustic channel varies with time, as a conse-

quence of the large-scale temporal variation in underwater acoustic channels.

These variations makes the end-to-end transmission paths unstable. To define the

quality of an acoustic channel for underwater communication we use the channel gain

and the RMS delay spread as the figure of merit. By using the a channel prediction
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Figure 3.4: Illustration of a network routing using channel quality.

scheme which will be expianed in Section 5, the channel’s state between a transmitter

and next hop relays can be predicted to obtain channel quality.

In this application, the transmitter node i predicts the channel quality to each

of its neighbors according to the posterior channel predictions, specifically using a

channel characteristics scheme which will be explained in detail in Section 5, the

channel gain and τRMS for each link n ∈ (1, ..., N) will be predicted, where N is the

number of its neighbors. Here the channel quality is defined using a weighting factor

Wi,n that takes into account the most probable channel gain and RMS delay spread

values.The weighting factor is calculated as:

w(i,n) =
G(i, n)

τRMS(i, n)
(3.2)

where G(i, n) is the predicted channel’s gain of the link n for the transmitter node

i and τRMS(i, n) is the predicted channel RMS delay spread of the link n for the

transmitter node i.

Specifically, each transmitter node i) simulates the channel condition of its one-hop

relay nodes, and ii) weighs each link to its one-hop neighbors.

The routing optimization problem in Figure 3.4 can be mapped into a bidirectional

graph G(V, E,W) where where V=(1, 2, 3, 4, 5, 6, 7) is the set of relaying nodes, E

are set of peer to peer links between nodes and W is the local weighting factor of each

edge. The multihop relaying optimization objective function can be defined based on

the metric such as end-to-end delay, energy per bit consumption and packet delivery

ratio.
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W =


0 ... w(1, 7)

... ... ...

w(7, 1) ... 0

 (3.3)

3.3 A MAC Scheme to Maintain Connectivity and Fair Channel

Allocation

In this section, a novel distributed scheme, the High Coverage and High Fairness

(HCHF) algorithm, is proposed which employs a graph coloring technique to deal

with interference [101]. HCHF improves the network coverage by ensuring that each

transmitter-receiver pair can acquire at least one channel without sacrificing the entire

network spectrum utilization efficiency. This ensures connectivity throughout the

network and thus enables packet forwarding and routing between multiple nodes. To

optimize the use of the sparse spectral resources, a channel sharing strategy among

users will be developed to optimize the network connectivity and throughput.

In this work, the network path connectivity is guaranteed by ensuring that all

transmitter-receiver pairs obtain access to at least one channel. Coverage, defined as

the number of connected cognitive acoustic pairs, as well as fairness, defined as the

number of pairs which obtain at least one channel, are two key figures of merit used

to assess the performance.

The algorithm proposed here is intended to model and solve channel allocation

problem in dense UWAN with high spectrum usage demand while dealing with inter-

ference. The network is intended to support the internet of underwater things (IoUT)

and it can be expected that up to a few hundred sensor nodes with different purposes

will be deployed in a target area spanning 10 km2.

Also, practical issues such as collision avoidance and the hidden terminal problem

will be taken into consideration during the design of the HCHF protocol, and will be

presented.

3.3.1 Model of Control and Data Channels

In this section, firstly, a proposed multi-carrier multiple access channel allocation

technique is described. Secondly, the use of the Janus protocol to enable the control
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channel is described, third, the control packets and exchange procedure are defined.

Fourthly, a graph model to obtain the interference matrix among neighbor nodes

will be described. Fifthly, the channel allocation algorithm using the graph model is

proposed.

Common Control Channel

To solve the channel allocation problem within a cluster subnet. A dense short-

range UWAN considered with K ANs where each node is identified by an ID from

[1, 2, · · · , K]. It is assumed that a limited available spectrum is divided into M orthog-

onal equal bandwidth channels, presented as [1, 2, · · · ,M ] and M << K. Moreover,

one common control channel (CCC) is dedicated for the exchange of the network man-

agement controlling messages. The CCC should be the most reliable local channel for

exchanging MAC packets among the neighbor ANs. Note that channel allocation for

peer-to-peer communication between two neighbor relays is considered in this work.

It is assumed that each AN can send and receive on all channels. Every node is

aware of the local CCC and listens to this channel when it has no data to send or

receive. To decrease the hardware complexity each node is equipped with a single

wideband transceiver front-end that can dynamically switch between the CCC and

available data channels. Further, each node is equipped with an inexpensive out-of-

band tone device which can broadcast and receive busy tone signals. As explained

in [102, 103] this allows each node to simultaneously broadcast and receive busy

tone signals to solve the multichannel hidden terminal problem for nodes with single

transceiver described in [104]. It is expected that high-quality filters shall serve to

mitigate self-interference. The use of the busy tone to handle the hidden terminal

problem will be explained in Section 3.3.1.

For the proposed network under study, there are several TX-RX pairs in the

network that intend to utilize the available channels. The location of the nodes and

the channel condition may vary with time and the goal is to optimally assign the

channels to the TX-RX pairs in terms of spectrum utilization, coverage, and fairness

at any given time.

To model the channel allocation algorithm, every node x that is within the trans-

mission range RT of the node y is considered a neighbor node of y. Therefore, two
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nodes do not interfere with each other if their distance is larger than a range RT ,

where RT is considered to represent the radius of a circular transmission range from

each node [105].

For a reliable network modelling, it is important to evaluate the channel trans-

mission loss. As explained in [6], the channel amplitude is impacted by a large scale

transmission loss (that can be assessed using ray tracing simulators for example)

added to a small-scale variation because of the non-coherence addition of multipath

arrivals. Generally, the small-scale variation of the amplitude is modelled as a Rician

distribution, or in the extreme case as a Rayleigh distribution [23, 106]. Assuming a

Rayleigh fading channel, a rule of thumb is to add 30 dB to the transmission loss to

account for extreme small scale variation.

It is also important to consider the coherence time for underwater acoustic chan-

nels [107] which is defined as

τc =

√
9

16πf 2
d

≈ 0.423

fd
≈ 0.423

afc
. (3.4)

where fd is the Doppler spread, fc is the carrier frequency, and a is the Doppler

scaling factor. As explained in [108], a stationary underwater acoustic system may

experience unintentional motion at 0.5 m/s (1 knot), which would account for a =

3 × 10−4. In contrast an autonomous underwater vehicle (AUV) moving at several

meters per second, Doppler factor a will be on the order of 10−3. In fact, it has been

reported in [10, 109] that the coherence time is on the order of 100 milliseconds in

fixed conditions, while the channel between mobile vehicles can experience a channel

coherence time on the order of a few milliseconds. It is assumed that the sound speed

c in the water column between the transmitters and receivers has a constant velocity

of c = 1500 m/s. The propagation delay, Tp = R/c, for the expected transmission

range, R = 500 meters between the nodes will be about 334 msec.

Since underwater transmission is slow, the packet duration is often longer than the

channel coherence time. For this purpose, in this work it is assumed that the physical

layer is resilient to Doppler fading within the transmission of packets. The frequency-

hopping binary frequency shift keying (FH-BFSK) is studied in this work, the binary

information is represented using different frequency tones. As will be demonstrated,

since the coherence time is greater than a few milliseconds, the channel is expected to
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stay relatively constant during the transmission of the individual tones. Transmission

of acoustic signals will be described in the next section.

Using FH-BFSK for Control Channel

In this work, an UWAN is considered in which 10 distinct 2-kHz channels are defined

over a total frequency range between 10.5 kHz and 30.5 kHz. For mobile AUVs where

a = 10−3, the maximum Doppler shift, which is defined as fd = a × fc, is less than

± 30.5 Hz [110] at fc = 29.5 kHz. To mitigate the maximum Doppler shift a guard

band of 77 Hz is considered between the channels.

The duration of each individual tone is called chip duration Cd. Using (3.4), for

mobile AUVs with a maximum speed of 7 knots, tone signals with a maximum chip

duration of Cd ≈ 14 msec can be sent.

In this work, we define the hopping rate to be equal to the symbol rate, as such

the chip duration is Cd and is also equal to the symbol duration. Thirteen orthog-

onal tones are mapped in evenly-spaced tone pairs that span the acoustic frequency

bandwidth of 2-kHz of each channel, and each frequency slot width is Fsw = Bw/26.

Effectively, each chip duration is Cd = 26/Bw, or Cd = 13 msec. Figure 3.5 shows a

time-frequency representation of a generic Janus packet for one channel.

Figure 3.5: The Janus signal for control channel in a time-frequency plot [63]

The proposed FH-BFSK system signal specifications for the control channel are

summarized in Table 3.1.
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Table 3.1: FH BFSK Signal Specifications

Parameter Value
Number of Channels, M 10
Number of sub carriers in each channel, Msub 26
Sub carriers frequency slot width, Fsw 77 Hz
Modulation order, 2
Chip Time, Cd 13 msec
Bits per Symbol, k 1 bpS
Packet Duration , Ps 2,288 msec

Control Packets & Protocol

As described in [62] Collision Avoidance (CA) via Binary Exponential Backoff (BEB)

with Global Awareness (GA) consists of an in-band energy detector used to access the

CCC. Transmitters are required to sense the CCC before transmission of controlling

packets for a minimum of twice the length of an encoded basic controlling packet plus

the propagation delay. The control packets are smaller than the data packets and

are defined by a 4-bits packet type, an 8-bit node ID and a 12-bit payload. Data

corruption is detected by an 8-bit cyclic redundancy check (CRC) which is appended

to the packet. These 32 bits with 8 zeros amount to 2×(32+8)+32 = 112 chips after

encoding and assuming a fixed preamble of 32 chips. Accordingly, the CCC sensing

will last for a DCF interframe spacing (DIFS) equal to 2 × 112 × Cd + Tp seconds,

where Tp is packet propagation delay.

If the CCC is busy when a transmitter intends to transmit, the transmitter con-

tinues to sample windows of duration equal to 16 × Cd until the CCC is deemed no

longer busy. The transmitter then applies a BEB: it transmits in the next slot with

probability 1/(D+ 1), where D = 2C − 1 and C is the number of potential transmis-

sions slots the transmitter has counted in the backoff process in which there has been

at least one busy window (C is initialized with C = 1). If the transmitter does not

transmit in the first available slot, it continues to sample 16 chip windows to detect if

the CCC is busy during the next slot. The node increments C by one (but only once

per slot) if this is the case at any point during the slot, up to a maximum of C = 8.

Once the TX node finds the CCC available to transmit its message, C is re-initialized

to C = 1. If C reaches 8, the attempt to transmit that packet is abandoned.

To allocate the available channels, each TX node senses its surrounding acoustic

environment within its range RT to create a list of available channels (LAC) [111].
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The LAC is used by the TX and RX nodes such that they are informed about their

individual available channels. In this process, the TX node sends a Request to Send

(RTS) packet to the RX node over the CCC. The RTS includes the TX node’s LAC

list. If the RX node successfully receives the RTS packet and it has at least one free

channel for communication, then the RX node replies instantly with a Clear to Send

(CTS) over the CCC. The CTS packet is a short message including a clear to send

flag for TX node and a backoff time for RX node’s neighbors to avoid hidden terminal

problem [112].

By receiving the RTS packet at the RX, the RX compares it with the channel

states in its LAC. These channel states are represented by a 1×M vector that consists

of binary elements indicating availability. Then, the receiver identifies the common

elements of the received RTS channel vector and the corresponding elements of its own

LAC channel vector. This results in a List of Confirmed Channels for Transmission

(LCCT) which is created at the RX node [113].

The LCCT is also a 1 × M vector in which each element is a binary value rep-

resenting the available common data channels between the TX and RX nodes. The

LCCT is sent by the RX to the TX node. When the TX node receives the LCCT

packet from the RX node, it broadcasts this packet to its neighbors on the local CCC

to inform them about the data channels that this TX -RX pair wishes to use. After

computing and sharing the LCCT information for all TX-RX pairs, the nodes must

use the LCCTs to compete for data channels.

For a TX-RX pair i, a matrix Li is computed where the jth row of the Li matrix

is the LCCT of the jth TX-RX neighboring pair to the ith pair. Thus Li is a matrix

of size Ni×M where Ni is the number of TX-RX pairs in the neighborhood of pair i.

The proposed MAC layer protocol does not require global synchronization among

the ANs, and the contention access mechanism over the local CCC between the neigh-

bors is based on the aforementioned BEB protocol for the Janus Underwater Com-

munications Standard [22].

The packet exchange in the initial phase of a channel allocation process is depicted

in Figure 3.6. The MAC protocol proposed employs three control packets : RTS, CTS,

LCCT, as well as and the busy tone beacon. The duration of the data frame is Tmax,

its optimal size, depends on the load of the nodes and is heavily influenced by the
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BER [68].

Figure 3.6: Representation of the packet exchange between neighbor nodes. The RX
node and Node D are in the transmission range of the TX node while the TX node
and Node C are in transmission range of the RX node.

The purpose for the RTS/CTS packets includes (i) reserving the CCC and (ii)

solving the hidden terminal problem by making the neighbor nodes aware of an up-

coming transmission. Then, the LCCT handshake serves to synchronize the vacant

channel information between each TX-RX pair and to prevent collisions between the

ANs. Also, it ensures that the TX and RX nodes use the same set of vacant chan-

nels for data communication. After the initial negotiation phase is completed, the

TX-RX pairs exchange a cost value gi computed by the proposed algorithm, to as-

sign the available channels to the TX-RX pairs with the lowest cost value. This will

be detailed in Section 3.3.1. After assigning the data channel, the transmitter starts

sending data over the data channel. While the TX and RX nodes transducers are

busy sending and receiving on the data channel, their busy tone beacon generator

broadcasts a periodic pulse to inform their neighbors that they are busy on the data

channel; this prevents the multichannel hidden terminal problem. Figure 3.7 illus-

trates the busy tone beacon generated by nodes A and B while communicating on

Data Channel 1.

The channel access time during the control phase consists of a negotiation phase

and a channel allocation which occurs on CCC. The overall end-to-end latency will

be the time between the packet generation and the time of its correct delivery at the

destination which includes the channel access time and propagation delay.
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Figure 3.7: The busy tone beacon ensures that Nodes D and C do not send RTS
packets to Node A and B while they are communicating on Channel 1.

Graph Model of the Network

In this work the proposed algorithm utilizes the knowledge of the topology and channel

sensing to minimize interference among TX-RX pairs during channel allocation. The

local relationship between neighbor pairs and their available channels can be simplified

into a graph model in which the vertices are TX-RX pairs and the edges represent

interference among them. A set of available channels is assigned to each vertex which

corresponds to its LCCT. Clearly, if two vertices are connected by an edge, they

cannot both access the same channel simultaneously.

Figure 3.8 illustrates a network in which there are five vertices to represent five TX-

RX pairs. There are three channels: A, B and C which are opportunistically available

for the AN pairs. Due to the sharing agreements, channels that are unavailable, e.g.

shadow zones [114], cannot be utilized by ANs within their interference range (labeled

I, II, III and IV). Each pair may access a different set of available channels. As shown

in Figure 3.8, channels A, B, and C are available for pair 1; channels A and C are

available for pair 2, and so on for the rest of the pairs. Note that Figure 3.8 depicts

the network status at a fixed time instant.

The model proposed identifies the interference in the network, such that channels

cannot be occupied by two neighbor nodes simultaneously. An undirected graph G

is used, and represented by G = (V,E, L), where V = {v1, v1, . . . , vN} is the set of

vertices representing the TX-RX pairs, E is the set of edges representing interference

among neighbor pairs and L is the set of available channels. We use an N×N matrix
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Figure 3.8: Illustration of a neighboring pair’s interference using the interference
graph.

E to formulate the edge status, where N is the number of TX-RX pairs. At index

(i, j) the edge status eij between two TX-RX pairs i and j is assigned 1 when vertices

i and j are neighbors, otherwise it is equal to 0. Based on this definition, G is an

undirected graph and effectively the interference matrix will be symmetric. The set

of available channels for various pairs are stored in a global N ×M matrix L, where

at index (i, k), lik = 1 if the channel k is available for the TX-RX pair i and lik = 0

indicates that it is not available. Recall that N is the number of TX-RX neighbor

pairs and M is the number of channels. In other words, the ith row represents the

LCCT of the ith TX-RX pair. Note that the local matrix Li for the TX-RX pair i is

a sub-matrix of L which contains only those rows of L that are corresponding to pair

i neighbors.

We denote the set of assigned channels in the entire network by an N ×M matrix

S, where at index (i, k), sik = 1 if the channel k is allocated to the pair i, otherwise,

sik = 0. The ith row of the matrix S represents the channels which are allocated to

ith pair by the channel allocation algorithm.

The performance metrics of the allocation algorithm can be measured and formu-

lated in terms of S and L. Similarly to a technique developed in [101], the goal is to

maximize the network spectrum utilization SU defined as

max (SU) = max

(
N∑
i=1

M∑
k=1

sik

)
(3.5)

subject to
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sik ≤ lik, sik ∈ 0, 1 and siksjkeij = 0.

Note that N is the total number of TX-RX pairs and M is the number of channels.

Then, for all pairs i = {1, · · · , N} and channels k = {1, · · · ,M}. Accordingly the

optimization variable in the spectrum utilization problem is the number of utilized

channels or summation of sik. The algorithm is also subject to the following fairness

and coverage conditions:

1. The channel allocation between all the network pairs should have minimum

variance σ2, where σ2 = var(γ) and channel allocation in the entire network is

γ1×N = [γ1, γ2, · · · , γN ] where γi is number of channels allocated to pair i, i.e.

γi =
M∑
k=1

sik. (3.6)

2. The coverage constraints for pair i are such that 1 ≤ γi for all i = 1 · · ·N . This

guarantees that each pair obtains at least one channel.

In the next section an allocation algorithm which can satisfy the above constraints

is proposed. For this purpose, the fairness, the coverage, the channel assignment

overhead and network utilization ratio are used as figure of merits.

High Coverage and High Fairness Resource Allocation

In this section, a distributed algorithm that attempts to maximize the network

throughput is proposed. The algorithm also ensures allocation of a minimum of

one data channel for each TX-RX pairs. The HCHF parameters and variables are

summarized in Table 3.2.

The HCHF algorithm is described in six steps as follows:

1. First, each TX-RX pair i acquires its List of Confirmed Channels for Transmis-

sion (LCCT) and stores it in its LCCTi vector.

To ease the computations, the Ni ×M interference matrix IMi is defined and

is calculated by applying a logical AND operation between the pair i’s LCCTi

vector and every j ∈ Ni neighbor’s LCCTj vector. The set of available channels
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Table 3.2: Parameters for the HCHF Algorithm

RT Acoustic nodes transmission range
LAC 1×M vector, List of Available Channels
RTS Request To Send packet
CTS Clear To Send packet
DIFS The time duration for which a TX node senses CCC
Ni Number of TX-RX pairs in the neighborhood of pair i
LCCTi 1×M vector, List of Confirmed Channels for Transmission in which the avail-

able common channels between TX and RX nodes are shown by 1 and the rest
of channels by 0

Li Ni × M matrix, rows of matrix Li is composed of the channels which are
available for TX-RX pair i neighbors, e.g. jth row of matrix Li is the LCCTj

of TX-RX pair jth which is in the neighborhood of pair i
Tmax Maximum packet duration
Cd Chip duration
S N ×M matrix of the entire network channels allocation
γi Number of the channels obtained by pair i
σ2 Variance of allocated channels to TX-RX pairs
IMi Ni ×M interference matrix for pair i
pi 1 × M vector of non-contention channels of pair i. It is the set of available

channels in the LCCT that cannot be used by neighbors
qi 1 ×M vector of available channels in LCCT that require contention with the

neighbors to be acquired by pair i
xi(k) Number of neighbors for TX-RX pair i on channel k
gi the cost value of pair i to own at least one channel
µi Channel possession threshold, 1 ≤ µi ≤ sum(LCCTi), constrains minimum and

maximum channels acquisition
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in the LCCTi that cannot be used by neighbors are called the set of non-

contention channels pi. These channels can be easily identified by considering

the zero columns of IMi and the corresponding nonzero elements of LCCTi.

Specifically, for each channel of k ∈ M , pi(k) is set to 1 if the kth column of

IMi is zero and the kth column of LCCTi is equal to 1.

The 1×M vector pi initially represents the set of available channels that can be

used by the TX-RX pair of i without needing any contention with its neighbors.

During the allocation process, as a new channel is assigned to the TX-RX pair

i, its corresponding element in pi is set to 1. As such, at any time, the sum of

elements of pi, γi, represents the number of assigned channels to the TX-RX

pair i, and as such γi= sum(pi).

Also, for each TX-RX pair i, a 1 × M vector qi is defined. The vector qi

represents the available channels in the TX-RX pair’s LCCTi that are common

between neighbors. In other words, these are channels that are contentious for

assignment between the neighbors. This vector is obtained by comparing the

nonzero elements of LCCTi with the nonzero columns of IMi. Effectively,

LCCTi − pi = qi (3.7)

The minimum required and maximum allowable number of channels for each

TX-RX pair i is set by a threshold µi, where 1 ≤ µi ≤ sum(LCCTi), and is ini-

tialized with µi = 1. As such, acquiring at least one data channel is attempted

for each TX-RX pair. The threshold µi is increased by one if for all j ∈ Ni

neighbors of pair i, µi < γj or if neighbors of pair i do not have any available

channels in their qj to assign. The TX-RX pair i initiates a negotiation with its

neighbors for the channel assignment until there is no channel available in qi or

the threshold µi reaches it maximum equal to sum(LCCTi). It should be noted

that negotiation is only required between neighbors who have interference on

certain channels. Furthermore, avoiding network congestion should be consid-

ered during the deployment such that the number of neighbors should always

be less than the available channels Ni < M .

2. Considering that all packet exchanges occur only among neighbors, the following
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procedure continues until no available channel can be found to assign for the

ith TX-RX pairs’ qi vector:

For each TX-RX pair i with xi(k) neighbors on a particular channel with k ∈
(1, · · · ,M), the probability that it is assigned the channel k will be 1/(xi(k)+1).

The parameter xi(k) can be obtained as the sum of the elements of the kth

column of IMi. For each pair i, this probability is calculated to obtain at least

one channel. Then gi, which is defined as the cost value for pair i to obtain at

least one channel, is expressed as

gi = 1−
k=M∏
k=1,

xi(k)>0

(
1− 1

xi(k) + 1

)
(3.8)

As demonstrated in (3.8), it is assumed that the probability of obtaining a given

channel is independent of the probability of obtaining other channels.

3. Next, for the jth neighbor of pair i, if the total number of possessed contention

free channels are less than the threshold of µi (i.e. the sum of the pi elements

is smaller that µi) and channel k is available to assign their qj vector, then all

neighbor pairs exchange their gj values and continue to step 4 otherwise if the

sum of the pi elements is greater or equal to µi the pair j give up the petition.

4. After receiving the gj values from all the neighboring pairs j ∈ Ni, each TX-RX

pair i decides if it has the minimum value among the gj of its neighbors. If so, it

selects the available channel with the lowest number, which is identified as the

channel k in its contention channel list. It also announces itself and its selected

channel to the neighbors by broadcasting a Channel Allocation message over

the local CCC containing a vector of assigned channels to TX-RX pair i. If

two or more pairs have the same values of gj, the deadlock can be broken by

assigning the channel to the pair with the smaller ID. Note that the lowest

channel index or node ID is used as a criterion for selection in the algorithm.

5. If the channel k is taken by the pair i, then it sets pi(k) = 1. To avoid real-

location of the channel k to the pair i, this channel is removed from the list

of available channels with a contention with pair i, i.e., qi(k) = 0. Then, the



60

neighboring pairs that interfere with pair i on channel k remove the allocated

channel k from their list of available channels with contention. Specifically,

pj(k) is cleared to 0 for all neighbors of the TX-RX pair i.

6. All neighbor pairs update their interference matrices of IMi and contention

matrices of qi. Then, until the sum of their assigned channels in pi reaches the

threshold µi, the algorithm iterates between steps 2-5. If all pairs reach the

threshold of µi and there are still some channels in the contention matrix of

some pairs, then the threshold variable of µi increments by 1 and steps 2-5 are

repeated. Otherwise the algorithm ends. Consequently, when the contention

matrices of all pairs become empty the allocation algorithm is terminated.

The allocation algorithm is summarized in Algorithm 1. Next, in Section 3.3.1,

the algorithm is applied to a realistic underwater deployment.

Resource Allocation Simulation Results

In this section the performance of the proposed HCHF distributed channel allocation

scheme is compared with conventional channel allocation techniques in the UWAN

framework.

Figure 3.9 illustrates the two-dimensional topology of a distributed network. In

this simulation, a maximum of 144 ANs are randomly distributed in a dense area

of 2.5 × 2.5 kilometers to represent a future IoUT application. The total number of

available channels are M = 10. Each channel occupies an equal bandwidth of 2-kHz

between 10.5 kHz and 30.5 kHz. The authors in [115] observe that the probability

of establishing an acoustic link in which the SNR is less or equal to a threshold δ

is affected by various ambient factors, e.g. shadow zones. In this network model,

it is assumed that channels may intermittently be in shadow zones. Here the ratio

of number of reliable channels over the total number of channels is assumed to be

λ = 0.9 in different hexagonal areas.

To manage the up-link communication to the surface and effectively reduce the

nodes’ manufacturing cost and battery supply, UWGs with cellular coverage are

demonstrated in Figure 3.9. Initially, UWGs are primary users and have priority

to acquire the most reliable channel with highest SNR among M = 10 channels. The
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1: Initialization: Define the LAC ∀ node ∈ K ;

Define LCCTi ∀ TX-RXi ∈ N ;

for i = 1 to Ni do

Li(i, :) = LCCTi;

end

for i = 1 to Ni do

for j = 1 to Ni do
IMi(j, :) = LCCTi AND Li(j, :)

end

end

for i = 1 to Ni do

for j = 1 to M do

if IMi(:, j) = 0 AND LCCTi(j) = 1 then
pi(j) = 1

end

if IMi(:, j) ̸= 0 AND LCCTi(j) = 1 then
qi(j) = 1

end

end

end

2: while qi = 0 OR LCCTi(:) = 0 do

for i = 1 to Ni do

for k = 1 to M do
xi(k)=sum [IMi(:, k)]

end

gi(k) = 1−
∏k=M

k=1,
xi(k)>0

(
1− 1

xi(k)+1

)
end

end

3: Exchange gi AND µi

4: for k = 1 to M do

if sum (pi) < µj and qi(k) = 1 and gi < min(gj) then
pi(k) = 1, qi(k) = 0, ∀j ∈ Ni then qj(k) = 0

end

if sum (pi) < µj and qi(k) = 1

and gi = min(gj) and i < j then
pi(k) = 1, qi(k) = 0, ∀j ∈ Ni then qj(k) = 0

end

end

5: update interference and contention matrices

6: if ∀j ∈ Ni, ∀ k ∈ M sum(pj) = µi and sum (qj(k)) ̸= 0 then

µi = µi + 1 and continue form step 2 ;

else

exit;

end

Algorithm 1: Pseudo-code for HCHF algorithm



62

Figure 3.9: Two-dimensional illustration of a network consisting of 72 TX-RX pairs.
Green triangles are TX nodes and blue triangles are RX nodes, lines between TX-RX
pairs show the corresponding communication links. Red diamonds are UWGs.

UWGs’ selected channel is dedicated to communications between ANs and UWGs so

it can not be assigned to peer-to-peer communications between ANs. As such, its

access scheme is the same as for the CCC. The rest of the 8 available channels can

be apportioned among ANs collaboratively.

To represent the propagation conditions, the maximum transmission range of the

ANs is approximated to be 500 meters. The proposed algorithm performance is

compared with other algorithms by gradually increasing the number of participating

ANs from 10 to 144 nodes. In each setting, the allocation algorithm runs one hundred

times for randomly scattered nodes, and for each, a new observation of available

channels is defined between the ANs. The performance of the algorithms is averaged

over one hundred iterations to nullify the impact of the nodes’ random scattering on

the output of the algorithm.

The Greedy, Random and Link Degree and Round Based Algorithm (LDRA)

algorithms [116] are compared with the HCHF algorithm in terms of channel utiliza-

tion, fairness, network coverage among ANs and allocation process overhead which is

measured by averaging the number of controlling packets that are exchanged by each

TX-RX pair of ANs during the allocation process.

Figure 3.10 represents the channel utilization, defined as the total number of

channels assigned to the TX-RX pairs in the entire network. As expected, the Greedy
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Figure 3.10: Channel utilization of the TX-RX pairs defined as the total number of
channels allocated to TX-RX pairs.

algorithm approach can allocate the maximum number of available channels among

these algorithms.The Greedy method, in which the channels are allocated to pairs

with better conditions, provides the best network utilization. Note that all algorithms

perform very differently when the channel demand is increasing. However, in lower AN

traffic, they have very similar performance, because there is less contention among the

ANs. Note that the RT can directly affect interference among ANs. Decreasing the RT

decreases the interference. Therefore, it increases the possibility of more allocations

and provides a better utilization for all algorithms. However, for a small acoustic

range, it will result in network disconnectivity among ANs which is not desired.

The simulation results indicate that the HCHF algorithm has a better utilization

performance in comparison to the random algorithm and LDRA. The reason is that

HCHF attempts to manage fairness without sacrificing the network utilization.

Next, the standard deviation of allocated channels to the TX-RX pairs is used as

a metric for comparing the fairness of the allocation algorithms. A large standard

deviation means that there is a significant gap between the numbers of channels allo-

cated among different pairs. Figure 3.11 shows that the standard-deviation parameter

of HCHF is lower than that of other allocation algorithms. The Greedy algorithm

has the highest standard-deviation, and as such, it is very unfair. By increasing the

number of TX-RX pairs, the variance of allocations in the HCHF algorithm is con-

verging to its minimum, though from Figure 3.10 it can be seen that HCHF algorithm
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channel utilization is high.

The number of TX-RX pairs that have received at least one channel, where the

channel possession threshold is µ = 1, is another metric that is used to evaluate

coverage. This parameter is also an indication of the network connectivity in multihop

relaying scenarios. Figure 3.12 shows the number of TX-RX pairs which have received

a minimum of one channel out of all the TX-RX pairs in the network. As can be

observed, HCHF can cover the maximum number of ANs.

Figure 3.11: Evaluation of the standard deviation of allocated channels.

Figure 3.12: Evaluation of the network coverage.

The control packets overhead is defined as the average number of signalling pack-

ets transmitted by each TX-RX Pairs to its neighbors during the control phase. In
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Figure 3.13: Evaluation of average number of control packets submitted by each TX-
RX pair during the control phase.

Figure 3.13, the average number of exchanged packets per each TX-RX pair is shown

for different algorithms. As the network density increases, the number of neighbor

nodes on all the channels increases which imposes more interference on the network.

Consequently, to solve the channel assignment problem and avoid collision more con-

trolling packets are needed. It is important to find an optimum network density

to avoid excessive congestion and keep the number of controlling packets as low as

possible because more controlling packets results in more energy consumption and

extreme delay. From Figure 3.13 it can be seen that the control packets overhead

distance between HCHF and the other algorithms overshoots when the number of

TX-RX pairs in the network exceeds more than 50 TX-RX pairs. In this set-up, a

maximum density of 100 ANs per 2.5 × 2.5 kilometers or 16 ANs per km2 can be

considered as the optimum network density where the HCHF performs efficiently.

3.4 Summary

This chapter first introduces an energy-efficient flooding routing protocol for exchang-

ing network control messages and a channel-aware multihop relaying routing for data

transmission. The proposed channel-aware multihop relaying uses a weighting factor

based on the predicted CSI to select the optimal next-hop relay. Next, a new dis-

tributed channel allocation algorithm for UWANs called HCHF has been described.
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The proposed HCHF employs graph coloring for modeling interference constraints

among the ANs. The HCHF algorithm ensures that the ANs within the transmit-

ting range of each other do not utilize the same frequency channels and allocates the

channels to ANs in a way that allows at least one channel to be assigned to each TX-

RX pair. The performance of HCHF algorithm has been compared to that of three

existing distributed channel allocation algorithms: the Greedy, Random, and LDRA

algorithms. The simulations indicate that HCHF surpasses other algorithms in terms

of fairness since it tries to allocate at least one channel to each node. The greedy

algorithm tends to maximize channel utilization by sacrificing fairness. The random

algorithm has a low throughput, and LDRA offers lower throughput and fairness. It

is shown that the improved channel utilization and fairness provided by HCHF are

constrained by the overhead of the control packets. Finally, for a reliable and efficient

channel assignment in UWANs, an optimum network density should be taken into

account to avoid excessive overhead, energy consumption, and access delay on the

CCC.



Chapter 4

Statistical Characterization of Underwater Acoustic Channel

This chapter demonstrates the impact of surface elevation variation as a key physical

phenomenon on underwater acoustic channel statistics. First a channel model for

shallow water environment where tide variations causes flow variations is introduced

in Section 4.1; then, in Section 4.2, the model is enhanced by including small-scale

statistics imposed by surface elevation variations; in Section 4.3, a data driven para-

metric model is proposed that quantify the statistical properties of channel charac-

teristics; finally, in Section 4.4, using the sea trials data set the correlation between

the surface elevation variations and channel characteristics is evaluated.

4.1 Analytical Channel Model

4.1.1 Large-scale Time Varying Channel Model

In this section, a channel model based on the model in [6] is developed to represent

a high-flow shallow environment and takes into account tidal flow. A deployment

between a fixed acoustic source and acoustic recorders held in the Bay of Fundy for

34 days will serve as a use case to the channel model.

As per [11], a time varying multipath acoustic channel impulse response is ex-

pressed as

h(τ, t) =
P∑

p=1

hp(t)δ(τ − τp(t)) (4.1)

where hp(t) is the large-scale amplitude, P is the total number of distinctive propa-

gation paths and τp(t) is the large-scale delay for path p. As first observed in [117],

the path amplitudes and delays vary with time: their instantaneous value depends

on the distance traveled as well as the physics of propagation, including Snell’s law,

the channel geometry, the bathymetry composition and sound speed profile [118].

The time varying large-scale gain of path p derived in [6] is expressed as

67



68

hp(t) = hP
1√(

1 + ∆lp(t)

lp

)k
αp(f)

∆lp(t)

, (4.2)

where h̄p is the nominal path gain and ∆lp(t) = lp(t)− l̄p describes the variations of

the path length in unit of meter. Accordingly, lp(t) is the large-scale path length and

l̄p represents the nominal path length, αp(f) is the absorption loss coefficient for path

p within the signal frequency in dB/km, and k is the spreading factor [38].

Assuming no reverberation, the nominal path length l̄p can be calculated using

a ray-tracing algorithm such as Bellhop [34]. Figure 4.1 represents the dominant

nominal paths and Figure 4.2 represents the transmission loss, obtained using Bellhop,

representative of a deployment scenario in the Bay of Fundy, Nova Scotia.

Figure 4.1: Nominal dominant paths between the transmitter and the receiver repre-
senting a 566 meter channel in Bay of Fundy. The transmitter is fixed at the depth
of 20.5 m and receiver’s hydrophones are fixed at 22 m.

Figure 4.2: Illustration of a 566 meter nominal channel gain (dB) using Bellhop.
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For path p of a channel in a mobile system, assuming a nominal delay τ̄p = l̄p/c̄

at time t = 0, the large-scale delay of path p, τp(t0) at time t0 can be defined as

τp(t0) = τ̄p −
∫ t0

t=0

av(t)dt, (4.3)

where c̄ is the average sound speed experienced by path p while traveling from trans-

mitter to receiver. The term
∫ t0
t=0

av(t)dt describes the delay due to the overall motion

during an observation period of t0 seconds corresponding to few seconds or several

symbols transmission. The system motion induced Doppler scaling factor is modelled

by av(t) [13] corresponds to the linear path length variation with equivalent receiver’s

linear drifting speed of vdp longitudinal to the propagation path. The linear Doppler

scaling factor is defined as

av(t) =
vdp(t)

c̄
(4.4)

For the scenario involving a mobile transmitter or receiver as depicted in Figure 4.3

the relative speed vdp associated to the path p is

vdp = vtd cos(θp − θtd)− vrd cos(θp + θrd) (4.5)

Note that vtd is the transmitter vehicular speed in the direction of θtd with respect

to the horizontal point toward the receiver, and vrd is the receivers vehicular speed in

the direction of θrd with respect to the horizontal point toward the transmitter. Also,

θP is the grazing angle associated with the pth propagation path [6].

In a high flow environment, let’s define a nominal sound propagation velocity c̄

that is approximately constant as a function of depth and range, a mean flow speed

cf parallel to the propagation channel that varies as a function of tide phase, and a

turbulent flow component ct that is range and depth dependent. Then, assuming no

reverberation, the travel time τ̄P for the line of sight (LOS) between the transmitter

and the receiver situated at a distance d from the receiver is defined as

τ̄p =
l̄p

c̄+ cf + E[ct]
, (4.6)

where E[·] is the mean operator. The turbulent flow induces a variability in the time of

arrival for each transmission between the transmitter and receiver. This phenomena
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will be studied in Section 4.3. It will be demonstrated using measurements that the

flow induces significant transmission loss variations as well as delay spread variations

on the propagation channel.

Next, the small-scale fading coefficient will be characterized with intrapaths statis-

tics and the small-scale fading properties will be explained.

4.1.2 Small-scale Fast Fading Channel Model

Scattering and refractions from the sea surface produce small-scale fading variations

and play a key role in the randomness and short coherence time of the channel;

these conditions impose rapid fluctuations in the received signal strength over a very

short period of time [11]. In this section, random small-scale path coefficients will be

reviewed.

To extend the large-scale model to a small-scale model in a discreet time-domain,

each dominant path is assumed as a bundle of intrapaths within a limited scattering

field. The transmitted signal can be assumed as rays that are received in clusters

of arrivals with a mean propagation delay of τp [39].The different phenomena that

can cause small-scale effects are relative motion in the channel, including surface and

bottom variations and scattering from surface and objects. To study small-scale time

varying acoustic channel characterization, we adopt the time varying transfer function

of the channel H(f, t) between a mobile transmitter and a receiver in a typical UWA

channel as derived in [38].
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Figure 4.3: Channel geometry between a transmitter and a receiver.

Figure 4.3 depicts a snapshot of a time varying multipath channel between two

mobile nodes at a particular discrete-time observation t ∈ T . The channel time
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varying transfer function can be expressed as [38]

H(f, t) =
∑
p

∑
i

hp,ie
−j2πfτp,i ,

=
∑
p

hp(t)e
−j2πfτp(t)γp(f, t)e

−j2πfaflow(t).
(4.7)

where hp,i is the gain of intrapaths within cluster p, and τp,i = τp + δτp,i are the

intrapaths small-scale delays. The small-scale fading is characterized over the signal

bandwidth using the random fading coefficient γp(f, t) for cluster p as introduced

in [10]. We assume that all the signal energy in path p is scattered into N intrapaths

where cp,i are intrapaths small-scale coefficients,
∑N

i=1 |cp,i| = 1. Accordingly, the

small-scale fading coefficient of path p can be expressed as

γp(f, t) =
∑
i≥1

cp,ie
−j2πfδτp,i , (4.8)

The distribution of random small-scale path coefficient γp(f) during the period

of ∆t depends on intrapaths random scattering coefficients and delays which are

influenced by environmental conditions such as surface roughness and flow.

In Section 4.3, probability density functions (PDFs) of intrapaths gain hp,i and

relative delay δτp,i will be obtained from the channel measurements in Grand passage,

Nova Scotia. Statistical properties of intrapaths amplitude cp,i and phase 2πfδτp,i

vary in different sea states or tide phases, hence, the fading coefficient statistical

properties varies over time.

In a tidal environment, the flow variation induces additional small-scale varia-

tions. The non-linear Doppler scaling factor aflow(t) describes the motions imposed

on the channel in high flow environment during different tide phases. An empirical

relationship between the tide height in different tide phases ∆h, and flow velocity can

be calculated empirically to estimate the non linear Doppler scaling factor linearly in

discrete tide phases. A polynomial fit to the measured flow and ∆h can estimate the

coefficients a2, a1 and a0 of the mean flow, cf [119].

cf = −a2∆h2 + a1∆h+ a0. (4.9)
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aflow =
cf
c̄

(4.10)

4.1.3 Quantifying the Channel Characteristics

In this section, the procedure to extract the time varying CSI characteristics from a

sequence of CIRs is reviewed. Note that the CIRs can be obtained by simulation or

through measurements.

To calculate the channel gain over a bandwidth B, the sequence of CIRs are

obtained at discrete time intervals tn, each with duration of ∆t seconds. Considering

the frequency selective channel transfer function H(f, tn) at time tn ∈ T and T =

{t0, t1, · · · , tk}, the instantaneous channel gain g(tn) at time realization tn can be

calculated from

g(tn) =
1

B

∫ f0+B

f0

|H(f, tn)|2df, (4.11)

By averaging the instantaneous channel gain over longer large-scale interval t ∈
[0, tn] or several seconds we can obtain large-scale channel gain

G = E{g(t)} (4.12)

The time dispersive properties of wide band multipath channels are most com-

monly quantified by their mean excess delay τ̄ and root mean square (RMS) of delay

spread τRMS. Each cluster of arrivals has different dispersion properties. We can

define the RMS delay spread τRMS for cluster path p as

τRMSp =
√

τ̄ 2p − (τ̄p)2, (4.13)

where

τ̄ 2p =

∑
i hp,i

2τp, i
2∑

i hp,i
2 , τ̄p =

∑
i hp,i

2τp,i∑
i hp,i

2 , (4.14)

The maximum excess delay of the power delay profile for path p is defined to be

the time delay during which multipath energy falls to X dB below the maximum. The

maximum excess delay can be written as τp,n−τp,0, where τp,0 is the first arrival and τp,n

is the last intrapath and all n intrapaths gain are within X dB of the strongest arrival
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gain. For the rest of this paper the RMS delay spread term is simply abbreviated to

delay spread.

As explained in [6], by assuming a Gaussian distribution for δτp,i(t) which obeys a

first order autoregressive process (AR-1)

δτp,i(t+∆t) = e−πBδp∆tδτ(p,i)(t) + ωδτp,i
(t) (4.15)

where Bδp is 3-dB width of the PSD of δτp,i(t) and ωδτp,i
(t) is Gaussian distributed

with zero mean, the effective Doppler spread of each path p can be approximated by

standard deviation of intrapaths delay, represented by σδp and Bδp.

Bp(f) = (2πfσδp)
2Bδp, (4.16)

which implies that the Doppler bandwidth for cluster p is proportional to variance of

intrapaths delays.

The channel model variables are summarized in Table 4.1. Next, the effect of

surface elevation variations in variance of intrapaths statistics will be demonstrated.

Table 4.1: Summary of small-scale fading variables

Variable Definition
hp(t) Time varying large-scale path gain
hp,i Small-scale intrapath gain
τp(t) Time varying large-scale delays
τp,i(t) Small-scale intrapath delays
γp(f, t) Small-scale path coefficient
δτp,i(t) The path p relative random intrapath

delays with standard deviation of σδp
cp(f, t) The path p intrapath Small-scale path

coefficient
Bδp 3 dB width of the PSD of path p intra-

path delays
Bp(f) The effective Doppler spread or

Doppler bandwidth of a path P

4.2 Influence of Surface Elevation

Surface elevation variations are among the leading environmental parameters that

contribute to the small-scale effect and rapid fluctuations of the UWA signal in a
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short period of time on the order of tens of milliseconds [120]. Various factors can

cause sea surface roughness; the gravity effect can form standing waves; tidal flow can

cause sinusoidal waves [121]; wind can induce breaking waves with Rayleigh elevation

variation distribution [122]. Also, turbulence generated by shear flow can roughen

the water surfaces [123] and outweigh wind-dependent elevation variation.

Understanding the correlation between time-evolving sea surface variations and

channel characteristics presents an efficient approach for predicting CSI. There are

two well-known theoretical methods for calculating acoustic scattering from rough sur-

faces. One is based on the small roughness perturbation approximation or Rayleigh-

Rice approximation [124] and the other is based on Kirchhoff or physical optics ap-

proximation [125]. The perturbation approach is valid when root-mean-square (rms)

of surface height (trough to crest) is small compared to the acoustic wave length

h/λ < 1. On the contrary the Kirchhoff approximation is generally assumed for sur-

faces on which the scattering field curvature radius is larger compared to acoustic

signal wavelength, h/λ > 1 and applicable to moderate-to-high frequency acoustic

signals [126].

Next, the role of surface elevation variation on the intrapaths delays and scatter-

ings coefficients statistics is demonstrated. In order to obtain statistics of intrapath

delays and scattering coefficients, we use a ray-tracing approach and Kirchhoff ap-

proximation for acoustic scattering from rough surfaces.

Intrapath Delays Statistics

According to the rough surface scattering theory [127], roughness and time varying

properties of ocean surface cause variation in the length of the intrapaths scattered

from the surface. In this work, the surface wave height is assumed to be a wide-sense

stationery process during a sea state which lasts for a prolonged period spanning

several minutes or one tide phase. The tide period is discretized into 25 different

phases and it is assumed that the surface height variance remains relatively constant

during each tide phase [128].

During each tide phase, consider Figure 4.4 where point A is the nominal flat

ocean surface level at z = 0, f(x, t) is the surface variation process and the distance

lp corresponds to the nominal length of the path p. It is assumed that at a snapshot
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in time, the point A′ is ∆z = f(x, t) · z meter lower than A in the vertical direction

from which the intrapath i is scattered.

A

A'

∆ z 

f(x,t)

Tx Rx

z = 0

∆z cos    𝜃𝑝

l

l 
𝜃𝑝𝜃𝑖

x

z

p

p,i

Lx

Figure 4.4: Path length variation approximation.

Both spatial and temporal variations from the nominal reflecting point A cause

fluctuation in the intrapath length, lp,i. The path length variations lp,i at a given

moment can be approximated by

∆lp,i = (lp − lp,i) = 2×∆z cos θp, (4.17)

where θp is the grazing angle of the pth path.

During one tide cycle (12 hours and 25 minutes) the envelope of a single sine

surface wave in the presence of narrowband Gaussian noise has approximated by

a Rayleigh-Rice distribution [129]. However, as will be shown by tide analysis in

Section 4.4, during a single tide phase (approximately 30 minutes), when the surface

process consists of a large number of randomly phased sine waves and Gaussian noise,

the sums of their in-phase and quadrature components are nearly Gaussian random

variables. Hence, during our defined tide phase the ocean surface height variation

process z = f(x, t) can be modeled by a Gaussian process [130], where f(x, t) is the

surface process function with scattering field of L and scattering points intervals of

∆x.

Thus, using the Gaussian PDF of the random surface elevation with the Pier-

son Moskowitz (PM) spectrum, and the dispersion relation provided in [122] we can
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express the PDF of surface elevation variations using

p(∆z) =
1

h
√
2π

exp

(
−(∆z)2

2h2

)
, (4.18)

where h is the RMS height of the ocean surface from trough to crest.

The intrapaths delay δτp,i is a random variable and follows a distribution p(δτp,i)

which accounts for the random placement of scattering points within scattering field.

Only statistical characteristics of intrapaths scattered from the surface field of Lx

are considered here, which account for the majority of small-scale effect. Although,

scattering fields can be at the surface, bottom, or any other object in the propagation

path, to simplify the model, Gaussian-distributed displacements of scattering points

are considered as the cause of Gaussian-distributed intrapath delays. Accordingly,

variations in intrapaths propagation delay can be described as

δτp,i =
∆lp,i
c̄

= ∆z
2× cos θp

c̄
, (4.19)

where c̄ is the overall sound speed experienced by the signal along the path p. Thus,

the intrapath delay variation probability p(δτp,i) can be defined by the Gaussian PDF

defined by

p(δτp,i) =
c̄

2h cos θp
√
2π

exp

(
−

δ2τp,i c̄
2

8h2 cos2 θp

)
. (4.20)

The random path length variation caused by the first bounce off the surface is

normally distributed, i.e. ∆l1p,i ∼ N(µ1, σ
2
1). Assuming that the surface elevation

variation for the first bounce and second bounce are uncorrelated, then their sum

is also normally distributed with a mean being the sum of the two means, and a

variance being the sum of the two variances. This can be extended to n bounces off

the surface [131]. When there are ns bounces off the ocean surface and the scattering

points are far from each other and uncorrelated intrapaths propagation delay for path

p can be described as

δτp,i =
∆lnp,i
c̄

= ∆z1
2× cos θp1

c̄
+∆z2

2× cos θp2
c̄

+ ...

+∆zn
2× cos θpns

c̄
,

(4.21)
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Figure 4.5: Path length variation approximation for modelling of the fluctuation with
two bounces off the surface.

where ∆z has a zero mean Gaussian distribution with variance σ2
∆z and the grazing

angles are equal to θp. Then, the jointly Gaussian distribution of random variables

in the right side of (4.21) is Gaussian and the intrapath delays variances is additive.

Similarly, by taking into account the bottom variation with the variance of ∆b and

nb number of bounces from the bottom with grazing angles of θb, the variance of the

delay becomes

σ2
δp =

nsσ
2
∆z

c̄2
(2 cos θp)

2 +
nbσ

2
∆b

c̄2
(2 cos θb)

2, (4.22)

where ns is the number of surface bounces and nb is the number of bottom bounces

along the path p. Note that the bottom variations can be negligible comparing to the

surface. Then we have

σ2
∆z =

[
σδp c̄

2 cos θp

]2
(4.23)

Scattering Coefficients Statistics

Here, we derive the relation between the intrapaths scattering coefficients and surface

variations. The intrapaths scattering coefficients cp,i(t) due the time varying ocean

surface process f(x, t) in Figure 4.4 can be approximated based on the Kirchhoff

approximation (KA) [130, 132] and defined as
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cp,i(t) =
sec θi
Lx

× 1 + cos (θi + θp)

cos θi + cos θp
×
∫ Lx/2

−Lx/2

ej2πfν.r(t)dx, (4.24)

where ν is

ν =
N.[(sin θi − sin θp)x− (cos θi + cos θp).z]

Lxc̄
, (4.25)

and r(t) is defined as

r(t) = x · x+ f(x, t) · z. (4.26)

Note that Lx is the length of the scattering field which is usually assumed to be a

few times the signal wavelength [6] and N = Lx/∆x is the total number of scatterers

from the surface. Also, x and z are unit vectors along the x- and z-axis, respectively.

Assuming θi = θs, we can approximate (4.24) as

cp,i(t) =
1

N
ej4πfcos(θp).∆z/c̄, (4.27)

The scattering coefficients cp,i(t) are a random variable with normalized unit

power. Since ∆z has normal distribution we can infer that cp,i(t) process follows

a log-normal distribution.

This demonstrates that the intrapath statistical properties and its correlation to

the surface elevation variation can be used to express the channel path p small-scale

properties in terms of surface elevation variations in different sea states or tide phases.

In practice the variance of the surface elevation variations and also the angle of

θp varies by environmental conditions, e.g. tide phases. For a realistic propagation

model, the path statistics to determine the small-scale fading coefficient parameters

should be inferred from physical phenomena.

Next, we will present a data-driven method to obtain statistics of intrapaths gain

and delay profile.

4.3 Experimental Data Analysis Using A Parametric Data-driven Model

This section focuses on a data-driven model to identify the statistical properties of

intrapaths and obtain key channel characteristics. First, the experimental setup and
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procedure to extract the time varying channel in the unique deployment environ-

ment is described in Section 4.3.1. Then, in Section 4.3, a parametric data-driven

model [133] is presented, which identifies the channel characteristics and intrapaths

statistics. Finally, in Section 4.4, the correlation between the different tide phases

and channel characteristics is analyzed.

4.3.1 Deployment Conditions and Probing Sequences

The acoustic recordings and Acoustic Doppler Current Profiler (ADCP) data used

in this work were collected by Jasco Applied Sciences during a 34-day measurement

campaign from September 22, 2018, to October 26, 2018. As detailed in [134], three

acoustic omni-directional recorders and an acoustic projector were deployed at the

project sites. The acoustic projector on mooring was a six-inch spherical projector

type M18C-6.0 from Geospectrum Technologies. It was mounted above one of the

high-flow moorings. The acoustic transmission experiment was carried out in Grand

Passage, Nova Scotia, which is a narrow tidal channel with high flow and turbulence.

Figure 4.6 shows a map of the deployment area in Grand Passage. The acoustic

projector (SS) is placed on the bottom of Grand Passage at a depth of 23 meters. The

receiver sensor arrays are comprised of four omni-directional hydrophones mounted on

JASCO Applied Sciences’ Autonomous Multichannel Acoustic Recorders (AMAR).

The three distances for AMAR A, AMAR B, and AMAR C from the acoustic projec-

tor are 76.6, 566, and 1078 meters respectively, as shown in Figure 4.6. Each AMAR

samples at a rate of 64 kHz, and the sensors have an effective bandwidth of 32 kHz.

The transducer source level (SL) is 180 dB re 1V/µPa, and at the receiver the hy-

drophone sensitivity is −204 dB re 1V/µPa. The propagation channel between the

projector and the receivers is approximately parallel to the direction of flow in the

area.

Table 4.2 shows coordinates of the projector and receivers. The bathymetry and

transmission loss between the transmitter and the three receivers is shown in Fig-

ure 4.7 with a maximum depth of around 23 meters, and a minimum depth of ap-

proximately 14 m. The bottom composition in Grand Passage consists of mostly

gravel and sand for the first 700 meters between the transmitter and receiver, and

beyond this distance, it is composed of glacial till. Note that the transmission loss is
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Figure 4.6: Map of Grand Passage deployment showing the depth and location of
equipment. The equipment includes an Acoustic Doppler Current Profiler (ADCP)
by Dalhousie University; and three Autonomous Multichannel Acoustic Recorders
(AMAR’s) by Jasco Applied sciences.

simulated using Bellhop’s ray-tracing model.

Table 4.2: Projector and hydrophones deployment

Latitude Longitude Depth (m) Range (m)
SS 44◦16.576’N 66◦20.323’W 20.5 0
A 44◦16.536’N 66◦20.309’W 21 76
B 44◦16.272’N 66◦20.280’W 22 566
C 44◦15.998’N 66◦20.246’W 11 1078

Since the ADCP flow and pressure measurement data were only recording for

14 days, an extrapolation method performed to quantify the flow and tide height over

the entire 34-day sea trial. Linear combinations of sinusoids with unknown ampli-

tudes, frequencies, and phases were fit to the collected tide height data. Accordingly,

the best fit function was extrapolated over the 34 day period as shown in Figure 4.8.

The extrapolated flow velocity was calculated from an empirical relationship be-

tween the differential tide height ∆h as function of discrete-time, sampled every 30

minutes, and the measured velocity. Using a polynomial fit between the measured

flow and ∆h the mean flow, ĉf , is estimated to be
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Figure 4.7: Transmission loss and bathymetry in Grand Passage.

ĉf = −29.37∆h2 + 17.17∆h+ 0.297. (4.28)

The best fit flow model is a quadratic function of tide derivative ∆h. The extrap-

olated flow ĉf and tide variation ∆h are calculated over all 34 days, with 83% of the

observations falling within the 95% confidence intervals. The tide current velocity is

shown in Figure 4.8.
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Figure 4.8: Extrapolated tide and flow variation in Grand Passage, Nova Scotia, from
Sep. 22, 2018 to Oct. 25, 2018.

During the experiment, the channel was probed at a regular period to obtain

the channel conditions over 34 days. Specifically, every thirty minutes, the sound

projector emitted a sequence of known signatures, which were recorded at the three

receivers. A set of probing sequences spanning a broad frequency range between
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8-16 kHz was transmitted. Each probing sequence incorporated nine consecutive

one-second linear frequency modulated (LFM) up-chirp tones and nine consecutive

one-second LFM down-chirp tones, spanning a bandwidth of 8 kHz, centered at a

carrier frequency of 12 kHz as well as four continuous ten-second 8 kHz, 10 kHz,

12.5 kHz, and 16 kHz tones. A 10 second linear up-sweeping frequency modulated

pulse from 8-16 kHz and a 10 second linear down-sweeping frequency modulated pulse

from 16-8 kHz is also transmitted to study transmission loss. Figure 4.9 shows the

received signals at AMAR B in high and low flow in which between approximately

0.6-and and 0.8 seconds, nine consecutive up-chirps are transmitted. Then, between

1 and 1.2 seconds, nine consecutive down-chirps are transmitted.

It should be noted that every 30 minutes, a ferry transports passenger cars between

Briar and Long Islands. This ferry produces significant acoustic noise in the channel

from its propeller. There is also a large population of marine animals in the area,

which includes harbour porpoises, whales, and an occasional orca spotting. Since an

acoustic source was deployed for the duration of the trials, a marine assessment was

conducted before the trials to ensure that no harm would come to the animals.

After frame synchronization, the channel estimations are determined using the

cross-correlation between the transmit and received sequences. The reference LFM

up-chirp xup(t) is expressed as

xup(t) = e
−j2π

(
B

2TS
t2+f0t

)
, (4.29)

while the down-chirp xdn(t) is expressed as

xdn(t) = e
j2π

(
B

2TS
t2−(f0+B)t

)
(4.30)

The signals xup(t) and xdn(t) are used to cross-correlate with the received LFM

signals, y(t). Note that B is the signal bandwidth in Hertz, Ts is the tone duration in

seconds, f0 = 8 kHz is the fundamental frequency in Hertz, and t is the signal time

in seconds.

The received signal y(t) is cross-correlated with the reference signals x(t) to de-

termine an estimate of the channel impulse response ĥ(τ), expressed as

ĥ(τ) =

∫ Ts

0

x(t− τ)∗y(t)dt (4.31)
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(a) AMAR B at low flow.
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(b) AMAR B at high flow.

Figure 4.9: Spectrogram of received probing sequences.
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In (4.31), x(t)∗ is the complex conjugate of the reference signal, τ is the lag,

and y(t) is the filtered received signal at time t. Because the signal is sampled at

Fs = 64 kHz, the measured CIR tap delay spacing is 15.625 microseconds. Next, the

set of measured CIRs are used in a parametric data-driven model to find the statistics

of intrapaths power delay profile.

A parametric model can describe a channel within finite number of parameters

needed to be predicted [135]. For fast fading channel we use statistical parametric

model. Statistical characterization of intrapaths can determine properties of small-

scale fading. Such a characterization requires a path-based probabilistic model of

the channel using the statistical measurements of the channel. Here, we demonstrate

path-based model of channel as equivalent to discrete-delay channel transfer function

model presented in Section 4.1.2. The path p with Np intrapaths can be defined by a

discrete-delay model [136] as

Hp[fk] =

Np∑
i=1

hp,ie
−j2πfτp,i , (4.32)

where hp,i and τp,i denote the intrapath i complex amplitude and delay respectively,

and f = f0+fk is the discrete frequencies where fk is the incremental frequency from

0 to 7999 Hz. We can write equivalently

Hp[fk] =

Np∑
i=1

cp,ie
−j2πfkτp,i (4.33)

where cp,i = hp,ie
−j2πf0τp,i .

We use an equivalent discrete path based channel model of [56] as an alternative to

the model in (4.33). A baseband discrete-delay equivalent for the transfer function of

path p, with delay spacing of ∆τ = T/K, T = 1 second up-chirp tone and K = 8000

frequency steps can be expressed as

Hp[k] =
L∑
l=1

Xle
−j2πfkl∆τ , (4.34)

where Xl is the complex tap coefficient of equally spaced delays, l is the sample index,

L is the total number of taps,
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Xl =
1

K

Np∑
i=1

cp,ie
−jπ(K−1)

(
τp,i
T

− 1

K

)
·
sin
(
πK

( τp,i
T

− l
K

))
sin(π(

τp,i
T

− l
K
))

, l = 0, ..., K − 1,

(4.35)

Equation (4.34) represents the baseband model for the channel path p using

equally spaced samples of complex coefficients [56]. Next, the statistical properties

for the intrapaths are found.

Small-scale Analysis

To find the statistical properties for the distinct intrapath delays and gains, the mea-

sured complex tap coefficients are mapped into the physical path-based channel model

defined in (4.34). Note that to obtain the CIR, the measured voltage is converted

at the acoustic sound intensity level at the receiver in dBm re1µPa, which is sub-

tracted from the transmit acoustic power, equal to 180 dBm re 1 µPa @ 1 m from

the source. To eliminate background noise, and side lobes from the cross-correlation,

a 20 dB threshold is used to discard taps whose magnitude is 20 dB less than the

maximum magnitude.

Figure 4.10 superposes nine successive CIRs resulting from the processing of nine

one-second LFM up chirps received at one AMAR B hydrophone on September 28,

2018, at 11 AM.

Delays locations of CIRs in Figure 4.10 suggest the existence of separate clus-

ters of arrivals. To find the channel gain and delays for each cluster p, a k-mean

algorithm [137] is used to classify intrapaths’ delay and gain based on their separa-

tion. The initial number of dominant paths is estimated by the Bellhop nominal path

analysis in Figure 4.1 and applied to the k-mean classifier.

Figure 4.11 shows the PSD of the identified cluster paths from the CIRs presented

in Figure 4.10. The PSD of the channel describes the energy present in the channel

as a function of discrete frequency.

A departure from flatness in Figure 4.11 can reveal time delay differences among

the various signal frequency components in different clusters caused by scattering

from the surface and bottom. The first cluster in Figure 4.11, resembles the direct

path with the bottom bounce with minimum delay differences. The second and
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third clusters in Figure 4.11, can be matched up with the second and third paths

in Figure 4.1; the former has one bounce from the bottom, and the latter has one

bounce from the surface.
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Figure 4.10: Nine channel impulse responses from the Grand Passage sea trial span-
ning a total period of nine seconds.

Statistical Characterization of Intrapaths

To find the statistical properties of the small-scale fading a maximum likelihood

estimator (MLE) is used to fit the intrapath delays and gain samples to different

distributions for each nine-second channel probe. The data analyzed in this section

serve as an example, specifically for September 28, 2018 at 11 AM and is fit to twenty

parametric distributions defined by Matlab [138]. The MLE determines and orders

the fitted distributions with their parameters in increasing order of normalized mean

square error (NMSE). The best fit distributions are depicted in Figure 4.12 for the

intrapaths gain and delay. The corresponding NMSE value for the 3 best fit gain

distribution for clusters 1, 2, and 3 are shown in Table 4.3.

As can be observed in Figure 4.12a, the intrapath gain for the first and the second

clusters have a good fit to a parametric inverse Gaussian (IG) distribution. In fact,

in [139], the IG distribution has been shown to describe shadowing phenomena in

multipath fading channels. The scale parameters µ and shape parameters λ of IG

distributions are shown in Tables 4.3a, and 4.3b.
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(a) First cluster

(b) Second cluster

(c) Third cluster

Figure 4.11: PSD for clusters measured for 9 consecutive CIRs.
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For the third cluster, the best fit for intrapath gain is described by Logistic dis-

tribution with the shape parameter and the scale parameter shown in Table 4.3c.

Logistic fading has been proposed recently to model small-scale signal fading for

none-line of sight cases in a tight and reflections-rich environment [140]. It should be

noted that the fourth cluster fit represents a log-normal fading and the fifth cluster

impacted by noise, and none of the distributions resulted in a good fit.

Similarly, the corresponding NMSE value for the delay of cluster 1, 2, and 3 are

shown, respectively in Table 4.4.

For the intrapath delay, as can be observed in Figure 4.12b, the first and second

clusters are fit to normal distributions with relatively small NMSE. The normal fit

parameters for clusters one and two including mean µ and standard deviation (SD) σ

are shown in Table 4.4a and 4.4b respectively. SD of intrapath delays is an important

parameter that can indicate frequency selective fading severity.

Table 4.3: Intrapath gain best fit distribution parameters

(a) Cluster 1 intrapath gain

Name Scale Shape NMSE
Inverse Gaussian 5.62e-04 1.83e-03 0.03

Birnbaum Saunders 4.92e-04 5.34e-01 0.03
Lognormal -7.62e+00 5.19e-01 0.04

(b) Cluster 2 intrapath gain
Name Scale Shape NMSE

Inverse Gaussian 6.04e-04 1.93e-03 0.06
Birnbaum Saunders 5.27e-04 5.39e-01 0.06

Rayleigh 3.3e-04 N/A 0.12

(c) Cluster 3 intrapath gain
Name Scale Shape NMSE

Logistic 2.80e-04 6.41e-05 0.55
Exponential 3.04e-04 N/A 0.61

Inverse Gaussian 3.04e-04 2.09e-03 0.90

Figures 4.13a and 4.13b show different clusters intrapath delays mean and vari-

ance over a period of 34 days from September 22 to October 25, 2018, in Grand

Passage, Bay of Fundy, Nova Scotia. A comparison of the tidal effects depicted in
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Figure 4.12: Best PDF Fit.
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Table 4.4: Intrapath delay best fit distribution parameters

(a) Cluster 1 intrapaths delays

Name Mean Standard deviation NMSE
Normal 4.84e-16 8.95e-02 0.10

(b) Cluster 2 intrapaths delays
Name Mean Standard deviation NMSE

Normal 8.72e-16 1.16e-01 0.05

(c) Cluster 3 intrapaths delays
Name Mean Standard deviation NMSE

Normal 1.87e-16 2.94e-01 0.17

Figure 4.8 with the variations in the mean and variance of intrapaths delays suggests

the existence of a correlation between them which can explain channel characteris-

tics statistics variations in different tide phases. Next, we will channel large-scale

characteristics.

Large-scale Analysis

Here, the acoustic channel characteristics are analyzed as a function of time, using

measurements taken during 34 days sea trial. Accordingly, the channel large-scale

gain, delay spread, and the Doppler variations are obtained. The channel gain in

Figure 4.14 is obtained at AMAR B for a distance of 566 meters from the source.

The channel gain represents the received signal power as a function of the transmit

power, and is calculated by converting nine channel impulse response in the frequency

domain, and applying (4.11). A periodic trend can be observed in the mean and

variance of channel gain which will be studied in more detail in Section 4.4.

Next, the delay spread is analyzed using (4.13). The delay spread is calculated

using the CIR produced using the LFM probes, and evaluated for the nine CIRs

derived from probing sequences at each half hour. The results of a representative

window of 34 days are shown in Figure 4.15. As can be seen, the delay spread

resembles a periodic pattern similar to that of the gain.

The maximum Doppler shift is also measured for 8, 10, 12.5 and 16 kHz tones.

The maximum Doppler shift is obtained by calculating the power spectral density
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(PSD) of the received tones, and, in this work, it is defined as the frequency for which

the spectral energy has dropped by 20 dB with respect to the peak energy at 0 Hz.

Using the Doppler spread of the signal sampled every 30 minutes over all 34 days.

The calculated Doppler shifts shown in Figure 4.16 have a periodic trend and, as

expected, larger shifts occur at larger frequencies.
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Figure 4.14: Large-scale gain variations over a window of 34 days in the 566-meter
channel.
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Figure 4.15: Large-scale delay spread over a window of 34 days in the 566-meter
channel.

Next, the correlation between the channel characteristics and different channel

tide phases will be analyzed.
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Figure 4.16: Maximum Doppler shift variation at a 20-dB threshold over a window
of 34 days in the 566-meter channel.

4.4 Relationship to Tide Variations

Studying the correlation between the channel characteristics and physical environ-

mental conditions of the ocean gives insightful context to predict channel variations.

Our analysis shows a strong correlation between tidal currents and channel charac-

teristics variation. Tide plays a key role in surface elevation variation in shallow

environments. Tides are regular and predictable. Using harmonic analysis, the nu-

merous different patterns in the tide can be broken down into a series of much simpler

waves called tidal harmonics. Tidal harmonics have a very specific frequency relative

to the movements of the Earth, Moon and Sun. However, the amplitude of each

harmonic and its phase is unique to each location [141]. Here, Fourier transforms

analysis is used to finding the dominant harmonic frequency. Specifically, a brute

force search algorithm is used on the measured sea-level variations during the trial

period at Grand Passage to find the fit expression.

∆h[n] = −0.0028 + 1.9929 sin(2π · 0.0402 · n+ 1.5936) (4.36)

where n is the index of discrete time-series of tide height samples. Note that the

sampling interval is 30 minutes which results in a tide period of T = 12.43 hours.

Accordingly, 25 tide phases are defined with a residual lag of 3.9 minutes that is

compensated by a shift every eight tide cycle. Figure 4.17 shows the Grand Passage
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Figure 4.17: Surface level in different tide phases in Grand Passage Nova Scotia.
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Figure 4.18: Channel gain at different tide phases in Grand Passage Nova Scotia.

water surface level at different tide phases during the 34-day sea trial.

The periodic trend in channel characteristics of Figures 4.14, 4.15 and 4.16 implies

the existence of a correlation between the channel characteristics variations and tide

phases. A Fourier analysis shows that a dominant harmonic with a tide period of

T = 12.43 hours exists. Also, the channel characteristics variations can be represented

by their corresponding tide phases, shown in Figures 4.18 ,4.19 and 4.20.

The approach taken in this work is based on modeling channel characteristics

as a sinusoids plus a residual random noise component. Accordingly, the channel

characteristics can be represented by
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Figure 4.19: Channel delay spread at different tide phases in Grand Passage Nova
Scotia.
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Figure 4.20: 16 kHz tone 3 dB Doppler spread at different tide phases.
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- ,

Figure 4.21: PDF of random residuals for linear scale Gain magnitude, Delay spread
and Doppler spread, respectively.

y[n] = A+B sin (2π · 0.0402 · n+D) + ϵ[n] (4.37)

with n being an integer index for discrete time series measurements at a 30-minute

interval. The first two terms A and B sin (2π0.0402 · n+D) represent the relevant

tide condition and a latent process ϵ[n] represents the contribution of noise imposed

by unknown physical environmental effects. Accordingly the latent channel charac-

teristics at each period of tide phase of ϕ can be represented by

yϕ[nT ] = Cϕ[(n− p)T ] + ϵϕ[nT ], (4.38)

where y is the channel characteristic sampled at tide periods of T = 12.43 hours at a

tide phase of ϕ, n is the index of the tide period and Cϕ is a slow varying tide phase

dependant process with a memory p and ϵϕ is a noise residual component.

The random noise ϵϕ variable statistics for the channel characteristics can be

determined using a parametric probabilistic models as shown in Figure 4.21. The

random noise ϵϕ was fit and it can be demonstrated that it follows a zero mean Gaus-

sian distribution for channel gain and delay spread and follows Generalized Extreme

Value (GEV) distribution for Doppler spread. As explained in [142] when the process

noise follows a Gaussian process or a GEV process in [143] the latent process defined

by (4.38) can be modelled as a Markov process. Defining a Markov chain process to

predict channel characteristics in different tide phases will be discussed next in the

next section.
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4.5 Summary

In this Section, first, a channel model for a high-flow shallow environment is presented

that takes into account tidal flow. Then, the impact of flow and surface elevation

variations on channel characteristics statistics was evaluated using measurements col-

lected from a 34-day sea trial conducted in Grand Passage, Nova Scotia. For this

purpose, a probabilistic parametric model was developed by fitting the channel tap

power delay profile derived from sparse channel measurement to a set of probability

distributions. Finally, an statistical model supported by experimental measurements

was used to demonstrate the existence of a correlation between the channel charac-

teristics statistics and the surface elevation variations.



Chapter 5

Channel State Information Prediction

Various CSI acquisition methods have been proposed in recent years. For example

to characterize the fast fading, in [13], acoustic channel prediction is explored to

optimize an OFDM-based underwater acoustic (UWA) communication system. The

authors investigate the possibility of utilizing the CSI at least one travel time ahead

of transmission, and a Matching Pursuit (MP) algorithm is used to identify the path

coefficients. The proposed adaptation requires a stable and low-latency feedback link

from the receiver. In comparison, in [144] an adaptive channel prediction scheme is

proposed that extrapolates the CSI from a block of training symbols to optimize the

receiver. The authors exploit the sparse structure of the delay-Doppler representation

of the channel to reduce the complexity. Similarly, in [61] a channel-aware adaptive

modem is proposed to cope with the temporal slow variability of the channel behavior

in terms of maximum delay spread and Doppler spread. The measured large-scale

transmission loss is forwarded to the transmitter on a regular basis.

Using machine learning to predict CSI has attracted significant attention in re-

cent years. In [145], predicting the UWA channel is explored in the frequency domain,

which combines a convolutional neural network and a long short-term memory net-

work (LSTM) to capture the temporal correlation and frequency correlation of the

CSIs. The training set is updated every five minutes. Note that the storage of a

large amount of channel data for different physical environmental conditions can be

a challenging issue for deep neural network techniques running on remote underwater

nodes.

Our sea trial data set analysis in Chapter 4 implies that the channel characteristics

time series show significant transitions on a large time scale. The UWA channel

characteristics statistics variations in different sea states has motivated this work to

define a multi-layer discrete-time Markov process in which each layer corresponds to a

distinctive sea state. Following in this chapter first, in Section 5.1, a multi-layer finite

98
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state Markov model is explained; then, in Section 5.2, the channel characteristics

between two fixed nodes are predicted using a model based on the Markov chain

approach; then, in Section 5.2.2, it is demonstrated that how channel prediction from

the fixed nodes can be incorporated into a stochastic model to track channel variation

in a mobile node; finally, in Section 5.4 the BER performance of a mobile OFDM link

is investigated in different tide and signal to noise ratio levels.

5.1 Discrete Time Markov Chain Model

Markov chain models make a flexible and efficient class of stochastic processes which

have been used to precisely solve a broad range of applied problems.

The study of communications channel modeling as a finite-state Markov process

emerged from a two-state Gilbert-Elliot channel [146], and extensions of Markov

process with more than two states have also been developed for rapidly time varying

channels [147].

For example, in [148], a latent Markov process is proposed and hourly variations

of the channel signal-to-noise ratio (SNR) are predicted between two fixed nodes.

The authors selected SNR as a figure of merit to quantify the channel communication

quality, but, the small-scale statistics are not taken into consideration. Also, in [149],

the fading process is modelled with a Hidden Markov Model (HMM) using direct

parameter estimation from experimental data, in which the HMM output is fit to a

Monte Carlo simulation of a Rayleigh fading process [40]; however, the UWA channel

amplitude for each path delay does not always follow a Rayleigh fading process [150].

At the core, a stochastic process Y = {Yn : n ≥ 1} is defined and relies on a finite

number of states S; it is a Markov chain if for any i, j ∈ S and n ≥ 1 such that

P{Yn+1 = j|Y1, · · · , Yn} = P{Yn+1 = j|Yn} (5.1)

The condition in (5.1), called the Markov property, stipulates that at any time

n, the next state Yn+1 is conditionally independent of Y1, · · · , Yn−1 given the present

state Yn [151]. The Markov property is a condition that is satisfied by the state of

many stochastic phenomena. As described in Section 4.4, key channel characteristics

can be expressed as discrete-time stochastic processes with their future values evolving

from the current time observation, and only depend on the current state [152]. For
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a discrete channel characteristic yϕ[nT ] at tide phase ϕ, let S = s1, s2, ..., sk denote a

finite set of states and SnT , n = 1, 2, .. be a constant Markov process. The channel

states in each tide phase are created by binning all possible data values into K bins.

Since it is assumed that the Markov process has a stationary transition property

during t = nT , where T = 12.43 hours, the transition probability is independent of

the tide phase index of n and can be written as

pi,j = P (S(n+1)T = sj|SnT = si), (5.2)

for all n = 1, 2, .. and i, j ∈ 1, 2, ..., K. Also, a K × K state transition probability

matrix Pϕ can be defined at each tide phase ϕ ∈ {1, 2, ..., 25} with element pj,i, such

that

Pϕ =


p1,1 p1,2 · · · p1,K

p2,1 p2,2 · · · p2,K
...

...
. . .

...

pK,1 pK,2 · · · pK,K

 (5.3)

A state transition probability matrix Pϕ is a stochastic matrix [153] for which the

sum of its element on each row is equal to 1, i.e.

K∑
j=1

pi,j = 1; where i = 1, 2, .., K. (5.4)

Note that pi,i is the probability to leave the state i and the conditional probability

pi,j|pi,i is the probability of selecting state j leaving the state i.

Considering the stationary transition property, the probability of being at state

SnT = sk at any time index nT without any information from the previous state is

represented using a K × 1 steady-state probability vector AnT defined as

AnT = [p1, p2, ..., pK ]. (5.5)

The transition matrices have the chain property that the product of the previous

transition matrices describes the transition at the next time step (n+1). Specifically,

the Markov chain at Step (n+ 1) for each tide phase ϕ can be determined by finding

the (n + 1)-th step transition matrix P n+1
ϕ = P 1

ϕ .P
2
ϕ . . . P n

ϕ . The (n + 1)-th step

transition matrix P
(n+1)
ϕ can otherwise be expressed using
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Pn+1
ϕ =


P (Sn+1 = s1|Sn = s1) · · · P (Sn+1 = sK |Sn = s1)

...
. . .

...

P (Sn+1 = sK |Sn = s1) · · · P (Sn+1 = sK |Sn = sK)

 (5.6)

Figure 5.1 shows an (n + 1)-step Markov process chain with 25 tide phases. If

the channel state at step n and phase ϕ is known to be Sn = sl, the channel state

Sn+1 = sm can be predicted by finding the maximum element of the lth row in

matrix P n+1
ϕ . Next, the proposed Markov chain model is applied to predict channel

characteristics one tide cycle ahead.
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Figure 5.1: Illustration of the proposed Markov process chain. A Markov process
chain is defined for each tide phase. Index n+ 1 refers to the next tide cycle.
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5.2 CSI Acquisition in a Fixed Node Scenario

5.2.1 Predicting Channel Large-scale Characteristics

In this section, a Markov chain is applied to the channel large-scale characteristics

data set, and the states determined directly from the data set acquired from chan-

nel sounding. The channel large-scale characteristics including the gain, delay and

Doppler spread can be described at any time as being in one of the states s1, s2, · · · , sk.
Each state represent a range of values that the random channel characteristics can

take. The set of 1632 observations at an interval of 30 minutes are generated by con-

catenating time series observations of channel gain, delay and Doppler spread data

during the 34 days. At each tide phase ϕ ∈ {1, 2, . . . 25}, n = 64 samples of channel

gain, delay and Doppler spread are binned in K states. The intervals between the

sampling period is one tide period T and the number of states which quantize the

possible values of channel characteristics in K states are determined in such a way

that the maximum error for the channel gain, delay and Doppler spread remain below

1 dB, 1 msec and 0.2 Hz respectively. Figures 5.2, 5.3 and 5.4 show the prediction

of channel characteristics at step n + 1 = 65, which is the next tide cycle after the

observation in the tide cycle n = 64.
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Figure 5.2: Predicted channel gain on Oct. 25, 2018.

The RMSEs reported in the figures for the predicted channel characteristics are

within quantization size of each state, which indicates that the proposed Markov

chain model can predict the channel characteristics precisely at one tide phase ahead.
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Figure 5.3: Predicted channel delay spread on Oct. 25, 2018.
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Figure 5.4: Predicted channel maximum Doppler shift at 16 kHz on Oct. 25, 2018.

5.2.2 Predicting Channel Small-scale Statistics

The SD of intrapath delays for cluster three σδp3 is shown in Figure 5.5. The random

variable σδp3 takes values in a state space of S and can be represented by

σδp3 [n] = C[n] + ϵσp3
[n] (5.7)

where C[n] is a sinusoidal with period of T = 12.43 Hours and ϵσp3
is the process

noise with zero mean Gaussian distribution as shown in Figure 5.5. It is equal to

C[n] = 1.1637 + 0.285 sin(2πn× 0.0402 + 0.6802) (5.8)

A Markov chain similar to what is presented in Section 5.1 is defined for σδp3 in

different tide phases. The model predicts the SD of intrapath delays for cluster three

during the next tide cycle in different tide phases. The predictions of σδp3 with RMSE

of 0.14 msec are shown in Figure 5.5.

Predicting the SD of the intrapath delays is significant, because the result can be
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incorporated in the analytical model described in Section 4.1.2. As such, ensembles of

CIRs or equivalently channel frequency responses can be predicted, making channel

tracking possible.

Figure 5.5: Standard deviations for the intrapath delays of Cluster 3 during 34 days,
sampled at 30 minutes intervals. A sinusoidal is fit and the zero mean Gaussian
distribution of the residual is shown on the right.
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Figure 5.6: Prediction of the standard deviation for the third cluster intrapath delays
on Oct. 25, 2018.

5.3 An Acoustic Channel Tracker to Estimate CSI in a Mobile Scenario

In this section a channel tracking simulator is provided that incorporates data driven

statistics of the intrapaths delays into a stochastic model of acoustic channel. The

channel tracking simulator is applied to a shallow water channel that is subject to high

fluctuations due to tides and provides a realistic representation of the channel impulse
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responses for a mobile scenario. The rest of this section is organised as follows: in

Section 5.3.1, the acoustic channel model developed by Qarabaqi and Stojanovic [6]

is enhanced to incorporate physical properties of a mobile channel in shallow waters.

Then in Section 5.3.2, data driven intrapaths delays statistics are incorporated into

a mobile channel simulator and CIRs are estimated.

5.3.1 A Stochastic Model for the Acoustic Channel

To enable a reliable and efficient underwater acoustic communication, it is important

to design the communication stack to be adaptable to time varying channel conditions.

Several models have been proposed to estimate UWACs, which are usually based

on collected data from sea trials in a particular location [154] or stochastic model

of physical environmental conditions. A stochastic model can generate ensembles of

time varying channel by capturing slowly varying environmental effects such as effects

of tides, temperature changes, and variable sound speed profiles.

In this section, the stochastic channel model described in [6] is used as the core of

a channel tracking algorithm and is enhanced with physical environmental conditions

such as tide, SSP and bathymetri as well as data-driven intrapath delays statistics to

obtain channel impulse response variations in mobile conditions. Note that in Sec-

tion 5.2.2, the channel small-scale statistics including standard deviation of intrapath

delays predicted using Markov chain. Here, the intrapaths statistics are incorporated

into a channel model to develop a channel tracking model.

5.3.2 Tracking the Channel for a Mobile AUV

AUVs used in marine geoscience typically move at speeds of up to 1–2 m/s, and

can be influenced by tidal currents which can significantly affect their data transfer

quality [155].

As shown in Section 4.2 channel intrapaths statistics including standard deviation

of intrapath delays play an main role in small scale fading. Here, a channel tracking

model estimates CIRs of an underwater acoustic link between a mobile AUV and a

sink node by incorporating channel statistics received from a reference node.

In Figure 5.7 an AUV receives the CSI including the gain, the delay spread,

the Doppler spread and the standard deviation of intrapaths delay from a reference
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Figure 5.7: The acoustic channel between a sink node and a mobile AUV is estimated.
The reference fixed node shares recorded CSI over a prolonged period with the AUV
to enable channel tracking at the AUV.

fixed node. The channel tracking software also determines deterministic changes in

vehicular speed, SSP, tides and bathymetry. The stochastic model of the channel

generates ensemble of time varying CIRs as the AUV pursues its mission.

Channel Tracking Software

The basic time-invariant model of an acoustic channel is that of a multipath channel

in which the signal energy attenuates with distance. Using the data driven model

described in 4.3 large scale gain and delay can be approximated with hp and τp

at the reference point. However the linear speed of AUV deviates the actual path

gain from the reference point, also random variations in path length induced by

surface roughness adds an additional randomness. Here we used standard deviation

of intrapaths delays at the reference point to model this additional variations and

incorporated it into the analytical model introduced in Section 4.1.2.

Mobile Channel Tracking Simulation Results

Figure 5.8 shows 8 second CIRs derived from probing sequences on Sep 28 2018 at 11

AM in the Grand Passage sea trial. Standard deviation of intrapath delays of each

path in Figure 5.8 is derived from the CIRs at the reference point and shared with the
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dB

Figure 5.8: Measured 8 seconds CIRs for a reference fixed node, the channel length
is 566 meters.

AUV. Standard deviation of intrapath delays captures the effect of surface elevation

variation induced by tides and plays the main role in channel variations.

Figure 5.9 shows the estimated CIRs derived from channel tracking for an AUV

with linear vehicular speed of 1 m/s shown in the scenario of Figure 5.7.

The linear variations of the delays in Figure 5.9 can be compared to the reference

node in 5.8 and corresponds to the linear variations of the lengths of each path along

the AUV route during 10 seconds channel realization.
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Figure 5.9: Simulated 10 Seconds CIRs for a AUV with a linear speed of 1 m/s.
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5.4 Performance Evaluation of Acoustic Link in High Flow Environment

In this section, the BER performance of the time varying acoustic channel of Sec-

tion 5.3.2 is investigated in different tide and signal to noise ratio levels. To approach

this objective the channel information including channel gain, delay and Doppler

spread are acquired using the stochastic model of 5.3.2 and used to simulate channel

variation for a mobile AUV equipped with OFDM based communication system. The

simulator resembles 24 hours variation of the channel in September 28 2018 in Grand

Passage, Bay of Fundy, Nova Scotia.

Figure 5.10 demonstrates the flow and tide height variations in Grand Passage

during September 28 2018.
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Figure 5.10: Flow and tide height variations during September 28 2018 in Grand
Passage.

To evaluate the effect of channel variations on received OFDM signal BER, an

OFDM signal with partial FFT demodulation (P-FFT) proposed in [156] is borrowed.

P-FFT was shown to be effective in compensating for the channel variations. P-FFT

divides the received OFDM block into sections that are shorter than the original

OFDM block. If the sections are sufficiently short, the channel variations are ex-

pected to be negligible during each section. P-FFT is a good approach when the

Doppler shift is not negligible. For this purpose 2000 random bits are generated and

QPSK modulation is applied. The proposed OFDM system signal specification is

summarized in Table 5.1.

Figure 5.11 show the generated OFDM symbols to be transmitted and applied to

the channel. Its is assumed that the transmitter send packets every 30 minutes to be

consistent with tide information. A time varying channel which simulates the high

flow environment in grand passage during 24 hours in September 28 2018 is generated
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Table 5.1: Transmitted OFDM Signal Specification

Parameter Value
Sampling frequency 64 ksample/s
Frequency of lowest carrier 8 kHz
Bandwidth 8 kHz
Number of carriers 1024
Number of OFDM blocks to transmit 6
Duration of zero padding between OFDM blocks 45 msec
Number of pilot carriers 120

for the AUV with linear vehicular speed of 1 m/s. The channel is simulated in 30

minutes intervals to capture the effect of flow on channel variation over 24 hours. To

reduce the complexity, only the first three paths for which the amplitude is higher

than 1/20 of the first path are considered. The generated OFDM symbol is applied

to the channel for SNRs ranging from 1 dB to 30 dB.
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Figure 5.11: Six OFDM symbols are transmitted.

Figure 5.12 shows the BER variations of the received OFDM signal during 24

hours. Comparing the BER variation of Figure 5.12 with the flow variations of Fig-

ure 5.10 suggests the existence of a correlation between high BER and high flow

conditions.

It can also be inferred that in the scenario of shallow channels increasing the SNR

can mitigate the effect of flow and improve the BER to some extends but after a

certain point increasing the SNR doesn’t seem to be an effective factor. This can be

explained by the effect fading imposed on the received signal due to mutipaths.
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Figure 5.12: BER of the received OFDM symbols during 24 hours in September 28
2018 for SNRs of 1 dB to 30 dB.

5.5 Summary

In this Section, first, a novel multi-layer Markov process was defined to predict the

channel characteristics in different tide phases. Each layer of the proposed Markov

chain predicts the channel gain, delay, Doppler spread, and intrapaths statistics in

one tide phase. The proposed Markov model utilizes context awareness and tracks the

deterministic physical environmental conditions to define different states for channel

characteristics at intervals of 30 minutes. Considering the dynamic range of channel

characteristics in different tide phases, it was demonstrated that the proposed Markov

chain model could produce predictions relatively close to the measured values with

root mean square errors of 90% of the quantization size of the measurements. Then

a channel tracking simulator is presented that incorporates data-driven statistics of

the intrapaths delays into a stochastic model of the acoustic channel. The channel

tracking simulator is applied to a shallow water channel subject to high fluctuations

due to tides. The presented channel simulator provides a realistic representation of

the channel impulse responses. The BER performance of generated OFDM signal

in the simulated time-varying acoustic channel is investigated in different tide and

signal-to-noise ratio levels. Comparing the BER variation of the received OFDM

signal with the tide variations suggests the existence of a correlation between the
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high BER and the high flow conditions.



Chapter 6

Conclusion

This thesis investigates the design aspects of a cross-layer service that utilizes channel

state information to adapt the underwater acoustic network communication stack,

including the physical layer, the media access control, and the routing layer to the

channel time varying conditions.

To approach this goal, in Chapter 3, a multihop relaying network architecture is

defined; it uses an enhanced energy-efficient flooding routing in the control phase and

a multihop channel aware relaying for data forwarding. It is demonstrated that in

the proposed scenario, by incorporating the channel information in relay selection,

the number of hops and the number of retransmission are reduced, which leads to

%29 energy savings in the proposed scenario. Further in this chapter, to enable the

multihop relaying, a channel-aware MAC scheme is proposed to maximize channel

allocations while avoiding collision and maintaining connectivity within the multihop

relaying network. It is shown that the proposed MAC scheme has comparable channel

utilization performance to the greedy MAC scheme. Still, it achieved a smaller stan-

dard deviation in the number of allocated channels to nodes and maintained fairness

in resource allocations.

In Chapter 4, the impact of key physical environmental conditions on the chan-

nel characteristics is analyzed. For this purpose, 1632 wave files from 34 days sea

trial in Grand Passage Nova Scotia were used to derive a set of channel impulse re-

sponses for a 566-meter channel in 30 minutes intervals. The channel characteristics

include the gain, delay, Doppler spread, and standard deviation of intrapath delays

derived during the sea trial period. The theoretical model and experimental chan-

nel measurements demonstrate the existence of a correlation between the channel

characteristics statistics and the surface elevation variations, particularly in high flow

shallow environments. Here, a probabilistic parametric model is used to characterize

113
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the statistical properties of channel taps during different different tide phases by fit-

ting the channel tap power delay profile derived from sparse channel measurement to

a set of parametric probability distributions.

In Chapter 5, it is demonstrated that the state of the physical conditions can be ex-

ploited to define a multi-layer Markov chain model. Indeed, the proposed multi-layer

channel state information prediction scheme is to predict the channel characteristics

accurately with a root mean square error of 0.9 dB for the gain, 0.9 msec for the de-

lay spread, 0.18 Hz for the Doppler spread, and 0.14 msec for the standard deviation

of intrapath delays. Further, the data-driven channel characteristics and intrapath

statistics is incorporated into an analytical model of the channel to give a more real-

istic representation of the channel’s time varying impulse response. Finally, the BER

performance of an OFDM link is evaluated between a fixed transmitter and a mobile

AUV for 24 hours and at different SNR levels. The BER performance estimation

can be used by AUVs, which are operated in a time varying environment, to adjust

their physical layer parameters and transmission schedules according to the channel

conditions.

In future work, to enable an adaptive network, it is recommended that the chan-

nel state prediction algorithm and channel tracking software be implemented on real-

time embedded platforms such that remote nodes can estimate the communication

link quality under different physical environmental conditions. For this purpose, the

handshaking mechanism between the nodes should be defined to demonstrate the

MAC spectral efficiency and the routing layer energy efficiency. Finally, a demonstra-

tion of the physical layer adaptation in realistic settings will confirm the optimization

algorithm in realistic time varying environments.
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