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Abstract

Maternal pre-pregnancy body mass index (BMI) is associated with first-generation
health outcomes. The literature suggests an increased risk of low birthweight in
infants born to mothers who are underweight, while infants born to mothers with
obesity have increased risk of high birthweight, and of becoming obese themselves.
Moderate associations between grandparental factors and child birthweight have been
reported, but several studies have limitations affecting validity and precision and sel-
dom examined mediation by first-generation factors. Two objectives of this research
were to 1) examine the association between grandmaternal (G0) pre-pregnancy BMI
and child (G2) birthweight, with investigation of mediation by maternal (G1) pre-
pregnancy BMI, and 2) develop a prediction model for G2 fetal growth abnormalities
using G0 risk factors, G1 birth characteristics, and G1 pregnancy characteristics in
nulliparous G0s and G1s. These objectives were addressed using a subset of the Nova
Scotia Atlee Perinatal Database (NSAPD) created by linking women’s birth informa-
tion with their pregnancy information in adulthood. The clustering structure of the
NSAPD, where delivery-level data is nested within women, creates challenges when
imputing missing data. The third objective was to assess the use of a recently pro-
posed tree-based method, mixed-effects random forest (MERF), which incorporates
clustering in the prediction procedure to impute BMI. This study found imputa-
tion using MERF was moderately biased when BMI was missing at random but
severely biased when missing not at random, and imputation using standard ran-
dom forest was least biased and most efficient. In analyses of 20822 G1-G2 dyads,
estimates of the total effect of G0 pre-pregnancy BMI on G2 birthweight z-score and
the mediator-specific effect via G1 pre-pregnancy BMI, assuming G0s had a BMI
of 22 kg/m2 as compared to the ‘natural course’ scenario, were small. G0 factors
and G1 birth characteristics, together with G1 characteristics, modestly improved
the prediction of fetal growth abnormalities as compared to models based solely on
G1 characteristics in a sample of 9068 G2s. Key predictors included G1 gestational
weight gain, pre-pregnancy BMI and birthweight z-score. These findings suggest
negligible intergenerational effects of G0 pre-pregnancy BMI on G2 birthweight, but
moderate predictive ability of G1 size at birth.
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Chapter 1

Introduction

The rising trend in overweight and obesity observed in the Canadian population poses

risks for women before, during, and after pregnancy, as well as for their offspring.

In 2015, 22% of Canadian women aged 18 to 34 were affected by overweight and

19% by obesity[1]. Women entering pregnancy with overweight or obesity (i.e., pre-

pregnancy overweight or obesity) are at increased risk of adverse maternal, fetal, and

neonatal outcomes[2], and require specialist care, and additional healthcare services,

resulting in higher maternity costs for these women[3]. These issues are especially

concerning in Nova Scotia, one of Canada’s four Atlantic provinces, where more than

half of the women entering pregnancy were either overweight or obese in 2019[4]. The

prevalence of underweight among Canadian women aged 18 to 34 increased from

4.8% in 2005 to 6.6% in 2015[1], but the prevalence of pre-pregnancy underweight

in Nova Scotia has remained relatively constant at approximately 4% between 2015

and 2019[4].

Elevated and low body mass index (BMI) before becoming pregnant is associated

with a higher risk of adverse pregnancy and obstetrical outcomes[2, 5, 6]. Infants

born to underweight mothers are at increased risk of low birthweight (LBW) and

being born small for gestational age (SGA), while infants born to mothers with over-

weight or obesity have increased risk of high birthweight (HBW), being born large for

gestational age (LGA)[2, 5], and of becoming overweight and obese in childhood and

adolescence[6]. The observed associations between maternal pre-pregnancy BMI and

offspring BMI, and the heritability of weight via genetic and epigenetic mechanisms[7]

have suggested the possibility of an effect of grandmaternal pre-pregnancy BMI on

child birthweight.

Multigenerational studies on the effects of in utero exposures on second-generation

outcomes[8] have found small to moderate associations between grandparental risk

1



2

factors and child birthweight, including grandparental birthweight[9, 10], BMI[11–

13], smoking in pregnancy[14–19], socioeconomic status[20–23], and diabetes[24, 25],

with most studies focusing on the maternal line. The results of two studies that

examined the association between maternal grandmother pre-pregnancy BMI and

child birthweight suggested no large differences in child birthweight with each unit

(kg/m2) increase[12, 13]. Both studies, however, were limited by small sample sizes,

and one study inappropriately adjusted for mediators of the association[12], thus

potentially biasing the total effect estimate.

Maternal factors are likely to lie on the causal pathway between grandmaternal

body weight and child birthweight, but few studies have conducted mediation analy-

ses to investigate the role of maternal characteristics in these associations. Moreover,

only traditional methods of mediation analysis have been used, which are known to

be limited in many settings[26]. More modern counterfactual-based approaches are

more flexible than traditional methods, and allow for more intuitive interpretations

of the estimates by considering hypothetical conditions on the exposure. However,

causal interpretation of estimates obtained using counterfactual-based approaches

require strong and untestable assumptions, which are likely to be violated when

assessing the effects of exposures such as body weight and BMI[27]. Nonetheless,

pre-pregnancy BMI remains an important risk factor in pregnancy; examining its

relationship with second-generation offspring birthweight and assessing the mediat-

ing effect of maternal pre-pregnancy BMI is valuable for guiding future research on

specific interventions that could modify BMI.

As previously mentioned, the results of some studies have suggested an associa-

tion between grandparental risk factors and child birthweight, but it remains unclear

whether intergenerational information can aid in identifying pregnancies at greatest

risk for fetuses with restricted or excessive growth. Accurate identification of these

pregnancies has important implications for preconception counselling, antenatal as-

sessment and intrapartum care. The risk of abnormal fetal growth is increased in

infants born to mothers at the extremes of the BMI distribution, which, in turn,

is associated with adverse health outcomes in infants[28]. Prediction models for fe-

tal growth abnormalities have been developed using routinely collected data readily

available in an antenatal setting but predictive performance remains relatively poor,
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especially among women in their first pregnancy. Despite the well-established as-

sociations between maternal and offspring size-at-birth[29], a prediction model for

fetal growth abnormalities based on maternal birth characteristics and grandmater-

nal risk factors, together with maternal pregnancy-related information, has yet to be

developed and validated.

Two contributions of this thesis are concerned with the relationship between

grandmaternal pregnancy-related characteristics and fetal growth. One with the goal

of estimating the association between grandmaternal pre-pregnancy BMI and infant

birthweight, with examination of mediation by maternal pre-pegnancy BMI, and the

other with the goal of developing and validating a prediction model for fetal growth

abnormalities using grandmaternal risk factors, maternal birth characteristics, and

maternal pregnancy characteristics. These objectives were addressed using the 3G

Multigenerational Cohort of Nova Scotian women and their offspring, a subsample

of the Nova Scotia Atlee Perinatal Database (NSAPD), created by linking women’s

birth information with their pregnancy information in adulthood[30].

Like other perinatal databases, the NSAPD has a unique clustering structure

where delivery records to the same woman are linked, resulting in a hierarchical

structure of delivery-level data nested within women. Notable design aspects of

this database are that women have differing numbers of deliveries (i.e., unequal

cluster sizes), the time between deliveries varies (i.e., unequal spacing of measure-

ments), and many women have only one delivery (i.e., large proportion of singleton

clusters). These databases are also prone to missingness, particularly in maternal

pre-pregnancy weight and height (information required to calculate BMI), and ap-

propriately handling missingness is complicated by this complex clustering structure.

Several studies have evaluated and compared multilevel imputation methods under

varying conditions[31–33], but it remains unclear which method is best in data with

small and unbalanced clusters.

Imputation using data-adaptive methods has been proposed as an alternative

to parametric imputation in the case of independent observations[34–38]. These

methods can capture complex relationships in the data without the need to explicitly

specify the imputation model, and have been shown to perform comparably or better

than parametric-based imputation[34, 36–39]. Tree-based algorithms are among the
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most popular machine learning algorithms for prediction, some of which have been

extended to accommodate clustered data for continuous outcomes[40–42]. Due to the

complex structure of the NSPAD and considering weight measurements over time are

likely to be correlated, imputation methods using multilevel tree-based algorithms

may outperform other imputation strategies. Therefore, the final contribution of

this thesis is the evaluation of a recently proposed tree-based algorithm that can

accommodate clustering as a method for imputing pre-pregnancy BMI using real-life

data drawn from the NSAPD.

This dissertation is presented in the form of a series of related manuscripts. Due

to the manuscript-based nature of this thesis, some repetition occurs between chap-

ters. Chapter Two states the objectives of this research. Chapter Three reviews

the literature relevant to maternal pre-pregnancy BMI and associated maternal and

neonatal outcomes, followed by the necessary background information required to ad-

dress each objective. Chapters Four through Six are the individual manuscripts that

have been or are in the process of being submitted for publication. Lastly, Chap-

ter Seven provides a discussion of the overall findings, strengths and limitations,

and highlights possible implications of the findings to policy and decision-making

settings.

In some chapters of this dissertation, the grandmaternal generation is referred to

as G0, the maternal generation as G1, and the second-generation offspring as G2.

The decision to use this notation was based on the context and the target academic

journal.



Chapter 2

Objectives

The overarching goal of this research was to examine the relationship of grand-

maternal (G0) pre-pregnancy BMI and other pregnancy-related factors with second-

generation (G2) offspring birthweight using the 3GMultigenerational Cohort. Specif-

ically, the three primary objectives were to:

1. Investigate the performance of a recently proposed tree-based algorithm that

accommodates clustering as a method for imputing pre-pregnancy BMI values

in the NSAPD.

2. Examine the association between G0 pre-pregnancy BMI and G2 birthweight,

with an investigation of mediation by maternal (G1) pre-pregnancy BMI.

3. Develop and validate a prediction model for G2 fetal growth abnormalities

using G0 pregnancy-related factors and G1 birth characteristics together with

G1 pregnancy-related factors.

5



Chapter 3

Literature Review

This chapter provides a definition of pre-pregnancy BMI and describes associated

maternal and neonatal outcomes. Secondly, a literature review of the current evi-

dence for the transmission of weight, including an overview of the epigenetic evidence

by which grandmaternal pre-pregnancy BMI may influence child birthweight, is pre-

sented. Thirdly, methodologies for multiply imputing maternal pre-pregnancy BMI

(used in Chapter Four), and for estimating total and mediation effects (used in Chap-

ter Five), are discussed. Lastly, the limitations of current prediction models for fetal

growth abnormalities are explored, with this last section providing an overview of

the methodology used in Chapter Six.

3.1 Maternal pre-pregnancy BMI

BMI, a measure of weight adjusted for height, is often used as a surrogate measure of

body adiposity. The most widely used BMI classification, followed by Canadian and

World Health Organization (WHO) guidelines, are as follows: BMI < 18.5 kg/m2 as

underweight, BMI between 18.5 and 24.9 kg/m2 as normal weight, BMI between 25.0

and 29.9 kg/m2 as overweight, and BMI ≥ 30 kg/m2 as obese[43]. Overweight is also

sometimes defined as BMI ≥ 25 kg/m2. Maternal pre-pregnancy BMI is the BMI

of a woman immediately prior to becoming pregnant. Maternal pre-pregnancy BMI

is often represented by a measurement done in early pregnancy at the first prenatal

visit. Given that weight gain during the first trimester is, on average, slow[44],

measurements done in early pregnancy are valid.

Pre-pregnancy BMI is a potentially modifiable risk factor for many pregnancy, ob-

stetrical and neonatal outcomes: pregnancy loss[45], maternal thromboembolism[46],

problems in labour such as shoulder dystocia[47], need for Caesarean delivery[2], pre-

term birth[2], and abnormal fetal growth[28]. Maternal BMI and some of the neonatal

outcomes associated with it has been linked to obesity, diabetes, and cardiovascular

6
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disease in the offspring in adulthood[28, 48, 49].

3.2 Evidence for the association between grandmaternal and child

body weight, and for mediation by maternal body weight

Birthweight and weight in childhood are associated with adverse cardiovascular and

metabolic outcomes. While the association between maternal and offspring BMI is

established, the evidence for an association between grandparental and child body

weight is limited in both amount and quality. In the following section, epidemiolog-

ical studies investigating the total effect of grandmaternal body weight measures on

offspring body weight measures and those estimating the mediated effect by mater-

nal body weight measures are discussed. Next, epigenetic evidence that could be a

biological mechanism for the potential effect of grandmaternal body weight measures

on child body weight measures is presented.

3.2.1 Association between grandmaternal and child body weight

The association between maternal pre-pregnancy BMI and the short- and long-term

health of the first-generation offspring has been established. A meta-analysis re-

ported an increased odds of being born SGA (OR [odds ratio] 1.55, 95% confidence

interval [CI] [1.49, 1.62]) and LBW (OR 1.51, 95% CI [1.48, 1.54]) in underweight

mothers, and an increased odds of being born LGA (OR 2.36, 95% CI [2.17, 2.56])

and HBW (OR 2.28, 95% CI [2.15, 2.41]) in mothers with obesity, relative to nor-

mal weight mothers. Beyond the first-generation offspring, a meta-analysis of seven

studies totalling 23 033 participants reported an increased odds of overweight or

obesity in children with overweight or obese grandparents compared to those with

normal weight grandparents (OR 1.79, 95% CI [1.01, 2.57])[50]. Intergenerational as-

sociations between grandparental body weight measurements and first- and second-

generation offspring body weight measurements have been shown to be stronger along

the maternal line than along the paternal line[11, 12], thus suggesting that maternal

genetics and the intrauterine environment play a key role in explaining the observed

associations.

The mechanisms underlying the intergenerational transmission of birthweight re-

main unclear but are thought to include a combination of genetics, epigenetics, and
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prenatal environmental factors. Prenatal environmental factors that are predictors

of birthweight and fetal growth include diabetes[24] and smoking[18]. While studies

have demonstrated multigenerational patterns of birthweight[12, 51, 52], prospective

studies examining the persistence of the effects of in utero exposures beyond the

first-generation in human populations are scarce.

Evidence from studies investigating grandparental body weight-related measures

(e.g., birthweight, BMI, waist circumference) and offspring body-weight related mea-

sures (e.g., birthweight, BMI in childhood) is mixed with most reporting weak or null

associations (Table A.1). Overall, most studies have used a cross-sectional design,

but vary in terms of sample size, time frame for ascertainment of exposure and out-

come, adjustment variables, and statistical analysis. Studies with cross-sectional

designs are limited because the exposure and outcome are measured at the same

time, making it impossible to establish a temporal link between the exposure and

outcome, and infer causal relationships.

The intergenerational transmission of size-at-birth was investigated by some stud-

ies. An unadjusted correlation of -0.41 (p=0.37) between maternal grandmother

birthweight and child birthweight was reported in a small study of 34 female stu-

dents from Tokyo[53]. In a larger sample of 6169 second-generation offspring from

the Uppsala Birth Cohort Multigenerational Study, a small correlation of 0.124 (95%

CI [0.095, 0.153]) was found between maternal grandmother birthweight and child

birthweight, with this correlation being the largest amongst all grandparents (i.e.,

paternal grandmother, and grandfathers). No information on the parental generation

was available to the authors of this study, so investigation of mediation by parental

characteristics was impossible. Moreover, participants with missing information on

important confounders, such as grandparental smoking, were dropped in the adjusted

analyses, leading to a large reduction in sample size and potential selection bias by

conducting complete case analyses.

Another study used prospectively collected data in the Aberdeen Maternity Neona-

tal Databank to examine the transmission of both birthweight and fetal growth

across three generations[10]. After adjusting for sociodemographic and prenatal co-

variates in all three generations, the estimated association between grandmaternal

birthweight z-score and child birthweight z-score was 0.17 standard deviation (SD)
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units (95% CI [0.12, 0.23]). This estimate decreased to 0.12 SD units (95% CI

[0.07, 0.18]) after further adjusting for maternal birthweight, height, and BMI. Both

adjusted models included covariates that are likely to lie on the causal pathway

between grandmaternal birthweight and child birthweight, such as maternal birth-

weight, therefore biasing the estimate of the total association. Smoking information,

a likely confounder in the analyses, was only available after 1965 and, was therefore

missing for approximately 90% and 30% of the pregnancies of the great-grandmothers

and grandmothers, respectively. Lastly, the authors dummy-coded participants with

missing data into a separate category. This popular method to accommodate missing

data is known to produce biased estimates[54].

Beyond birthweight, a few studies have specifically examined grandmaternal pre-

pregnancy weight or BMI and offspring birthweight. A study of Maltese women

born in 1987 and who, as adults, delivered at the same hospital, found that infants

born to mothers with in utero exposure to overweight or obesity were, on average,

280 g (95% CI [149, 411]) heavier at birth than infants born to mothers without

in utero exposure to overweight or obesity[55]. However, an early study from 1992

found no association between maternal grandmother pre-pregnancy weight and child

birthweight using data from the National Child Development Study[51]. Similarly,

later studies using the Bogalusa Heart Study and the Isle of Wight birth cohort did

not find large differences in offspring birthweight with each unit (kg/m2) increase

in BMI (-12 g, 95% CI [-31.6, 8.0][12], and 8 g [p=0.32][13]). All studies were

limited by small sample sizes, two studies were unable to control for all relevant

confounders[13, 55], and two studies inappropriately adjusted for mediators of the

association[12, 51], thus potentially biasing the total effect estimate.

The influence of grandmaternal pre-pregnancy BMI on second-generation birth-

weight has not been thoroughly investigated using prospectively collected data. As

most studies of this association had a cross-sectional design, the temporal ordering of

exposure and outcome was impossible, which limits the interpretation of the associa-

tions found. The current available evidence is also limited by small sample sizes, the

use of self-reported information, and inappropriate treatment of missing data. Most

importantly, recent studies were unable to control for relevant confounders, such as

grandparental smoking, and improperly adjusted for mediating factors.
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3.2.2 Maternal weight as a potential mediator

The evidence for an intergenerational effect of weight is mixed and warrants further

investigation. Maternal weight measures, such as birthweight and pre-pregnancy

weight, are likely to fall on the pathway between grandmaternal body weight at var-

ious time points and child birthweight, but the strength of their mediating effect re-

mains unclear. Investigating the effect of grandmaternal weight on child birthweight

that operates via maternal weight can help clarify the underlying causal mechanisms

involved.

Mediation analyses are used to assess the degree to which the relationship be-

tween an exposure and outcome is mediated by another variable (i.e., a mediator).

Consider the simple example of mediation shown in Figure 3.1. The direct effect

measures the extent to which the outcome changes in response to changing the expo-

sure while holding the mediator fixed and is represented by the pathway “Exposure

→ Outcome”. The indirect effect measures the extent to which the outcome changes

as a result of changing the mediator while holding the exposure fixed and is repre-

sented by the pathway “Exposure → Mediator → Outcome”. Causal language (i.e.,

total effect, direct effect, and indirect effect) was used in the subsequent discussion

to indicate which effect types are being targeted in the analyses, but these are in fact

statistical associations that require strong and carefully assessed assumptions to be

interpreted causally. The details of the statistical approaches to estimate direct and

indirect effects and the assumptions required to interpret these as causal effects are

given in Section 3.4.

Mediator
(e.g., maternal body

weight measure)

Exposure
(e.g., grandmaternal

body weight measure)

Outcome
(e.g., child body weight

measure)

Figure 3.1: An example of a simple mediation analysis

Two studies investigating the intergenerational effect of grandmaternal body
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weight reported on mediation by maternal body weight[10, 13]. Lahti-Pulkkinen

et al.[10] used prospectively collected data to investigate the relationship between

maternal grandmother birthweight z-score and child birthweight z-score. Using a

partially adjusted model, the total effect was estimated to be 0.17 SD units (95%

CI [0.12, 0.23]), or, for each increase in 1 SD unit in grandmaternal birthweight z-

score, child birthweight z-score is expected to increase, on average, by 0.17 SD units.

Using maternal birthweight z-score as a mediator, the indirect effect was estimated

to be 0.06 SD units (95% CI [0.04, 0.06]). Since only birthweight variables were

considered in the mediation analysis, the validity of the results is threatened by the

potential confounding of the exposure-outcome, exposure-mediator, and mediator-

outcome relationships. Failure to control for such variables leaves the possibility

that these associations explain the significant direct and indirect effects observed.

Furthermore, the authors did not account for possible exposure-induced mediator

outcome confounders (i.e., intermediate confounders), such as grandmaternal dia-

betes, did not investigate the possibility of exposure-mediator interaction, and did

not assess the possibility of nonlinear associations (e.g., between grandmaternal and

child birthweight z-score), which may have resulted in invalid inference[56, 57].

In another study, the total effect of maternal grandmother BMI on child birth-

weight was estimated to be 8 g per kg/m2 increase[13]. Using structural equation

modeling (SEM), the estimated coefficient of the pathway via maternal body weight

measures (i.e., indirect effect through maternal birthweight and BMI at age 18) was

6.6 g per kg/m2 (p=0.04), and the coefficient of the pathway not via maternal body

weight measures (i.e., direct effect) was 1.3 g per kg/m2. This study was limited in

its ability to control for relevant confounders (e.g., grandmother’s age at the time of

the mother’s delivery), and is it unclear whether possible intermediate confounders

(e.g., grandmaternal gestational diabetes mellitus [GDM] and hypertension) were

addressed. Stepwise variable selection was used that, when combined with a small

sample size, likely resulted in the exclusion of several important pathways (e.g., ma-

ternal birthweight to BMI at age 18) and may have introduced residual confounding

bias. Lastly, SEM approaches, like the traditional regression-based approaches to

mediation, assume all relationships are linear (or log-linear in the case of a binary

outcome), which may be unrealistic when modeling associations with BMI.
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To date, the investigation of the role of maternal pre-pregnancy weight in the

association between grandmaternal pre-pregnancy weight and child birthweight, has

been insufficient. Studies investigating mediation by maternal characteristics have

relied on SEM approaches, which are only valid under strong, and often unrealistic,

assumptions. No studies of this association have used newer counterfactual-based

approaches to mediation that can accommodate intermediate confounding and allow

for more intuitive interpretations of the direct and indirect effects by considering

hypothetical conditions on the exposure.

3.2.3 Epigenetic mechanisms of maternal pre-pregnancy BMI

There is growing support for the Developmental Origins of Health and Disease (DO-

HaD) hypothesis that is concerned with exposures to environmental factors during

critical periods of development and their effect on the short- and long-term health

of the offspring. Several epidemiological studies have demonstrated a relationship

between the early nutritional environment of a growing fetus and the development

of obesity in adulthood[58]. For example, a study investigated the effects of in utero

undernutrition on babies exposed to the Dutch Famine in 1944-45 who would later

be faced with an abundance of food[59]. Offspring born to women exposed in their

first two trimesters had a lower birthweight, but a higher incidence of obesity later

in life compared to the general population.

The complex processes that mediate how these early life exposures impact later

life are thought to be partly epigenetic in nature. In Obesity Before Birth: Maternal

and Prenatal Influences on the Offspring, epigenetics is described as heritable but

reversible changes in gene expression that do not directly alter the DNA sequence

itself[60]. Epigenetic mechanisms include DNA methylation and post-translational

histone modifications. DNA methylation occurs when a methyl group is added at

a cystosine base that precedes a guanine in the DNA strand, known as the CpG

dinucleotides. Histones are the proteins located inside the nucleus of the cell that

package and order the DNA and are referred to collectively as chromatin (DNA

wrapped around histones). Types of histone modifications that regulate the chro-

matin structure and, as a result, gene activity, include acetylation, methylation,

phosphorylation, and ubiquitination.
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During the formation and development of the embryo, the DNA is first hy-

pomethylated, and later, DNA methylation increases, which leads to cell differenti-

ation and organogenesis[61]. Highly methylated regions of the DNA are inaccessible

to the enzymes responsible for transcription and gene expression, thus resulting in

gene silencing. Genomic imprinting is a well-studied epigenetic phenomenon due

to DNA methylation whereby the phenotype is modified depending on the parental

sex contributing the allele[60]. For most autosomal genes, expression occurs from

both alleles (one from each parent) simultaneously, but when genomic imprinting

is present, gene expression occurs from only one allele. Post-translational modifica-

tions of the histones typically include methylation or demethylation and acetylation

or deacetylation of the lysine residues on the histone tails. Histone methylation can

result in either an increase or decrease in transcription whereas changes in acetylation

suppress gene expression.

Animal models have provided the greatest evidence for the role of epigenetic

changes in the development of obesity in the offspring. For example, consider the

animal model of the agouti mouse exhibiting the agouti viable yellow mutation. The

agouti gene is normally methylated, which results in a thin phenotype and a brown

coat colour. However, demethylation of the agouti gene promotes gene expression,

thus resulting in a coat color change to yellow and inducing obesity[61]. Relative

to human models, animal models allow multiple generations of offspring to be stud-

ied quickly and, most importantly, allow researchers to assess the intergenerational

transmission of obesity risk.

Several small human studies have investigated the association between mater-

nal pre-pregnancy BMI and epigenetic markers in the mother, placenta, and her

offspring, but the evidence is inconclusive[62]. Studies of the association between

maternal underweight and offspring health, or epigenetic signatures related to ma-

ternal underweight, are scarce[63]. This may be due to underweight being more

infrequent than overweight and obesity. One possible theory related to in utero

exposure to maternal underweight is the “thrifty phenotype hypothesis.” This hy-

pothesis posits that when the intrauterine environment is nutritionally poor, the

fetus adapts by increasing metabolic efficiency to increase the chance of short-term

survival in a post-natal nutritionally poor environment. However, when the fetus is
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in fact exposed to a normal nutrient exposure post-natally, those adaptations can be

harmful, leading to alterations in energy balance, which increases predisposition to

metabolic disorders in adulthood[64, 65].

Some evidence suggests that the epigenetic mechanisms involved in maternal pro-

gramming of obesity can be passed across multiple generations. It is important to

clarify the difference between intergenerational and transgenerational effects. In-

tergenerational effects include effects on the developing embryo and its germline

(i.e., first- and second-generations) as opposed to transgenerational effects, which

are those that persist in generations that were not exposed to the initial insult (i.e.,

third generation)[66]. Intergenerational effects from mother to offspring have been

well studied using both human and animal models, but studies of the effects that

persist into the second generation and beyond are limited. Although research in

this area is still growing, most of the current evidence is derived using rodents. For

example, a study found that pregnant mice continuously fed high-fat diets led to an

increase in birthweight and adiposity across three generations with the greatest effect

observed in the grand-offspring generation[67]. Alternatively, another study reported

that offspring and grand-offspring of a rat fed a high-fat diet (with the intermediate

generation fed only a chow diet) had increased body weight compared to controls

with the effect less pronounced in the grand-offspring[68].

Primary mechanisms that mediate parental programming effects are thought to

be the epigenetic state of sperm and oocyte[69]. Any in utero exposure not only

influences the growing fetus, but also the germline of the developing embryo. This

can lead to changes in the epigenome, thus resulting in a phenotypic change in the

offspring that may eventually develop from these gametes. As mentioned above, the

developing embryo undergoes a state of hypomethylation followed by hypermethyla-

tion that leads cells to differentiate into their respective tissues. This can be viewed

as a sort of epigenetic erasure that could eliminate any epigenetic changes that had

been passed along. It has been recently shown, however, that this reprogramming

is not complete and some genomic sequences and associated epigenetic marks are

resistant to reprogramming[69].
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3.3 Imputing maternal pre-pregnancy weight information

The NSAPD, like other birth registers and perinatal databases, has a unique clus-

tering structure where delivery records to the same individuals can be linked, re-

sulting in a hierarchical structure of delivery-level data nested within individuals.

These databases, however, are prone to missingness, particularly in maternal pre-

pregnancy weight, which creates challenges when examining the effects of maternal

pre-pregnancy BMI. Missing data are often addressed using multiple imputation,

which accounts for the uncertainty of the missing values by creating multiple com-

plete datasets.

Multivariate imputation by chained equations (MICE) is a population imputation

procedure that enables imputation using parametric-based approaches (e.g., linear

regression) or nonparametric-based approaches, such as machine learning techniques

(e.g., random forest). However, in the case of clustered data, little work has been done

to extend these techniques by, for example, incorporating random effects. Random

effect terms model the extent to which average trends in the data vary across levels of

a group factor (e.g., women in perinatal databases) and are included in mixed-effects

models to account for the fact that differences may exist between the behaviour of

the cluster and the average effect. In the subsequent section, a brief introduction to

the methodological aspects of multiple imputation is given, followed by an overview

of the machine learning imputation technique based on the recently proposed mixed-

effects random forest algorithm[41] used in Chapter Four.

3.3.1 Introduction

Choosing the best method to handle multivariate missing data is an obstacle often

faced in observational studies. One issue with simple methods for dealing with miss-

ing data, including listwise deletion, mean imputation, and the indicator method, is

that they may produce standard errors that are either too large (deletion methods) or

too small (single imputation methods)[54]. As a solution to the problem of standard

errors that are too small, Rubin[70] proposed multiple imputation, a mechanism for

dealing with the inherent uncertainty of the imputed data values themselves.

Multiple imputation techniques comprise three major steps: imputation, analysis,
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and pooling. In the imputation stage, the analyst creates m ≥ 2 complete data sets

using a given imputation technique. The imputed data sets are identical for observed

data values but may differ in the imputed data values. Secondly, each of these data

sets is analyzed and thirdly, the m results are pooled into a final point estimate and

corresponding standard error using a specific set of rules known as Rubin’s rules.

This estimate of the standard error combines the conventional sampling variance

(within-imputation variance) and the extra variance caused by the missing data

(between-imputation variance).

One popular multiple imputation method for handling multivariate missing data

is MICE. MICE is an iterative procedure that cycles through incomplete variables one

at a time, drawing predictions for that variable from a series of univariate conditional

regression models. Continuous variables are typically imputed in MICE using a

linear model that does not include interaction terms. This model assumes continuous

variables are normally distributed and that no nonlinear relationships exist between

either the outcome and the predictors or between the predictors themselves. It may

be difficult to appropriately accommodate for all nonlinear relationships and omission

of these terms may bias results[71].

Random forest-based imputation has been proposed as an alternative to other

parametric- and nonparametric-based imputation strategies within the MICE framework[37].

Random forest combines the results of multiple decision trees constructed using boot-

strap samples of the data. Multiple trees are used rather than a single decision tree in

order to reduce overfitting and increase predictive accuracy. Random forest does not

rely on distributional assumptions and can accommodate nonlinear relationships and

interactions without explicit specification in the imputation model. Random forest-

based MICE has been found to produce more efficient estimates than parametric-

based MICE, and was especially advantageous when the data set contained nonlinear

relationships[39].

One limitation of many imputation techniques, including random forest-based

MICE, is their inability to accommodate clustering in the imputation procedure.

Analyses are further complicated by unbalanced and small cluster sizes, and it re-

mains unclear which MICE-based multilevel imputation technique is best in these

cases[72]. Several modifications to tree-based algorithms to accommodate clustered
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data for continuous outcomes have been proposed[40–42]. Hajjem et al.[40] incor-

porated mixed-effects in the regression tree algorithm using an iterative procedure

similar to the expectation-maximization algorithm for linear mixed-effects models

(LMER). Then, Hajjem et al.[41] extended the mixed-effects regression tree method

to the random forest setting for predicting a continuous outcome and found this

method to have a smaller predictive mean squared error (PMSE), on average, than

random forest with the largest gain in performance observed in settings with large

random effects. However, the mixed-effects random forest (MERF) algorithm has

not been implemented or evaluated in an imputation setting.

3.3.2 General overview of multiple imputation

Notation

Let Y denote the n × p matrix containing the sample data on p variables and n

units where yij represents the jth data value for the ith unit for i ∈ {1, . . . , n}
and j ∈ {1, . . . , p}. Define the response indicator R to be a n × p logical matrix

where rij = 1 if yij is observed and is zero if yij is missing. The observed data (where

rij = 1) and missing data (where rij = 0) are denoted by Y obs and Y mis, respectively.

Considered together, Y = (Y obs,Y mis) contains the complete data values, where the

values of Y mis are unknown to the analyst.

Missing data mechanisms and ignorability

The missing data model, whose parameters are denoted by ϕ, describes the relation-

ship between R and Y and can be written as P (R | Y obs, Y mis;ϕ). The data are

said to be missing completely at random (MCAR) if the probability of being missing

depends only on some parameters ϕ. Thus, in this case, the overall probability of

being missing is

P (R = 0 | Y obs, Y mis;ϕ) = P (R = 0;ϕ). (3.1)

If the probability of missingness depends only on the observed data, the missingness

mechanism is said to be missing at random (MAR), and the overall probability of
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being missing is

P (R = 0 | Y obs, Y mis;ϕ) = P (R = 0 | Y obs;ϕ). (3.2)

When the probability of missingness depends on unobserved information, whether it

be a variable that was not collected or Y mis itself, the data are said to be missing not

at random (MNAR) and the left hand side of (3.1) does not simplify. It is important

to note that from the data alone, a MAR mechanism is indistinguishable from a

MNAR mechanism.

A missing data mechanism can be classified as ignorable if i) the data are MAR (or

MCAR), and ii) the parameters of interest, say θ, and the parameters governing the

missing data model, ϕ, are independent (i.e., P (θ,ϕ) = P (θ)P (ϕ)). The implication

of an ignorable missing data mechanism is that the analyst can accurately estimate

θ without knowing ϕ. The assumption of ignorability is required when constructing

imputation models, and if ignorability holds, the posterior distribution of the missing

data, from which imputations are drawn, does not depend on R, thus

P (Y mis | Y obs,R) = P (Y mis | Y obs).

Multiple imputation may be used when data are MNAR, but requires the analyst to

explicitly model the missingness mechanism.

Drawing imputations and inference

Suppose the scientific quantity of interest isQ, whereQ can be expressed as a function

of the population data. For example, Q may be a population mean or regression

coefficient. Let Q̂ be the estimator of Q with sample variance U estimated by Û .

Denote the collection of m imputations for Y mis to be
{︂
Y

(1)
mis,Y

(2)
mis, . . . ,Y

(m)
mis

}︂
and

define Q̂
m
= Q̂

(m)(︁
Y obs,Y

(m)
mis

)︁
and Û

(m)
= Û

(︁
Y obs,Y

(m)
mis

)︁
to be estimates of Q and

U computed using the mth complete data set
(︁
Y (m) = (Y obs,Y

(m)
mis)

)︁
.

The goal of multiple imputation is to obtain an estimate ofQ that is both unbiased

and at least confidence valid[73]. Unbiased means that the average Q̂ over all possible
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samples from the population is equal to Q, or

E[Q̂] = Q. (3.3)

At least confidence valid means that a nominal 100×(1−α)% CI has actual coverage

of at least 100× (1− α)%. Q is said to be at least confidence valid if the average of

Û over all possible samples from the population is greater or equal to the variance

of Q̂, or

E[Û ] ≥ V ar[Q̂]. (3.4)

Bayesian methods are the motivation behind multiple imputation techniques.

When some data are missing, the distribution of Q needs to be summarized under

varying Y mis. The possible values of Q given what is known about Y obs is captured

in the posterior distribution of Q, P (Q | Y obs). This distribution is difficult to

estimate directly and so it is decomposed and rewritten as a function of two simpler

posteriors,

P (Q | Y obs) =

∫︂
P (Q | Y obs, Y mis)P (Y mis | Y obs)dY mis. (3.5)

Repeated draws are taken from the posterior predictive distribution of the missing

data given the observed data, P (Y mis | Y obs). For a given draw of Y mis from this

distribution, say Ẏ mis, P (Q | Y obs, Ẏ mis) is used to calculate Q from the complete

data (Y obs, Ẏ mis). This process is repeated a number of times with new draws for

Ẏ mis. Thus, the actual posterior distribution of Q is equal to the complete-data

posterior distribution of Q averaged over the posterior predictive distribution of

Y mis, or in other words, over the repeated imputations.

From (3.5), the posterior mean of P (Q | Y obs) is equal to

E[Q | Y obs] = E(E[Q | Y obs,Y mis] | Y obs), (3.6)

which is the average of the posterior means of Q over the repeated imputations. The
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posterior variance of P (Q | Y obs) is equal to

V ar[Q | Y obs] = E[V ar(Q | Y obs,Y mis) | Y obs]+

V ar[E(Q | Y obs,Y mis) | Y obs], (3.7)

which is the sum of two variance components. The first is the average of the repeated

complete-data posterior variances of Q, or the within-variance, and the second is the

variance between the complete-data posterior means of Q, or the between-variance.

Assuming an infinitely large number of imputations m, denote the estimated within-

and between-variance components as Ū∞ and B∞, respectively.

Equations (3.6) and (3.7) suggest the following method to combine the results

over the m imputations. An overall estimate of Q is obtained by taking an average

of the Q̂
(m)

estimates,

Q̄ =
M∑︂

m=1

Q̂
(m)

m
. (3.8)

Computing a final estimate of the variance of Q requires first estimating both the

within-variance (averaging the complete-data variances Û
(m)

) and the between-variance

(standard unbiased estimate of the variance between them complete data estimates):

Ū =
M∑︂

m=1

Û
(m)

m
(3.9)

B =
1

m− 1

M∑︂
m=1

(Q̂
(m)
− Q̄)2. (3.10)

Thus, the variance of Q̄ is equal to

T = Ū + (1 +m−1)B, (3.11)

where the inflation factor (1 + m−1) is used to account for the additional variance

due to taking a finite number of imputations.
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Specifying the imputation model

Often the most challenging step in multiple imputation is correctly specifying the

imputation model (the model used to generate imputed values). At this step in

the multiple imputation procedure, the analyst must decide on the functional form

of the model (discussed in Section 3.3.3), which variables are to be included in

the model, how possible nonlinear relationships will be handled, and how binary,

categorical, derived, and non-normal continuous variables will be imputed. Although

some general guidelines address each of these points[74], no definite rules exist, and

it may be difficult for analysts to avoid the various pitfalls associated with the use

of multiple imputation methods[72].

Based on current recommendations, the proposed imputation model should con-

tain at least all variables in the analysis model (the final model fitted to each im-

puted dataset) including the outcome and any interaction terms that are of interest.

Incorporating additional, or auxiliary variables, in the imputation model that are

predictive of the incomplete variables and of the missingness mechanism is also ben-

eficial. This may reduce bias by making the MAR assumption more plausible (since

MAR is indistinguishable from MNAR in practice) and may improve the quality of

the imputations, thus resulting in a gain in precision of the final estimates[72, 75].

With respect to imputing non-normal continuous variables and variables with a

nonlinear relationship with the outcome, predictive mean matching (PMM) has been

shown to be a useful nonparametric method[71, 72, 76–78]. Using a given imputation

model and variable X with missingness, PMM first calculates a predicted value for

both observed and unobserved values of X. For each missing X = x value, a set

of k candidate donors with the closest predicted value to that of the missing value

are selected. One of these donor values is randomly chosen and the observed value

of the donor is taken as the imputed value for the missing entry. It is assumed

that the distribution of the missing value is the same as the observed data of the

selected donors and so PMM is an attractive approach for imputing all types of

variables, especially skewed continuous or semi-continuous variables since it ensures

the imputed values will fall within the range of the observed data[79].

Imputing derived variables such as interaction terms, higher-order terms (e.g.,

squared or cubed variables) and variables that are functions of others, such as BMI
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and waist-to-hip ratio (WHR), poses a challenge. It is unclear if derived variables

should be imputed directly (often known as active imputation) or calculated from the

imputed values of its individual parts (passive imputation). The advantage of passive

imputation is that the derived variable respects the interrelationships of its individual

parts, whereas active imputation does not and it may also produce implausible values

for the derived variable[54]. However, active imputation is the easiest to implement

and ensures the imputation model is compatible with the analysis model, meaning

that there exists a joint model for which the imputation model and the analysis model

are conditionals[72]. As opposed to incompatible imputation models, compatible

models have been shown to be robust to model misspecification[71, 80].

The literature concerning the optimal method for imputing incomplete vari-

ables that are ratios is limited, with some authors suggesting the use of active

imputation[81] while others suggest using passive imputation[82]. When imputing

BMI in practice, however, one group of researchers found virtually no difference

between active and passive imputation when height and weight were MCAR and

active imputation was only favored slightly when data were MAR[83]. Little dif-

ference between the two approaches when imputing BMI in a real dataset was also

found another study[81]. However, this study found significant differences in the two

methods when imputing cholesterol ratio and attributed the observed differences to

the large coefficient of variation (i.e., relative variability) of the denominator in the

cholesterol ratio. Based on the results of a simulation study, the authors advised the

use of active and passive imputation after log transformation, especially when the

coefficient of variation of the denominator is greater than 0.1, and also found that

using passive imputation with PMM yielded less biased results than those resulting

from the joint normal approach[81].

3.3.3 Multivariate imputation by chained equations (MICE)

Two current widely available methods to handle multivariate missing data and

to model relationships between the missing and observed data are multiple impu-

tation based on the multivariate normal distribution (MVNI)[84] and by chained

equations[85]. MVNI is a joint model approach that assumes all variables in the im-

putation model jointly follow a multivariate normal distribution. The assumption of
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joint normality is not always feasible, especially when the imputation model contains

both binary and categorical variables. However, the joint normal approach has been

shown to be robust to model misspecification and to perform well under conditions

in which data are not normal[79, 84].

An alternative to the joint model approach is to use a sequential modeling ap-

proach where a conditional regression model is specified for each variable with miss-

ingness. These conditional models reflect the distribution of the variable (e.g., logistic

regression for a binary variable). This method is more flexible as it does not rely

on the assumption of multivariate normality and is attractive when imputing binary

and categorical variables. Imputations are generated by an iterative procedure where

each conditional regression model is estimated in turn, using only observed data for

that variable and imputed values for the other variables at that iteration.

Rather than specifying the joint model directly as in the MVNI approach, this

step is bypassed in MICE. The imputation model is defined by P (Y mis | Y obs,R)

and describes how synthetic values for Y mis are generated. In the MICE approach,

data are imputed on a variable-by-variable basis by specifying an imputation model

for each variable subject to missingness. In other words, this method attempts

to define the joint density P (Y ,R | θ) by specifying a conditional density P (Yj |
Y −j,R,θj) for each Yj, where Yj is one incomplete variable and Y −j is the collection

of variables in Y except Yj. This density is used to impute Yj,mis given Y −j and R.

Initially, starting with simple guesses for the missing values (e.g., mean imputation

or a random sample from the observed values), MICE operates by iterating over

all conditionally specified imputation models until apparent convergence is reached

(about 10-20 iterations). MICE is implemented in R using the mice package[82].

Although MICE has the advantage of being a more flexible approach than MVNI,

it has several limitations. Justification of the MICE procedure has been largely based

on empirical studies rather than on theoretical arguments[72]. For example, one may

specify a series of conditional distributions for which no multivariate density exists

and therefore the concern of incompatible conditionals may arise. In other words,

two conditional models are compatible if there exists some joint distribution that has

these two models as its conditional densities. Compatibility is a theoretical require-

ment of the MICE algorithm, but little evidence of the influence of incompatibility
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in practice has been reported[85]. It is also advised that analysts assess convergence

of the algorithm and the chosen imputation models, but since the range of available

imputation diagnostic tools is limited, this may be a challenging task[74].

3.3.4 Random forest-based MICE

First introduced by Breiman et al. in 1984[86], the classification and regression tree

(CART) model is commonly used for prediction and classification. CART algorithms

involve recursively splitting the predictor space into smaller regions and using these

regions (or nodes) to predict the response for a new observation. For example, a

regression tree is typically used to model a continuous outcome and predicts the

response of a new observation by taking the mean of the training observations in the

node to which the new observation resides. Although CART models are widely used

for their ease of interpretability and intuitive representation, these methods can be

limited in their predictive accuracy compared to other regression and classification

approaches. Decision trees can also be non-robust, meaning that small changes in

the data set used to build the tree can have a large effect on the final estimated

structure of the tree.

To address the shortcomings of decision trees, Breiman et al.[87] introduced the

ensemble method called bagging, or bootstrap aggregation. This bagging method

combines the results from a collection of decision trees trained on bootstrap samples

of the data to reduce the inherent high variance of decision trees. One limitation

of bagged trees is that they could have similar structures if a very strong predictor

exists in the data set, since most or all trees will use this predictor in the top split. If

all bagged trees have a similar structure, their predictions will be highly correlated

and little improvement is made over the use of a single tree. Building on the bagging

method, Breiman et al.[88] proposed the random forest technique, which adds an

additional layer of randomness that decorrelates the trees. Random forest addresses

the limitations of bagged trees by considering only a random subset of the predictors

at each split. In both the bagging and random forest algorithms, a fixed number of

trees are constructed, each using a different bootstrap sample of the data. However,

the methods differ in that for bagged trees, each node is split using the best split

among all predictors, whereas in random forest, each node is split using the best
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among a subset of predictors randomly chosen at the node.

For a continuous variable with missing values, a possible strategy in MICE is

to impute using a linear model. It has been shown that omitting nonlinear terms

from the imputation model can lead to biased results[71, 80, 89]. Although these

interaction terms can be added to the imputation model, it may be difficult to ap-

propriately accommodate all underlying interactions in the data set. An imputation

technique proposed by Shah et al.[37] aims to overcome these issues by imputing

using random forest. This method does not rely on distributional assumptions and

can accommodate nonlinear relations and interactions without explicit specification

in the imputation model.

Within the MICE framework, random forest imputation proposed by Shah et

al.[37] was derived from the “mice.impute.norm.boot” function in the mice R

package[82]. First, “mice.impute.norm.boot” fits a linear regression model to a boot-

strap sample of those with observed values of the variable to be imputed, which

accommodates sampling variation in estimating population parameters. Building on

this function, the random forest algorithm (“mice.impute.rf.cont”) involves an addi-

tional level of bootstrap sampling, where each tree in the forest is constructed using

another bootstrap sample. Then, observations with missing values are imputed by

taking random draws from independent normal distributions with conditional means

predicted using the random forest. The variances of these distributions are taken to

be the out-of-bag mean square error, or the mean of the squared differences between

the observed value and the prediction using the trees for which that observation was

not included in the bootstrap sample.

Note that the random forest-based imputation method described above is different

from that based on Breiman’s random forest algorithm developed by Doove et al.[36]

(“mice.impute.rf”). In “mice.impute.rf”, missing values are imputed by taking the

observed value of one randomly selected donor from the set of observations in the

terminal nodes of the trees used to build the random forest in which the observation

with a missing value resides.

Using simulation, Shah et al.[37] found that random forest-based MICE produced

more efficient estimates and therefore narrower CIs compared to parametric-based

MICE. In simulated data sets with interactions between predictor variables, estimates
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of statistical parameters were less biased under random forest-based MICE than

under imputation with a main-effects linear regression model. One limitation of

this method is that it can be biased in some situations when imputing continuous

variables, since random forest predictions at the extremes of their range are biased

towards less extreme values. In an additional simulation study, the authors found

that random forest-based MICE led to bias when the distribution of missing values

was very different from that of observed values[37]. However, in these situations, any

imputation method may produce poor results.

3.3.5 Mixed-effects random forest-based MICE

Like many imputation techniques, random forest-based MICE does not accommo-

date clustering in the imputation procedure. This creates challenges when imputing

missing values in datasets where observations are not independent. For example,

consider the NSAPD where delivery-level data are nested within women. Since de-

liveries from the same woman are more similar than deliveries from different women,

the variance of the parameter estimates might be underestimated, and the param-

eter estimates themselves may also be biased. Imputation that ignores clustering

may underestimate standard errors even if the analysis model allows for clustering,

but imputation techniques that allow for clustering through fixed effects (including

dummy variables representing cluster membership in the imputation model) may

overestimate standard errors[32, 90].

The mice[82] and miceadds [91] R packages offer several multilevel imputation

techniques for imputing continuous variables. Many of these methods have fairly

similar algorithms and are intended for normally distributed variables, but differ

in their assumption about the error variance across clusters (heteroscedasticity ver-

sus homoscedasticity). In practice, complications may arise when the data contain

unbalanced and small cluster sizes, and although several studies have compared mul-

tilevel imputation methods[31–33], it remains unclear which method is best in these

cases. Additionally, studies examining the robustness to cluster size have not thor-

oughly investigated multilevel imputation techniques on data sets that have many

small clusters with sizes as small as 1 or 2 observations.
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As previously mentioned, random forest-based MICE accommodates nonlineari-

ties among predictors and has been found to produce more efficient estimates than

parametric-based MICE[37]. Several modifications to tree-based algorithms to ac-

commodate clustered data for continuous outcomes have been proposed[40–42]. Ha-

jjem et al.[40] incorporated mixed-effects in the regression tree algorithm (mixed-

effects regression tree [MERT]) using an iterative procedure similar to the expectation-

maximization algorithm for LMER. Then, Hajjem et al.[41] extended the mixed-

effects regression tree method to the random forest setting.

Hajjem et al.[41] proposed replacing the regression tree within each iteration of

the MERT algorithm with a forest of regression trees, and called this a MERF. A

MERF of regression trees is defined as follows

yi = f(Xi) + Zibi + ϵi,

bi ∼ N(0, D), ϵi ∼ N(0, Ri), i = 1, . . . n,

where yi = [yi1, . . . , yini
]T is the ni × 1 vector of responses for the ni observations

in cluster i, Xi = [xi1, . . . , xini
]T is the ni × p matrix of fixed-effects covariates,

Zi = [zi1, . . . , zini
]T is the ni×q matrix of random-effects covariates, bi = [bi1, . . . , biq]

T

is the q × 1 unknown vector of random effects for cluster i, and ϵi = [ϵi1, . . . , ϵini
]T

is the ni × 1 vector of errors. The unknown function, f(Xi), is estimated using

a standard forest of regression trees, and the random part, Zibi, is assumed to be

linear. Lastly, the total number of observations is N =
∑︁n

i=1 ni, and D and Ri are

the covariance matrices of bi and ϵi, respectively. In the random intercept case where

q = 1, the MERF model simplifies to the following

yi = f(Xi) + bi + ϵi,

bi ∼ N(0, D), ϵi ∼ N(0, Ri), i = 1, . . . n,

where bi is the random intercept for the ith cluster.

Assumptions of the model are that bi and ϵi are independent and normally

distributed, and that the between-cluster observations are independent. The co-

variance matrix of the vector of observations yi in cluster i is therefore defined

as Vi = Cov(yi) = ZiDZT
i + Ri, and V = Cov(y) = diag(V1, . . . , Vn), where
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y = [yT1 , . . . , y
T
n ]

T . This model further assumes a compound symmetry covariance

structure, or that Ri = σ2Ini
for i = 1, . . . , n, is diagonal.

The MERF algorithm (Algorithm 1) is similar to the expectation-maximization

algorithm for LMER. For simplicity, consider the random-intercept case (i.e., q = 1).

The algorithm initializes by setting b̂i, σ̂
2, and D̂ to starting values (e.g., b̂i = 0, σ̂2 =

1, and D̂ = 0.01). In Step 1, the fixed part of the response variable, y∗i , is calculated

by removing the current available value of the random part (e.g., b̂i = 0) from yi.

Regression trees are then built from bootstrap samples, taken with replacement, from

the training set (y∗ij, xij). The out-of-bag prediction for each observation j in cluster

i is obtained by taking the mean of the subset of trees built using the bootstrap

samples not containing this observation. Then, b̂i is computed using the updated

estimate of the random part. In Step 2, the variance components σ̂2 and D̂ are

updated based on updated estimates of the residuals. Steps 1 and 2 are repeated

until the generalized log-likelihood (GLL) converges, or changes by a very small

amount (ϵ) between iterations. The GLL is a measure of the loss, and as model fit

improves, the GLL will decrease.

After fitting the MERF, the predicted response of a new observation j that be-

longs to cluster i is calculated in one of two ways. If cluster i was used to build the

model, the predicted value is calculated using its corresponding population-averaged

random forest prediction, f̂(xij), and the predicted random part corresponding to its

cluster, Zib̂i. If cluster i was not used to build the model, the predicted value is cal-

culated using solely its corresponding population-averaged random forest prediction,

f̂(xij).

The performance of MERF in the setting of predicting a continuous outcome was

compared to 1) LMER, 2) standard regression tree, 3) random forest, and 4) MERT

in a simulation study[41]. Overall, MERF had the smallest PMSE, on average,

than the four alternative models with the most pronounced improvements made over

models without random effects (i.e., random forest, regression tree, and linear model)

in settings with large random effects, and models with random effects (i.e., linear-

mixed effects model and MERT) in settings with small random effects. As opposed

to random forest, MERF uses the cluster random effect in the final prediction and

so the more important the random effect, the greater gain in predictive performance.
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Algorithm 1: Mixed-effects random forest

Step 0. Set r = 0. Let bi(0) =
−→
0 q, σ̂

2
(0) = 1, and D̂(0) = 100−1Iq.

while GLL ≥ ϵ do
Step 1. Set r = r + 1.

i) Update y∗i(r) = yi − Zib̂i(r−1), i = 1, . . . , n.

ii) Using y∗ij(r) and xij for i = 1, . . . , n, j = 1, . . . , ni, as the full set of
training responses and covariates, build ntree regression trees using
the random forest algorithm, where each tree is built using a
bootstrap sample drawn with replacement from (y∗ij(r), xij).

iii) Obtain an estimate f̂(xij)(r) of f(xij) by taking the mean
prediction from the subset of trees that are built with the bootstrap
samples not containing observation j in cluster i, or the out-of-bag
prediction

f̂(Xi)(r) = [f̂(xi1)(r), . . . , f̂(xini
)(r)]

T .

iv) Update b̂i(r) using

b̂i(r) = D̂(r−1)Z
T
i V̂

−1

i(r−1)(yi − f̂(Xi)(r))

where V̂ i(r−1) = ZiD̂(r−1)Z
T
i + σ̂2

(r−1)Ini
for i = 1, . . . , n.

Step 2. Update σ̂2
(r) and D̂(r) using

σ̂2
(r) = N−1

n∑︂
i=1

{ϵ̂Ti(r)ϵ̂i(r) + σ̂2
(r−1)[ni − σ̂2

(r−1)trace(V̂ i(r−1))]}

D̂(r) = n−1

n∑︂
i=1

{b̂i(r)b̂
T

i(r) + [D̂(r−1) − D̂(r−1)Z
T
i V̂

−1

i(r−1)ZiD̂(r−1)]}

where ϵ̂i(r) = yi − f̂(Xi)(r) − Zib̂i(r).
Step 3. Calculate the generalized log-likelihood (GLL) criterion

GLL(f, bi | y) =
n∑︂

i=1

{[yi − f(Xi)− Zibi]
TR−1

i [yi − f(Xi)− Zibi]

+ bTi D
−1bi + log |D|+ log |Ri|}.

end
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However, when prediction is made for an observation in a new cluster that was not

present in the training sample, MERF uses only the random forest prediction (since

the random effect estimate is unavailable). For most of these observations, MERF

generally performs better than random forest, but the improvement is modest. Using

real box office revenue data, MERF exhibited the best predictive performance among

all alternative models with a PMSE of 0.47 compared to 0.60 and 0.53 for random

forest and MERT, respectively[41].

The best strategy for imputing skewed variables, particularly in the context of

missing correlated BMI values in studies of pregnancy-related outcomes remains

unclear. One alternative to parametric-based MICE is to impute continuous variables

using random forest, a machine learning technique that does not rely on distributional

assumptions and can naturally accommodate nonlinearities in the data. Building on

the random forest algorithm, MERFs adjust for clustering in the data by calculating

a random effect component, and have yet to be evaluated as an imputation technique.

3.4 Estimating total and mediation effects in the analysis of

grandmaternal BMI and child birthweight

3.4.1 Introduction

Mediation analysis is becoming increasingly popular in the field of epidemiology. The

goal of mediation analyses is to quantify specific causal pathways described by one

or more variables that are assumed to be affected by the exposure and also affect

the outcome of interest. Consider again the simple example of mediation shown in

Figure 3.2. The direct effect is represented by the pathway c’ and, using traditional

approaches to mediation analysis, can be estimated by the exposure coefficient from

the regression of the outcome on the exposure and mediator (e.g., a correctly specified

linear regression model). The indirect effect can be estimated either as the product of

the a and b pathways (product method), or as the difference between the total effect

and the direct effect (difference method). The a and b pathways can be estimated

by the exposure coefficient from the regression of the mediator on the exposure, and

by the mediator coefficient from the regression of the outcome on the exposure and

mediator. The total effect is estimated by the exposure coefficient from the regression
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of the outcome on the exposure.

Figure 3.2: An example of a simple mediation analysis with indicated pathways

These traditional approaches to mediation analysis proposed by Baron and Kenny[92]

are prone to bias arising both from incorrect statistical analysis and suboptimal study

design[26]. The traditional approaches also have several limitations concerning their

applicability in models with interactions or nonlinearities[93, 94], which are overcome

by using a counterfactual-based approach to mediation analysis.

Causal mediation analysis is based within the counterfactual framework[93, 94]

and defines causal effects as contrasts of potential outcomes. A potential outcome is

an individual’s outcome value that would have been observed had their exposure been

set to a specified value. For example, assuming a binary exposure, an individual’s

potential outcomes under exposure values 0 and 1 are defined as Yi(0) and Yi(1),

respectively, and the individual-level causal effect of the exposure on the outcome is

estimated by Yi(1)− Yi(0). In the context of mediation, potential outcomes depend

on both exposure and mediator values. Causal mediation analysis differentiates

between causal effect definitions and causal effect estimation[95], a strength of these

definitions being that they are nonparametric and can be applied to any type of model

- for example, mediation models with nonlinear and interaction terms, and models

with non-continuous mediator and outcome variables. Causal effects are defined at

the individual level, but since only one outcome value is observed for each individual

while the other is from an unobserved scenario, population-average causal effects are

estimated.

In Chapter Five, parametric g-computation, a counterfactual-based approach,

was used to estimate the total effect of grandmaternal pre-pregnancy BMI on child
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birthweight z-score and path specific-effects (e.g., indirect effect via maternal pre-

pregnancy BMI). In the following section, directed acyclic graphs (DAGs) will be

briefly introduced, as they will be used throughout this section and thesis. Next, the

traditional and counter-factual based approach to mediation analysis are presented.

Lastly, an overview of parametric g-computation in the context of mediation is given.

3.4.2 Directed acyclic graphs (DAGs)

Causal diagrams or DAGs are used to graphically represent hypothesized relation-

ships between variables and to identify sources of potential bias. In observational

studies, DAGs are particularly useful for representing sources of confounding and

selection bias. In the specific context of the research presented in Chapter Five, they

are useful for representing hypothesized causal relationships with mediators. Formal

rules are used to develop these graphs and to guide appropriate statistical analyses.

Consider the following example illustrated in Figure 3.3 depicting the hypothe-

sized relationships among variables in estimating the effect of maternal pre-pregnancy

BMI on age- and sex-specific birthweight z-score.

Figure 3.3: Directed acyclic graph depicting the hypothesized relationships between
maternal pre-pregnancy body mass index (exposure) and birthweight z-score

The notation for describing DAGs is given in Greenland et al.[96]. A line connecting

two variables is called an arc or edge, and a causal association is indicated by a

single-headed arrow from cause to effect. Ancestors or causes of a variable A are
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variables that are on a directed path leading to A, whereas the descendants of A are

variables that lie on a directed path leading away from A. For example, maternal pre-

pregnancy BMI is a descendant of maternal age, and an ancestor of delivery weight.

A collider is a variable that has two arrows pointing towards it (e.g., birthweight

z-score is a collider on the pathway smoking in pregnancy → birthweight z-score ←
delivery weight).

Causal diagrams are a simple way to encode background knowledge and assump-

tions about the variables under study. They are also used to determine whether a

set of measured variables is sufficient for analyzing the association under investiga-

tion. Traditionally, a confounder was defined as a variable that is associated with

both the exposure and the outcome and is not itself affected by the exposure[97].

However, developments in causal inference have demonstrated this definition to be

inadequate and more recent definitions put more emphasis on “confounding” rather

than “confounder.”

The definition of “confounder” that is used in this dissertation is that suggested by

VanderWeele and Shpitser[98] and used in recent epidemiology textbooks[99]. That

is, pre-exposure covariate C is considered a confounder for the effect of exposure A

on outcome Y if there exists a set of covariates X such that the effect of A on Y

is unconfounded conditional on (X, C) but for no proper subset of (X, C) is the

effect of A on Y unconfounded given the subset. Or, equivalently, a “confounder”

is a member of a minimally sufficient adjustment set for which the effect of A on

Y is unconfounded. For example, in Figure 3.3, the variable pre-existing diabetes

would be included in the minimally sufficient adjustment set needed to control for

confounding of the exposure-outcome relationship. The variables in this set should

be adjusted for to get a valid estimate of the total effect, whereas variables on the

causal pathway between the exposure and the outcome (e.g., delivery weight), known

as mediators, should not be adjusted for.

To examine sources of bias using a DAG, we need to identify backdoor paths,

or noncausal pathways from exposure to outcome that would remain if any arrows

pointing away from the exposure were removed. In Figure 3.3, an open pathway from

maternal BMI to birthweight z-score is the pathway maternal BMI ← pre-existing

diabetes → birthweight z-score. If a backdoor path is blocked by a collider, then this
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path is ignored. Once all unblocked backdoor paths have been identified, the set of

covariates that would block all existing open backdoor paths is the adjustment set

required to control for confounding. It is important to note that there may be more

than one possible adjustment set that can control for confounding.

3.4.3 Traditional approaches to mediation analysis

The “product method” and “difference method” are two traditional approaches to

mediation analysis first proposed by Baron and Kenny[92]. Consider the simple

causal diagram in Figure 3.4 where A, M , and Y represent the exposure, mediator

and outcome variables, respectively, and let C be additional covariates (not shown).

Figure 3.4: Directed acyclic graph with exposure A, mediator M , and outcome Y

For the case where both A and Y are continuous, the difference method begins by

fitting the following two regression models:

E[Y | A = a, C = c] = β0 + β1a+ β′
2c, (3.12)

E[Y | A = a,M = m,C = c] = θ0 + θ1a+ θ2m+ θ′3c. (3.13)

The total effect of the exposure on the outcome is the estimate of β1. The difference

between the estimate of the exposure in the model with the mediator and the one

without, β1− θ1, is interpreted as the mediation or indirect effect (the pathway from

A to Y through M). The direct effect of A on Y (the pathway from A to Y not

through M) is the estimate of θ1 as this is the effect of the exposure on the outcome

that remains after controlling for M .

The “product method” fits (3.13) and a model for the mediator,

E[M | A = a, C = c] = ϕ0 + ϕ1a+ ϕ′
2c. (3.14)

The direct effect is again the estimate of θ1 as in the difference method. The indirect
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effect of A on Y is now taken as the product of the exposure coefficient in the

mediator model and the mediator coefficient in the outcome model, i.e., θ2ϕ1. An

estimate of the total effect is the sum of the indirect and direct effects, θ1 + θ2ϕ1,

or alternatively the exposure coefficient in the outcome model, β1. The difference

method and product method will yield the same results when Y andM are continuous

and models are fitted using ordinary least squares regression.

Extra caution must be taken when estimating direct and indirect effects with

binary outcomes. Valeri and Vanderweele[56] proposed regression-based estimators of

these effects on the OR scale by invoking approximations based on the rare outcome

assumption. The approximate natural effects OR estimator derived from correctly

specified logistic regression models are unbiased in the case of a rare binary outcome.

Exact regression-based estimators of the natural direct and indirect effects have been

proposed[100–103]. For example, those described by Samoilenko and Lefebvre[103]

were found to be unbiased, regardless of the effect scale and the prevalence of the

outcome.

3.4.4 Causal mediation analysis

For the subsequent section, let A, M , and Y be continuous exposure, mediator, and

outcome variables, respectively, with assumed relationships as shown in Figure 3.4.

Robins and Greenland[94] and Pearl[93] define total and natural (in)direct effects

using the counterfactuals M(a), Y (a), and Y (a,M(a′)), where M(a) is the value of

M that would have been observed if A were set to a, Y (a) is the value of Y that

would have been observed if A were set to a, and Y (a,M(a′)) is the value of Y that

would have been observed if A were set to a and M to M(a′).

For two different values of continuous exposure, say A = a′ and A = a, the

average or total (causal) effect (TE) of the exposure on the outcome for a vs. a′ is

E[Y (a)−Y (a′)]. More generally, the conditional causal effect of the exposure on the

outcome for a vs. a′, given pre-exposure covariates C, is E[Y (a) − Y (a′) | C]. The

natural direct effect (NDE) and natural indirect effect (NIE) are defined as follows:

NDE = E[Y (a,M(a′))− Y (a′,M(a′))] (3.15)

NIE = E[Y (a,M(a))− Y (a,M(a′))] (3.16)
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The NDE estimates how much the outcome is expected to change, on average, if the

exposure was set at level a versus a′ and for each individual the value of the mediator

was fixed to the value that would be observed if A = a′. The NIE estimates how

much the outcome is expected to change, on average, if the exposure was fixed at

level a but the mediator was changed from the value that it would take under a′ to

the value it would take under a. Thus, the NDE captures the effect of the exposure

on the outcome that would remain if the pathway from the exposure to the mediator

was removed, and the NIE captures the effect of the exposure on the outcome that

operates by changing the mediator.

Note that the sum of the NIE and NDE is the TE of A on Y for a change in

exposure from a′ to a:

Y (a)− Y (a′) = E[Y (a,M(a))]− E[Y (a′,M(a′))]

= (E[Y (a,M(a))]− E[Y (a,M(a′))])+

(E[Y (a,M(a′))]− E[Y (a′,M(a′))])

= NIE + NDE

Counterfactual-based definitions of direct and indirect effects can be estimated

from the regression models in Section 3.4.3 given that they are correctly specified and

certain no-confounding assumptions hold. Similarly as above, suppose a continuous

outcome Y , a continuous mediator M , and the mediator model in (3.14). Define the

following outcome model that now allows for exposure-mediator interaction in the

linear model for the outcome as

E[Y | A = a,M = m,C = c] = θ0 + θ1a+ θ2m+ θ3am+ θ′4c. (3.17)

For a change in exposure from level a′ to a, (3.14) and (3.17) allow the natural

direct effect (NDE) and the natural indirect effect (NIE) to be defined as follows:

NDE = (θ1 + θ3ϕ0 + θ3ϕ1a
′ + θ3ϕ

′
2c)(a− a′) (3.18)

NIE = (θ2ϕ1 + θ3ϕ1a)(a− a′) (3.19)
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These expressions extend those proposed by Baron and Kenny[92] to allow for inter-

action between the exposure and the mediator. In the absence of interaction, θ3 = 0

and the NDE is equal to the direct effect estimate θ1 obtained using the traditional

methods multiplied by (a − a′). The NIE is equal to that of the product method

θ2ϕ1 multiplied by (a− a′).

3.4.5 Assumptions required to identify total causal effects and natural

effects

Causal effects are defined as contrasts of potential outcomes. To be able to identify

E[Y (a)] from the observed data, several assumptions must be made. The first is

called the consistency assumption and asserts that amongst individuals with A = a,

the observed outcome Y is equal to the potential outcome Y (a). Under this as-

sumption, one potential outcome is observed for each individual (i.e., the one corre-

sponding to the observed exposure level). The second assumption is that of condi-

tional exchangeability and states that individuals with different observed exposure

values A but the same pre-exposure covariate values C are comparable such that

Y (a) ⊥⊥ A | C. This assumption is also referred to as the no unmeasured confound-

ing assumption. Both of these assumptions cannot be tested from the observed data

alone, but are sufficient for identifying the conditional causal effect from the data as

E[Y (a)− Y (a′) | C] = E[Y (a) | A = a, C]− E[Y (a′) | A = a′, C] (3.20)

= E[Y | A = a, C]− E[Y | A = a′, C]. (3.21)

The TE can be obtained by averaging over the distribution of C. Conditional ex-

changeability enables replacement of E[Y (a) | C) with E[Y (a) | A = a, C) and

consistency enables replacement of E[Y (a) | A = a, C] with E[Y | A = a, C]. The

latter replacement is only legitimate if E[Y | A = a, C] is well defined for all values of

C. This is the assumption of positivity, and is formally written as P (A = a | C) > 0.

Similar assumptions are needed to identify E[Y (a,M(a′)] from which definitions

of the NDE and NIE are constructed. The potential outcome when a ̸= a′ is called

the cross-world potential outcome. This potential outcome differs from Y (a,M(a))
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in that it is unobservable and belongs in a completely counterfactual world where M

is set to the value that would have been observed if all individuals had a different

exposure value. For the consistency assumption, it is assumed i) consistency of

potential outcomes, Y = Y (a,m) for all values of a and m, ii) consistency of the

potential mediator, M = M(a′) if A = a′, and iii) consistency of the cross-world

potential outcome, Y (a,M(a′)) = Y (a,m) if M(a′) = m.

Related to conditional independence, four conditional exchangeability assump-

tions must met. That is, i) Y (a,m) ⊥⊥ A | C for all values of a and m, ii)

Y (a,m) ⊥⊥M | A,C for all values of a and m, iii) M(a) ⊥⊥ A | C for all values of a,

and iv) Y (a,m) ⊥⊥M(a′) | C for all values of a, a′, andm. If the data are assumed to

be generated from a nonparametric structural equation model (NPSEM)[104], then

the condition iv) simplifies to no mediator-outcome confounders affected by the ex-

posure. Lastly, positivity of the exposure conditions and mediator values must met,

meaning that there is a non-zero probability that A = a and A = a′ conditional on C

and a non-zero probability that M is equal to each of its potential values conditional

on A and C.

Consider Figure 3.5 where, as before, A, M , and Y are the exposure, mediator,

and outcome of interest, and C represents confounders of the exposure-outcome,

exposure-mediator, and mediator-outcome relationships. The first three conditional

exchangeability conditions would be met by controlling for C. The final condition for

the identification of natural effects is slightly more difficult to interpret, and under

the NPSEM assumption, will hold if there are no variables that are causes of the

exposure and that confound the mediator-outcome relationship (represented by L in

Figure 3.5)[93]. Such variables L will be referred to as intermediate confounders.

3.4.6 Mediator-specific effects in the presence of intermediate

confounding

In many contexts, the condition iv) of the conditional exchangability assumption

required to identify natural (in)direct effects will be violated. That is, variables that

confound the mediator-outcome relationship and are affected by the exposure are

likely to exist (L in Figure 3.5). In the presence of such intermediate confounders,

the NDE and NIE are nonidentifiable. In this case, an alternative is to treat L and
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Figure 3.5: Directed acyclic graph with exposure A, mediator M , and outcome Y ,
where C represents confounders of the exposure-outcome, exposure-mediator, and
mediator-outcome relationships, and L is a mediator-outcome confounder that is
affected by exposure

M both as mediators and target path-specific effects[105].

Let A, M , and Y be continuous exposure, mediator, and outcome variables, re-

spectively, and L be a continuous intermediate confounder (note that L is assumed to

affect M but not vice versa). Furthermore, let the counterfactuals L(a), M(a, L(a′)),

Y (a, L(a′),M(a′′, L(a′′′))) for a ̸= a′ ̸= a′′ ̸= a′′′ be defined according to extensions of

those given in Section 3.4.4.

Daniel et al.[105] provide a natural extension of the NDE definition given in 3.15

to the case of two mediators is

NDE000 = E[Y (a, L(a′),M(a′, L(a′)))− Y (a′, L(a′),M(a′, L(a′)))],

and is the direct effect through neither L nor M . Indirect effects can be defined

through L alone, M alone, or through both L and M , so that their sum, with

NDE000 is equal to the TE. The natural indirect effect through L alone is

NIE100 = E[Y (a, L(a),M(a′, L(a′)))− Y (a, L(a′),M(a′, L(a′)))].

Similarly, the indirect effect through M alone is

NIE110 = E[Y (a, L(a),M(a, L(a′)))− Y (a, L(a),M(a′, L(a′)))],
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and that through both L and M is

NIE111 = E[Y (a, L(a),M(a, L(a)))− Y (a, L(a),M(a, L(a′)))].

These definitions are generalizations of the two mediator setting shown by Daniel

et al.[105] to the setting of an intermediate confounder L (i.e., M1) and a primary

mediator of interest (i.e., M2). Definitions of these effects have also been defined in

previous literature[106, 107]. Note that the TE decomposes into the sum of the NDE

and NIEs defined above.

Although a four-way decomposition is possible, this increases the complexity of

the estimation procedure. An alternative option is to combine the effects through

some pathways and only estimate those of primary interest. In this case, only the

indirect effect via M is of interest and any effect that operates via L is not, and

so a coarser decomposition would be that into three effects: the direct effect, and

two mediator-specific effects. That is, the direct effect through neither L nor M , the

indirect effect thoughM alone, and the sum of the indirect effects through L (i.e., the

pathways A → L → Y and A → L → M → Y ). The counterfactual definitions of

these effects are given in Table 3.1, where “MS2” indicates that the mediator-specific

effect via the second mediator (i.e., M) is being targeted[105].

Table 3.1: Counterfactual definition and description of the total effect and of the
components of its 3-way decomposition where A is the exposure, L is the
intermediate confounder, M is the mediator, and Y is the outcome

Effect Counterfactual definition

TE E [Y (a, L(a),M(a, L(a)))− Y (a′, L(a′),M(a′, L(a′)))]

MS2-NDE-00: A→ Y E [Y (a, L(a′),M(a′, L(a′)))− Y (a′, L(a′),M(a′, L(a′)))]

MS2-NIE-10: A→M → Y E [Y (a, L(a′),M(a, L(a′)))− Y (a, L(a′),M(a′, L(a′)))]

MS2-NIE-11: A → L → Y +
A→ L→M → Y

E [Y (a, L(a),M(a, L(a)))− Y (a, L(a′),M(a, L(a′)))]

The identification assumptions for the effects given in Table 3.1 are similar to

those described previously for the case of one mediator. The TE is identifiable under

the conditions given in Section 3.4.5 and extensions of the assumptions for natural

effects to the case of two causally ordered mediators under the assumption that the
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data are generated from a NPSEM are: consistency of i) (A,L,M) on Y , ii) A

on L and iii) (A,L) on M ; no unmeasured confounding of the exposure-outcome

relationship, Y (a, l,m) ⊥⊥ A | C for all c, a, l and m; no unmeasured confounding

of the mediator-outcome relationships, Y (a, l,m) ⊥⊥ L | C,A and Y (a, l,m) ⊥⊥
M | C,A, L for all c, a, l and m; no unmeasured confounding of the exposure-

mediator or mediator-mediator relationships, L(a) ⊥⊥ A | C, M(a, l) ⊥⊥ A | C,

and M(a, l) ⊥⊥ L | C,A for all c, a, l and m; and no mediator-outcome confounder

affected by the exposure (excluding L).

Each half of each of the mediator-specific natural effects in Table 3.1 is of the

form

E[Y (a, L(a′),M(a′′, L(a′)))]

and, under the assumptions above, can be nonparametrically identified from the

observed data by

∫︂
c

∫︂
l

∫︂
m

E[Y | A = a, L = l,M = m,C = c]

fM(m | A = a′′, L = l, C = c) fL(l | A = a′, C = c)fC(c) dmdl dc. (3.22)

Estimating mediator-specific effects using g-computation

G-computation was proposed by Robins[108] as a method for estimating causal ef-

fects in the presence of time-varying exposures and confounders. Recently, an exten-

sion of the g-computation algorithm that incorporates the mediation formula[109]

has been used in mediation analysis. The steps of this method involve specifying

regression models for each density and expectation in the identifying equations, es-

timating their parameters from the observed data, and then evaluating the integral

analytically[110]. In many cases, the g-computation formula is too difficult to eval-

uate analytically, and so the integration can be approximated through Monte Carlo

simulation[110, 111].

Estimation of the mediator-specific natural effects (Table 3.1) in the mediation

analysis presented in Chapter Five was performed via parametric g-computation

using Monte Carlo simulation. The advantage of this approach is its flexibility, as

any combination of types of outcomes, mediators, and intermediate confounders can
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be modeled. This approach, however, operates under the assumption of correct

model specification. Since this mediation analysis was complicated by the presence

of intermediate confounding, the approach to parameter identifiability for the case

of causally ordered mediators given in Daniel et al.[105] and described in Section

3.4.6 was followed. This mediation analysis was complicated by four intermediate

confounders, and since the indirect effects via pathways involving these variables

were not of interest, they were treated in the analysis as a group of mediators. The

identifiability assumptions previously described would therefore apply to this joint

set of mediators.

Estimation by parametric g-computation via Monte Carlo simulation for the me-

diation analysis in Chapter Five is briefly discussed. First, flexible parametric models

(e.g., generalized additive models [GAM] with smooth terms for continuous covari-

ates) for i) each intermediate confounder given the exposure and baseline covariates

(and possibly previously occurring intermediate confounders), ii) the mediator of in-

terest given the exposure, intermediate confounders, and baseline covariates, and iii)

the outcome given the exposure, mediator, intermediate confounders and baseline

covariates were fitted using the observed data. The outcome model also included

an interaction term between the exposure and mediator. Then, simulations were

carried out forward in time based on the hypothesized causal structure. That is,

using simulated baseline covariate values, and for A = {a, a′}, and i = {1, . . . , n},
potential values of the intermediate confounders were simulated (e.g., L(a)), followed

by potential values of the mediator (e.g., M(a,L(a))), and lastly, potential values

of the outcome (e.g., Y (a,L(a),M(a,L(a)))). Contrasts of the i potential outcomes

corresponding to the mediator-specific natural effects in Table 3.1 were averaged to

estimate population average estimates. To reduce Monte Carlo error, simulations

were performed on an enlarged sample of n = 100, 000 simulated observations (es-

timation of model parameters is based the original sample). Standard errors were

obtained using bootstrapping, whereby all steps of the procedure were repeated on

random samples of the observed data drawn with replacement.

Although advanced methods for estimating total and mediation effects are be-

coming more readily available and accessible to analysts, a 2022 systematic review

found that few observational studies have applied modern approaches of mediation
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analysis such as those based within the counterfactual framework[112]. Further-

more, many studies of mediation either ignored underlying assumptions or were not

explicit about the assumptions of the causal model, and did not report how miss-

ing data were accommodated in analyses[112]. The study presented in Chapter Five

sought to address these shortcomings of previous observational studies in the analysis

of grandmaternal BMI on child birthweight.

3.5 Predicting fetal growth abnormalities

As previously discussed, deviations from normal fetal growth are associated with

adverse short- and long-term health outcomes in infants[28]. Infants with birthweight

at the extremes of their respective size for gestational age distributions are more likely

to accrue slightly higher health care costs in their first year of life compared to infants

with normal fetal growth[113]. The ability to correctly identify women at higher

risk of delivering both large and small for gestational age infants would therefore

be beneficial to the mother, baby and the health care system. In the following

section, an overview of current prediction models for SGA and LGA based on early-

pregnancy factors is discussed. Then, the methodological aspects of prediction using

Super Learner (an ensemble-based approach used in Chapter Six) and metrics for

evaluating model performance are presented.

3.5.1 Introduction

Several models for predicting the risk of SGA and LGA have been developed using

maternal characteristics, including sociodemographics, pregnancy risk factors, past

pregnancy history, and clinical characteristics, but predictive performance remains

relatively poor, especially among women in their first pregnancy (i.e., nulliparous

women). Most of these models were developed using conventional regression-based

methods, such as logistic regression, enabling them to be easily compared and vali-

dated on other data sets. For example, one study validated six prediction models for

SGA and LGA using an independent cohort of 1311 nulliparous women and found

discriminative performance, measured using the area under the receiver operating

characteristic curve (AUC-ROC), to be between 0.50-0.66 for SGA and 0.58-0.67 for

LGA[114]. The AUC-ROC measures how well the model can distinguish between two
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classes (e.g., infants born SGA versus infants born non-SGA); an AUC-ROC of 0.5

indicates no discrimination and 1.0 indicates perfect discrimination. Current efforts

to improve prediction models for early detection of SGA and LGA include adding

ultrasound measurements, biochemical markers, and results of biophysical tests, but

only modest improvements have been reported[115–131] and measurement of some

predictors may be costly, time-consuming, and inconvenient for pregnant women. A

summary of prediction models for SGA and LGA based on early-pregnancy factors

is given in Table A.2.

The discriminative ability of prediction models based solely on maternal char-

acteristics may be improved by including grandmaternal pregnancy-related factors

and maternal birth characteristics. The literature for the evidence of an association

between grandmaternal body weight measures and offspring body weight measures

was discussed in Section 3.2.1, but other multigenerational studies of the effects of

in utero exposures on second-generation outcomes[8] have also found small to mod-

erate associations between grandparental risk factors and child birthweight[14–25].

Although many have reported associations between maternal size-at-birth and off-

spring size-at-birth[29], maternal birth characteristics and grandmaternal risk factors

have not been explicitly examined as candidate predictors to improve the prediction

of SGA and LGA.

Prediction models based on conventional regression methods have been widely

used because they are easily interpreted, compared, and implemented in standard

statistical software. However, they are limited in that they rely on strong assump-

tions, such as the type of error distribution, and in their ability to incorporate com-

plex interactions of the predictors. Machine learning techniques such as random

forest, elastic net, and support vector machines (SVM), offer solutions to the limita-

tions of conventional regression-based models. Essentially, these models learn from

the data to make predictions on new data and offer advantages in that they do not

require explicit specification of a model and can handle a very large number of pre-

dictors. Since grandmaternal risk factors may act as potential effect modifiers of the

maternal-offspring associations, and relations between predictors and fetal growth

may be nonlinear, predictions may benefit from more data-adaptive techniques like

machine learning algorithms.
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One limitation of using many machine learning techniques in a single prediction

setting is that the performance of a particular algorithm will depend on the true

data-generating process. In practice, it is nearly impossible to determine which

algorithm will perform best in the data under study[132]. To solve this problem,

van der Laan and others proposed the Super Learner algorithm, a method based on

previous work by Wolpert[133] and Breiman[134] in the 1990s. The Super Learner

algorithm uses cross validation (CV) to build a new prediction algorithm, created as

the optimal weighted combination of predictions from a library of candidate learners

(e.g., machine learning algorithms, logistic regression). The resulting Super Learner

model has been shown to perform as well as, or better than, the best algorithm in

the ensemble in large samples[135].

Machine learning techniques have been used to predict various clinical conditions

and their performance has been compared to traditional logistic regression[136–141].

Overall, the literature is conflicting, but there is a consensus that performance of

these methods depends on the data. For example, one study added variables to an

established cardiovascular risk prediction model and found machine learning meth-

ods performed similarly to logistic regression[140]. On the contrary, another study

of the prediction of all-cause mortality using fitness data found that machine learn-

ing methods typically outperformed logistic regression, but the performance varied

between machine learning methods[138].

Machine learning techniques are gaining popularity as alternative approaches

to classification and prediction problems in clinical medicine[142, 143]. Although

these techniques have better performance in some situations, the benefit over logistic

regression remains unclear, and recent research has suggested that some machine

learning methods require more data points than logistic regression[144]. A 2019

systematic review comparing logistic regression to machine learning methods found

that, on average, machine learning techniques performed similarly when the studies

had low risk of bias[143]. However, only 32% of the 71 studies were deemed to have

low risk of bias. One key finding of this review was that reporting of methodology and

findings was often incomplete and unclear. For example, information on handling of

missing data was lacking or unclear in 32 studies, and model calibration was often

ignored. Therefore, further investigation is required to determine if machine learning
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techniques lead to better clinical prediction models compared to traditional logistic

regression, and reporting of such comparisons needs improvement.

The final recommendations of the aforementioned systematic review[143] and

the guidelines described by the Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD) statement[145] were used

to guide the development and validation of Super Learner models for predicting

SGA and LGA in Chapter Six. This includes providing sufficient detail to maximize

transparency and reproducibility and using calibration curves to investigate model

calibration.

3.5.2 Prediction using Super Learner

The Super Learner algorithm is a technique that uses V -fold CV to construct an

optimal weighted average of a set of candidate algorithms with weights estimated

according to a user-specified loss function[132]. In general, CV is a tool for evaluating

how well an algorithm performs in a sample from the same target population from

which the data to fit the model was derived. CV works by first dividing the sample

into equal subsets (e.g., V = 10 subsets for 10-fold CV), and then, one at a time, a

subset is set aside (test sample) and the algorithm is fitted to the remaining V − 1

subsets (training sample). Then, in the case of a binary outcome Y , the probability

of Y = 1 is predicted for each observation in the test sample using the model fitted

to the respective training sample. When the outcome is binary, the CV procedure

should maintain the prevalence of the outcome across training samples. This can be

done using stratified V -fold CV where observations are randomized to folds within

strata of the outcome.

In the Super Learner algorithm, the V -fold CV procedure described above is

repeated for each of the algorithms in the library of candidate learners. For each

learner, the risk is estimated according to a user-specified loss function (e.g., mean

squared-error loss for continuous outcomes, or equivalently, the Brier score for binary

outcomes defined as
∑︁n

i=1(Yi − Ŷ i)
2/n). The risk estimates from each of the V test

samples are averaged resulting in one cross-validated risk estimate for each learner.

At this point, selecting the algorithm with the smallest cross-validated risk would

result in a discrete Super Learner. However, improved performance can be attained
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by creating an optimal weighted average of the learners. To do this, non-negative

least squares is used to regress the observed outcome Y on the predicted probabilities

Ŷ , with the constraint that all estimated regression coefficients are non-negative.

In other words, non-negative least squares is used to solve the equation below for

(α1, α2, . . . , αk) where k is the number of learners

E[Y | Ŷ 1, Ŷ 2, . . . , Ŷ k] = α1Ŷ 1 + α2Ŷ 2 + · · ·+ αkŶ k (3.23)

such that α1, α2, . . . , αk ≥ 0. Then, the estimated αi for i ∈ {1, . . . , k} values are

reweighted so that they sum to 1. This is known as a convex combination of weights

and provides greater stability for the final Super Learner prediction[135]. Lastly,

the above weights are used to generate the Super Learner that can then be used to

predict the outcome in new data. Super Learner predictions are obtained by first

predicting the outcome using the learners, and then using the weights to calculate

a final weighted prediction. To avoid over-fitting, it is recommended that the per-

formance of the Super Learner itself be evaluated using V -fold CV. To estimate

the cross-validated risk of the ensemble itself, nested CV is used, where the Super

Learner is trained on k−1 subsets of the data and validated using the holdout sample.

Choosing a library of candidate learners

The Super Learner performs asymptotically as well as the best learner used in the

ensemble[135]. Incorporating a rich collection of algorithms can only improve Super

Learner predictions but increases the computational burden of the algorithm. An-

other issue with implementing the Super Learner is choosing which learners to include

in the library of algorithms. It is suggested that the library include a wide variety of

learners, such as random forest, elastic net, and SVM, but the set should reflect what

is computationally feasible. For the study in Chapter Six, the library of candidate

learners consisted of generalized linear models [logistic regression (main and interac-

tion term models), GAM] and a diverse set of machine learning algorithms [elastic

net[146], random forest[88], tree-based extreme gradient boosting (XGBoost)[147],

and kernel-based SVM[148]. Each of these learners will be briefly discussed in the
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context of predicting a binary outcome.

Consider the training data set (x1, y1), . . . , (xn, yn) where each observation i has

a p dimensional vector of observed predictors xi and a binary outcome yi. The

observed binary response of yi of the random variable Yi can take one of two values,

0 or 1 (where yi = 1 indicates observation i exhibits the outcome of interest), with

corresponding probabilities πi and 1−πi, respectively. The logistic regression model

belongs to the family of models called generalized linear models and is defined as

logit(πi) = log

(︃
πi

1− πi

)︃
= xT

i β, (3.24)

where the regression coefficients β = (β1, . . . , βp)
T are estimated using numerical

methods like iteratively re-weighted least squares. The resulting model is used to

generate the predicted probability of the outcome in the test sample.

GAMs extend generalized linear models to include smooth functions of continuous

predictor variables. That is, the model is defined as

logit(πi) = log

(︃
πi

1− πi

)︃
= xT

i θ +
∑︂
j

fj(xji), (3.25)

where xi contains the linear model component with corresponding parameter vector

θ, and the fj(xji) are smooth functions of the covariates xj. As opposed to one fixed

coefficient β as in logistic regression, the function f can change over the range of the

predictor. The smoothness of the function is controlled by the degrees of freedom

(deg.gam) for the smoother[149].

Elastic net is a penalized regression method that shrinks coefficients towards

zero[146]. Elastic net solves the problem

min
β0,β

1

n

n∑︂
i

wil(yi,x
T
i β) + λ

[︄
(1− α)

2

p∑︂
j=1

β2
j + α

p∑︂
j=1

|βj|

]︄
(3.26)

over a grid of values λ. In the equation above, l(yi,x
T
i β) is the negative log-likelihood

contribution for observation i, and the remaining term is a penalty term that shrinks

the estimates of the coefficients. The value of α controls the weight given to the

different components of the penalty term where if α = 1, (3.26) is called ridge
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regression and if α = 0 is called least absolute shrinkage and selection operator

(LASSO) regression. The tuning parameter λ controls the weight given to the penalty

term. Elastic net is useful for reducing the number of predictors in the model and

for handling groups of correlated predictors.

Random forest, described above but briefly again here, is an ensemble method

that aggregates the predictions of a collection of decision trees. Classification trees

are constructed using recursive binary splitting where the predictor space is parti-

tioned into regions to maximize the discrimination between observations with yi = 1

and those with yi = 0. Beginning at the top of the tree, the predictor space is succes-

sively split into two new regions, which results in the formation of two new branches.

The regions are split until a stopping criterion is met (e.g., a minimum nodesize

of 5 observations). The random forest algorithm involves repeatedly constructing

classification trees using bootstrap samples of size n drawn with replacement from

the training sample until the desired number of trees have been made, denoted by

ntree. To increase variability in the ensemble, a random subset of the predictors is

selected at each potential split (mtry). The predicted probability of a new obser-

vation is found by averaging the outcome values in the terminal nodes in which the

new observation resides.

Similar to random forest, tree-based gradient boosting is an ensemble method

that aggregates predictions from a collection of decision trees. However, instead

of building independent classification trees as in random forest, the decision trees

are added sequentially, with each new tree focusing on the reducing the errors of

the previous tree. This is done by repeatedly building a classification tree to a

weighted version of the training data set with larger weights assigned to misclassified

observations[147]. XGBoost is an improved version of gradient boosting designed for

enhanced computational speed and model performance[147].

The SVM algorithm works by identifying a decision boundary (i.e., a multidimen-

sional surface) that best separates the data into observations with yi = 1 and those

with yi = 0, defined by obtaining the largest possible margin between the two classes.

SVM then generates predictions based on this separation boundary. SVM can be

specified with a linear hyperplane, but more often data are not linearly separable.

In this case, SVMs use kernel functions (e.g., radial basis function kernel) to map
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the data to higher dimensions where the decision boundary can be linear. Another

feature of the algorithm is defining the boundary margin, or the buffer zone around

the boundary. If the margin is small, the model will try to find a boundary that

makes fewer errors in the training data, and if the margin is large, the model will

tolerate more errors in the training data. This is controlled by the cost parameter

C and the optimal value of C balances the trade-off between misclassification and

simplicity of the model.

Hyperparameter tuning

The performance of machine learning methods and GAMs depends on the choice of

hyperparameter values (e.g., the degrees of freedom for the smoothers in GAM). Hy-

perparameters adjust an algorithm’s characteristics to different aspects of the data,

and knowing which values work best a priori is nearly impossible. The traditional

approach to selecting the best combination of hyperparameters has been to use a

grid search coupled with CV. For user-specified values of each hyperparameter, the

grid search method exhaustively considers all possible combinations and selects that

which has the smallest cross-validated risk (e.g., Brier score).

Alternatively, the tuning strategy employed in Chapter Six uses the Super Learner

algorithm to solve the problem of hyperparameter optimization by creating a weighted

ensemble of each learner specified with different parameter settings. To do this, small

grids of hyperparameter configurations were constructed for each base learner, and

then the Super Learner algorithm (fitted using V -fold CV) was used to estimate the

optimal weighted average of the various instances of the same learner with different

settings based on the Brier score. This tuning strategy limits the number of algo-

rithms included in the main Super Learner algorithm by allowing each base learner

to be included only once as a tuned algorithm. Specific details on the grid of hyper-

parameter configurations over which each algorithm was tuned is given in Chapter

Six.

3.5.3 Model performance and validation

Predictive models built using different algorithms or different variables are often

compared and assessed in terms of accuracy. In the context of a binary outcome,



51

this often consists of assessing and comparing discriminative ability and checking

if the models are well-calibrated. Discrimination refers to how well a model can

discriminate, or accurately distinguish between, those with and those without the

outcome, whereas calibration assesses the agreement between observed outcomes

and predicted probabilities. Prior to discussing each of these metrics, definitions for

standard measures of diagnostic accuracy are given.

Standard measures of diagnostic accuracy

For the following discussion, consider the confusion matrix for the case of a binary

outcome with values “event” and “non-event” given in Table 3.2. Some of those with

the event and without the event are correctly predicted as so (true positives (TP)

and true negatives (TN)), while others are incorrectly classified as either having the

event when in fact they do not (false positive (FP)), or not having the event when

in fact they do (false negative (FP)).

Table 3.2: Confusion matrix for a binary classification problem with possible
outcomes “event” and “non-event” where cells indicate the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN).

Observed
Predicted Event Non-event

Event TP FP
Non-event FN TN

Suppose the outcome of interest is whether a woman will deliver a LGA infant,

where in this case the event is delivering LGA and the non-event is not delivering

LGA. Further assume that a woman is classified by the model as delivering LGA if

her predicted probability of so is greater than α. The sensitivity of the model is the

probability that LGA is predicted correctly for all women who delivered LGA, or

Sensitivity =
# who delivered LGA and predicted to deliver LGA

# who delivered LGA

=
TP

TP + FN
.

This measure is sometimes referred to as a true positive (TP) rate. The specificity of

the model, or the true negative (TN) rate, is defined as the probability that women



52

not delivering LGA are correctly predicted as so, or

Specificity =
# who did not deliver LGA and predicted to not deliver LGA

# who did not deliver LGA

=
TN

FP + TN
.

The false positive (FP) rate is defined as 1 − Specificity. Assuming a fixed level

of accuracy, there is typically a trade-off between sensitivity and specificity. By

increasing the sensitivity of a model (i.e., decreasing α), specificity will decrease

since more women will be predicted as delivering LGA.

Sensitivity and specificity are conditional measures, and only reflect the proba-

bility in the event and non-event groups. For example, the sensitivity is the accuracy

rate only for the women who have the event, or delivered LGA. The positive and

negative predictive values are analogues of the sensitivity and specificity that ad-

ditionally account for the prevalence of the outcome in the population, denoted by

p. Based on the sensitivity and specificity of particular model or test, the positive

predictive value (PPV) represents the probability that a woman delivers LGA given

that her predicted probability is greater than α. Conversely, the negative predictive

value (NPV) represents the probability that a woman does not deliver LGA given

that her predicted probability is less than α. Using the sensitivity and specificity,

the PPV is calculated by

PPV =
Sensitivity × p

(Sensitivity × p) +
(︁
(1− Specificity)× (1− p)

)︁ , (3.27)

and similarly the negative predictive value (NPV) is calculated by

NPV =
Specificity × (1− p)(︁

p× (1− Sensitivity)
)︁
+
(︁
Specificity × (1− p)

)︁ . (3.28)

As p increases, the PPV also increases but the NPV decreases. Conversely, as

p decreases, the PPV decreases while the NPV increases. For example, if p in-

creases towards 1, (1− p) in the denominator of (3.27) approaches 0 while the term

(Sensitivity × p) in both the numerator and denominator increase, thus increasing

the PPV. Similarly, (1− p) in the numerator and denominator of (3.28) approach 0
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while
(︁
p×(1−Sensitivity)

)︁
in the denominator increases, thus decreasing the NPV.

PPV and NPV can also be calculated using Table 3.2 by

PPV =
TP

TP + FP
, (3.29)

NPV =
TN

TN + FN
. (3.30)

Discrimination

Accurate classifiers can effectively discriminate between those with and those without

the outcome, or event. The most commonly used measure to assess how well the

model classifies observations in a binary prediction problem is the concordance (c)

statistic. When the outcome is binary, the c statistic is identical to the AUC-ROC.

The c statistic is interpreted as the probability that in a randomly selected pair

of observations, one with the outcome and one without, the observation with the

outcome has a higher predicted probability.

Receiver operating characteristic (ROC) curves are a valuable tool to examine

how the model distinguishes between those with and those without the outcome

at various decision rules. The ROC curve plots the sensitivity (TP rate) against

1 − specificity (FP rate) across a continuum of thresholds corresponding to the

probability of the outcome[150]. Plotting the TP rate against the FP rate for each

candidate threshold is helpful for determining the threshold that appropriately maxi-

mizes the trade-off between sensitivity and specificity. A completely ineffective model

would result in an AUC-ROC of 0.5 (comparable to a coin toss), whereas a perfect

model that completely separates the two classes would have an AUC-ROC of 1.

Superimposing ROC curves is useful to contrast two or more models with different

predictor sets, or two different classifiers.

One limitation of ROC curve analyses is that they may be misleading in data with

class imbalance (i.e., when a large difference in the number of observations with and

without the outcome exist). When the prevalence of the outcome is low, the AUC-

ROC may indicate overly optimistic performance because the FP rate is much smaller

than the number of TNs, and the AUC-ROC will not change very much even as the

number of FPs decreases, as indicative of a better classifier[151, 152]. A proposed
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alternative metric is to evaluate a classifier using the area under the precision-recall

curve (AUC-PR). The precision-recall (PR) curve is a plot of precision (i.e., PPV)

versus recall (i.e., sensitivity or TP rate) across a continuum of thresholds. Since

PPV does not incorporate the number of TNs, it is more sensitive to changes in the

number of TPs. A completely ineffective model would result in an AUC-PR equal

to the prevalence of the outcome, whereas a perfect model that completely separates

the two classes would have an AUC-PR of 1.

Calibration

Calibration evaluates the agreement between the predicted risk from the model and

the observed risk. A well-calibrated model is one in which the estimated class prob-

abilities are reflective of the true underlying probability of the sample. In predictive

models based on binary outcomes, the final output is the estimated probability that

the outcome of interest will occur (e.g., a particular woman has a p% chance of de-

livering LGA). Calibration is assessed for each individual by checking how close this

prediction is to the true underlying probability for that individual. Since it is not

possible to determine these underlying probabilities, the probability of the outcome

in a similar group of individuals is used as a proxy. For example, calibration is often

assessed by comparing the mean observed and predicted probabilities in observations

grouped based on deciles calculated on model predictions.

Calibration can help diagnose potential lack of fit and can be assessed graphically

using calibration plots. Calibration plots are generated by dividing the sample into

groups of equal size (e.g., deciles) based on predicted probabilities and plotting the

midpoint of the predicted probability for each group on the x-axis against the true

prevalence of the outcome in that group on the y-axis. A well calibrated model would

have predictions on the line with zero-intercept and a slope of 1[150].
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4.1 Abstract

Missing data present challenges in epidemiologic studies and are frequently addressed

using multiple imputation. Appropriate conduct of multiple imputation procedures

is further complicated by clustered data structures, like those of perinatal databases,

which arise when the data can be separated into naturally occurring groups (e.g.,

deliveries to the same woman). To ensure valid inference, the imputation procedure

needs to preserve all features of the data, and in the case of clustered data, the

within-cluster correlation. Modifications to tree-based algorithms to accommodate

clustered data have been proposed but have yet to be implemented or evaluated as

imputation techniques. We compared imputation of maternal pre-pregnancy body

mass index (BMI; weight divided by height squared) using mixed-effects random for-

est (MERF), an extension of the random forest algorithm to clustered data, to other

widely used imputation techniques. We drew 100 samples of all deliveries to 2000

randomly selected women drawn from the 41809 eligible women with complete data

in the Nova Scotia Atlee Perinatal Database. Maternal pre-pregnancy weight was

simulated to be missing at random (MAR) and missing not at random (MNAR),

and height to be missing completely at random (MCAR). Analyses of the associa-

tion between pre-pregnancy BMI and one continuous and one binary outcome after

imputation using MERF resulted in overestimation of the true parameter value by

8.3 to 15.8%. The bias was most pronounced in scenarios where weight was simu-

lated to be MNAR. Parameter estimates were least biased using standard random

forest-based imputation, which may be the best choice for imputing missingness in

complex clustered data.
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4.2 Introduction

Missing data present challenges in health research and are frequently addressed using

multiple imputation. Multiple imputation is a general approach that accounts for

the uncertainty of the imputations by creating multiple complete datasets where the

missing values have been filled in with different plausible values based on a statistical

model. The most common implementations of multiple imputation in statistical

software packages assume data to be missing at random (MAR)[54, 84] where the

probability of missingness depends only on observed data, or missing completely

at random (MCAR), a special case of MAR where the probability of missingness

depends neither on observed nor unobserved data. Missing not at random (MNAR)

occurs if the probability of missingness depends on unobserved data. A test for

whether data are MAR or MNAR does not exist, so assessing the likelihood of either

mechanism relies on content expertise[153].

Clustered data structures are common in health research. These structures may

arise when the data can be separated into naturally occurring groups or clusters (e.g.,

children in a school, patients in a hospital) or when repeated measurements are taken

on the same individuals. Since observations within a cluster tend to be correlated,

the assumption of independent observations required by statistical procedures is

violated. To obtain valid inference in these settings, methods that can account for

the non-independence of observations are required.

Depending on the target inference, clustering is often accommodated by mixed-

effects models, estimation using generalized estimating equations (GEE), or standard

regression models with clustered-robust standard errors. To ensure valid inference in

the analyses of multiply imputed datasets, the imputation model needs to preserve

all features of the data, including interactions, nonlinear relationships, and in the

case of clustered data, the correlation among observations in the same cluster[154].

Although multilevel imputation techniques are available in standard software, impu-

tation using data-adaptive methods has been proposed as an alternative to paramet-

ric imputation in the case of independent observations[34–38]. These methods can

capture complex relationships in the data without the need to explicitly specify the

imputation model, and have been shown to perform comparably or, in some cases,

better than parametric-based imputation[34, 36–39].
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Among these proposed data-adaptive imputation methods, tree-based algorithms

such as classification trees, regression trees and random forest are commonly used.

Several modifications to tree-based algorithms to accommodate clustered data for

continuous outcomes have been proposed[40–42]. Hajjem et al. incorporated mixed-

effects in the regression tree algorithm using an iterative procedure similar to the

expectation-maximization algorithm for linear mixed-effects models (LMER)[40].

They later extended the mixed-effects regression tree method to the random for-

est algorithm and found that this method had a smaller predictive mean squared

error, on average, than random forest with the largest gain in performance observed

in settings with large random effects[41]. However, the mixed-effects random forest

(MERF) algorithm has not been implemented or evaluated yet in an imputation

setting.

Perinatal databases contain pregnancy and birth information for women and their

offspring. These databases exhibit a unique clustering structure where the delivery

records of the same woman can be linked, resulting in a hierarchical structure of

delivery-level data nested within women. This type of design is complicated by

women with differing numbers of deliveries (i.e., unequal cluster sizes), variable time

between deliveries (i.e., unequal spacing of measurements), and many having only

one delivery (i.e., large proportion of singleton clusters). These databases, how-

ever, often have missing values, particularly for maternal pre-pregnancy weight, a

key variable in perinatal epidemiology. In the context of a complicated clustering

structure and weight measurements over time likely being correlated, imputing pre-

pregnancy weight using a MERF may perform better than alternative parametric

and nonparametric imputation methods.

Therefore, the aim of this study was to describe the performance of MERF as a

method for imputing maternal pre-pregnancy body mass index (BMI) values in a real-

life perinatal dataset. Imputation using MERF was compared to both parametric and

nonparametric imputation methods in the context of estimating population-averaged

estimates of the association of maternal pre-pregnancy BMI with birthweight z-score

and large for gestational age (LGA) birth, two common perinatal outcomes[155].

Since pre-pregnancy weight, the numerator of pre-pregnancy BMI, may be MNAR,

comparisons were made in both MAR and MNAR scenarios.
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4.3 Methods

4.3.1 Data source and study population

The Nova Scotia Atlee Perinatal Database (NSAPD) is a long-standing perinatal

database containing detailed information on all births in Nova Scotia, Canada since

1987. It grows by approximately 8000 deliveries annually. All residents in Nova

Scotia are assigned a provincial health card number that grants access to publicly

funded medical and hospital services. The NSAPD records the provincial health card

number of women and their offspring in the database, thus enabling internal linkage

of all deliveries within a woman.

Detailed demographic and birth information on deliveries occurring between 2000

and 2019 was obtained from the NSAPD. Multiple gestations (i.e., twins, triplets,

etc.) and pregnancies affected by major congenital anomalies were excluded. The ex-

posure of interest was pre-pregnancy BMI (pre-pregnancy weight in kg over height in

meters squared), and the outcomes were birthweight z-score and LGA birth. Birth-

weight for gestational age and sex z-scores were calculated relative to a Canadian

reference population[156] and LGA birth was defined as birthweight >90th percentile

for gestational age and sex relative to the same reference population. Confound-

ing variables of the association between pre-pregnancy BMI and the outcomes in-

cluded year of delivery, maternal age, parity, marital status, area-level income quintile

(proxy measure for socioeconomic status), smoking in pregnancy, and pre-existing

diabetes. Auxiliary variables (those that may be correlated with the missing vari-

ables or associated with their missingness) used in the imputation procedure included

pre-pregnancy weight, delivery weight, gestational diabetes, and mode of delivery.

Additional details on these variables can be found elsewhere[30, 157].

4.3.2 Inducing missingness

A dataset of women with complete information was created by excluding deliveries

with implausible values of birthweight z-score (>5 in absolute value) and women with

incomplete data in any of their first five recorded eligible deliveries. One-hundred

samples of 2000 women randomly selected without replacement from the complete

dataset were created. All deliveries from each of these women were included. For
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each of the 100 samples, the missing data pattern shown in Table 4.1 was simulated

assuming a MAR and a MNAR mechanism for pre-pregnancy weight, resulting in

100 MAR and 100 MNAR datasets.

Evidence from the literature and the original data (with missingness) were used

to inform the missing data pattern and the factors affecting the missing mechanism.

For example, logistic regression models were fitted in the original dataset to explore

possible factors associated with missingness in pre-pregnancy weight. Under both

mechanisms, the probability that a delivery record had a missing pre-pregnancy

weight value was higher if the woman was older, not married or common-law, and

reported smoking in her pregnancy, while for MNAR, the probability of missingness

also increased by, on average, 0.015 for each 1-kg increase in weight. Pre-pregnancy

height and marital status were simulated to be MCAR. Smoking in pregnancy and

delivery weight were simulated to be MAR with the probability of missing smoking

information being higher if the woman was of lower socioeconomic status and the

probability of missing delivery weight being higher if the woman was not married or

common-law and had a planned Caesarean section. Pre-pregnancy BMI was set to

missing if either weight, height, or both were missing. The outcome variables had

complete data.

The “ampute” function in the mice[82] R package was used to induce missingness.

The procedure creates k subsets of the complete data where k is the number of

missing data patterns. For MAR and MNAR, a weighted sum score is calculated

as the outcome of a linear regression equation where the coefficients or weights are

determined by the user. In general, larger weights will have higher sum scores and

results in that particular covariate in the pattern having a higher influence on the

overall score. Based on the weighted sum score, an observation obtains a certain

probability of being set to missing. In the case of MCAR, all observations have the

same probability of being set to missing. These probabilities are assigned using a

continuous logistic distribution function where cases with high weighted sum scores

have a higher probability of being missing than those with low weighted sum scores.

In every subset, the user-specified proportion of observations is made incomplete

according to the missing data pattern and all subsets are merged to create one

dataset with complete and incomplete observations.
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4.3.3 Imputation methods

For each of the samples, multiple imputation using chained equations (MICE) was

used to generate 10 imputed datasets (10 iterations) in which pre-pregnancy BMI

was actively imputed (i.e., imputed directly) using MERF and four other widely used

imputation techniques (LM - normal linear model [“mice.impute.norm”], PMM - pre-

dictive mean matching [“mice.impute.pmm”], RF - random forest [“mice.impute.rf”]

with default settings, and LMER - linear mixed-effects model with a random inter-

cept [“mice.impute.2l.norm”]).

Since the MERF algorithm has not been used for imputation, more details of

the algorithm and its use as an imputation method are outlined below. Imputation

models for all techniques included the outcome, confounders, and auxiliary variables.

Missing values of confounders and auxiliary variables were imputed using logistic

regression (marital status and smoking in pregnancy) and predictive mean matching

(delivery weight and pre-pregnancy weight). A smaller number of imputed datasets

was used than what would generally be recommended[158] due to the computational

burden of the MERF algorithm. Although MERF could have been used to impute

all continuous variables included in the imputation model, predictive mean matching

was used to reduce computation time and to focus on differences in the imputation

of pre-pregnancy BMI.

MERF-based imputation

A MERF of regression trees is defined as

yi = f(Xi) + Zibi + ϵi,

bi ∼ N(0, D), ϵi ∼ N(0, Ri), i = 1, . . . n,

where yi = [yi1, . . . , yini
]T is the ni × 1 vector of responses for the ni observations

in cluster i, Xi = [xi1, . . . , xini
]T is the ni × p matrix of fixed-effects covariates,

Zi = [zi1, . . . , zini
]T is the ni×q matrix of random-effects covariates, bi = [bi1, . . . , biq]

T

is the q × 1 unknown vector of random effects for cluster i, ϵi = [ϵi1, . . . , ϵini
]T is the

ni×1 vector of errors, and D and Ri = σ2Ini
are the covariance matrices of bi and ϵi,

respectively. The model assumes bi and ϵi are independent and normally distributed,
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and that between-cluster observations are independent. The covariance matrix of the

vector of observations yi in cluster i is defined as Vi = Cov(yi) = ZiDZT
i + Ri, and

V = Cov(y) = diag(V1, . . . , Vn), where y = [yT1 , . . . , y
T
n ]

T [41].

The unknown function f(Xi) is estimated using a forest of regression trees, and

the random part Zibi is assumed to be linear. Estimation of the model parameters

is similar to the expectation-maximization algorithm for LMER. More details of this

algorithm can be found in Supplementary Methods 1 and in Hajjem et al[41]. The

predicted response of a new observation j that belongs to cluster i is calculated using

its corresponding population-averaged random forest prediction, f̂(xij), and, if clus-

ter i was used to build the model, additionally using the random part corresponding

to its cluster Zib̂i.

The proposed imputation technique using MERF modifies the algorithm for ran-

dom forest-based imputation developed by Shah et al.[37] (“mice.impute.rfcont”) by

replacing the random forest with a MERF. Briefly, the random forest imputation

technique takes a bootstrap sample (with replacement) of those with observed val-

ues in the variable to be imputed and then constructs each regression tree in the

forest using another bootstrap sample of the data. Observations with missing values

are imputed by taking random draws from independent normal distributions with

conditional means predicted using the random forest and variances estimated from

the out-of-bag mean square error. Since the datasets with induced missingness con-

sisted mostly of clusters with size 1 or 2 (average cluster size of 1.5), only a random

intercept term was estimated.

The MERF imputation method uses the randomForest [159] R package and re-

quires specification of the random forest parameters. For the simulation study, each

forest was created using 300 regression trees, the number of predictors considered

for splitting at each node was set to the square root of the number of predictors

(rounded down to the nearest integer), and the minimum size of the terminal nodes

was set to 5 observations. The MERF algorithm was forced to iterate a minimum of

100 times and was set to continue iterating while the absolute change in generalized-

log likelihood criterion was greater than 0.0001 or a maximum of 150 iterations was

reached.
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4.3.4 Analysis

Pooled population-averaged estimates of the association between pre-pregnancy BMI

and the outcomes of interest, adjusted for relevant confounders, were obtained for

each set of multiply imputed datasets using GEE with an exchangeable working

correlation structure. For each of the five imputation techniques, this resulted in

pooled estimates of the marginal change in mean birthweight z-score and the log

odds ratio of LGA birth for a 1-kg/m2 increase in pre-pregnancy BMI. To assess

the robustness of the results to the choice of analysis model, pooled estimates were

additionally obtained by fitting generalized linear models (identity and logit link

function) with clustered-robust standard errors. The true parameter estimates were

obtained from the same models fitted to the complete sample. All analyses were

performed in R (version 4.1.2)[160] and R Studio[161]. A flowchart of the simulation

procedure is shown in Figure 4.1.

4.3.5 Performance measures

For each imputation technique, absolute mean bias (mean difference in the estimate

and the true parameter value), percent relative bias (absolute mean bias divided by

the true parameter value multiplied by 100), efficiency (expressed by the empirical

standard error (SE) over all simulations), and coverage probability of 95% confidence

intervals (proportion of 95% confidence intervals for the estimate that contain the

true parameter value) were computed. A coverage probability between 0.906 and

0.994 was deemed appropriate as per the suggestion that coverage be within two SE of

the confidence level, p, where SE(p) =
√︁

(p(1− p)/100)[162]. Results of the analysis

of complete-cases (dropping missing observations) are provided for comparison.

4.4 Results

The original sample consisted of 166473 deliveries to 102864 women, and after remov-

ing delivery records with implausible values of birthweight z-score and women with

incomplete data in any of their first five recorded deliveries, the final complete-data

sample consisted of 64204 deliveries to 41809 women.

Across the 100 complete samples of 2000 randomly selected women, on average,
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56.1%, 35.7%, 6.9%, 1.0%, and 0.3% had had one, two, three, four, and five deliver-

ies, respectively, resulting in an average of 3070 deliveries and an average cluster size

of 1.5 within each sample. Descriptive statistics on deliveries in the original dataset,

eligible women with complete data in all recorded deliveries, and the samples with

missingness in pre-pregnancy weight simulated to be MAR and MNAR (averaged

across the 100 samples) are shown in Table 4.5. Boxplots of the distribution of pre-

pregnancy height, weight, and BMI values in 20 of the 100 datasets before inducing

missingness (complete) and after simulating pre-pregnancy weight to be MAR and

MNAR are shown in Figure 4.2. In general, the distribution of pre-pregnancy height

was similar in all samples, and the distribution of weight and BMI values in com-

plete and MAR datasets were comparable. In MNAR samples, the distributions of

pre-pregnancy weight and BMI were shifted to the left, had smaller medians, and

contained less positive extreme values (as expected based on how missingness was

simulated).

True parameter values for the associations of interest and estimates of bias (abso-

lute and relative to the true parameter value [%]), efficiency, and coverage probability

of the 95% confidence intervals in complete-case analyses and in analyses using each

imputation method are shown in Table 4.3, and boxplots of the distribution of esti-

mates are shown in Figure S3. In analyses of the continuous outcome, birthweight

z-score, imputation using MERF resulted in less bias than imputation using a linear

model, predictive mean matching, and a linear mixed-effects model with a random

intercept in MAR data (|relative bias|, 8.3% vs. 11.7-15.8%), but similarly biased

in MNAR data (14.1% vs. 10.9-12.1%). Under MAR, imputation using MERF was

slightly more biased than random forest (8.3% vs. 5.3%) and substantially more in

MNAR scenarios (14.1% vs. 1.6%). In analyses of the binary outcome, LGA birth,

and with the exception of random forest, imputation using MERF in MAR data

resulted in similar bias to all imputation methods considered (9.9% vs. 10.7-11.7%)

and had comparable SEs (0.009 vs. 0.008-0.009). Imputation using MERF was more

biased than imputation using random forest in both MAR and MNAR scenarios

(9.9% vs. 2.8%, and 15.8% vs. 0.0%, respectively) and was less efficient (0.009-

0.012 vs. 0.008-0.010). In all scenarios, MERF was positively biased, resulting in an

overestimation of the true effect.
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When the associations of interest were estimated using generalized linear models

with clustered-robust standard errors (Table 4.4), MERF was positively biased in all

scenarios (12.9-21.1%), with the largest bias occurring in analyses of MNAR samples.

In all scenarios, imputation using a linear model and predictive mean matching were

less biased than those when the analysis model was estimated using GEE (0.7-6.7%

vs. 5.7-15.8%) while imputation using a linear mixed-effects model was resulted in

similar bias (10.6-11.9% vs. 8.0-9.2%). Imputation using random forest resulted in

similar or slightly more bias compared to the results of the GEE analyses (1.5-7.4%

vs. 0.0-5.3%).

4.5 Discussion

The present study aimed to evaluate MICE-based imputation of clustered data using

MERF; we used real-life data from a perinatal database with clusters of deliveries

nested within women. Analyses of the association between pre-pregnancy BMI and

one continuous and one binary outcome after imputing pre-pregnancy BMI using

MERF resulted in overestimation of the true parameter value by 8.3 to 15.8%. When

pregnancy weight was simulated to be MNAR, the bias was most pronounced and,

as expected, coverage of the 95% confidence intervals was poor (0.840). With the

exception of random forest, imputation using MERF performed better than that

using a linear model, predictive mean matching, and linear-mixed effects model when

pre-pregnancy weight was simulated to be MAR, and performed worse or similarly

when pre-pregnancy weight was simulated to be MNAR. Imputation using random

forest was minimally biased in all settings.

Random forest was generally the least biased, most efficient, and had the highest

coverage probability of the imputation methods considered. Although imputation

using MERF uses the random forest algorithm, differences between the two tech-

niques may explain, at least in part, the differences observed in this study. First, the

MERF algorithm is similar to the expectation-maximization algorithm for a linear

mixed-effects model, so predictions from the random forest are updated using the

current available estimate of the random part, which are then used in the subsequent

iteration to build the next random forest. The final prediction from the MERF for

observation j from cluster i is calculated in one of two ways. If cluster i was not used
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to build the MERF, the predicted value is calculated using solely its corresponding

population-averaged random forest prediction, and if cluster i was used to build the

MERF, the predicted value is calculated using its population-averaged random forest

prediction and the predicted random part corresponding to its cluster. The predic-

tions from a MERF fitted to the complete-data set indicated that the random effect

estimates were small, and so, as expected, predictions from the MERF and random

forest were similar, so it is unlikely the algorithm differences impacted the results

greatly.

Secondly, the proposed imputation technique using MERF modifies the imputa-

tion algorithm for random forest developed by Shah et al.[37] (“mice.impute.rfcont”),

which generates imputations differently than the default random forest imputation

algorithm in the mice package developed by Doove et al.[36] (“mice.impute.rf”). In

“mice.impute.rfcont”, observations with missing values are imputed by taking ran-

dom draws from independent normal distributions with conditional means predicted

using the random forest and variances estimated from the out-of-bag mean square

error. In “mice.impute.rf”, missing values are imputed by taking the observed value

of one randomly selected donor from the set of observations in the terminal nodes of

the random forest trees in which the observation with a missing value resides. One

assumption of the “mice.impute.rfcont” method is the assumption that the residuals

from the random forest regression are normally distributed with constant variance.

Investigation of residual plots from MERFs fitted to complete-data samples indicated

this assumption was likely not met and may have resulted in poor imputations.

Imputation using MERF performed best when the analysis model was estimated

using GEE and pre-pregnancy weight was simulated to be MAR. Since parame-

ters estimated using GEE are fitted by minimizing the weighted sum of squared

residuals using the working covariance matrix as the weight, an imputation method

that uses the correlation among observations to generate imputations, even if it is

nonparametric, may perform better than imputation methods that ignore the corre-

lation structure (e.g., normal linear model or predictive mean matching). However,

when clustering is accommodated by using standard generalized linear models with

clustered-robust standard errors, methods that ignore the clustering were less biased
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with appropriate coverage than both MERF and imputation using a linear mixed-

effects model.

In the present study, analyses of complete-cases resulted in minimal bias in all

settings considered. Complete-case analysis will be valid under MAR and MNAR

when the outcome is complete, and the complete cases can be thought of as a random

sample of all cases within strata formed by the covariates used for adjustment[163].

For this study, the variables used to induce missingness under MAR were also in-

cluded in the final analytical model since they were confounding variables. Under

MNAR, the probability of missingness in pre-pregnancy weight was simulated to in-

crease with weight values, and since weight is highly correlated with BMI (derived

from pre-pregnancy weight and height), analyses of complete-cases is likely to be min-

imally biased. Although a complete-case analysis resulted in unbiased estimates of

the associations considered in this study, because of the smaller sample size, the esti-

mates had larger standard errors than those obtained with multiple imputation. The

proportion of missing pre-pregnancy BMI can be quite large in perinatal databases,

so complete-case analysis may be insufficiently powered. The loss of statistical effi-

ciency might become quite problematic when examining rare outcomes or outcomes

in specific subgroups of the population.

This study used data with a specific and unique clustering structure, that is,

one that consists of nearly 50% singleton clusters and an average cluster size of

1.5 observations. In this data structure, MERF performed poorly as an imputation

technique as it led to gross over-estimation of the true effect and was much more

computationally intensive compared to random forest (approximately 70 times longer

to generate one imputed dataset). The current study is the first to investigate random

forest as an imputation method in a clustered data structure and we found it to be the

best method for imputing pre-pregnancy BMI. The results of other studies comparing

random forest-based imputation to parametric methods in datasets with independent

observations suggest this method is superior for imputation in complex datasets (e.g.,

interactions and nonlinearities) when the parametric imputation model is likely to

be misspecified[37, 39]. Together, random forest-based imputation may be useful

for imputing complex epidemiologic datasets with either dependent or independent

observations. However, further research is required, and although random forest
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was found to be the best method in this study, there may be scenarios in which

imputation using MERF would be better. For example, in data with larger cluster

sizes that enable the estimation of more complex models (e.g., random slope), and

larger random effects, and for imputing variables that do not exhibit the extreme

positive skewedness typically observed in BMI distributions.

The main strengths of this study were that simulations were performed using real

data and that the analysis was realistically complex. Resampling from a real dataset

yields samples that more accurately reflect the true underlying distributions of the

variables and the possible complex relationships they have with each other, which

may be difficult to recreate in simulated samples. However, this study has several

limitations. First, since samples were drawn from a real dataset and missingness was

artificially simulated to reflect reality, it is unclear if the results of this study can

be generalized to other data sets, such as those with different clustering structures,

assumed missingness mechanisms, and proportion of missing data; to other outcome

types, such as time-to-event outcomes; and to other associations with different effect

sizes. Secondly, this study assumed that there was no woman-specific effect on the

probability of a delivery having a missing pre-pregnancy BMI value. As it is plau-

sible that there may exist within-women differences in the baseline probability of

missingness, investigating the performance of MERF and other imputation methods

in data where missingness in pre-pregnancy BMI is simulated using a random effects

model is an important area for future research. Thirdly, imputation using MERF

(and RF) relies on drawing bootstrap samples from deliveries with complete infor-

mation, and thus does not necessarily preserve the clustering structure of the data.

It is unclear whether imputation of missingness would improve by using a bootstrap-

ping procedure that maintains the clustering structure and should be the subject of

future research. Lastly, to avoid excessive computation time, only 100 simulations

were performed, and 10 imputed datasets were used for the comparisons, which may

have resulted in noisy estimates of between-imputation variability.

In summary, this study investigated the use of a novel tree-based imputation

technique based on mixed-effects random forest and compared its performance to

widely used parametric and nonparametric imputation methods, such as imputation

using a linear model, a linear mixed-effects model, predictive mean matching, and
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random forest. Imputation using MERF was moderately biased when pre-pregnancy

weight was MAR but was severely biased when MNAR. We found random forest-

based imputation to be the least biased and most efficient method for this specific

type of clustered data structure and that this method performed better than impu-

tation methods that both ignore and include clustering in the imputation procedure.

Further research on the use of tree-based imputation methods in data with different

clustering structures, assumed missingness mechanisms, and other outcome types is

needed.
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Births of singleton infants 500 g and 20 weeks gestation
without any major congenital anomalies recorded in the Nova

Scotia Atlee Perinatal Database between 2000 and 2019 
n=166473 births

≥ ≥

Complete-data subset
n=64204 births

Exclusions:
- Implausible value of birthweight z-score
- Incomplete data in any of their first five 
  recorded eligible deliveries

Step 4. Generate 10 imputed datasets where pre-pregnancy
BMI is imputed using MERF and other methods

Imputed MAR
sample i (MERF)

Step 5. Obtain pooled estimates of     and corresponding
standard errors for each set of imputed data for sample i 

Step 3. Estimate parameter using complete-cases (no imputation)

MAR sample i
n=2000 women

Step 1. Select all deliveries from n=2000 randomly selected women

MNAR sample i
n=2000 women

𝛽 ̂ (𝑖)
𝐶𝐶𝐴,𝑀𝑁𝐴𝑅

Complete sample i
n=2000 women

Step 2. Simulate missing data pattern in Table 1 assuming a
MAR and a MNAR mechanism for pre-pregnancy BMI 

Estimate true parameter value (𝛽)

𝛽 ̂ (𝑖)
𝐶𝐶𝐴,𝑀𝐴𝑅

Imputed MAR
sample i (other)

Imputed MNAR
sample i (MERF)

Imputed MNAR
sample i (other)

𝜷 ̂ 
(𝑖)

𝑀𝐴𝑅
𝛽 ̂ 

(𝑖)

𝑀𝐸𝑅𝐹 ,𝑀𝐴𝑅
𝜷 ̂ 

(𝑖)

𝑀𝑁𝐴𝑅
𝛽 ̂ 

(𝑖)

𝑀𝐸𝑅𝐹 ,𝑀𝑁𝐴𝑅

𝛽

Abbreviations: BMI body mass index; CCA complete-case analysis; MAR missing at random;
MERF mixed-effects random forest; MNAR missing not at random

Figure 4.1: Steps to generate samples with missingness according to Table 4.1
assuming a MAR and a MNAR mechanism for pre-pregnancy BMI and to obtain
pooled parameter estimates from multiply imputed datasets after imputing
pre-pregnancy BMI using mixed-effects random forest and other widely used
imputation techniques (normal linear model, predictive mean matching, random
forest, and linear mixed-effects model)



77

14
0

16
0

18
0

20
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Pre−pregnancy height

5010
0

15
0

20
0

25
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Pre−pregnancy weight 204060

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Si
m

ul
at

ed
 d

at
as

et

Pre−pregnancy BMI

C
om

pl
et

e
M

AR
M

N
AR

F
ig
u
re

4.
2:

B
ox
p
lo
ts

of
p
re
-p
re
gn

an
cy

h
ei
gh

t,
w
ei
gh

t,
an

d
b
o
d
y
m
as
s
in
d
ex

(B
M
I)

in
20

of
th
e
10
0
d
at
as
et
s
b
ef
or
e
in
d
u
ci
n
g

m
is
si
n
gn

es
s
(c
om

p
le
te
)
an

d
w
h
er
e
p
re
-p
re
gn

an
cy

w
ei
gh

t
w
as

si
m
u
la
te
d
to

b
e
m
is
si
n
g
at

ra
n
d
om

(M
A
R
)
an

d
m
is
si
n
g
n
ot

at
ra
n
d
om

(M
N
A
R
).
In

b
ot
h
M
A
R

an
d
M
N
A
R

sc
en
ar
io
s,
p
re
-p
re
gn

an
cy

h
ei
gh

t
w
as

si
m
u
la
te
d
to

b
e
m
is
si
n
g
co
m
p
le
te
ly

at
ra
n
d
om



78

4.6 Supplementary Methods 1: Mixed-effects random forest algorithm

Algorithm 2: Mixed-effects random forest

Step 0. Set r = 0. Let bi(0) =
−→
0 q, σ̂

2
(0) = 1, and D̂(0) = 100−1Iq.

while GLL ≥ ϵ do
Step 1. Set r = r + 1.

i) Update y∗i(r) = yi − Zib̂i(r−1), i = 1, . . . , n.

ii) Using y∗ij(r) and xij for i = 1, . . . , n, j = 1, . . . , ni, as the full set of
training responses and covariates, build ntree regression trees using the
random forest algorithm, where each tree is built using a bootstrap
sample drawn with replacement from (y∗ij(r), xij).

iii) Obtain estimate f̂(xij)(r) of f(xij) by taking the mean prediction from
the subset of trees that are built with the bootstrap samples not
containing observation j in cluster i, or the out-of-bag prediction

f̂(Xi)(r) = [f̂(xi1)(r), . . . , f̂(xini)(r)]
T

iv) Update b̂i(r) using

b̂i(r) = D̂(r−1)Z
T
i V̂

−1
i(r−1)(yi − f̂(Xi)(r))

where V̂ i(r−1) = ZiD̂(r−1)Z
T
i + σ̂2

(r−1)Ini for i = 1, . . . , n.

Step 2. Update σ̂2
(r) and D̂(r) using

σ̂2
(r) = N−1

n∑︂
i=1

{ϵ̂Ti(r)ϵ̂i(r) + σ̂2
(r−1)[ni − σ̂2

(r−1)trace(V̂ i(r−1))]}

D̂(r) = n−1
n∑︂

i=1

{b̂i(r)b̂
T

i(r) + [D̂(r−1) − D̂(r−1)Z
T
i V̂

−1
i(r−1)ZiD̂(r−1)]}

where ϵ̂i(r) = yi − f̂(Xi)(r) − Zib̂i(r).
Step 3. Calculate the generalized log-likelihood (GLL) criterion

GLL(f, bi | y) =
n∑︂

i=1

{[yi − f(Xi)− Zibi]
TR−1

i [yi − f(Xi)− Zibi]

+ bTi D
−1bi + log |D|+ log |Ri|}.

end
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5.1 Abstract

Objective: The objectives of this study were to examine the total effect of grand-

maternal [G0] pre-pregnancy body mass index (BMI) on offspring [G2] birthweight

z-score and to quantify the mediation role of maternal [G1] pre-pregnancy BMI.

Methods: Data were extracted from the Nova Scotia 3G Multigenerational Co-

hort. Path-specific effects were estimated using g-computation with adjustment for

confounders identified using a directed acyclic graph. The mean difference in G2

birthweight z-score between observed (no change in G0 BMI) and two counterfactual

scenarios was estimated: 1) fixing G0 BMI to 22 kg/m2; and 2) a 10% gain or loss

in G0 with a BMI <18.5 kg/m2 or >25 kg/m2, respectively.

Results: 20822 G1-G2 dyads born to 18450 G0 were included. If all G0 had a

BMI of 22 kg/m2, estimated mean G2 birthweight z-score would be 0.016 lower

(95% CI -0.034, 0.001) as compared to values from the observed distribution. The

estimated mediated effect by G1 pre-pregnancy BMI was -0.012 (95% CI -0.023, -

0.001). Estimates of the change in G2 birthweight z-score under the ‘10% gain/loss’

scenario were smaller in magnitude.

Conclusions: This study found no strong evidence for an association between grand-

maternal BMI and infant birthweight, but due to inconsistent mediation, maternal

BMI may be implicated in the association.
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5.2 Introduction

The rising trend in overweight and obesity observed in the Canadian population

poses risks for women before, during, and after pregnancy, as well as for their off-

spring. In 2015, 22% of Canadian women aged 18 to 34 were affected by overweight

and 19% by obesity[1]. Women entering pregnancy with overweight or obesity are at

increased risk of adverse maternal, fetal, and neonatal outcomes[2], and require spe-

cialist care, and additional healthcare services, resulting in higher maternity costs

for these women[3]. These issues are especially concerning in Nova Scotia, one of

Canada’s four Atlantic provinces, where more than half of the women entering preg-

nancy were either overweight or obese in 2019[4].

The association between maternal pre-pregnancy body mass index (BMI) and

the health of the first-generation offspring has been well established. A meta-

analysis reported an increased risk of low birthweight in infants born mothers who

are underweight, while infants born to mothers with overweight or obesity have

increased risk of high birthweight and of becoming overweight and obese them-

selves in childhood and adolescence[6]. Several studies have reported an associ-

ation between maternal pre-pregnancy BMI and offspring BMI[164–167] and body

composition[164, 165, 168, 169] in young adulthood. These observed associations and

the heritability of weight via genetic and epigenetic mechanisms have suggested there

may also be an effect of grandmaternal pre-pregnancy BMI on child birthweight.

Evidence for the effects of in utero exposures on second-generation outcomes has

been primarily derived from animal studies but multigenerational studies in humans

are becoming more common. Investigators looking at the association between grand-

maternal body weight measures (BMI, waist circumference, birthweight) and child

birthweight have found little to no associations[9–13]. The results of two studies

that examined grandmaternal pre-pregnancy BMI specifically suggest no large dif-

ferences in child birthweight with each unit (kg/m2) increase (-12 g [p=0.23][12] and

8 g [p=0.32][13]); however both studies were limited by small sample sizes. In ad-

dition, one study inappropriately adjusted for mediators of the association[12], thus

potentially biasing the total effect estimate.

Two intergenerational studies have also investigated potential mediation of associ-

ations between maternal grandmother body weight and child birthweight by maternal
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characteristics[10, 13]. Lahti-Pulkkinen et al.[10] examined the association between

grandmaternal and child birthweight z-score and found that approximately 35% of

the total effect was mediated by maternal birthweight z-score, but the magnitude of

the direct and indirect effects were small (indirect effect: 0.06, 95% CI [0.04, 0.08];

direct effect: 0.13, 95% CI [0.07, 0.18]). Shen et al.[13] found that the effect of grand-

maternal BMI on child birthweight was largely mediated by maternal body weight

(indirect effect via BMI at age 18 and birthweight: 6.6 g per kg/m2, p=0.04) rather

than being a direct effect (1.3 g per kg/m2, p=0.87). Structural equation modeling

(SEM) was used in both studies to assess mediation, and is limited in that it operates

under the assumption that all continuous exposure and mediator variables have a

linear effect, which may be unrealistic in studies of pre-pregnancy BMI.

The findings of some studies suggest that in utero exposure to under- or over-

nutrition is associated with an increased risk of obesity throughout the life course in-

cluding during the reproductive years; ultimately perpetuating the cycle of obesity[63,

170, 171]. Furthermore, evidence for whether the effects of the initial insult persist

beyond the first-generation is limited, and the amount by which changes in pre-

pregnancy BMI mitigate the risk of adverse outcomes in the second-generation has

yet to be adequately estimated. Therefore, the objectives of this study were to es-

timate the total effect of grandmaternal pre-pregnancy BMI on infant birthweight

z-score and to quantify the potential mediated effect by maternal pre-pregnancy BMI

using a large sample of women, their mothers, and their offspring in the Canadian

providence of Nova Scotia.

5.3 Methods

5.3.1 The 3G Multigenerational Cohort

The Nova Scotia Atlee Perinatal Database (NSAPD) is a population-based database

that includes data on all births (delivered infants weighing ≥500 g or at a gesta-

tional age ≥20 weeks) to mothers residing in Halifax County, Nova Scotia, Canada

from 1981 to 1987, and to mothers residing anywhere in Nova Scotia thereafter.

This database grows by approximately 8000 births annually and contains extensive
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information on each delivery including demographics, medical conditions, reproduc-

tive history, delivery events, and neonatal outcomes. Information is collected from

the first prenatal visit in each pregnancy through to discharge from the hospital af-

ter birth admission. Nova Scotia uses a standard prenatal form in addition to forms

completed during the hospital stay associated with the delivery to document relevant

information[157].

The longstanding nature of the NSAPD enabled the establishment of the 3G

Multigenerational Cohort by linking women’s information on their own birth with

information on their own pregnancies and deliveries. The cohort comprises women

whose births had been recorded in the NSAPD and whose pregnancies were subse-

quently also recorded in the NSAPD. More information on the 3G Multigenerational

Cohort can be found elsewhere[30]. For the purposes of the present study, G0 refers

to information related to the grandmother at the point of delivery to the mother,

G1 refers to information related to mother (i.e., birth and neonatal characteristics,

and as an adult, pregnancy and delivery characteristics), and G2 refers to informa-

tion related to the infant. The present study considered singleton pregnancies and

included only the first [G2] live-born infant of the G1 women that survived to seven

days.

This study was approved by the IWK Health Centre Research Ethics Board

(#1023071) and the Joint Data Access Committee of the Reproductive Care Program

of Nova Scotia. This study followed A Guideline for Reporting Mediation Analyses

(AGReMA)[172].

5.3.2 Measurements

Outcome

Birthweight was recorded in grams on the birth record. Gestational age was available

in days and was estimated using information from a dating ultrasound, the last

menstrual period, and, where applicable, embryo transfer; details on the algorithm

can be found elsewhere[173]. Gestational age- and sex-specific birthweight z-scores

were calculated relative to a Canadian reference population[156].
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Exposure and mediator

The exposure of interest was G0 pre-pregnancy BMI. G1 pre-pregnancy BMI was

investigated as a potential mediator of the association between G0 pre-pregnancy

BMI and G2 birthweight z-score. Height and weight were measured or self-reported

at the first prenatal visit. Pre-pregnancy BMI was calculated as weight in kilograms

divided by height in metres squared. Where applicable, BMI categories were defined

according to World Health Organization (WHO) standards[174] (underweight [<18.5

kg/m2], normal weight [18.5 to<25 kg/m2], overweight [25 to<30 kg/m2], obese [≥30
kg/m2]).

Confounding variables

Variables that could confound the exposure-outcome, exposure-mediator, and mediator-

outcome associations were considered in the analysis (Figure 5.2). Variables from

both G0 and G1 included age at delivery (years), area of residence (urban/rural),

area-level income quintile, any smoking during pregnancy (yes/no), and pre-existing

type 1 or type 2 diabetes (yes/no). Variables from only the G0 pregnancy included

parity (0/1/2/≥3 pregnancies that resulted in one or more infants weighing ≥500 g

or ≥20 weeks’ gestational age), hypertensive disorder of pregnancy (yes/no), gesta-

tional diabetes mellitus (yes/no), and G1 birthweight z-score.

Area-level income quintile was used as a measure of socioeconomic status and

is derived by linkage of the postal code of the woman’s residence (neighborhood

income per person equivalent) to national census information[175]. Blood pressure

is measured at each prenatal visit and recorded on the prenatal record to screen

for pre-existing hypertension (<20 weeks gestation) and hypertensive disorders of

pregnancy (≥20 weeks gestation) based on the Society of Obstetrics and Gynaecol-

ogy Canada Guidelines[176]. All women in Nova Scotia are eligible for gestational

diabetes screening according to guidelines set by Diabetes Canada[177].

5.3.3 Statistical analysis

Prior to running analyses, implausible values of birthweight z-score (≥5 in absolute

value) and pre-pregnancy weight (BMI<13 kg/m2, or <35 kg if height was missing)
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were set to missing. Descriptive statistics including means and standard deviations

and percentages, were used to describe the study sample overall and stratified by G0

pre-pregnancy BMI categories (based on mean BMI value imputed in 25 datasets).

For each covariate, pairwise standardized mean differences (SMD)[178] between BMI

categories were computed and then averaged.

As per the AGReMA guidelines, the exposure-mediator (i.e., G0 and G1 pre-

pregnancy BMI) and mediator-outcome (i.e., G1 pre-pregnancy BMI and G2 birth-

weight z-score) relationships were examined visually in fitted smooth functions pooled

from analyses of 25 imputed datasets. Then unadjusted and adjusted estimates of

the association with the independent variable, pre-pregnancy BMI, categorized ac-

cording to WHO standards[174] were obtained from generalized additive models and

results were pooled across 25 imputed datasets using Rubin’s rules[70].

A simplified directed acyclic graph (DAG) (Figure 5.1) shows the assumed re-

lationships among the exposure (X; G0 pre-pregnancy BMI), mediator (M ; G1

pre-pregnancy BMI), outcome (Y ; G2 birthweight z-score), and intermediate con-

founders (Z; G0 hypertensive disorders of pregnancy, G0 gestational diabetes, G1

birthweight z-score, G1 pre-existing diabetes). A detailed DAG including baseline

covariates is shown in Figure 5.2. The total effect (TE) is the expected mean change

in the outcome (G2 birthweight z-score) if the pre-pregnancy BMI of G0 women

could be set to a different value (x) (i.e., hypothetically intervened on) other than

what was observed in the population (x∗). The TE of the exposure on the out-

come was decomposed into a direct effect and two mediator-specific effects[105]. The

direct effect is the effect through neither Z nor M (MS2-NDE-00); the mediator-

specific effect through M is the effect through M but not Z (MS2-NDE-01); and the

mediator-specific effect through Z is all of the effect through Z (MS2-NDE-11)[105].

Refer to Table 5.1 for the counterfactual definitions and description of the total effect

and its three-way decomposition.

Two counterfactual scenarios (i.e., x scenarios) were examined. The first scenario

was selected to represent a scenario where every G0 woman had a pre-pregnancy

BMI of 22 kg/m2 (‘22 kg/m2’ scenario), which is the midpoint of the normal weight

category[174]. The second scenario was selected to represent a less extreme hypo-

thetical shift in BMI where women in the underweight category gained 10% of their
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BMI and women in the overweight/obese category lost 10% of their BMI, while the

BMI of women in the normal weight category remained unchanged (‘10% gain/loss’

scenario). These counterfactual scenarios were compared to the ‘natural course’

scenario[179, 180], which estimates the outcomes that would have been observed had

the conditions been that which occurred naturally in the sample.

G-computation via Monte Carlo simulation was used to estimate the total effect

and the mediator-specific effects described in Table 5.1. In this estimation approach,

regression models fitted to the observed data are used to simulate potential outcome

values that would have been observed had the exposure been determined by inter-

vention rather than what was actually observed[105]. The analysis was performed in

1000 bootstrap samples drawn with replacement where, within each, 100 000 observa-

tions were simulated using generalized additive models (see Supplementary Methods

1 for more details on the simulation procedure). The final estimates were obtained

by averaging across the estimates from the 1000 bootstrap samples. Standard er-

rors estimated from the bootstrap samples were used to construct 95% confidence

intervals. A single stochastic imputation using chained equations (10 iterations) was

used to account for missingness within the bootstrap samples. This method has been

shown to be valid when standard errors are estimated via bootstrapping as opposed

to analytically using Rubin’s variance estimator[111]. Analyses were performed using

R (version 4.1)[160] and RStudio[161].

Identification assumptions

Several assumptions are sufficient to nonparametically identify the direct effect and

the mediator-specific effects in Table 5.2 from the observed data. It was assumed that

the data were generated from a nonparametric structural equation model with inde-

pendent errors[104], and that adjustment for the set(s) of observed covariates enable

control for confounding of the i) X−Y ; ii) M−Y and Z−Y ; iii) X−Z and X−M ;

and iv) Z−M relationships[105]. It was further assumed that there was no variable

that was a confounder of the (M,Z)− Y relationship that was affected by exposure

or a previously occurring mediator (or intermediate confounder)[105]. This last as-

sumption is encoded in Figure 5.2 via a lack of a causal pathway between the node

“G0 pre-pregnancy BMI (X)” to the node of G1 baseline characteristics (“G1 age,
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..., G1 smoking in pregnancy”), and between the node of intermediate confounders

(“G0 GDM, ..., G1 birthweight (Z))” to the node of G1 baseline characteristics.

Since the exposure and mediator variables were continuous, positivity was as-

sessed by calculating propensity scores from models with the independent vari-

able, pre-pregnancy BMI, categorized according to WHO standards[174]. Propensity

scores for the exposure and mediator values (i.e., the probability of being in each BMI

category) were estimated from adjusted multinomial logistic regression models (see

Supplementary Methods for list of covariates included in each model). Propensity

scores near the 0 and 1 boundaries suggest violations of the positivity assumption.

Causal consistency was likely violated and is further discussed in Section 5.5.

5.4 Results

As of April 30, 2021, the 3G cohort included 19583 G0 women (born 1939-1987),

22307 G1 women (born 1981-2006) and 38922 G2 offspring (born 1996-2021). After

excluding twin and other non-singleton deliveries of either G0 or G1 (n=1819), G1

deliveries resulting in stillbirths or early-neonatal deaths (n=238), and the offspring

of G1 women that were not their first delivery (n=16043), the final analysis sample

consisted of 20822 G1 women-offspring dyads born to 18450 G0 women. Charac-

teristics of the analysis sample overall and by G0 pre-pregnancy BMI categories are

shown in Table 5.2. Compared to their mothers, G1 women at the point of their

first delivery were, on average, younger (SMD 0.42), less likely to smoke during preg-

nancy (SMD 0.41), and of higher pre-pregnancy weight (SMD 0.33). Furthermore,

the G0 women in the overweight or obese BMI categories were more likely to be

older, be multiparous, and deliver infants with larger birthweight z-scores compared

to G0 women in the underweight or normal weight categories. The means of G0

pre-pregnancy weight and BMI were 63.8 kg and 23.7 kg/m2, respectively, and the

mean G2 birthweight z-score was -0.03.

The exposure-mediator (i.e., G0 and G1 pre-pregnancy BMI) and mediator-

outcome (i.e., G1 pre-pregnancy BMI and G2 birthweight z-score) relationships were

visually examined (Figure 5.3). G1 pre-pregnancy BMI appeared to increase lin-

early with increasing G0 pre-pregnancy BMI values, while G2 birthweight z-score

appeared to increase linearly with increasing G1 pre-pregnancy BMI for values less
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than 30 kg/m2 and then exponentially thereafter. Estimates of these associations

with categorized pre-pregnancy BMI are shown in Table 5.3.

Estimates of the total effect and mediator-specific natural effects in the analysis

of G0 pre-pregnancy BMI and G2 birthweight z-score under the ‘22 kg/m2’ and ‘10%

gain/loss’ scenarios relative to the ‘natural course’ scenario, expressed as the mean

change in G2 birthweight z-score, are presented in Table 5.4. Overall, there was no

strong evidence of an association between G0 pre-pregnancy BMI and G2 birthweight

z-score in adjusted analyses (‘22 kg/m2 scenario: -0.016, 95% CI [-0.034, 0.001];

‘10% gain/loss’ scenario: -0.006, 95% CI [-0.016, 0.004]). Mediation analyses showed

negative point estimates of the mediator-specific effects via maternal pre-pregnancy

BMI (‘22 kg/m2’ scenario: -0.012, 95% CI [-0.021, -0.003]; ‘10% gain/loss’ scenario:

-0.005, 95% CI [-0.013, 0.004]) and positive point estimates of the natural direct

effects (‘22 kg/m2’ scenario: 0.007, 95% CI [-0.009, 0.023]; ‘10% gain/loss’ scenario:

0.004, 95% CI [-0.019, 0.028]).

5.5 Discussion

Using a large multigenerational cohort of prospectively collected data, we found no

strong evidence to suggest an association between G0 pre-pregnancy BMI and G2

birthweight z-score, but a significant estimate of the mediator-specific effect via G1

pre-pregnancy BMI under the ‘22 kg/m2’ scenario was identified. However, like the

other estimates reported in this study, it was of small magnitude. As expected, esti-

mates of the total effect and mediator-specific effects under the ‘22 kg/m2’ scenario

were larger than those in the ‘10% gain/loss’ scenario since the BMI of G0 women is

shifted more extremely in the ‘22 kg/m2’ scenario (all G0 women to 22 kg/m2) than

in the ‘10% gain/loss’ scenario (G0 women in the underweight or overweight/obese

categories lost or gained 10%, respectively).

In the current study, if the pre-pregnancy BMI of all G0 women could be set

to 22 kg/m2 as compared to if pre-pregnancy BMI values were random draws from

the observed distribution resulted in an estimated average change in G2 birthweight

z-score of -0.016 (95% CI: -0.034, 0.001). As an example, this estimated birthweight

z-score change is equivalent to a decrease in birthweight of 7.2 g (95% CI: 0.4, 15.2)

for male infants born at 37 weeks’ gestation. The small and non-significant total
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effect estimates observed in this study agree with the findings of other studies ex-

amining the intergenerational association of grandmaternal body weight measures

and offspring birthweight. Although not directly comparable due to the different

estimating procedures, Shen et al.[13] and Harville et al.[12] reported estimates of 8

g (p=0.32, 95% CI or SE not reported) and -12 g (95% CI: -32, 8) in G2 birthweight,

respectively, for a 1-kg/m2 increase in G0 pre-pregnancy BMI. However, these stud-

ies had much smaller samples, Shen et al.[13] adjusted only for G0 smoking, G0 SES

and G2 sex, and Harville et al.[12] inappropriately adjusted for possible mediators

(maternal characteristics) of the association.

The estimated indirect effect via maternal pre-pregnancy BMI under the ‘22

kg/m2’ scenario was significant in the current study. This is similar to the findings

of Shen et al.[13], the only other study to examine the mediation role of maternal BMI

in the association of grandmaternal pre-pregnancy BMI and child birthweight. As

opposed to the current study, Shen et al.[13] used a SEM approach to mediation, and

was limited in its ability to control for some confounders (e.g., G0 age) and whether

possible intermediate confounders (e.g., G0 gestational diabetes and hypertension)

were considered is unclear. Stepwise variable selection was used that, combined with

a small sample size, likely resulted in the exclusion of several important pathways

(e.g., maternal birthweight to BMI at age 18) and may have introduced residual

confounding. Lastly, as opposed to the methods used in the current study, SEM ap-

proaches assume all relationships are linear, which may be unrealistic, and does not

provide estimates of the expected mean change in offspring birthweight under dif-

ferent counterfactual scenarios representing hypothetical changes in grandmaternal

pre-pregnancy BMI values.

Inconsistent mediation where direct and indirect effects estimates have opposite

signs was observed in this study. Since the total effect is the sum of the path-specific

effects, inconsistent mediation can lead to situations where the total effect approaches

the null and is non-significant, but mediated effects are significant[181]. The results

of this three-generation study provide new insights into the mediating role of ma-

ternal pre-pregnancy BMI in the association between grandmaternal pre-pregnancy

BMI and child birthweight z-score. Hypothetical shifts in the grandmaternal BMI

distribution towards values within the normal range may result in a decrease in infant
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birthweight z-score indirectly by changing the BMI distribution of the maternal gen-

eration. However, the magnitude of the effect is small, and the results suggest that

if it were possible to intervene on low and elevated pre-gestational BMI, meaningful

changes in birthweight beyond the first-generation are unlikely to occur. Further-

more, although birthweight is a predictor of weight in childhood and adolescence,

it is imperfect, and it may be that the impact of grandmaternal BMI only becomes

evident later in childhood.

The mechanisms underlying the possible effect of in utero exposure to maternal

BMI levels outside of the recommended range and second-generation health outcomes

remain unclear. This may be via genetic mechanisms and shared family environment,

as well as epigenetic changes in the germ-cells of the developing fetus induced by in

utero stressors[182], which can lead to phenotypic changes and increase disease sus-

ceptibility in the second-generation offspring. Transmittance of disease risk may

occur through both the maternal and paternal germlines, but most studies suggest a

stronger relationship along the maternal line[183]. One possible explanation for the

maternal transmission of obesity risk is the inheritance of mitochondria along the

maternal line, which are membrane-bound cell organelles vital to regulating many

biochemical pathways. Animal studies have linked obesity with mitochondrial dys-

function in ooctyes leading to increased risk of metabolic diseases in the subsequent

generation[184] and mitochondrial dysfunction in future generations[185]. Further

research in humans is needed to clarify these mechanisms and their role in the inter-

generational transmission of weight.

Causal interpretation of these results requires strong assumptions of conditional

exchangeability (i.e., no unmeasured confounding), positivity, and consistency[186].

Due to the richness of the data source, it is likely that all relevant clinical con-

founders of the associations under study were accounted for but, like all observational

studies, the possibility of residual confounding cannot be ruled out. An examina-

tion of propensity scores based on pre-pregnancy BMI categories revealed no major

violations to the positivity assumption, but since the exposure and mediator vari-

ables were treated as continuous in the analyses, random violations were likely to

have occurred[186, 187]. G-computation can consistently estimate causal parameters

when the positivity assumption is violated by relying on the parametric models to
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interpolate or smooth over regions of nonpositivity; this, however, relies on correct

specification of the parametric models[186–189].

Lastly, much debate surrounds the relevancy of the effects of exposures like pre-

pregnancy BMI as there may exist multiple ways in which an individual can achieve

a BMI of x (e.g., genetics, medical conditions, diet, and lifestyle), and all may have

different effects on outcomes[27, 190, 191]. Individuals in the study achieve their BMI

via some combination of various mechanisms and so the “intervention” under study

is not simply “assign all individuals to a BMI of x” but rather “assign all individuals

to a BMI of x by changing the way a BMI of x is achieved to reflect that which is

observed in those with a BMI of x in the population.”[27] This is problematic as

it is not entirely straightforward how this intervention could be applied in practice.

In this case, the counterfactual outcome Y (x) is vague and any causal contrasts

involving this potential outcome will be ill-defined and thus violate the consistency

assumption. Despite these issues, pre-pregnancy BMI is still an important risk factor

in pregnancy, and there remains value in exploring its relationship with second-

generation birthweight, even if the hypothetical conditions cannot be translated into

realistic interventions on the population. In light of this, the findings of this study

must be interpreted with caution since the results cannot be linked to a causal effect

of a specific intervention targeted at elevating or lowering BMI.

The main strengths of this study are the use of a large sample of prospectively

collected data and the ability to adjust for many important confounding factors.

Furthermore, the data were collected using standard forms based on obstetric and

hospital records, which leads to reliable and accurate measurements. This study

also applied modern approaches to mediation analysis, which allowed us to control

for intermediate confounding, and estimate causal effects using a flexible modeling

approach that accommodates nonlinear relationships. Lastly, this study looked at

contrasts of hypothetical conditions on the distribution of pre-pregnancy BMI with

a scenario that mimics those that were naturally observed (i.e., no change on the dis-

tribution). Rather than contrasting potential outcomes estimated under a scenario

where if, for example, all G0 women had a BMI of 30kg/m2, contrasts with the ‘nat-

ural course’ scenario provide more information on the effects that the hypothetical

conditions may have in the population from which the sample was drawn, and may
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be a better alternative when examining policy-relevant effects[180].

However, this study is not without limitations. First, the strong assumptions

required to interpret the reported mediator-specific natural effect estimates as causal

effects were likely to be violated as discussed above. Second, a high proportion of

missingness was observed for some variables, including grandmaternal pre-pregnancy

height (information needed to derive the primary exposure variable). Maternal height

has only been routinely recorded in the NSAPD since 2003 and is missing for the

majority of deliveries of the grandmaternal generation. Although a high proportion

of missingness was observed, analyses of multiply imputed BMI values were expected

to be minimally biased since height is likely to be missing at random, the imputation

model contained variables that are both correlated with height (e.g., weight) and

related to its hypothesized missingness mechanism[192] (e.g., delivery year), and the

coefficient of variation for the square of height is small[81] (the denominator of BMI).

Additionally, the 3G cohort does not contain information on the fathers, so only the

investigation of the association along the maternal line could be quantified.

In conclusion, the findings of this study suggest no strong association between

grandmateral pre-pregnancy BMI and second-generation offspring birthweight. Re-

sults of this mediation analysis suggest the possibility of inconsistent mediation where

the direct and indirect effect estimates have opposite signs, yielding near-null esti-

mates of the total effect. The results showed that maternal pre-pregnancy BMI may

be implicated in the association between grandmaternal pre-pregnancy BMI and

offspring birthweight.
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Table 5.1: Counterfactual definition and description of the total effect and of the
components of its three-way decomposition into mediator-specific (MS) effects
where X is the exposure, Z is the joint set of intermediate confounders, M is the
mediator, and Y is the outcome

Effect Counterfactual definition Description

TE E [Y (x,Z(x),M(x,Z(x)))− Y (x∗, LZa∗),M(x∗,Z(x∗)))] Total effect of X on Y

MS2-NDE-00 E [Y (x,Z(x∗),M(x∗,Z(x∗)))− Y (x∗,Z(x∗),M(x∗,Z(x∗)))] Direct effect of X on
Y though neither M
nor Z (X → Y )

MS2-NIE-10 E [Y (x,Z(x∗),M(x,Z(x∗)))− Y (x,Z(x∗),M(x∗,Z(x∗)))] Indirect effect via M
alone (X →M → Y )

MS2-NIE-11 E [Y (x,Z(x),M(x,Z(x)))− Y (x,Z(x∗),M(x,Z(x∗)))] Indirect effect via Z
(X → Z → Y and
X → Z →M → Y )

Abbreviations: NDE natural direct effect; NIE natural indirect effect; TE total effect
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Table 5.3: Estimates of the exposure-mediator and mediator-outcome associations

Unadjusted esti-
mate (95% CI)

Adjusted estimate
(95% CI)

Exposure-mediator associationa Mean difference in G1 pre-pregnancy BMI (kg/m2)
G0 pre-pregnancy BMI

Underweight -2.51 (-2.98, -2.04) -2.56 (-3.02, -2.10)
Normal weight 0.00 (ref) 0.00 (ref)
Overweight 1.72 (1.41, 2.03) 1.84 (1.53, 2.15)
Obese 4.30 (3.93, 4.66) 4.52 (4.16, 4.88)

Mediator-outcome associationb Mean difference in G2 birthweight z-score
G1 pre-pregnancy BMI

Underweight -0.246 (-0.305, -0.187) -0.159 (-0.217, -0.102)
Normal weight 0.00 (ref) 0.00 (ref)
Overweight 0.225 (0.187, 0.264) 0.180 (0.143, 0.216)
Obese 0.281 (0.245, 0.318) 0.220 (0.184, 0.256)

Abbreviations: BMI body mass index; CI confidence interval; G0 grandmaternal; G1 maternal;
G2 infant
a Adjusted for G0 age, parity, rural residence, area-level income quintile, smoking in pregnancy,
pre-existing diabetes, and year of delivery
b Adjusted for G0 age, parity, rural residence, area-level income quintile, smoking in pregnancy,
pre-existing diabetes, gestational diabetes, hypertensive disorders of pregnancy, and year of de-
livery, and G1 birthweight z-score, age, rural residence, area-level income quintile, smoking in
pregnancy, pre-existing diabetes, and year of delivery



98

Table 5.4: Total effect and its three-way decomposition into the direct effect and
mediator-specific (MS) effects in the analysis of grandmaternal pre-pregnancy BMI
and infant birthweight z-score

Effect Adjusted Estimatea (95% CI)

‘22 kg/m2’ scenario ‘10% gain/loss’ scenario

Total effect -0.016 (-0.034, 0.001) -0.006 (-0.017, 0.004)

MS2-NDE-00 0.007 (-0.009, 0.023) 0.004 (-0.019, 0.028)

MS2-NIE-10 (via G1 pre-pregnancy BMI) -0.012 (-0.021, -0.003) -0.005 (-0.013, 0.004)

MS2-NIE-11 (via pathways involving the
joint set of intermediate confounders)

-0.011 (-0.021, -0.002) -0.006 (-0.027, 0.016)

Abbreviations: CI confidence interval; G1 maternal; NDE natural direct effect; NIE natural
indirect effect
a Expressed as the mean difference in birthweight z-score relative to the ‘natural course’ scenario
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G0 pre-pregnancy BMI G1 pre-pregnancy BMI G2 birthweight z-score

Intermediate
confounders

Effects of interest

Direct effect (MS2-NDE-00)
Indirect effect (MS2-NIE-10)

Nuisance effects

Effects through intermediate confounders (MS2-NIE-11)

Figure 5.1: Simplified directed acyclic graph showing the three path-specific effects
from grandmaternal (G0) pre-pregnancy BMI to infant (G2) birthweight z-score
where the direct effect (yellow) and the mediator-specific effect via maternal (G1)
pre-pregnancy BMI (blue) are of primary interest
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G0 age, parity, area of
residence, SES, delivery

year, smoking in
pregnancy 

G0 pre-pregnancy
BMI (X)

G1 age, area of residence,
SES, delivery year,

smoking in pregnancy G0 GDM, hypertensive
disorders of pregnancy, and

G1 birthweight (Z)

G0 pre-existing
diabetes

G1 pre-existing
diabetes (Z)

G1 pre-pregnancy
BMI (M)

G2 birthweight 
z-score (Y)

Abbreviations: GDM gestational diabetes; SES socioeconomic status

Figure 5.2: Directed acyclic graph of the hypothesized relationships among
grandmaternal (G0) pre-pregnancy BMI (X), intermediate confounders (Z),
maternal (G1) pre-pregnancy BMI (M), and infant (G2) birthweight z-score (Y )
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Figure 5.3: Fitted smooth function to the A) exposure-mediator (grandmaternal
[G0] and maternal [G1] pre-pregnancy BMI) and B) mediator-outcome (G1
pre-pregnancy BMI and infant [G2] birthweight z-score) associations pooled from
analyses of 25 imputed datasets. The observed distribution of the independent
variables is shown below
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5.6 Supplementary Methods 1: Mediation analysis via g-computation

G-computation via Monte Carlo simulation was used to estimate the total effect and

the mediator-specific natural effects in Table 5.1. Each half of each of the mediator-

specific natural effects is of the form

E[Y (x,Z(x∗),M(x∗∗,Z(x∗))],

where x ̸= x∗ ̸= x∗∗ are different values of the exposure variable X. Under strong

identification assumptions, the above can be nonparametrically identified from the

observed data by

∫︂
c

∫︂
z

∫︂
m

E[Y | X = x,Z = z,M = m,C = c]

fM(m | X = x∗∗,Z = z,C = c) fZ(z | X = x∗,C = c)fC(c) dmdz dc.[105]

The steps of the g-computation method involve specifying regression models for

each density and expectation in the identifying equations, estimating their param-

eters from the observed data, and then evaluating the integral using Monte Carlo

simulation[110].

The analysis was performed in 1000 bootstrap samples drawn with replacement

where, within each, 100 000 observations were simulated. Within each bootstrap

sample, generalized additive models (with smooth terms for continuous covariates)

for the intermediate confounders (G0 gestational diabetes [GDM], G0 hypertensive

disorders of pregnancy, G1 birthweight, and G1 pre-existing diabetes), the mediator

(G1 pre-pregnancy BMI), and the outcome (G2 birthweight z-score) were fitted.

Model covariates are listed below and inclusion was informed by the directed acyclic

graph in Figure 5.2:

1. Intermediate confounder 1 model (G0 GDM): G0 pre-pregnancy BMI (X), G0

pre-existing diabetes, and G0 baseline covariates (age, parity, area of residence,

socioeconomic status, delivery year, smoking in pregnancy)

2. Intermediate confounder 2 model (G0 hypertensive disorders of pregnancy): G0

pre-pregnancy BMI (X), G0 GDM, G0 pre-existing diabetes, and G0 baseline
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covariates

3. Intermediate confounder 3 model (G1 birthweight z-score): G0 pre-pregnancy

BMI (X), G0 hypertensive disorders of pregnancy, G0 GDM, G0 pre-existing

diabetes, and G0 baseline covariates

4. Intermediate confounder 4 model (G1 pre-existing diabetes): G0 pre-pregnancy

BMI (X), G1 baseline covariates (age, area of residence, socioeconomic status,

delivery year, smoking in pregnancy), G1 birthweight z-score, G0 hypertensive

disorders of pregnancy, G0 GDM, G0 pre-existing diabetes, and G0 baseline

covariates

5. Mediator model: G0 pre-pregnancy BMI (X), intermediate confounders (Z),

G1 baseline covariates, and G0 baseline covariates

6. Outcome model: G0 pre-pregnancy BMI (X), G1 pre-pregnancy BMI (M), in-

termediate confounders (Z), G1 baseline covariates, and G0 baseline covariates

Then G0 and G1 baseline covariate sets were simulated using resampling from the

observed baseline covariates. The exposure variables were simulated to be marginally

independent of the baseline covariates. The ‘natural course’ scenario was simulated

by drawing from the empirical distribution of G0 pre-pregnancy BMI, the ‘10%

gain/loss’ scenario was simulated based on the values of the ‘natural course’ scenario,

and the ‘22 kg/m2’ scenario was simulated by setting all G0 pre-pregnancy BMI

values to 22 kg/m2.

Then, using a sequential approach, values of the intermediate confounders, medi-

ator, and outcome were simulated under each hypothetical condition of the exposure

using the parameters from the models fitted to the observed data. The outcome

model additionally contained an interaction term for the exposure and mediator.

Contrasts of individual potential outcomes were averaged across observations in the

bootstrap sample to estimate the population average estimates of the total effect

and mediator-specific natural effects. The final estimates were obtained by averag-

ing across the 1000 bootstrap samples. Standard errors estimated using the bootstrap

samples were used to construct 95% confidence intervals.
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6.1 Abstract

Objective: Because grandmaternal risk factors and maternal birth characteristics

(G0 predictors) may improve prediction of fetal growth abnormalities, our objective

was to develop and validate a prediction model using these predictors together with

maternal pregnancy characteristics (G1 predictors).

Design: Retrospective cohort study.

Setting: Nova Scotia, Canada, between 1981 and 2011.

Population: A total of 9068 pregnancies to first-born, nulliparous women that re-

sulted in singleton live births after 26 weeks’ gestation, and their mothers.

Methods: The machine learning ensemble Super Learner was used to develop mod-

els for small for gestational age (SGA) and large for gestational age (LGA) using

G0 predictors, G1 predictors, and their combination. Models were validated using

nested cross-validation, and discrimination and calibration were assessed.

Main outcome measures: Infant birthweight for gestational age and sex: SGA

(<10th percentile) and LGA (>90th percentile) relative to a Canadian reference

population.

Results: Discriminative performance, measured using the area under the precision-

recall curve (AUC-PR), increased with the inclusion of grandmaternal factors and

maternal birth characteristics to models fitted using maternal characteristics only

and grandmaternal factors and maternal birth characteristics only (0.21 vs. 0.15-

0.18 for SGA and 0.22 vs. 0.17-0.18 for LGA). Super Learner models fitted using

both sets of predictors were well calibrated.

Conclusions: Grandmaternal factors and maternal birth characteristics modestly

improved the prediction of fetal growth abnormalities as compared to models based

solely on maternal characteristics; however, prediction remains poor. Maternal birth-

weight z-score may be a useful predictor of abnormal fetal growth.



107

6.2 Introduction

Deviations from normal fetal growth are associated with adverse health outcomes

in infants[28]. Small for gestational age (SGA) birth is associated with higher rates

of perinatal morbidity and mortality and increases the risk of neurodevelopmental

deficits, fetal growth restriction, and cardiovascular disease in adulthood[28, 48, 193,

194]. Large for gestational age (LGA) birth is associated with increased risk of birth

injury, typically due to the physical size of the fetus, asphyxia, polycythemia, and

hypoglycemia, and has been linked to obesity, diabetes and cardiovascular disease in

adulthood[28, 48, 49]. Accurate identification of pregnancies at highest risk for fetal

growth abnormalities could improve preconception counselling, antenatal assessment,

and intrapartum care.

Prediction models for SGA and LGA have been developed using routinely col-

lected data readily available in an antenatal setting, including maternal sociode-

mographics, pregnancy risk factors, past pregnancy history, and clinical character-

istics; however, predictive performance remains relatively poor, especially among

nulliparous women. For example, a study validated six prediction models for SGA

and LGA using an independent cohort of 1311 nulliparous women and found discrimi-

native performance, measured as the area under the receiver operating characteristic

curve (AUC-ROC), to be between 0.50-0.66 for SGA and 0.58-0.67 for LGA[114].

Similarly, in a cohort of 14923 nulliparous Nova Scotian women, prediction using

both conventional regression models and machine learning algorithms resulted in

AUC-ROC estimates between 0.63-0.70 for both SGA and LGA[139]. Current efforts

to improve prediction models for early detection of SGA and LGA include adding

ultrasound measurements, biochemical markers, and results of biophysical tests, but

only modest improvements have been reported[115–131] and measurement of some

predictors may be costly, time-consuming, and inconvenient for pregnant women.

Fetal growth is affected by maternal, fetal and environmental factors, uterine con-

ditions, and placental function. Multigenerational studies on the effects of in utero

exposures on second-generation outcomes[8] have also found small to moderate asso-

ciations between grandparental risk factors and child birthweight, including grand-

parental birthweight[9, 10], body mass index (BMI)[11], smoking in pregnancy[14–

19], socioeconomic status[20–23], and diabetes[24, 25], with most studies focusing
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on the maternal line. Despite the well-established associations between maternal

and offspring size-at-birth[29], maternal birth characteristics and grandmaternal risk

factors have not been used for the predicion of SGA and LGA. Furthermore, since

grandmaternal risk factors may act as potential effect modifiers of the maternal-

offspring associations, and relationships between predictors and fetal growth may be

nonlinear, predictive performance may be improved upon by using machine learning

algorithms. Considering that in practice it is impossible to know which machine

learning algorithm will perform best in the data under study, multiple algorithms

can be combined into a single algorithm called a Super Learner[132].

The primary objective of this study was to develop and validate a Super Learner

model for fetal growth abnormalities using grandmaternal risk factors, maternal birth

characteristics, and maternal pregnancy characteristics and compare it with predic-

tion models based on grandmaternal risk factors and maternal birth characteristics

only and on maternal pregnancy characteristics only in a large sample of nulliparous

women in the Canadian province of Nova Scotia. The secondary objective was to

compare the predictive performance of the Super Learner model to other parametric

and nonparametric algorithms in this context.

6.3 Methods

6.3.1 Study population and design

Data were derived from the 3G Multigenerational Cohort[30], which includes women

whose births and their subsequent own pregnancies were recorded in the Nova Scotia

Atlee Perinatal Database (NSAPD). The NSAPD is a population-based database

that contains extensive information on demographics, medical conditions, reproduc-

tive history, delivery events, and neonatal outcomes for each birth to mothers residing

in Halifax County, Nova Scotia, Canada, since 1988, and to mothers residing any-

where in the province thereafter, and grows by approximately 8000 deliveries annu-

ally. Information is collected from the first prenatal visit in each pregnancy through

to discharge from the hospital after birth admission. Nova Scotia uses a standard

Prenatal Record in addition to forms completed during the hospital stay associated

with the delivery to document information relevant to care and medical research. The
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NSAPD is administered and maintained by the Reproductive Care Program of Nova

Scotia, and ensures the quality, integrity, and security of the data. The longstanding

nature of the NSAPD enabled the establishment of the 3G Multigenerational Cohort

by linking women’s information on their own birth with information on their own

pregnancies and deliveries.

As of April 30th, 2021, the 3G cohort consisted of 19583 grandmothers (G0; born

1939-1987), 22307 mothers (G1; born 1981-2006) and 38922 infants (G2; born 1996-

2021). The present study restricted the cohort to singleton pregnancies and the first

delivery of a live-born infant in both the G0 and G1 generations. In addition, only

G2 infants with complete information on gestational age and birthweight, gestational

age ≥ 26 weeks, and a plausible value of birthweight z-score (<5 in absolute value)

were included in the analysis.

This study was approved by the IWK Health Centre Research Ethics Board

(#1023071) and the Joint Data Access Committee of the Reproductive Care Pro-

gram of Nova Scotia. This study followed the Transparent Reporting of a Multivari-

able Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting

guidelines[145].

6.3.2 Outcomes

The two outcomes of interest were infant birthweight for gestational age and sex

relative to a Canadian reference population[156]: SGA (<10th percentile) and LGA

(>90th percentile). Birthweight was recorded in grams on the birth record. Gesta-

tional age was available in days and was estimated using information from a dating

ultrasound, the last menstrual period, and where applicable, embryo transfer; details

of the algorithm can be found elsewhere[173].

6.3.3 Predictors

Two sets of predictors and their combination were considered (Table 6.1). The first

set (G1 predictors) included maternal demographic, pre-pregnancy, and pregnancy

information that was available at 26 weeks’ gestation for the G2 pregnancy. The

second set (G0 predictors) included grandmaternal demographic, pregnancy, and

delivery characteristics at the time of the mother’s birth and the mother’s birth
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characteristics and neonatal outcomes.

Area-level income quintile was used as a measure of socioeconomic status and

was derived from linkage of the woman’s residence postal code to national census

information[175]. Blood pressure was measured at each prenatal visit to screen for

pre-existing hypertension (<20 weeks’ gestation) and hypertensive disorders of preg-

nancy (≥20 weeks’ gestation) based on the Society of Obstetrics and Gynaecology

Canada Guidelines[176]. All women in Nova Scotia were eligible to undergo screening

for gestational diabetes according to guidelines set by Diabetes Canada[177]. Any

smoking reported during pregnancy (first prenatal visit, 20 weeks, or birth admis-

sion), or any alcohol abuse reported at any point in the pregnancy, were used as

proxy measures for smoking and alcohol abuse at 26 weeks. Pre-pregnancy BMI was

calculated by dividing pre-pregnancy weight (kg) by the square of height (m), which

was recorded at the first prenatal visit. Gestational weight gain in pregnancy was

calculated by taking the difference in pre-pregnancy weight and delivery weight (kg),

and at 26 weeks was estimated by

2 + 13

(︃
Delivery weight− Pre-pregnancy weight− 2

Gestational age at birth− 13

)︃
assuming a 2 kg weight gain in the first trimester (13 weeks) and a steady increase

in weight thereafter[195].

6.3.4 Statistical analysis

Implausible values of G1 birthweight z-score (≥5 in absolute value) and of G0 and G1

pre-pregnancy weight (BMI<13 kg/m2, or <35 kg if height was missing) were set to

missing. Descriptive statistics including means and standard deviation, and percent-

ages, were used to describe the study sample overall and by SGA and LGA status.

Standardized mean differences (SMD)[178] between groups defined by SGA and LGA

status were computed for each predictor. Multiple imputation using chained equa-

tions was used to account for missingness in predictors[82]. Since pre-pregnancy

height information (the denominator of pre-pregnancy BMI) was not collected prior

to 2003, it was missing for approximately 90% of births. However, missingness in

pre-pregnancy height and other variables was likely missing at random. Ten imputed
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datasets (10 iterations) were generated where missing values were imputed using ran-

dom forest[88]. Analyses were performed on each of the imputed datasets and results

were pooled using Rubin’s rules[70].

Prediction models for SGA (vs. non-SGA) and LGA (vs. non-LGA) were devel-

oped on G1 predictors only (conventional prediction of SGA and LGA), G0 predic-

tors only, and both G0 and G1 predictors. Models were developed using the Super

Learner algorithm[132] optimized with respect to the Brier score (equivalent to the

mean squared error for predictions). The Super Learner algorithm is a technique that

constructs an optimal weighted average of a set of candidate machine learning algo-

rithms and regression models with weights estimated according to a user-specified

loss function. The resulting Super Learner model has been shown to perform as well

as, or better than, the best algorithm in the ensemble in large samples[135]. The

library of candidate learners consisted of linear algorithms [logistic regression (main

and interaction term models), generalized additive models (GAM)] and a diverse set

of machine learning algorithms [elastic net[146], random forest (RF)[88], tree-based

extreme gradient boosting (XGBoost)[147], and kernel-based support vector machine

(SVM)[148]].

For each imputed dataset, nested cross-validation (10-fold internal and 5-fold

external cross-validation) was used to develop and validate the prediction models.

Machine learning algorithms were tuned by creating a weighted ensemble of the

learner specified with different hyperparameter values (Table 6.2). Models were

evaluated and compared based on discrimination and calibration. Discrimination

was assessed using the area under the precision-recall curve (AUC-PR), which is a

plot of precision (i.e., positive predictive value) vs. recall (i.e., sensitivity) calculated

at all thresholds represented in the data. In the presence of class imbalance (∼10%
SGA/LGA vs. ∼ 90% non-SGA/LGA), performance based on the AUC-ROC may be

misleading because, compared to the PR curve, the false positive rate is less sensitive

to changes in the number of correctly classified positive cases due to the large number

of negative cases[151]. However, to facilitate comparison to other models in the

literature, the AUC-ROC was calculated as a secondary performance metric. The

AUC-PR value that indicates no discrimination is the average prevalence of SGA and

LGA in training samples, and the AUC-ROC value that indicates no discrimination
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is 0.5. Predictive variable importance rankings using the two estimation algorithms

with the largest mean weight in the Super Learner ensemble were calculated. Variable

importance was measured by the increase in Brier score after permuting the values

of each predictor and averaged across imputed datasets.

Calibration, or the agreement between predicted risk from the Super Learner al-

gorithm and the observed risk, was visually assessed using calibration curves fitted

using thin plate splines and decile groups. Data for the calibration curves was cre-

ated by stacking the Super Learner predictions from each imputed dataset when each

observation served in the validation fold. Within each imputed dataset, deciles cal-

culated using the stacked Super Learner predictions were used to group observations

and within each of the 10 groups, the proportion of observations with the outcome

was estimated. Pooled estimates in each group and corresponding standard errors

were used to derive calibration point estimates and confidence intervals. Calibration

was assessed only for the models fitted using both G0 and G1 predictors.

The robustness of the results to more stringent definitions of the outcomes (<3rd

percentile [SGA3] and >97th percentile [LGA97]) was explored in a sensitivity anal-

ysis. All analyses were performed in R (version 4.1.2)[160] and RStudio[161] us-

ing functions primarily from the mice[82], psfmi [196], PRROC [197, 198], Super

Learner [199], wesanderson[200], and ck37r [201] packages and modified R source code

developed by Chris Kennedy[202].

6.4 Results

6.4.1 Study population

Between 1981 and 2021, 9111 pregnancies to first-born, nulliparous G1s resulted in

singleton live births. After removing G2 infants with missing birthweight or gesta-

tional age information (n=27), implausible birthweight z-score values (n=7), and a

gestational age less than 26 weeks (n=9), the final analytical sample included 9068

G0-G1-G2 triads. During this time period, 896 (9.9%) and 902 (9.9%) G2 infants

were born SGA and LGA, respectively. Characteristics of the sample overall and

stratified by SGA and LGA status are shown in Table 6.3. Small differences existed

between the grandmothers of infants born SGA and LGA and those of infants born
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non-SGA and non-LGA (SMD<0.2). However, the mothers of infants born SGA

had lower birthweight z-scores, and, as adults, gained less weight in pregnancy than

mothers of infants born non-SGA, while the mothers of infants born LGA had higher

birthweight z-scores, and, as adults, gained more weight in pregnancy than mothers

of infants born non-LGA.

6.4.2 Discrimination

Cross-validated AUC-PR estimates and 95% confidence intervals for the Super Learner

algorithm fitted using G0 predictors only, G1 predictors only, and both sets of pre-

dictors are shown in Table 6.4, and additionally with estimates for the individual

algorithms in the ensemble in Table 6.5. PR curves for the Super Learner models

fitted using the three different sets of predictors are shown in Figure 6.1. Predictions

improved when using both G0 and G1 predictors (SGA 0.21; LGA 0.22) compared

to using G0 predictors only (SGA 0.15; LGA 0.17) or G1 predictors only (SGA

0.18; LGA 0.18). The same trend was observed in analyses of the cross-validated

AUC-ROC (Table 6.4, Table 6.5, Figure 6.2). Compared to the individual machine

learning algorithms and regression models, in general, the highest AUC-PR estimates

were observed for the Super Learner algorithm across all prediction models (Table

6.5). The predictive performance of GAM was most comparable to that of the Super

Learner, while the AUC-PR for logistic regression was typically less, with the largest

differences observed in models fitted using both G0 and G1 predictors (Table 6.5).

6.4.3 Calibration

The mean predicted risk of SGA and LGA from the Super Learner ensemble (9.9% for

both SGA and LGA, respectively) matched the overall risk in the sample. Calibration

plots (Figure 6.3) indicate good agreement between the predicted risk of SGA and

LGA from the Super Learner and the smoothed actual risk estimated using thin plate

splines. The Super Learner ensemble slightly overestimated the risk of SGA and LGA

when the actual risk was small (<5%) (Table 6.8), but predicted risk estimates were

within the 95% confidence intervals for the actual risk in all decile groups.



114

6.4.4 Super Learner weights and variable importance

To assess the contribution of the individual learners to the final Super Learner pre-

dictions, coefficients (i.e., weights) of the Super Learner model were calculated and

averaged across validation folds and imputed datasets (Table 6.6). Super Learner

weights are calculated so that each is non-negative and their sum is equal to one, with

larger weights indicating greater contribution to the final Super Learner prediction.

Super Learner ensembles often included XGBoost (mean weight 0.40), GAM (mean

weight 0.26), and elastic net (mean weight 0.14) for SGA, and GAM (mean weight

0.48), RF (mean weight 0.27), and XGBoost (mean weight 0.18) for LGA. Similar

key predictors were identified for each outcome and between estimation methods

(Table 6.7), all of which were related to the maternal generation only: birthweight

z-score, gestational weight gain at 26 weeks, and pre-pregnancy BMI.

6.4.5 Sensitivity analysis

The prevalence of both SGA3 and LGA97 was 3.0% in training samples, which rep-

resented the value of no discrimination for AUC-PR. Super Learner predictions im-

proved when using both G0 and G1 predictors compared to using G0 predictors or G1

predictors only, and discriminative performance was better for the outcome LGA97

than SGA3 (Table 6.9). In general, the key predictors for SGA3 and LGA97 (Table

6.10 and 6.11) were similar to those identified in the primary analyses (i.e., maternal

birthweight z-score, weight gain in pregnancy at 26 weeks, and pre-pregnancy BMI).

In the sensitivity analysis, however, maternal smoking in pregnancy was identified

as a useful predictor of SGA3.

6.5 Discussion

6.5.1 Main findings

The current study used a large sample of prospectively collected data on three gen-

erations of Nova Scotians to assess the improvement of prediction models for SGA

and LGA in nulliparous women by adding grandmaternal factors and maternal birth

characteristics. Prediction models were developed using the Super Learner algo-

rithm and included routinely collected data and information readily available in an
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antenatal setting. Predictive performance measured using the AUC-PR and AUC-

ROC increased with the inclusion of grandmaternal pregnancy-related factors and

maternal birth characteristics to models fitted using only maternal characteristics,

but discriminative ability remained poor (≤0.22 AUC-PR and ≤0.71 AUC-ROC).

Models for SGA and LGA were well calibrated. The strongest predictors identified

for both outcomes were all related to the maternal generation, including birthweight

z-score, weight gain in pregnancy at 26 weeks, and pre-pregnancy BMI.

6.5.2 Interpretation

Development of prediction models to identify cases of SGA and LGA before the third

trimester may assist clinical decision-making for obstetrical care and inform which

women may benefit from third trimester ultrasound assessment. Current efforts to

improve early prediction of SGA and LGA include adding ultrasound measurements,

biochemical biomarkers, and results of biophysical tests. The current study, however,

focused on using easily obtainable antenatal information. Other prediction models

using the same percentile cut-offs for SGA and LGA based on maternal character-

istics alone have reported similar AUC-ROC estimates between 0.59 and 0.75 for

SGA and LGA[115, 116, 118, 119, 121, 123, 126, 129–131, 139, 203–205], but few

have considered nulliparous women[114, 121, 131, 139, 203], in whom prediction is

poorer[114, 139]. The AUC-PR estimates from the present study could not be com-

pared to other studies, as we are the first to report this measure of discrimination in

this context.

Prediction of SGA and LGA was moderately improved by the addition of grand-

maternal factors and maternal birth characteristics. AUC-PR estimates increased

from 0.18 to 0.21 for SGA and 0.17 to 0.22 for LGA when these variables were added

to the typical set of maternal predictors. As several studies have shown a significant

association between a mother’s own birthweight and the intrauterine growth of her

offspring[10, 29, 206], the observed increase in performance may be attributed to

the addition of maternal birthweight z-score. For instance, a meta-analysis of three

studies reported a 2.6 times increase in the odds of having a SGA birth in women

who themselves were born SGA compared to women who were born non-SGA[207].

Moreover, the results of a study using the Swedish Birth Register indicated that
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women who were born LGA had twice the odds of having an LGA infant in their

own pregnancy[208]. In the current study, maternal SGA and LGA status was as-

sociated with a two and nearly two and a half times increased risk of having a

(first-born) SGA and LGA birth, respectively, compared to mothers born non-SGA

and non-LGA.

Only two studies considered maternal birthweight in prediction models for SGA

and LGA, but discrimination was poor (AUC-ROC 0.63 for SGA, and 0.59 for

LGA)[121, 131]. In the current study, maternal birthweight z-score was consistently

identified as an important predictor of both outcomes. In an exploratory analysis,

the Super Learner algorithm fitted using maternal predictors and maternal birth-

weight z-score (i.e., ignoring all other grandmaternal predictors) performed as well

as a model that included grandmaternal predictors (AUC-ROC estimates of 0.70 vs.

0.69 for SGA and 0.72 vs. 0.71 for LGA). This suggests that the addition of maternal

birthweight z-score is likely the cause of the increase in predictive performance.

Although the use of machine learning algorithms to predict health outcomes is

becoming more popular[142, 209], their benefit over traditional regression remains

unclear[143]. Machine learning algorithms have the theoretical advantage over logis-

tic regression in that they require no distributional assumptions, no explicit model

specification, and can easily accommodate nonlinearities. For example, an AUC-

ROC estimate of 0.80 was reported for the prediction of SGA using artificial neural

network based on first-trimester maternal characteristics, biochemical and oxidative

stress biomarkers, and gestational weight gain[210]. However, the results of a study

done in the same population as the current study indicated no improvement in model

performance using machine learning algorithms compared to logistic regression for

the prediction of SGA and LGA[139]. In the present study, AUC-PR and AUC-

ROC estimates from the Super Learner were the same or only minimally higher than

those derived from logistic regression models. Since prediction models contained

continuous predictors that were likely to have nonlinear associations with the risk

of SGA and LGA (e.g., birthweight z-score, BMI, and gestational weight gain), it

was expected that the Super Learner algorithm would perform better than logis-

tic regression. Prediction models developed using GAM performed nearly as well as
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the Super Learner algorithm, suggesting nonlinear associations were likely accommo-

dated by splines and meaningful interactions among predictors were unlikely to exist.

Although the Super Learner algorithm did not substantially improve the prediction

of SGA and LGA in the current study, researchers should still consider its use in

other datasets that may be more complex or contain a larger number of predictors.

6.5.3 Strengths and limitations

The main strengths of this study are, first, the use of a large sample of prospec-

tively collected data on a diverse set of variables from three generations of Nova

Scotians. Secondly, this study used a flexible modeling approach to predict fetal

growth abnormalities, which, as opposed to traditional regression-based prediction

models, reduces the risk of bias due to model misspecification. This study also has

several limitations worth discussing. First, a high proportion of missingness was

observed for grandmaternal pre-pregnancy height (information required to calculate

BMI). Maternal height has only been routinely collected in the NSAPD since 2003

and was missing for approximately 90% of G1 births. However, analyses of multiply

imputed BMI values were expected to be minimally biased since height is likely to be

missing at random, and the imputation procedure included variables that are corre-

lated with height. Secondly, this study was limited by the availability of predictors in

the NSAPD, and so other early-pregnancy factors such as racial origin and paternal

characteristics could not be considered.

6.6 Conclusion

Adding grandmaternal risk factors and maternal birth characteristics modestly im-

proved the prediction of fetal growth abnormalities in nulliparous women as compared

to models based solely on maternal characteristics; however, prediction remains poor

and more research is needed to identify useful predictors that can be easily obtained

early in pregnancy. A novel finding of this study is that the results suggest maternal

birthweight z-score to be a useful predictor of abnormal fetal growth.
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Table 6.4: Cross-validated discriminative performance of the Super Learner
algorithm (measured using the AUC-PR and AUC-ROC) for predicting SGA and
LGA fitted using grandmaternal (G0) predictors alone, maternal (G1) predictors
alone, and both G0 and G1 predictors

AUC-PR (95% CI) AUC-ROC (95% CI)

SGA (<10th percentile)
G0 predictors only 0.154 (0.140, 0.170) 0.627 (0.605, 0.648)
G1 predictors only 0.183 (0.164, 0.204) 0.659 (0.637, 0.680)
G0 + G1 predictors 0.213 (0.190, 0.238) 0.688 (0.668, 0.707)

LGA (>90th percentile)
G0 predictors only 0.167 (0.154, 0.182) 0.641 (0.622, 0.660)
G1 predictors only 0.181 (0.162, 0.201) 0.664 (0.643, 0.683)
G0 + G1 predictors 0.217 (0.200, 0.235) 0.705 (0.686, 0.724)

Abbreviations: AUC-PR area under the precision-recall curve; AUC-ROC area under the receiver
operating characteristic curve; CI confidence interval; LGA large for gestational age; SGA small
for gestational age
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Table 6.8: Super Learner predicted risk of SGA and LGA fitted using both
grandmaternal (G0) and maternal (G1) predictors and observed risk estimated
from decile groups and pooled across imputed datasets

Decile SGA (<10th percentile) LGA (>90th percentile)

n Predicted
risk (%)

Observed risk
(%, 95% CI)

n Predicted
risk (%)

Observed risk
(%, 95% CI)

1 907.7 2.9 2.4 (0.4, 4.4) 907.7 3.0 2.4 (0.5, 4.3)

2 907.8 4.3 4.5 (2.5, 6.6) 907.7 4.3 3.4 (1.3, 5.5)

3 907.7 5.4 5.2 (3.1, 7.3) 907.7 5.4 4.8 (2.7, 6.8)

4 907.6 6.5 6.5 (4.1, 9) 907.8 6.4 6.2 (4.1, 8.3)

5 907.8 7.7 7.8 (5.3, 10.2) 907.6 7.6 7.4 (5.1, 9.6)

6 907.6 9.0 9.8 (7.2, 12.4) 907.8 8.9 9.0 (6.4, 11.5)

7 907.8 10.5 10.2 (8, 12.5) 907.7 10.5 10.3 (8.3, 12.3)

8 907.6 12.6 11.7 (8.6, 14.8) 907.6 12.7 13.2 (10.8, 15.6)

9 907.8 15.9 15.5 (12.9, 18.1) 907.8 16.0 17.6 (15.3, 19.9)

10 907.6 24.1 25.3 (23.2, 27.4) 907.6 25.1 25.3 (22.8, 27.7)

Abbreviations: CI confidence interval; LGA large for gestational age; SGA small for gestational
age
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Figure 6.1: Cross-validated discriminative performance using precision-recall curves
estimated from the Super Learner algorithm fitted using grandmaternal (G0)
predictors alone, maternal (G1) predictors alone, and both G0 and G1 predictors
for A) SGA and B) LGA. The AUC-PR value that indicates no discrimination is
the average prevalence of SGA (9.9%) and LGA (9.9%) in training samples and is
indicated by the dotted line
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Figure 6.2: Cross-validated discriminative performance using ROC curves
estimated from the Super Learner algorithm fitted using grandmaternal (G0)
predictors alone, maternal (G1) predictors alone, and both G0 and G1 predictors
for A) SGA and B) LGA. No discrimination is indicated by the dotted line
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Figure 6.3: Calibration plots showing the comparison of predicted risk from Super
Learner algorithms using both grandmaternal (G0) and maternal (G1) predictors
and observed risk plotted on the logarithmic scale for A) SGA and B) LGA.
Calibration point estimates and confidence intervals calculated using decile groups.
Perfect calibration indicated by the red line



Chapter 7

Discussion

The research presented in this thesis is one of the first to examine the effects of

grandmaternal pre-pregnancy BMI and other pregnancy-related factors on child

birthweight in a large cohort of prospectively collected data. Obesity is associated

with numerous health conditions and morbidity, and the persistent increase in the

prevalence of obesity, particularly among young people, is a major health concern.

Pediatric obesity tracks into adulthood and tends to worsen with age, leading to

adverse health outcomes in adulthood. Furthermore, infants born to parents with

obesity are at increased risk of adverse neonatal outcomes, and of becoming obese

themselves in childhood and adolescence, thus perpetuating the cycle of obesity. In

Canada, the estimated economic burden of obesity between 2000 and 2008 increased

by $735 million, from $3.9 to $4.6 billion[211]. This emphasizes the growing urgency

of a better understanding of the transmission of weight across generations in the

Canadian population in pursuance of more effective intervention strategies.

Although population-based studies of the intergenerational effects of maternal

health are clearly needed, multigenerational studies are difficult to conduct[212].

Assessing effects using randomized controlled trials is unethical, and any type of

prospective study is unfeasible due to the length of follow-up time. Like the present

research, most multigenerational studies rely on birth registers and existing cohorts,

which were not created to specifically address multigenerational questions. Studies

of this kind not only inherit the limitations of the existing data, but are faced with

new challenges, such as those related to clustering and missing data. The clustering

feature of birth registers and perinatal databases is akin to a repeated-measures

study design but is complicated by individuals with differing numbers of deliveries,

variable time between deliveries, and many having only one delivery. This structure,

however, presents a unique opportunity to assess new imputation techniques that

incorporate the correlation among observations. Few imputation strategies do this,
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and those that do may not be well suited to handle this complex structure.

Of particular concern in studies focusing on correlated BMI information, like

those in Chapters Five and Six, is that this variable is prone to missingness and may

be MNAR. As multiple imputation methods assume data to be MAR, this tends

to be the missing mechanism under which new imputation techniques are assessed.

However, since MNAR is indistinguishable from MAR in observed data, evaluating

the robustness of new techniques to violations of this assumption is valuable. Us-

ing data with induced missingness originally sampled from a subset of the NSAPD

that consisted of approximately 50% singleton clusters, the results of Chapter Four

suggested that imputation using the recently proposed tree-based algorithm MERF

was moderately biased in analyses of pre-pregnancy BMI when weight was simulated

to be MAR, but was severely biased in MNAR scenarios. This method performed

worse than random forest, which was found to be the least biased and most efficient

method evaluated in both MAR and MNAR settings. Contrary to other studies

in the literature that used a model-based simulation approach, this study induced

missingness in data from a real perinatal database to better reflect reality and main-

tain the natural relationships among the variables. Based on the results of Chapter

Four, random forest-based imputation may be the best strategy when faced with

missingness in similarly structured datasets.

The results in Chapter Four also add to the evidence supporting machine learning-

based imputation algorithms in complex datasets, such as those that have dependent

observations or highly correlated variables. With increasing complexity of the data,

correctly specifying the imputation model can be difficult, especially when nonlinear

effects and interactions are suspected. Unlike parametric-based imputation methods,

those that are based on machine learning algorithms, like random forest, do not

require explicit specification of the imputation model and, as suggested in Chapter

Four, may outperform parametric-based imputation in some settings. Findings from

this research guided the imputation of missing data in the studies from Chapters

Five and Six, and will help inform multiple imputation procedures in future studies

that use the NASPD, the 3G cohort, and other perinatal databases with similar data

structures.
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The 3G cohort enabled two intergenerational studies of grandmaternal pregnancy-

related characteristics and fetal growth: one with the goal of estimating mediator-

specific natural effects (Chapter Five), and one with the goal of improving predictions

for abnormal fetal growth in the nulliparous population (Chapter Six). The potential

benefits of assessing etiologic mechanisms of the transmission of weight can highlight

opportunities for intervention that can lessen both the economic and personal bur-

den associated with obesity. In light of this opportunity, research in Chapter Five

examined the possible downstream impact on child birthweight under alternative

hypothetical conditions on the distribution of grandmaternal pre-pregnancy BMI.

The findings of this study suggested no strong evidence for an association between

grandmaternal pre-pregnancy BMI and child birthweight after accounting for mea-

sured confounders. Moreover, only negligible estimates of the natural direct effects

and mediator-specific effects via maternal pre-pregnancy BMI were found.

In studies of grandmaternal and child body weight measures, mediation by ma-

ternal factors is seldom examined, and those that have, typically relied on traditional

approaches to mediation analysis. Traditional approaches to mediation analysis have

been shown to be limited in many settings[26], but remain the most popular approach

to mediation in observational studies. For example, in a 2022 meta-analysis of fifty

observational studies, only five stated that they applied modern approaches to me-

diation analysis[112]. The research in Chapter Five, however, used methods based

within the counterfactual framework, which enabled more intuitive interpretations of

the direct and indirect effects by considering different hypothetical conditions on the

distribution of grandmaternal pre-pregnancy BMI. Estimates defined as contrasts of

potential outcomes leads to a straightforward understanding of the possible impact

on the outcome under different “what if” conditions on the exposure. These defini-

tions are particularly useful when models contain interactions and nonlinear terms;

situations where interpreting effect estimates from traditional mediation analyses

is difficult. Unlike other studies, this study was able to control for a rich set of

exposure-mediator, exposure-outcome, and mediator-outcome confounders, and ac-

count for possible intermediate confounders when exploring the possible role of ma-

ternal pre-pregnancy BMI in the association between grandmaternal pre-pregnancy

BMI and child birthweight.
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Causal interpretation of the mediation results presented in Chapter Five requires

strong assumptions that were unlikely to have been met. Of particular concern was

the violation of the consistency assumption. This topic has been the subject of much

debate in the causal inference literature, with many arguing the relevancy of exposure

variables like BMI as there may exist multiple ways in which an individual can achieve

a BMI of x (e.g., genetics, medical conditions, diet, and lifestyle), and each of these

may have a different effect on the outcome[27, 190, 191]. When estimating the causal

effect of BMI, causal inference methods use information on individuals with low

BMI to predict counterfactual outcomes (e.g., potential outcomes if all individuals

had a BMI of 22 kg/m2) for individuals with high BMI. Contrasts involving these

potential outcomes cannnot be interpreted as the effects of an intervention targeted at

lowering BMI. Individuals with a low BMI may have achieved this by a combination

of mechanisms, and not necessarily by the action of the intervention, and so data

on these individuals is not representative of the consequences associated with this

intervention. Hernán and Taubman[27] also argue the difficulty of identifying relevant

confounders and the increased probability of violations of the positivity assumption

as a result of ill-defined exposure variables.

Despite these issues, pre-pregnancy BMI is still an important risk factor in preg-

nancy. Weight and height information are routinely collected, making BMI readily

available in large representative samples. Although hypothetical conditions on the

distribution of BMI cannot be translated into meaningful interventions, there re-

mains value in exploring its relationship with first- and second-generation outcomes.

Studies like that in Chapter Five may provide insight into the possible mechanisms

involved with the transmission of weight, and may help generate hypotheses that

could be followed up with further research using more well-defined exposure vari-

ables.

Although the results of Chapter Five suggested no strong evidence for an asso-

ciation between grandmaternal pre-pregnancy BMI and child birthweight, findings

from Chapter Six demonstrated that intergenerational variables, such as maternal

birthweight information, were still useful for predicting abnormal fetal growth in

nulliparous women. AUC-PR estimates increased from 0.18 to 0.21 for SGA and

0.17 to 0.22 for LGA when grandmaternal factors and maternal birth characteristics
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were added to the typical set of predictors on maternal information. Identifying

which infants are at highest risk of abnormal growth may help in clinical decision-

making related to obstetrical care, inform which women may benefit from third

trimester ultrasound assessment, and may also help with the long-term management

of these infants to avoid, or at least mitigate the risk of chronic disease in adulthood.

This study was the first to use an ensemble machine learning technique (i.e., Super

Learner) for predicting SGA and LGA and will help inform other studies of this kind.

Prediction models based on machine learning algorithms are becoming more com-

mon in the field of obstetrics and gynaecology[213], but in general, whether they offer

substantial benefit over logistic regression remains unclear[143]. Machine learning

algorithms theoretically have advantage over logistic regression in that they make

no distributional assumptions, do not require explicit specification of a regression

model, and can capture nonlinear associations between the predictors and the out-

come. However, Chapter Six found discriminative performance of the Super Learner

algorithm for predicting fetal growth abnormalities to be the same or only minimally

better than that of logistic regression. The slow uptake of machine learning algo-

rithms in this field may be attributed to their shortcomings. Compared to logistic

regression, machine learning algorithms require more skill to implement, have greater

computational requirements, and are less easily interpreted. The mechanics underly-

ing these algorithms are harder to understand. This limitation may affect clinicians’

trust and acceptability of these models.

An additional aspect of this research was applying machine learning algorithms

outside of the typical prediction setting (Chapter Six) for which they were designed.

Modern causal inference methods based on the counterfactual framework, like the g-

computation procedure used in Chapter Five, involve predicting potential outcomes

prior to calculating the desired estimate. Similarly, multiple imputation techniques,

like MERF and random forest-based imputation used in Chapter Four, involve pre-

diction to impute missing data values. These pre-final prediction steps in causal

inference methods and multiple imputation can be thought of as “nuisance” steps,

meaning they are necessary to obtain unbiased results, but do not directly lead to the

quantity of interest. Traditionally, regression models have been used to achieve these

“nuisance” steps, but, like the research in this thesis suggests, better predictions may
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be obtained by exploiting the benefits of machine learning algorithms[214, 215].

It is, however, important to recognize the limitations of incorporating machine

learning algorithms in singly-robust methods like the g-computation procedure used

in Chapter Five. G-computation, like inverse probability of treatment weighting, is a

singly-robust method because, in the context of estimating the average causal effect

for example, it relies on only one nuisance function to estimate potential outcomes,

namely a model for the outcome mechanism (i.e., E[Y | X = x]). As a result, singly-

robust estimators require fast convergence of the nuisance model, thus limiting the

use of algorithms with slower converging rates like machine learning algorithms[216].

Moreover, it is currently unknown whether bootstrapping procedures are valid for

g-computation when more data-adaptive methods are used to estimate the nuisance

model[216].

These challenges with singly-robust estimators led to the development of sev-

eral double-robust methods, such as the augmented inverse probability of treatment

weighted estimator and targeted maximum likelihood estimation (TMLE)[135, 217].

To estimate the average causal effect, these methods rely on two nuisance functions,

one for both the outcome and exposure mechanisms, and if either mechanism is

correctly estimated, then the resulting point estimate will be consistent[217–219].

Even when machine learning algorithms are used to model the outcome and treat-

ment mechanisms, these methods have a number of desirable asymptotic properties,

including construction of valid CIs[220]. Parametric g-computation was used to per-

form the mediation analysis in Chapter Five, but predictions may have improved by

using a double-robust estimator like TMLE coupled with the Super Learner algo-

rithm. Although double-robust estimators have been integrated into causal media-

tion analysis[221, 222], estimation in the presence of intermediate confounding and

continuous mediators and intermediate confounders pose significant challenges and

remains an area of future work[223].

Computational challenges were encountered in this work when implementing the

Super Learner algoithm in Chapter Six and investigating the use of MERF to impute

pre-pregnancy BMI values in Chapter Four. These challenges highlight the issue that

infrastructure and computational resources remain a barrier when attempting to use
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machine learning algorithms in large datasets. Some Canadian health care organi-

zations, like the SickKids Research Institute[224], have implemented high powered

computing infrastructure using a secure cloud-based platform. However, as high pow-

ered computing infrastructure can be costly, and many organizations are hesitant to

move to a cloud-based platform due to issues related to cost and security, this lack of

infrastructure remains an obstacle, particularly when using personal health records

in Nova Scotia. Practicality, feasibility, and a realistic assessment of the possible

gain in using computationally intensive methods, like machine learning algorithms,

should be considered when faced with limited resources and the choice of a using a

simpler model.

The findings of the research presented in this thesis lay the groundwork for future

studies using the NSAPD and the 3G cohort. An underlying theme of this work was

the intergenerational transmission of weight, but the 3G cohort presents unique op-

portunities to study other associations between antenatal and prenatal exposures and

health outcomes in the first- and second-generation offspring. For example, the 3G

cohort can be used to examine a woman’s in utero exposure to excessive gestational

weight gain, GDM, and hypertension, with her own pregnancy complications and her

offspring’s birthweight. Furthermore, inclusion of additional variables and linkages

to other datasets would allow for the effects of in utero exposures on long-term child

health outcomes to be assessed.

Limitations of the individual contributions of this thesis were raised in the dis-

cussion section of each manuscript. The primary limitations of this work as a whole

will be briefly discussed. First, maternal height, the denominator of BMI, has only

been routinely collected in the NSAPD since 2003 and was largely incomplete for

the grandmothers. The study in Chapter Four helps to inform how this missing data

should be handled, but it is important to recognize that the results of simulation

studies may not generalize to all situations. Additionally, we must always remember

that the missing values were, in fact, missing in the first place, and imputation is an

imperfect tool. Secondly, the NSAPD and 3G cohort do not contain information on

the fathers (or grandfathers), so only the maternal line could be examined. Paternal

information could have been incorporated in all studies of this thesis, and expanding

the scope of these objectives to paternal information is an important area of future
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research.

This thesis will inform further investigation into the appropriate treatment of

missing data in complex data structures, the examination of the association between

maternal exposure to adverse intrauterine conditions and the short- and long-term

health of her offspring, and the assessment of the ability of intergenerational infor-

mation in predicting second-generation health outcomes. Together, these comple-

mentary investigations offer notable contributions to the etiological knowledge of the

transmission of weight along the maternal line.
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Table A.3: Definitions and coding of variables in the Nova Scotia Atlee Perinatal
Database that were abstracted for the studies in Chapters Four, Five, and Six.

Definitions Variable type/coding

Maternal characteristics

Age [years] Age at delivery collected at the first
prenatal visit

Continuous (truncated at 15
and 45 years)

Parity Number of pregnancies, excluding the
present pregnancy, which resulted in an
infant weighting ≥500 g or ≥20 weeks
gestational age, recorded at the first
prenatal visit

Categorical (0, I, II, III+)

Marital status Marital status at the first prenatal visit Binary (1=married,
common-law; 0=otherwise)

Area-level income quintile Area-based socioeconomic measure of
neighborhood income per person
equivalent derived by linkage to national
census information

Categorical (Q1, Q2, Q3,
Q4, Q5)

Area of residence Determined by woman’s postal code
recorded on the hospital admission form

Binary (1=urban, 0=rural)

Pre-pregnancy weight [kg] Weight at the first prenatal visit collected
by self-report or measured

Continuous

Pre-pregnancy BMI [kg/m2] Derived variable from pre-pregnancy
weight (kg) and height (m)

Continuous

Delivery weight [kg] Weight at delivery reported on the
maternal admission assessment

Continuous

Smoking during pregnancy Any smoking reported at the first prenatal
visit, at 20 weeks, or at delivery is
considered as smoking during pregnancy

Binary (1=smoking, 0=no
smoking)

Pre-existing hypertension Hypertension at < 20 weeks Binary (1=yes, 0=no)

Hypertensive disorders of
pregnancy

Hypertension at ≥ 20 weeks Binary (1=yes, 0=no)

Pre-existing diabetes Presence of pre-existing diabetes mellitus
(type 1 and type 2) reported on the
prenatal record or the hospital discharge
form

Binary (1=yes, 0=no)

Gestational diabetes mellitus Presence of gestational diabetes mellitus
derived from results from the glucose
challenge test and the oral glucose
tolerance test, or from admission forms at
the time of delivery

Binary (1=yes, 0=no)
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Definitions Variable type/coding

Mode of delivery Type of delivery (Caesarean section or
vaginal birth) and the stage of labour at
which the Caesarean section was
performed is recorded on the birth record

Binary (1=Caesarean
section, 0=vaginal birth) or
categorical (0=vaginal birth,
1=Caesarean section before
onset or 2nd stage of labour,
2=Caesarean section after
2nd stage of labour)

Neonatal characteristics

Birthweight z-score Gestational age- and sex-specific
birthweight z-scores relative to a
Canadian reference population[156]

Continuous

SGA Infants born with a birthweight z-score
<10th percentile according to reference
population

Binary (1=SGA,
0=non-SGA)

LGA Infants born with a birthweight z-score
>90th percentile according to reference
population

Binary (1=LGA,
0=non-LGA)
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