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Abstract

Likelihood ratio based confidence intervals often better accommodate asymmetric un-

certainty about parameter estimates compared to other likelihood-based approaches.

In practice, likelihood ratio tests (LRT) are mostly determined by chi-square thresh-

olds or parametric bootstrapping thresholds, which give valid coverage probabilities

under the assumption that parametric models are correct. But, in settings where

likelihood estimation is robust to model misspecification, it is often the case that the

likelihood theory leading to hypothesis tests and confidence intervals breaks down.

In this work, a nonparametric bootstrapping approach to LRT was developed to

determine the critical value for misspecified data in the context of quantile regression

models. The performance of the nonparametric LRT is compared with commonly

used tests via simulated and real data. Examples of asymmetric Laplace distribution

and quantile regression will be focused upon in the comparison. In addition a fast

normal approximation of percentile method is derived in this thesis.

This thesis will show that compared to the Wald test, chi-square LRT, percentile

method, and percentile-t method, the nonparametric bootstrapping likelihood ra-

tio test often provides better confidence intervals. Finally, methods are illustrated

through a real data example.

x
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Chapter 1

Introduction

Maximum Likelihood (ML) estimation is one of the most widely used statistical esti-

mation methods, as introduced by R. A. Fisher (1922) [11]. A proper ML estimation

process requires that probability models are correctly assumed. However, it is often

challenging to develop precise probability models for data. In reality, ML estimation

may be applied by a wrong parametric family. P. J. Huber (1967) modified Wald’s

proof of consistency of ML estimator (MLE) [28] to deal with misspecified models

[15]. When the model is misspecified, the MLE converges on the parameter minimiz-

ing Kullback-Leibler’s (KL) divergence [22] between the true generating distribution

for the data and model under ML estimation. The parameter that minimizes KL

divergence need not be the true quantity of interest. Thus ML estimation is not

generally consistent under model misspecification.

Examples of cases where ML estimation is consistent include ML estimation of

means and covariances under a normal model; ML estimation of regression parame-

ters are usually consistent when estimated with normal errors having constant vari-

ance even if the errors are non-normal and variances are heterogeneous in some way

[13]; ML estimation of some parameters in regression models can be correct even

if errors are correlated[2]. Examples of cases where ML estimation is not generally

consistent include ML estimation of the 90th pecentile fitted to a normal model when

the data are non-normal.

Even in cases where ML estimation is consistent, standard tests like the Wald test

and likelihood ratio test are not robust under misspecified models [29]. The coverage

probability of a 95% confidence interval need not be 0.95, for instance. In this thesis

we investigate how to make confidence intervals robust to estimation under model

misspecified conditions.

Nonparametric bootstrapping approaches can be used to improve confidence in-

terval constructions when the model is misspecified. These methods include the

1
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bootstrap percentile and the bootstrap percentile-t methods. For bootstrap meth-

ods, the robustness of estimated confidence intervals increases as sample size increaes.

The percentile-t confidence interval are expected to have coverages that converge to

nominal level even faster than the percentile confidence interval [9].

It has not been appreciated that nonparametric bootstrapping can be used with

likelihood ratio (LR) tests. LR tests may have advantages because they allow asym-

metric intervals which are more natural for confidence intervals of quantities like

quantiles that tend to have skewed sampling distributions. A major focus of this

thesis will be the properties and application of LR tests with nonparametric boot-

strap thresholds instead of chi-square thresholds in this thesis.

Quantile estimation and regression will be a focus throughout the thesis. Quan-

tile estimation is a data-dependent estimation method that estimates conditional

quantiles of the data[27]. It is valuable to obtain information about extreme quan-

tiles conditional on data, for instance, in medical studies involving children and

seniors, where questions about unusual growth patterns or longevity are questions

best thought of as dependence of extremes on covariates. The goal of quantile regres-

sion in this thesis is to understand how extremes depend on covariates as opposed

to averages (usual reqression). In quantile regression model the regression term is

intended to be the τth quantile given that an individual with covariate x. The asym-

metric Laplace (AL) density are considered in quantile regression by Koenker and

et. (1999) [20] an allow consistent estimation of quantile regression.

The rest of the thesis are organized as follow. Chapter 2 reviews the likelihood

inference used in AL distribution (ALD) and quantile estimation, and its compara-

ble methods Wald test and chi-square LRT. Chapter 3 reviews the basic resampling

method, bootstrapping, and discusses some alternative CI estimation methods like

percentile method and percentile-t method. Chapter 4 presents the nonparametric

bootstrap likelihood ratio test procedure and discusses the advantage of nonparamet-

ric bootstrap threshold over chi-square threshold in estimation. Chapter 5 introduces

ALD and the likelihood inference of ALD. Chapter 6 discusses properties of confi-

dence intervals. Methods for using nonparametric bootstrapping with LR tests are

developed and a fast normal approximation to the percentile method is given. Chap-

ter 7 gives the results of the simulation study for nonparametric bootstrap likelihood
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ratio test set side by side with the Wald test, the chi-square t test, the percentile

method and the percentile-t method. The performance of these methods are com-

pared by comparing properties such as the width of their confidence intervals (CI)

and their coverage probabilties. Chapter 8 presents the performance of nonparamet-

ric bootstrap likelihood ratio CIs for quantile regression in both simulation study and

practice, comparing to the percentile method under normal approximation. Finally,

conclusions and future work introductions are made in Chhapter 9.



Chapter 2

Standard Likelihood Inference

In this chapter, we discuss the properties of the ML estimation and two classic meth-

ods of hypothesis testing. ML estimation often gives unbiased estimators (Section

5.4.3 from [24]), and the widely used Wald test and LRT are ML methods. The

LRT is often the locally most powerful test (Section 5.4.4 from [24]). Thus, CIs

corresponding to LRT are often uniformly most accurate regions.

2.1 Maximum Likelihood Estimation

ML estimation originally introduced by R.A Fisher in the 1920s [1], is a broadly

applicable parameter estimation procedure. ML estimation has a number of op-

timal properties including sufficiency (complete information of data), consistency,

efficiency (lowest asymptotic variance of estimated parameter) and parameterization

invariance. The principle of ML estimation is to make the observed data most likely

for a given probability distribution with estimated values of parameters.

Assume a parametric distribution f(y|θ) with parameter vector θ = (φ, λ). Sup-

pose we are only interest in parameter set φ and let λ denote the rest of the param-

eters. Note that a special case corresponds to φ = θ, in which case we are doing full

ML estimation.

The likelihood measures the goodness of fit of a statistical model to a given

sample. The likelihood function is the joint probability density of y1, ..., yn, where

we treat the sample space as fixed observations but parameter set φ as unknowns

over parameter space. The likelihood function is represented as

L(φ, λ|y1, ..., yn) =
n∏

i=1

f(yi|φ, λ).

The log likelihood function is the natural logarithm transformation of likelihood

function, which often simplifies the format of density function because converts a

4
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product to a sum and eliminates the exponential part. The log likelihood function

is represented as

l(φ, λ|y1, ..., yn) =
n∑

i=1

log(f(yi|φ, λ)).

ML estimation is a procedure to estimate parameters from an assumed distribu-

tion f(yi|φ, λ). The MLE of parameters of interest, φ̂, is a set of parameters that

maximizes the likelihood function or log likelihood function in parameter space.

If the density function is differentiable, then the φ that maximizes the likelihood

function can often be determined by first derivative test. Thus MLE of φ can be

evaluated from
dL(φ|y1, ..., yn, λ)

dφ
= 0.

Due to the monotonic property of the natural logarithm, φ̂(λ) can usually also be

evaluated by setting the first derivative of the log likelihood function l(φ|y1, ..., yn, λ)
to zero, assuming the log likelihood function is differentiable.

MLEs are usually consistent (φ̂ converges almost surely to true parameter set φ)

and efficient (φ̂ converges in distribution to a Normal distribution with minimum

variance among all estimators that are approximately normal). Accordingly, the

MLE of λ can be evaluated in general given φ,

dL(λ|y1, ..., yn, φ)
dλ

= 0 or
dl(λ|y1, ..., yn, φ)

dλ
= 0,

which can be indicated as λ̂(φ̂).

2.2 The Wald Test

The Wald test is a widely used sample-based statistical test. It can be used to

test if the true parameter set of interest equals to some particular values. The

results of Wald test indicate the difference between ML estimated parameters and

the parameters under null hypothesis. Since we are only interested in φ, a scalar

parameter in the parameter vector θ = (φ, λ), we assume a null hypothesis for φ,

H0 : φ = φ0, in which case φ0 is known.

The standard error of φ̂, se(φ̂), can be calculated as the square root of the in-

verse Fisher information. The Fisher information contains all the information of φ
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that can be explained by observations. The Fisher information is an expectation of

the observed Fisher information. The observed Fisher information is evaluated as

the negative second derivative of log likelihood function. The expression of Fisher

information can be written as

In(θ) = Eφ

[−d2l(θ|y1, ..., yn)
dθ2

]
.

Note that In(θ) is a symmetric (p+ q)× (p+ q ) dimensional matrix where p is the

dimension of φ and q is the dimension of λ. Likelihood theory (Section 5.3.3 from

[24]) gives that θ̂ is approximately N(θ0, In(θ̂)
−1). Thus a standard error for θ̂j can

be obtained through

se(θ̂j) =

√
[In(θ̂)−1]jj. (2.1)

As a special case when p = 1, the standard error calculated from the appropriate

entry of (2.1) is denoted as se(φ̂). Thus, the se(φ̂) will be calculated by replacing the

Fisher information matrix of θ into I(φ̂, λ̂(φ̂)). The Wald test uses the result that

φ̂ is asymptotically normal distributed with the mean equal to φ0 and the standard

error se(φ̂). Thus, φ̂ − φ0 follows a Normal distribution with standard deviation

se(φ̂), which is equivalent to

φ̂− φ0

se(φ̂)
∼ N(0, 1).

Let Φ−1(α/2) denote the 100α/2th percentile of standard normal distribution,

then

P
(
Φ−1(α/2) ≤ φ̂− φ

se(φ̂)
≤ Φ−1(1− α/2)

)
= 1− α,

which equivalent to

P
(
φ̂− Φ−1(1− α/2)se(φ̂) ≤ φ ≤ φ̂− Φ−1(α/2)se(φ̂)

)
= 1− α.

Thus, a CI corresponding to the Wald test with coverage probability equals 1−α,

is given by [
φ̂− Φ−1(1− α/2)se(φ̂), φ̂− Φ−1(α/2)se(φ̂)

]
,

where φ̂ − Φ−1(1 − α/2)se(φ̂) gives us the lower bound of Wald test and φ̂ −
Φ−1(α/2)se(φ̂) gives the upper bound. The version of the Wald test that I have

described is the dual test to the usual Wald CIs. Some versions of the Wald test take

into account the information that H0 provides about the variance of φ̂ and replaces

In(θ̂) with In(φ0, λ̂(φ0)) in calculating the standard error.
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2.3 Likelihood Ratio Tests Using Chi-Square Distributions

There are three classic methods to approach hypothesis tests, including the Wald

test (as discussed above), the score test, and the likelihood ratio test. The LRT

assesses the goodness of fit between competing statistical models, based on the ratio

of the likelihoods. In the LRT estimation of variance is not necessary. The LRT is

not only transformation invariant, but also range preserving. Moreover, the LRT is

often locally most powerful.

The LRT tests whether the null hypothesis that the simpler of two nested models

is correct for a given sample set. The first model is given by the alternative hypoth-

esis, and the likelihood for it is obtained by maximizing over the entire parameter

space. The second model is given by the null hypothesis under some constraints,

which places some constraints on the values that the parameter can take on.

Thus, the null hypothesis can be written as H0 : θ ∈ Θ0, which imposes that the

true parameter θ is in a possible parameter space Θ0. In this model,

l(θ̂0) = sup
θ∈Θ0

l(θ)

The alternative hypothesis, can be written as Hα : θ ∈ Θα. θ is in another group

of parameter space Θα, which is in the complement of Θ0. The log likelihood under

the alternative hypothesis is the maximized log likelihood.

l(θ̂) = sup
θ∈Θα

l(θ)

The reason for this result is that usually Θ0 is a set of measure 0 in the larger

space Θ. So the supremum over Θ or the complement of Θ0 give the same value.

The likelihood ratio test statistic can be defined by

W = −2
(
l(θ̂0)− l(θ̂)

)
,

where multiplication by two corrects the ratio so that it has a known large sample dis-

tribution. According to Wilk’s theorem, W is asymptotically Chi-square distribution

with degree of freedom equals to the the difference between the number of param-

eters estimated under the alternative hypothesis and the number estimated under

the null hypothesis. Usually the number of constrains in null hypothesis equals the
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number of parameters mentioned in null hypothesis. The rejection region (rejecting

H0) is determined by W > χ2
α,k, where k equals the degrees of freedom. The critical

value is chosen to achieve a desired significant level α. Thus, the CIs are not always

symmetric.



Chapter 3

The Bootstrap

This chapter introduces the bootstrap principle in the measurement of the CI and

two methods of bootstrap intervals. The bootstrap is a computer-based statistical

algorithm to resample data. The bootstrap can be either parametric or nonpara-

metric. This thesis mainly talks about the nonparametric bootstrap. The percentile

method uses the percentiles of bootstrap estimates, while the percentile-t method

takes into account standard errors during bootstrapping.

3.1 Bootstrapping and the Bootstrap Principle

The basic idea of non parametric bootstrapping is re-sampling the observed data

with the same sample size to infer and estimate an unknown population quantity.

Each bootstrap sample can be considered as a random sample from the empirical

distribution for the original data.

Suppose a random sample set Y = (y1, y2, . . . , yn) ∼ F with an unknown param-

eter vector θ that we are interested in. In nonparametric bootstrapping, a bootstrap

sample is randomly drawn from Y of size n with a replacement . In equivalent, Y is

drawn from the empirical distribution. Note that the ML estimate of distribution F

is the empirical distribution of y1, y2, . . . , yn [6]. Suppose F̂n is defined as an empirical

discrete distribution with a probability 1
n
assigned to each yi. Thus, the empirical

probability of a subset A of Y under F̂n is

P̂ (A) = #{yi ∈ A}/n.

Suppose a parameter set can expressed as a function of the true distribution, θ =

t(F ). Then, the plug-in estimator of θ = t(F ) will be obtained corresponding to

θ̂ = t(F̂n).

Bootstrap data and parameters can be denoted by superscript ∗. Let Y ∗(b) =

9
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y
∗(b)
1 , y

∗(b)
2 , . . . , y

∗(b)
n denote the random bootstrap sample that are resampled inde-

pendently with replacement from F̂n and let E∗[h(Y ∗(b))] denote the expectation of

h(y
∗(b)
1 , y

∗(b)
2 , . . . , y

∗(b)
n ), where b = 1, 2, . . . , B. Note that this expectation is calculated

conditional upon the original data, y1, y2, . . . , yn that determine the distribution F̂n.

In order to estimate parameters from bootstrap samples, the plug-in principle is

applied. If we knew the true parameter θ, then in order to determine the distribu-

tional properties of some function of an estimator and the true parameter, g(θ̂, θ), we

could generate B samples from F and calculate θ̂1, . . . , θ̂B. Then, use the observed

distribution of the g(θ̂1, θ), ..., g(θ̂B, θ) as an approximation to the sampling distribu-

tion of g(θ̂, θ). With large B, the approximation would be almost exact. For instance,

Eθ[g(θ̂, θ)] can be approximated by the average of g(θ̂b, θ), where b ∈ {1, . . . , B}.
But we don’t know the true parameter θ. Bootstrapping gets around this difficulty

by generating data from the F̂n (the bootstrap samples). Then, plug in θ̂∗b for θ̂b and

θ̂ for θ in g(θ̂b, θ). It then uses the observed distribution of the g(θ̂∗1, θ̂), . . . , g(θ̂
∗
B, θ̂) as

if it were the observed distribution of the g(θ̂1, θ), . . . , g(θ̂B, θ) in the process above.

We denote E∗[g(θ̂∗b , θ̂)] as the expectation of g(θ̂∗b , θ̂) when data are generated from

the empirical distribution. The law of large number (LLN) gives that as B → ∞,

B∑
b=1

g(θ̂∗b , θ̂)/B −→ E∗[g(θ̂∗b , θ̂)].

Thus,
∑

b g(θ̂
∗
b , θ̂)/B is an unbiased estimator of E∗[g(θ̂∗b , θ̂)]. Bootstrap theory im-

plies that E∗[g(θ̂∗b , θ̂)] provides a reasonable asymptotic approximation to Eθ[g(θ̂, θ)].

So as n → ∞,
B∑
b=1

g(θ̂∗b , θ̂)/B −→ Eθ[g(θ̂, θ)].

One example application of the nonparametric bootstrap is when g(θ̂, θ) = I{θ̂−
θ ≤ a} and a is fixed. The average of bootstrap estimators equals to

∑B
b=1 I{θ̂∗b −

θ̂ ≤ a}/B, which approximates E∗[I{θ̂∗b − θ̂ ≤ a}] by the LLN. The bootstrap

theory implies that E∗[I{θ̂∗b − θ̂ ≤ a}] = P∗[θ̂∗b − θ̂ ≤ a] provides an estimation of

Eθ[I{θ̂−θ ≤ a}] = Pθ[θ̂−θ ≤ a], and thus that P∗[θ̂∗b− θ̂ ≤ a] estimates Pθ[θ̂−θ ≤ a].

Another example application is when g(θ̂, θ) is the variance of θ̂, where V arθ(θ̂) =

Eθ((θ̂ − θ)2). According to the LLN, the variance of θ̂∗b , which can be written as
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ˆV ar∗(θ̂) =
∑B

b=1(θ̂
∗
b −
∑

b θ̂
∗
b/B)2/(B − 1) → V ar∗(θ̂∗b ). Bootstrap theory gives that

V ar∗(θ̂∗b ) converges to V arθ(θ̂).

Moreover, nonparametric bootstrap can also be used to estimate the bias of θ̂,

where g(θ̂, θ) = bias(θ̂) = Eθ(θ̂) − θ. Thus, the bootstrap estimate of bias(θ̂) is∑B
b=1 g(θ̂

∗
b , θ̂)/B =

∑B
b=1(E

∗(θ̂∗b )− θ̂)/B, which equals to
∑B

b=1 θ̂
∗/B − θ̂. Since bias

of bootstrap estimators is bias(θ̂∗) = E∗(θ̂∗b )− θ̂, by the LLN

B∑
b=1

θ̂∗/B − θ̂ −→ E∗(θ̂∗b )− θ̂.

The bootstrap theory implies E∗(θ̂∗b )−θ̂ approximate to Eθ(θ̂)−θ, then the bootstrap

estimate of bias(θ̂) converges to bias(θ̂).

3.2 The Percentile Method

The percentile interval is a particular CI that does not require MLEs, but uses

approximate normality of the estimators for its justification [7]. However, this pro-

cedure uses its own critical value from the distribution of data instead of using the

critical value of the standard normal distribution.

Suppose a bootstrap sample that is generated from the original sample set Y =

(y1, y2, . . . , yn) with an unknown distribution F (θ), can be denoted as Y ∗ = (y∗1, y
∗
2, . . . , y

∗
n).

The MLE of θ in the bth bootstrap sample Y ∗
b is denoted as θ̂∗b , where b = 1, 2, ..., B.

Let G(·) be the approximate empirical distribution of θ̂∗ with data generated from

F̂n, which estimate the sample distribution of θ̂. Then, the probability of θ̂∗b ≤ a

can be represent by G(a). Let b(α) represents the order index of αth percentile in Θ∗,

then θ̂∗b(α)
is the αth percentile of G(·) and

P ∗(θ̂ ≤ θ̂∗b(α)
) ≈ G(θ̂∗b(α)

) = α.

Thus, θ̂∗b(α)
can also be represented as

θ̂∗b(α)
= G−1(α).

The 100× (1− α)th CI is generated from the (1− α/2)th and the α/2th percentile of

G(·), which can be written as

P ∗
(
θ̂ ≤ θ̂∗b(α/2)

)
= α/2

P ∗
(
θ̂ ≤ θ̂∗b(1−α/2)

)
= 1− α/2
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which are equivalent to

P ∗
(
θ̂∗b(α/2)

≤ θ̂ ≤ θ̂∗b(1−α/2)

)
= 1− α

In other words, the (1− α)× 100% percentile CI can be written as[
θ̂∗b(α/2)

, θ̂∗b(1−α/2)

]
= [θ̂lo, θ̂up].

The percentile CI is transformation-respecting, which means for increasing pa-

rameter transformation φ = t(θ), the percentile interval has this equation satisfied:

[φ̂lo, φ̂up] = [t(θ̂lo), t(θ̂up)].

3.3 The Percentile-t Method

The percentile-t approach estimates the distribution directly from the data, by gen-

erating B bootstrap samples and computing the bootstrap version of the standard

normal test statistic Z. Then, the estimation of an empirical distribution Z, can be

given by the distribution of

Z∗
b =

θ̂∗b − θ̂

se(θ̂∗b )

where θ̂∗b is the estimated parameter set of the bootstrap sample Y ∗
b and se(θ̂∗b ) is the

estimated standard error of θ̂∗ for the bootstrap sample θ̂∗b , which for ML estimation

of a scalar parameter can be evaluated by

se(θ̂∗b ) =

√
1

In(θ̂∗b )

Let ξα denote the α× 100th sample percentile of the Z∗
b , with the same approach

as the Wald test instead using different critical values

P
(
ξα/2 ≤ θ̂∗b − θ̂

se(θ̂∗b )
≤ ξ1−α/2

)
≈ 1− α

P
(
θ̂∗b − ξ1−α/2se(θ̂

∗
b ) ≤ θ̂ ≤ θ̂∗b − ξα/2se(θ̂

∗
b )
)
≈ 1− α

By the LLN and bootstrap theory, then the average of bootstrap percentile-t CI

of θ̂ converges to the CI of θ from original data

1− α ≈ P ∗{θ̂ ∈ [
1

B

∑
b

θ̂∗b − ξ1−α/2se(θ̂
∗
b ),

1

B

∑
b

θ̂∗b − ξα/2se(θ̂
∗
b )]}

≈ P{θ ∈ [θ̂ − ξ1−α/2se(θ̂), θ̂ − ξα/2se(θ̂)]}
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Thus, the general form of the Percentile-t CI with a coverage probability equiv-

alent to 1− α can be written as[
θ̂∗b − ξ1−α/2se(θ̂

∗
b ), θ̂

∗
b − ξα/2se(θ̂

∗
b )
]

The percentile-t confidence procedure has a calculation problem, where a compli-

cated parameter estimation increases the difficulty in the calculation of the estimated

standard error. Moreover, for small sample and nonparametric condition, it is chal-

lenging to interpret.



Chapter 4

Nonparametric Bootstrapping and the Likelihood Ratio Test

In the LRT, the test statistics under the null hypothesis are mostly accurate when the

assumed distribution for the data is the correct distribution of population.[26]. In the

estimation of the theoretical sampling distribution, the result may be biased when

the population distribution is incorrect. The use of the nonparametric bootstrap

does not require a specified population distribution [3]. Instead, this method relies

on the empirical distribution of samples. Therefore, it is promising to combine the

nonparametric bootstrap and the LRT to achieve a more accurate result when the

population distribution is unknown. It has not been widely appreciated that the

nonparametric bootstrap can be used with likelihood ratio tests. Standard text

book treatments of boostrapping like (Efron and Tibshirani [8]) and Hall [14] do

not consider likelihood ratio tests. Davison and Hinkley [5] consider bootstrapping

empirical likelihood methods or using kernel density estimation. In this chapter,

details about the nonparametric bootstrap likelihood ratio test will be introduced.

4.1 The Testing Procedure

Suppose that a random sample y1, . . . , yn is generated from a true distribution G

but fitted to a parametric model with density f(y;φ, λ) and cumulative distribution

function F (y;φ, λ). We assume that φ is still a meaningful parameter under the true

distribution G. For instance, f(y;φ, λ) might correspond to a normal model with

mean φ. The mean φ would still be meaningful when the true distribution G was

non-normal.

Suppose φ is the parameter of interest, let the null hypothesis H0 be φ = φ0.

The MLE of λ under the null hypothesis can be denoted as λ̂(φ0). Then, the log

likelihood function under the null hypothesis can be evaluated from lG(φ0, λ̂(φ0)).

Given the alternative hypothesis Ha that φ 	= φ0 is under distribution G, the

MLEs can be denoted as φ̂ and λ̂. The log likelihood function under the alternative

14
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hypothesis is lG(φ̂, λ̂). Then, the likelihood ratio statistic is defined as

W0 = −2
(
lG

(
φ̂, λ̂
)
− lG

(
φ0, λ̂(φ0)

))
.

Let F̂n be the empirical discrete distribution of original data with a probability

1
n
assigned to each observation. Let Y ∗(1), . . . , Y ∗(B) represent B sets of bootstrap

samples generated from F̂n, and y
∗(b)
1 , . . . , y

∗(b)
n represent the Y ∗(b) bootstrap data,

where b ∈ {1, . . . , B}. The ML parameter estimate based on Y ∗(b) is (φ̂∗(b), λ̂∗(b))

The null hypothesis of a bootstrap sample Y ∗(b) is

H0 : φ = φ̂

where φ̂ is the MLE of φ under the original data. The bootstrap log likelihood

function under H0 can be evaluated from l∗G(φ̂, λ̂
∗(b)(φ̂)), where the ML estimation

of λ under H0 is λ̂∗(b)(φ̂).

While, the alternative hypothesis of bootstrap sample is

Ha : φ 	= φ̂

In addition, the log likelihood function under the hypothesis is l∗(b)(φ̂∗(b), λ̂∗(b)), which

only rely on bootstrap data.

Then, the likelihood ratio statistic of a bootstrap data Y ∗(b) is

W ∗
b = −2

(
l
∗(b)
G

(
φ̂∗(b), λ̂∗(b)

)
− l

∗(b)
G

(
φ̂, λ̂∗(b)(φ̂)

))
.

One way to obtain the test result of the nonparametric bootstrap LRT procedure

is through p-value, which is approximately the proportion of W ∗
b > W0, which can

be derive from

p = #{W ∗
b > W0}/B.

The α bootstrap threshold of the nonparametric bootstrap LRT is equivalent to

the 100(1 − α)th quantile of W ∗
b . In this thesis, we are interested in the 0.1, 0.05,

and 0.01 bootstrap threshold. These bootstrap thresholds are denoted as Q0.1(W
∗
b ),

Q0.05(W
∗
b ), and Q0.01(W

∗
b ).

Another way to obtain the test result is through the 100(1 − α)% CI of φ in

nonparametric bootstrap LRT procedure. The lower bound is given by the minimum
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of ML estimations of φ among bootstrap samples when W ∗ is less or equal to the α

thresholds, while the upper bound equals maximum of ML estimations of φ among

bootstrap samples when W ∗ is less or equal to the α thresholds.

Assuming the profile likelihood is a unimodal function of φ, the 100(1 − α)%

nonparametric bootstrap LRT confidence interval can be express as

[min{φ|W (φ) ≤ Qα(W
∗
b )},max{φ|W (φ) ≤ Qα(W

∗
b )}] ,

where W (φ) is the LR statistic for the original data.

4.2 Nonparametric Advantages Over the Chi-Square Threshold

Standard likelihood theory suggests that if the model is not misspecified then an ap-

propriate LRT threshold is determined from the chi-square distribution. The α-level

chi-square threshold equals the αth quantile of chi-square distribution with degree of

freedom k, χ2(α, k). The degree of freedom k is given by number of parameters in φ.

The 100(1− α)% chi-square CI is expressed as[
min

(
φ|W (φ) ≤ χ2

(α,k)

)
,max

(
φ|W (φ) ≤ χ2

(α,k)

)]
,

where W (φ) is the LR statistic for the original data.

Figure 4.1 indicates the performance of bootstrap thresholds and chi-square

thresholds in estimating misspecified model and correct model. Figure 4.1 Plot

A is an example of generating the original data from standard normal population

while estimated by ALD with μ = 0, σ = 1 and τ = 0 (ALD(0, 1, 0.5)). Figure

4.1 Plot B is an example when data is correctly estimated ALD(0, 1, 0.5). When

the model is misspecified, the bootstrap threshold when p = 0.05 equals 6.1, which

gives a 95% bootstrap CI of φ, [−0.1017, 0.0474]. While the 95% chi-square CI of φ

is [−0.0969, 0.0363], which is given by the chi-square threshold χ2
0.95,1 = 3.84. The

thresholds here are very different. In this case, however, the resulting confidence

intervals are very similar because the LRT increases very quickly as μ moves away

from the MLE.

In figure B, since the original data is also under ALD, the bootstrap CI and chi-

square CI are all well estimated. In this case, the bootstrap threshold is 3.63 with is

close to χ2
0.95,1. The bootstrap and chi-square condfidence intervals are [−0.073, 0.160]
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Figure 4.1: Given a random data set generated from standard normal distribution
with size 5000 and 1000 bootstrap repetition, plot A shows the LR confidence interval
of μ under chi-square (black) and nonparametric bootstrap thresholds (red) when
the fitted model is misspecified as the standard ALD with τ = 0.5. Plot B shows the
comparision of LR confidence interval of μ under correct estimation.

and [−0.073, 0.169], which are similar. Thus, under the correct model, the nonpara-

metric bootstrap LRT gives similar results to the to chi-square LRT.

The justification for a chi-square threshold requires a correct model specification,

but under real data situation its difficult to find the correct distribution. Thus,

estimation with nonparametric bootstrap LRT is more robust than chi-square LRT.



Chapter 5

The Asymmetric Laplace Distribution and Likelihood

Inference

In this chapter we discuss the properties of the ALD and develop maximum likeli-

hood inference for this model. The location parameter of the ALD can be interpreted

as a quantile of the distribution. We will show that the MLE of this parameter is

statistically consistent even when the AL model is incorrect. Consequently, like-

lihood inference under the AL can be made robust to model misspecification via

nonparametric bootstrap methods, which we explore in later chapters.

5.1 The Symmetric and Asymmetric Laplace Distribution

The symmetric Laplace distribution, also known as the double exponential distribu-

tion, can be used as an alternative distribution to the Gaussian distribution.

A random symmetric Laplace variable y has a density function

f(y|μ, σ) = 1

2σ
exp(−|y − μ|

σ
),

where location parameter μ has an interpretation as both the mean and the median

of the distribution, and scale parameter σ, which has a positive value, and is related

to the variance of the distribution. When μ = 0, the symmetric Laplace variables is

the distribution of a difference between exponential variables having the same mean,

sigma. The symmetric Laplace distribution is a special case of the ALD without

skewness.

The ALD is a continuous distribution that is widely used in quantile regression

(QR) and beyond. The ALD pecifically in estimating the skewed error terms in QR.

There are several different ways of expressing the ALD. In this thesis, we are using

Koenker and Machado’s formation[19] of ALD.

The probability density function of an AL random variable y with location μ,

18
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scale parameter σ, and skewness parameter τ is given by

f(y;μ, σ, τ) =
τ(1− τ)

σ
exp

(
− (τ − I(y − μ ≤ 0))

y − μ

σ

)
,

where I(y − μ ≤ 0) is an indicator of the event that y − μ ≤ 0. The probability

density function (PDF) can be also written as:

f(y;μ, σ, τ) =

{
τ(1−τ)

σ
exp
(−(τ − 1))y−μ

σ

)
, y ≤ μ

τ(1−τ)
σ

exp
(−τ y−μ

σ

)
, y > μ

Here y denote the variable name of ALD, and the location parameter μ also

represent the τ th quantile of ALD.

An exponential variable x comes with a density function f(x) = λ exp(−λx),

where x > 0 and scale parameter λ > 0. The graph of density function will looks like

a declining convex curve above x-axis, which starts from the y-axis and converges

to 0 along the x-axis. As λ increases the curve flattens. Thus, the AL variables

can be considered as combinations of exponential variables located at either side of

μ with different scale parameters −(τ−1)
σ

and −τ
σ
. Figure 5.1 shows τ = 0.5 implies

an equal scale on either side of μ and the distribution is symmetrically distributed.

More extreme τ lead to a more skewed and flat distribution as Figure 5.1 shows.
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Figure 5.1: Densities of ALD given μ = 0 and σ = 1, with τ equals 0.5, 0.9, and 0.99
respectively.

In addition, the cumulative density function (CDF) of an AL variable, y, can be

written as

F (y;μ, σ, τ) =

{
τ exp

(
(1− τ)y−μ

σ

)
, y ≤ μ

1− (1− τ) exp
(−τ y−μ

σ

)
, y > μ

Note that F (μ;μ, σ, τ) = τ , establishing that one interpretation of μ is that it

is the τ th quantile of the ALD. Because the ALD has an explicit CDF, inversion

transform sampling is an ideal method to generate random samples with their CDF,

as we now show.

Suppose that p has a uniform distribution in the range [0, 1] and let F be the CDF

of a specific continuous distribution. We seek to generate Y from F , let Y = F−1(p).

Since p is uniformly distributed between [0, 1], P [p ≤ p0] = p0. The event Y ≤ y is

equivalent to the event that p = F (Y ) ≤ F (y) which happens with probability F (y).

Thus the CDF of Y is F (y). Therefore a random variable Y having CDF F can be

generated as F−1(p).

Since the F (y) is monotonically increasing and F (μ) = τ , then τ ≥ F (y) = p
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if and only if y ≤ μ, and τ < F (y) = p if and only if y > μ. Therefore, when

p ≤ τ , F−1(p) is determined by solving p = τ exp[(1 − τ)(y − μ)/σ], which has

solution σ/(1 − τ) log(pσ/τ) + σ. When p > τ , F−1(p) is determined by solving

p = 1− (1− τ) exp[−τ(y−μ)/σ], which has solution −σ/τ log[(1−pσ)p/(1− τ)]+σ.

Given all the parameters of ALD and p, we can get the expression of y by inversing

the CDF of y. Then, a random AL sample can be generated by the equations below.

F−1(p;μ, σ, τ) =

{
σ

1−τ
log( p

τ
) + μ, p ≤ τ

−σ
τ
log( 1−p

1−τ
p) + μ, p > τ

5.2 Maximum Likelihood Estimation of Asymmetric Laplace

Distribution

We now derive the MLE of μ and σ for the ALD. It turns out that a non-standard

argument is needed. Suppose we generated a random AL sample set with size n,

y1, y2, ..., yn. The likelihood function of the sample set can be written as

LA(μ, σ, τ) = (
τ(1− τ)

σ
)n ×

∏
(yi≤μ)

exp

(
(1− τ)

yi − μ

σ

)
×
∏

(yi>μ)

exp

(
−τ

yi − μ

σ

)
It is valuable to reexpress the likelihood function in terms of order statistics,

where the sample can written to y(1), y(2), ..., y(n). Then y(1) is the minimum value of

all observations and y(n) gives the maximum value. It isn’t difficult to see that the

log-likelihood is decreasing for values of μ larger than all of the yi and increasing for

value of μ that are smaller than all of the yi. So in determining the MLE we can

assume that y(i) ≤ μ < y(i+1) for some i. Thus, the natural logarithm of likelihood

function can be written as

l(μ, σ, τ) =n log(τ) + n log(1− τ)− n log(σ)

+
1− τ

σ

i∑
j=1

(y(j) − μ)− τ

σ

n∑
j=i+1

(y(j) − μ),

when y(i) ≤ μ < y(i+1).

(5.1)

Note that here i is a function of μ, defined as the largest integer such that y(i) ≤ μ.

In order to find the MLE of μ, we simplify the natural logarithm of likelihood

function LA(μ, σ, τ) to lA(μ) by treating σ and τ as constant numbers, which means
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μ is the only unknown parameter. The score function (first order derivative) of lA(μ)

can be expressed as

SA(μ) =
(n− i)τ − (1− τ)i

σ
=

nτ − i

σ
, when y(i) ≤ μ < y(i+1). (5.2)

Usually, the log likelihood function is continuously differentiable and uni-modal.

The MLE was solved by the first order derivative test. Because (5.2) gives a poly-line

equation, we cannot directly solve the maximum solution by simply using first order

derivative test.

In addition, we have

SA(μ) > 0 ←→ nτ − i > 0 ←→ i < nτ, (5.3)

SA(μ) = 0 ←→ nτ − i = 0 ←→ i = nτ, (5.4)

SA(μ) < 0 ←→ nτ − i < 0 ←→ i > nτ, (5.5)

where i is the order of observation that may leads to MLE of μ.Because τ ∈ (0, 1),

then 0 < nτ < n. We are looking for the estimator of μ that maximizes the likelihood

function.

Case I nτ is not a integer and nτ > 1 In this case, nτ is located between

two nearby integers, where

i < nτ < i+ 1 for 1 < i < n.

We can write i = �nτ and i+ 1 = �nτ�,

y(�nτ�) < y(nτ) < y(�nτ�) for 1 < nτ < n,

where y(nτ) is an undefined order statistic of y.

Thus, SA(μ) = 0 will not be satisfied. Instead, when i ≤ �nτ then SA(μ) > 0

for y(i) ≤ μ < y(i+1), by equation (5.3); and when i ≥ �nτ� we can find SA(μ) < 0

for y(i) ≤ μ < y(i+1) by equation (5.5).
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y(nτ)−1 y�nτ�y(nτ)y�nτ� y(nτ)+1

Graph 5.1

As the Graph 5.1 shows, the global maximum of the log likelihood function is

μ̂ = y(�nτ�).

Case II nτ is a integer In this case, S(μ) = 0 when y(i) ≤ μ ≤ y(i+1) where

i = nτ . Moreover, as Graph 5.2 indicated, the order nτ and nτ + 1 both stay at the

maximum. Thus, the MLE μ̂ is any value between y(nτ) and y(nτ+1). Here y(nτ) can

be considered equals y(�nτ�).

y(nτ)−1 y(nτ) y(nτ)+1

Graph 5.2

Case III nτ < 1 In this case (5.5) gives that SA(μ) < 0 for all y(i) ≤ μ <

y(i+1) and all i. From Graph 5.3 we can see the first order statistic gives the global

maximum of the log likelihood function,

μ̂ = y(1).
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As to nτ < 1, 1 should be the ceiling of nτ , then the result satisfied μ̂ = y(�nτ�).

y˙(1)

Graph 5.3

In conclusion, the nonparametric MLE of μ can always be taken as

μ̂ = y(�nτ�).

A property of order statistics is that, for continuous data, regardless of what the

distribution of the data is, y(�nτ�) converges almost surely to the τ th quantile of the

distribution [25]. Thus we see that although the MLE was developed assuming an

ALD for the data, the resulting estimator is reasonable even if that part of the model

was misspecified.

5.3 Quantile Estimation and Kullback-Leibler’s Divergence

Since SA(μ) is not differentiable, the usual theory that gives the standard error of

μ̂ (se(μ̂)) from the information does not apply. One way to obtain the se(μ̂) is by

quantile estimation. By the property of quantile estimation, the estimator location

parameter has an asymptotically normal distribution[12], where

μ̂ ∼ AN
(
μ,

τ(1− τ))

n p(μ)2

)
.

Here p(μ) is the density of an observation evaluated at μ and τ = P (X ≤ μ).

Moreover, the density of the ALD f(y;μ, σ, τ) when y = μ is

f(μ;μ, σ, τ) =
τ(1− τ)

σ
.
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Thus, we can find the μ̂ is asymptotically normal distribution with standard error

se(μ̂) =

√
τ(1− τ)

n p(μ)2
=

√
σ2

nτ(1− τ)
.

For any y(i) < μ ≤ y(i+1), the first derivative of of log likelihood function of ALD

on rate parameter σ can be written as

S(σ) = −n

σ
− 1− τ

σ2

i∑
j=1

(y(j) − μ) +
τ

σ2

n∑
j=i+1

(y(j) − μ)

= −n

σ
−
∑i

j=1(y(j) − μ)

σ2
+

τ
∑n

j=1(y(j) − μ)

σ2
,

which can be directly solved by set S(σ) = 0. The MLE of σ is determined by

plugging in μ̂. Thus,

σ̂(μ̂) = −
∑i

j=1(y(j) − μ̂)

n
+

τ
∑n

j=1(y(j) − μ̂)

n
(5.6)

Thus, the estimated standard error of μ̂ can be also written as:

ŝe(μ̂) =
(
−
∑i

j=1(y(j) − μ̂)

n
+

τ
∑n

j=1(y(j) − μ̂)

n

)√ 1

nτ(1− τ)
. (5.7)

In this thesis, we are interested in estimation when the model is misspecified.

Then, the accuracy of estimation with ALD may not precise due to unknown distri-

bution of original data. KL divergence describe how one probability distribution is

different from another [23]. As an example, suppose a random sample set y1, . . . , yn

follows the standard normal distribution and fitted with ALD, we are interested in

the relative entropy from ALD to normal distribution. Denote standard normal dis-

tribution as P with PDF p(y) and ALD as Q with PDF q(y). Then the KL divergence

from P to Q is

DKL(P ||Q) =

∞∫
−∞

p(y) log(p(y))dy −
∞∫

−∞

p(y) log(q(y))dy,

where p(y) = 1√
2π

exp(−y2/2) and

q(y) =

{
τ(1−τ)

σ
exp
(
(1− τ)y−μ

σ

)
, y ≤ μ

τ(1−τ)
σ

exp
(−τ y−μ

σ

)
, y > μ
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Moreover, log(p(y)) = − log(2π)/2− y2/2 and

log(q(x)) =

{
log( τ(1−τ)

σ
) + (1− τ)y−μ

σ
, y ≤ μ

log( τ(1−τ)
σ

)− τ y−μ
σ
, y > μ

Then,

DKL(P ||Q) = −1

2
log(2π)− 1

2
− log(τ(1− τ))︸ ︷︷ ︸

Regard as C1

+ log(σ)− 1− τ

σ

1√
2π

μ∫
−∞

(y − μ) exp

(
−y2

2

)
dy

︸ ︷︷ ︸
Regard as C2

+
τ

σ

1√
2π

∞∫
μ

(y − μ) exp

(
−y2

2

)
dy

︸ ︷︷ ︸
Regard as C3

Plugging μ̂ and σ̂ into the equation we can get the estimated KL divergence

equals

D̂KL(P ||Q) = C1 − C2
1− τ

σ̂
+ C3

τ

σ̂
+ log(σ̂),

where C2 =
μ∫

−∞
(y − μ̂) exp(−y2/2)dy/

√
2π and C3 =

∞∫
μ

(y − μ) exp(−y2/2)dy/
√
2π.

Figure 5.2 indicates the KL divergence of standard normal distribution to ALD

increases as τ increases from 0.25 to 0.75, indicating that the ALD distribution be-

comes an increasingly poor approximation to the normal distribution as τ increases.
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Figure 5.2: The plot shows each value of τ ∈ [0.25, 0.75] verses its KL divergence of
standard normal distribution on standard ALD with τ .



Chapter 6

Confidence Intervals for Asymmetric Laplace Distribution

Inference

Methods for CI construction using an ALD fitted model may not have correct cov-

erage probabilities when the model is misspecified. Standard methods include the

Wald test which may not be robust to model misspecification. Thus, a different

method to estimate CI with nonparametric bootstrap LR test is introduced in this

chapter, which is more robust to model misspecification than the Wald test.

6.1 Standard Error Calculation

Nonparametric quantile estimation is a technique to estimate the quantile under

nonparametric condition[27]. By the theory of order statistics, the estimator of the

τth quantile has a asymptotically normal distribution, where

μ̂ ∼ AN
(
μ,

τ(1− τ)

n p(μ)2

)
.

Here p(μ) is the density function of variable Y .

As an example of model misspecification, suppose a sample was generated from

standard normal distribution and fitted with ALD with fixed σ.

The density for the fitted model at μ is

pL(μ) =
τ(1− τ)

σ
exp

(
μ− μ

σ
(1− τ)

)
=

τ(1− τ)

σ
.

Thus, if the model were correctly specified, the estimated parameter θ in the fitted

distribution follows an asymptotically normal distribution with standard error

SEfitted =

√
q(1− q)

n pL(μ)2
=

√
τ(1− τ)σ2

n [τ(1− τ)]2
=

√
σ2

nτ(1− τ)
.

For the true distribution, standard normal distribution, we have q = P (y ≤ μ) =

Φ(μ) = τ . Then, pN(μ) =
1√
2π

exp (Φ−1(μ)2/2), where μ = Φ−1(τ). Thus, we have

28
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the asymptotically standard error of θ̂ for true model,

SEtrue =

√
τ(1− τ)

n pN(μ)2
=

√
2πτ(1− τ)

n exp(−μ2)
.

The ratio of fitted standard error and true standard error can be written as

SEfitted

SEtrue

=
σ exp (−μ2/2)√

2πτ(1− τ)
.

1

2

3

4

0.25 0.50 0.75
τ

SE
fitt
ed
/S
Et
ru
e

Figure 6.1: The blue curve is the smoothed rates curve between fitted standard error
of standard ALD and true standard error of standard normal distribution verses
τ ∈ [0.1, 0.9]. The red horizontal line indicates the threshold 1.
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Nonparametric quantile estimation of the standard error still requires approxi-

mation of the density at μ. As result of estimation with the incorrect density, Figure

6.1 that shows the rates of fitted standard error over true standard error are above

1.5, and the rates are getting larger (more than 4) as the value of τ away from 0.5.

Rates are 4.43, 2.13, and 1.60 when τ equals 0.1, 0.25, and 0.5, and the rates are

symmetrically distributed around τ = 0.5. In brief, the fitted standard error does not

approximate true standard error, which indicates that estimation of standard error

under misspecified model is biased. Thus, the test procedures that require estimated

standard error, such as the Wald test, may be questionable.

6.2 The Wald Test

The Wald test is based on an asymptotic distribution that holds in the absence of

model misspecification,

tw =
μ̂− μ0

se(μ̂)
∼ N(0, 1).

This gives that P (Φ−1(α/2) ≤ tw ≤ Φ−1(1 − α/2)) = 1 − α. From the previous

chapter we know μ̂ = y(�nτ�) and se(μ̂) =
√
σ̂2/(nτ(1− τ)). Thus, for each sample

the 100(1− α)% CI of μ corresponding to the Wald test is[
y(�nτ�) − Φ−1(1− α/2)

√
σ̂2/(nτ(1− τ)), y(�nτ�) − Φ−1(α/2)

√
σ̂2/(nτ(1− τ))

]
,

To evaluate the statistical properties of the Wald CIs or any other CIs we can

generate a large number, m, of data sets from a population distribution of interest.

For each of these samples we can calculate the CI for a confidence level of interest.

By the LLN, the estimated coverage of probability pw equals the proportion of times

the true μ was in its CI,

pw =∑
m

I{y(�nτ�) − Φ−1(1− α/2)
√
σ̂2/(nτ(1− τ)) ≤ μ̂ ≤ y(�nτ�) − Φ−1(α/2)

√
σ̂2/(nτ(1− τ))}/m

6.3 The Percentile Method: A Normal Approximation

In the section we show how the CI for the percentile bootstrap method can be

approximated without actually bootstrapping. Let variable xk denote the number of
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time that y(k) was selected from the original sample to the bootstrap sample. Each

time when we select one observation to the bootstrap sample, all the observation in

the original sample are equally likely to be selected.

Thus, in the process of building up a bootstrap sample with n observation, each

observation in the original sample has a probability 1/n to be selected and the

number of times each observation was chosen is in the range of [0, n]. Then X

follows a binomial distribution with n trails and success rate 1/n.

Let zk denote the summation of x from the first ordered observation to the kth

observation, zk =
∑k

i=1 xi. If μ̂∗ equals y(k), then zk−1 < �nτ� and zk ≥ �nτ�, and
vice versa. Moreover, If zk−1 ≥ �nτ�, then μ̂∗ is less than y(k), and vice versa. Thus

zk ≥ �nτ� ∩ zk−1 < �nτ� ⇐⇒ μ̂∗ = y(k)

zk ≥ �nτ� ∩ zk−1 ≥ �nτ� ⇐⇒ μ̂∗ < y(k).

In conclusion, we can say zk ≥ �nτ� ⇔ μ̂∗ ≤ y(k), which implies that

P ∗(zk ≥ �nτ�) = P ∗(μ̂∗ ≤ y(k)).

As indicated above, zk =
n∑

i=1

I{y∗i ≤ y(k)}, where n trials of I{y∗i ≤ y(k)}’ s are

independently distributed and each of the statement y∗i = y(k) has a probability

1/n. Then, each draw of y∗ from bootstrap each bootstrap sample will be among

y(1), . . . , y(k), and hence P̂ ∗[y∗i ≤ y(k)] = k/n. Thus, Zk follows a binomial distribution

with size equals n and probability parameter equal to k/n. By the Central Limit

Theorem, Zk is approximately N(k, k(n − k)/n), in which μ̂∗can be asymptotically

distributed under

P ∗(μ̂∗ ≤ y(k)) ≈ 1− Φ(
�nτ� − 1− k√
k(n− k)/n

).

By definition the 100(1− 2α)% level of percentile CI is given by the lower bound

(αth quantile of θ̂∗) and the upper bound ((1 − α)th quantile of θ̂∗), which gives us

the equations

α = p∗(θ̂∗ ≤ L) ≈ 1− Φ(
�nτ� − 1− kl√
kl(n− kl)/n

), (6.1)

1− α = p∗(θ̂∗ ≤ U) ≈ 1− Φ(
�nτ� − 1− ku√
ku(n− ku)/n

), (6.2)
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where L denote the lower bound of percentile CI and U denote the upper bound.

kl and ku denote the position of lower bound and upper bound in the sequence of

ascending ordered θ̂∗. To solve equation (6.1), we have

α = 1− Φ

(
�nτ� − 1− kl√
kl(n− kl)/n

)

Φ−1(1− α) =
�nτ� − 1− kl√
kl(n− kl)/n

Let q1−α denotes Φ−1(1− α) and nτ ≈ �nτ�, then

q21−αkl(n− kl)/n = (nτ − 1− kl)
2(1+ q21−α/n)k

2
l +(2− q21−α− 2nτ)kl+(nτ − 1)2 = 0

The solutions of this quadratic equation in kl (kl should be a positive value) are

k1 =
C + q21−α + 2�nτ� − 2

2(1 + q21−α/n)
,

k2 =
−C + q21−α + 2�nτ� − 2

2(1 + q21−α/n)
,

where C =
√
(2− q21−α − 2�nτ�)2 − 4(�nτ� − 1)2(1 + q21−α/n).

To solve equation (6.2), we have

1− α = 1− Φ(
�nτ� − 1− ku√
ku(n− ku)/n

)

qα =
�nτ� − 1− ku√

ku(n− ku)

Since standard normal distribution is symmetric we have qα = −q1−α. This

implies that solving the above equation gives the same solution as 6.2. Since C is a

positive value, then k2 < k1. Thus, the percentile CI is [y(k2), y(k1)].

6.4 The Nonparametric Bootstrap Likelihood Ratio Test

The null hypothesis under the bootstrap is μ = μ̂, where μ̂ = y(�nτ�). The original

data gives σ̂ =
∑

j(|yj − μ̂|))/n, while the bootstrap data gives μ̂∗(b) = y
∗(b)
(�nτ�) and

σ̂∗(b) = −∑�nτ�
j (y

∗(b)
j − μ̂∗(b)))/n+ τ

∑n
j (y

∗(b)
j − μ̂∗(b))/n. Under the null hypothesis,

the estimation of σ in the bth bootstrap data given μ̂ is σ̂∗(b)(μ̂) and the boostrap LR

statistic is

W ∗
b = −2

(
l
∗(b)
A

(
μ̂∗(b), σ̂∗(b))− l

∗(b)
A

(
μ̂, σ̂∗(b)(μ̂)

))
,
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where

l
∗(b)
A (μ̂∗(b), σ̂∗(b)) =n log(τ) + n log(1− τ)− n log(σ̂∗(b))

+
1− τ

σ̂∗(b)

i∑
j=1

(y
∗(b)
(j) − μ̂∗(b))− τ

σ̂∗(b)

n∑
j=i+1

(y
∗(b)
(j) − μ̂∗(b)), y

∗(b)
(i) ≤ μ̂∗(b) < y

∗(b)
(i+1)

and

l
∗(b)
A (μ̂, σ̂∗(b)(μ̂)) =n log(τ) + n log(1− τ)− n log(σ̂∗(b)(μ̂))

+
1− τ

σ̂∗(b)(μ̂)

i∑
j=1

(y
∗(b)
(j) − μ̂)− τ

σ̂∗(b)(μ̂)

n∑
j=i+1

(y
∗(b)
(j) − μ̂), y

∗(b)
(i) ≤ μ̂ < y

∗(b)
(i+1).

The nonparametric bootstrap threshold for significance level α is the 100(1 − α)th

quantile of W ∗
b , Qα(W

∗
b ). Then, the 100(1 − α)% nonparametric bootstrap LR test

CI can be expressed as

[[min{μ|W (μ) ≤ Qα(W
∗
b )}, max{μ|W (μ) ≤ Qα(W

∗
b )}]] .

As with the Wald CI, to approximate the coverage probabilities of the percentile

CI or nonparametric bootstrap CI we repeatedly generate data sets from a distri-

bution of interest, repeatedly calculate CIs for each of these data sets and then use

the proportion of CIs containing the true parameter as an approximation for the

coverage probability



Chapter 7

Simulation Study of Asymmetric Laplace Distribution

To compare the performance of nonparametric bootstrapping for parametric LRT

and other commonly used tests (Wald test, percentile, percentile-t, and chi-square

LRT) with misspecified models, data sets from different distributions were generated.

In this thesis, we used data from six different original distributions and estimated

with the same one. In each case of original distribution, the sample sizes of generated

data are 100, 500, 1000, and 5000 respextively, while in each case 1000 sets of original

data sets were generated. For each set of originial data, 1000 sets of bootstrap sample

are generated corresponding to each original data set.

7.1 Simulation Settings

In this section, we compared performance of all methods by six different distributions.

Normal Distribution

Data sets were generated from standard normal distribution, with mean 0 and

variance 1. The median of standard normal distribution equals its mean.

Logistic Distribution

Data sets were generated from logistic distribution mean and the location param-

eter equals 0 and the scale parameter equals 1 (standard logistic distribution), with

density

fL(y; 0, 1) = exp(−y)/(1 + exp(−y))2

fL(y; 0, 1) is resemble to standard normal distribution except its more kurtosis and

variance of fL(y; 0, 1) is π
2/3 . The median of logistic distribution is equivlent to its

location parameter, which is 0 in fL(y; 0, 1).

Cauchy distribution

34
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Data sets that were generated from standard Cauchy distribution (location pa-

rameter 0 and scale parameter 1) have the density function

fC(y; 0, 1) =
1

π(y2 + 1)
,

where the standard Cauchy variable Y is also defined by the ratio of two indepen-

dent standard normal variables. All three distributions above are symmetrically

distributed around zero and continuously through [−∞,∞], besides the mean and

variance of Cauchy distribution is undefined. However, the median of Cauchy distri-

bution equals its location parameter.

Folded Normal Distribution

Data sets were generated from folded normal distribution with location parameter

0 and scale parameter 1 (standard folded normal distribution), with density

fF (y; 0, 1) =
1√
2π

exp (−(x− 1)2/2) +
1√
2π

exp (−(x+ 1)2/2).

When y < 0 the densities are folded by taking absolute value of y, i.e. {fF (y; 0, 1) =
0|y < 0}. The random variable Y in fF (y; 0, 1) is equivalent to Y = |X|, where X

is the random variable in standard normal distribution. The mean of fF (y; 0, 1) is√
2/π and variance equals 1− 2/π. The median of this distribution does not exist.

Log-normal Distribution

Data sets are from standard log-normal distribution with location parameter 0

and scale parameter 1, with density

fLN(y; 0, 1) =
1

x
√
2π

exp (−(log x− μ)2/2),

which gives mean exp(1/2) and variance exp(1)(1−exp(1)). The log-normal variable

Y is maximum entropy probability distribution of standard normal distribution, i.e.

Y = log(X). The median of this distribution is 1. Moreover, fLN(y; 0, 1) is only

non-negatively defined.

Laplace Distribution

This is a control case, where data sets can be correctly estimated, i.e. data were

generated from standard Laplace distribution (ALD with μ = 0, σ = 1, and τ = 0.5)

with μ = 0 and σ = 1. While other distribution above represent model misspecified,

which are estimated by the ALD with different values of τ .
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Figure 7.1: Comparison of the simulating normal, logistic and Cauchy distributions
(in blue curves) to approximating ALDS with scale parameters obtained by equating
variances (in green curves) or as average MLEs (in red curves) with τ = 0.5, 0.9, and
0.99 respetively.
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Figure 7.2: Comparation of the simulating folded normal distribution and log-normal
distribution (in blue curves) to approximating ALDS with scale parameters obtained
by equating variances (in green curves) or as average MLEs (in red curves) with
τ = 0.5, 0.9, and 0.99 respetively.

To give a sense for how well the simulating distributions are approximated by

an ALD, in Figures 7.1 and 7.2 we plot the true distributions with the ‘best’ ALD

approximations. In each case the ALD approximations had location parameter equal

to the τth quantile of the simulating distribution. We used two approaches to get

the best scale. The first approach was to determine a scale parameter for the ALD

so that its variance matched the variance of the simulating distribution. The second
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approach took the scale parameter as the average MLE over 1000 samples from the

simulating distribution, each of size n = 5000.

We illustrate with some examples. The variance of an AL variable is σ2((1 −
τ)2+ τ 2)/(τ 2(1− τ)2), which equals 8σ2 when τ = 0.5. The variance of the standard

normal variable is 1,so setting the scale of the ALD to σ = 0.3981. The variance

of the standard logistic variable equals 3/π2, which means σ = 0.6413. Since the

variance of Cauchy variable is undefined, then we set σ = 0.3536 , a rationale being

that a Cauchy variable is equivalent to the ratio of two independent standard normal

variables. When τ = 0.5, the ALD fits reasonably well although the approximation

to the Cauchy is not as good, particularly using the average MLEs as scale parame-

ters. For τ = 0.9 and 0.99, the ALDs as substantially different from the simulating

distributions. Part of the reason for this is that the ALD always has its mode at

the τth quantile, which doesn’t coincide with the mode of the simulating distribu-

tion. The other is that the scale parameters tended to be large. The ALD is a light

tailed distribution and so it appears that approximating heavier tailed distributions

requires larger scale parameters.

In the case τ = 0.5, setting the variance of the ALD to the variance of the folded

normal, 1− 2/π, gives σ = 0.2131. Equating the variance of the ALD to that of the

log-normal gives ALD σ = 0.764 because the variance of the log normal is (e1−1)e1.

As it shown in Figure 7.2, when τ = 0.5 the densities fitting ALDs are closed to the

orignial densities. However, the differences become substantial when τ = 0.9 and

0.99. In brief, the difficulties in approximating these distributions using an ALD

tend to increase as τ increases.

Note that, in Figure 7.1 the estimated ALDs for Cauchy distribution are almost

flat lines are because the comparatively large variance of Cauchy random samples

from R, which are 5.25, 4.05, and 3.13 with respect to τ = 0.5, 0.9, and 0.99.

7.2 Simulation Results

Given all the setting in last section, the results are shown as following. For each dis-

tribution, one table indicates the coverages of five estimating methods with different

values of τ and n with respect to 0.1, 0.05, 0.01 significant levels. The other table

shows the average of simulated 95% CIs and its widths corresponding to the first
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table. The tables of details of 90% and 99% CIs are in Appendix.

Asymmetric Laplace Distribution

For the case that there is no model misspecification, when data were generated

from standard Laplace distribution and estimated by ALD with μ = 0 and σ = 1

(ALD(0, 1)) when τ = 0.5, 0.9, and 0.99 and significant level is 0.05, the estimation

results are shown in Table 7.1 (coverages) and 7.2 (95% confidence intervals). In the

case that τ = 0.5, the coverages of all five methods were all close to the nominal

when the sample size was larger than 100. When n = 100, the percentile-t and Wald

intervals tend to undercover but the other intervals have coverage close to their stated

levels.

However, when we generated data from ALD(0, 1) with τ = 0.9, the coverages of

the Wald test and percentile-t method are below their stated levels when n = 100

and 500, whereas the other methods give accurate coverages. When n = 1000 all five

methods showed accurate coverages.

When we raised τ to 0.99, the nonparametric bootstrap LRT performed well

as it did in all settings considered for the ALD generating scenario. The Wald

test, percentile method and percentile-t method gave coverages that were too small,

especially when n is small (n < 1000). The chi-square LRT are are very accurate for

n ≥ 500. Overall, the 95% percentile-t CIs are slightly wider than the 95% percentile

CIs than the 95% Wald CIs. The 95% chi-square and nonparametric bootstrap CIs

are wider than the other CIs. In summary, for this setting with no misspecification,

the LRT test, whether using bootstrap or chi-square thresholds is recommended. It

performed well across all scenarios. The percentile bootstrap approach performed

well but struggled with large quantiles. The Wald and percentile-t approaches were

the worst performers particularly with smaller sample sizes.

Normal Distribution

Table 7.3 and 7.4 gives the coverages and CIs of data generated from standard

normal distribution and estimated by ALD(0, 1) when τ = 0.5, 0.9, and 0.99 respec-

tively. When τ = 0.5, the coverages of nonparametric bootstrap LRT and percentile

method are nearly (1− α)100, while the Wald and percentile-t methods gave cover-

ages that were too small. The coverages of Wald test are very small relative to their

stated values. When τ = 0.5 the 95% nonparametric bootstrap CIs are substantially
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Table 7.1: The percentages of times (coverage) that the median (τ = 0.5), the 90th

percentile (τ = 0.9), and the 99th percentile (τ = 0.99) was in 90/95/99% confidence
intervals when data were generated from the standard Laplace distribution. Method
abbreviations correspond to the Wald test (Wald), the percentile bootstrap confi-
dence interval (Perc), the percentile-t bootstrap confidence interval (PercT), the LR
test using chi-squared thresholds (χ2) and the LR test using bootstrap thresholds
(BootLR).

n Wald Perc PercT χ2 BootLR
τ = 0.5
100 88/93/98 90/96/99 85/91/96 90/96/99 90/95/99
500 90/95/90 90/95/99 88/93/98 91/95/99 89/94/99
1000 90/95/89 90/94/99 90/94/99 90/95/99 90/95/99

n Wald Perc PercT χ2 BootLR
τ = 0.9
100 84/90/87 87/94/98 81/89/96 89/94/99 90/94/99
500 87/93/89 89/95/99 85/91/98 89/95/99 90/95/99
1000 90/94/89 89/95/99 88/93/97 89/94/99 89/95/99

n Wald Perc PercT χ2 BootLR
τ = 0.99
100 71/77/87 63/63/63 74/81/89 86/93/98 87/91/97
500 82/88/85 85/85/97 84/87/96 89/95/99 89/95/99
1000 85/91/84 84/92/97 82/89/96 89/94/99 90/95/99

wider than other CIS, and the 95% Wald CIs are tightest among them. Although

having tighter confidence intervals is desirable, when coverages are close to nominal,

the Wald tests tended to undercover dramatically.

When we estimated the original data with τ = 0.9 in ALD(0, 1), the Wald test

gave about 40% coverages when α = 0.1, 50% coverages when α = 0.05, and about

60% coverages when α = 0.01. The chi-squared LRT has slight better results than

the Wald test, where chi-square has coverages 69%, 78%, and 90% when α = 0.1,

0.05, and 0.01 respectively and n = 1000. Although the coverages of the percentile-t

method are too small when n = 100 and 500, they are almost correct (87/93/99) when

n = 1000. The coverages of the percentile method and the nonparametric bootstrap

LRT are correct even τ = 0.9. The 95% CIs of the nonparametric bootstrap when

τ = 0.9 are substantially wider than others, the CIs of the percentile-t method and

the chi-square LRT are wider than percentile CI when n is small, and shrink to be
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tighter than percentile CIs when n approached 1000. However, as mentioned, this

comes at the cost of coverage that is far from the nominal levels.

When τ = 0.99, only a small number of Wald test results can cover the μ,

which equals 2.33. The coverages of the chi-square LRT are better than the Wald

test, but still below their stated levels. The percentile and percentile-t method are

performed well when n = 1000, with coverages of 84/92/96 and 77/85/91 respectively

for 90/95/99% CIs. The coverages of the nonparametric bootstrap LRT are close

to and slight better than the percentile coverages when n = 1000. However, when

n is smaller, the nonparametric bootstrap LRT performs better with coverages of

81/86/94 when n = 100 and 85/90/97 when n = 500. The widths of the 95%

nonparametric bootstrap CIs are 1.15, 0.82 and 0.61 with respect to n = 100, 500,

and 1000 when τ = 0.99. Under this extreme situation, the widths of the 95%

percentile and percentile-t CIs are all 0.46 when n = 1000. Although their widths

are smaller than the bootstrap LRT, their coverages are smaller too. In summary,

with model misspecification, the chi-square test no longer performs well. The Wald

and percentile-t appraches continue to fare poorly. The percentile and bootstrap

LRT are recommended. They both perform well although both approaches tend to

undercover a little when τ = 0.99. The percentile approach is slightly preferred in a

number of settings because it tends to produce smaller confidence sets with roughly

the same coverage as the bootstrap LRT. However, it undercovered to a much greater

degree than the LRT when τ = 0.99 and n = 100.

Logistic Distribution

When data are generated from a standard logistic distribution, the coverages in

table 7.5 shows similar patterns to the coverages in table 7.3, where the data were

generated from a N(0, 1) distribution. This may be because the distributions are

somewhat similar (Figure 7.1). From table 7.5, we can conclude the coverages of

nonparametric bootstrap and percentile CIs are both robust to these forms of model

misspecification. However, table 7.6 indicates although their coverages are similar,

the nonparametric bootstrap CIs are wider than percentile CIs regardless the value

of τ . One should note, however, that the percentile method uncovered substantiially

when n = 100 and τ = 0.99.

Cauchy Distribution



42

Because the Cauchy distribution does not have a mean, it may be expected that

the properties of the methods will be unusual for this setting. As indicated by Figure

7.1, the ALD approximations for this distribution are not close. From Table 7.7 we

see that the Wald test and chi-square LRT have 100% coverages when τ = 0.5.

However when τ = 0.9, the coverages of the Wald test are 61/67/78 (n = 100)

and 77/83/90 (n = 1000), and the coverages of the chi-square LRT are 77/85/93

(n = 100) and 83/89/96 (n = 1000). When τ = 0.99, the coverages of these two

methods are both very small with the Wald test giving particularly small coverages.

The percentile and percentile-t method have similar coverages, which fairly accurate

when τ = 0.5 and 0.9. However, the coverages are noticeably smaller when τ = 0.99,

particularly when n = 100. This setting is one where the bootstrap LRT is clearly

preferred. It has coverage that is close to nominal in almost all cases. The sole

exception is when τ = 0.99 and n = 100. In this it undercovers although it comes

closer to having the right coverage than any of the other methods. The price paid is

an extreme amount of uncertainty about what the true quantile is (Table 7.8).

The explanation for why the Cauchy is particularly problematic for most of the

methods has to do with its large range, i.e. [−4217.948, 2200.813], when τ = 0.99

while other distributions are all between [−8, 8], not only the estimated standard

error but also the LRT statistics are large. Due to this reason, the methods that use

constant thresholds or critical values like the Wald test and chi-square give thresholds

that are too small. The percentile-t CIs have extreme large ranges also due to the

large amount of variability in the estimated standard errors, due to highly variable

and large σ̂. The percentile and nonparametric bootstrap CIs are more comparable.

In conclusion, the nonparametric bootstrap LRT gives good coverage even with

extreme value of τ (as long as n is 500 or more). Although the percentile and

percentile-t methods had difficulties with τ = 0.99, when τ = 0.05 or 0.90 they

provide reasonable estimations.

Folded normal Distribution

Because the folded normal distribution is only defined on the positive axis it

makes sense that tests that make Gaussian assumptions about parameter estimates

the Wald test, might not perform well. Table 7.9 shows that the Wald test has

coverages that are very low even when τ = 0.5. Although not as dramatic as for the
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Wald test, the coverages of the chi-square LRT are also far too low. The coverages of

the percentile-t are reasonable when τ = 0.5 and n ≥ 500 but are too low otherwise,

often substantially so. When τ = 0.99, the Wald, percentile, percentile-t, and chi-

square coverages are all substaintly less than 90/95/99. The percentile and bootstrap

LRT perform well for τ = 0.90 and 0.5 and n ≥ 500. They tend to undercover

otherwise although the bootstrap LR test comes closer to the correct coverage.

From Table 7.10 we can conclude, the nonparametric bootstrap CIs are the widest,

and wider than other methods as n increase. The percentile and percentile-t share

the similar CIs, which are slight tighter than the nonparametric bootstrap CIs, and

the chi-square CIs are even tighter. Although it may seem desirable to have tighter

confidence intervals the coverages for these approaches is very low. In summary, the

percentile and bootstrap LRT are the best performers with the bootstrap LRT giving

better coverage when τ is large.

Log normal Distribution

For the percentile, percentile-t and bootstrap LRT, Table 7.11, which gives cov-

erages, shows very similar patterns, over choices of n and τ , to the corresponding

folded normal settings. The Wald test gave better coverages when τ = 0.5 than

the Wald coverages in folded normal distribution, but similarly had coverages that

were substantially too small when τ = 0.9 or 0.99. The chi-square LRT performed

reasonably when τ = 0.5 but had coverages that were far too small when τ = 0.9

or 0.99. In terms of coverage, once again, the bootstrap LR test and percentile

method are comparable with the bootstrap LR test doing better when τ is large. It

is worth noting, however, that in cases where coverage was good for both methods,

the percentile method tended to give smaller intervals (Table 7.12).



44

Table 7.2: The average lower bound/upper bound/width of the 95% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard Laplace distribution.

τ = 0.5
n μ Wald Perc PercT
100 0 -0.41/0.37/0.78 -0.43/0.44/0.87 -0.48/0.41/0.89
500 0 -0.18/0.17/0.35 -0.19/0.17/0.36 -0.18/0.18/0.36
1000 0 -0.13/0.12/0.25 -0.13/0.12/0.25 -0.13/0.13/0.26
n μ χ2 BootLR
100 0 -0.56/0.55/1.11 -0.58/0.53/1.11
500 0 -0.20/0.22/0.42 -0.21/0.21/0.42
1000 0 -0.14/0.13/0.27 -0.14/0.14/0.28

τ = 0.9
n μ Wald Perc PercT
100 0 -0.73/0.57/1.30 -0.91/0.68/1.59 -0.88/0.76/1.64
500 0 -0.31/0.28/0.59 -0.34/0.29/0.63 -0.32/0.31/0.63
1000 0 -0.22/0.20/0.42 -0.24/0.20/0.44 -0.22/0.22/0.44
n μ χ2 BootLR
100 0 -1.73/0.78/2.51 -1.72/0.90/2.62
500 0 -0.37/0.36/0.73 -0.42/0.36/0.78
1000 0 -0.24/0.23/0.47 -0.26/0.24/0.50

τ = 0.99
n μ Wald Perc PercT
100 0 -2.91/1.00/3.91 -5.06/0.40/5.46 -2.52/3.22/5.74
500 0 -1.06/0.70/1.76 -1.43/0.68/2.11 -1.07/1.04/2.11
1000 0 -0.71/0.54/1.25 -0.81/0.60/1.41 -0.77/0.67/1.44
n μ χ2 BootLR
100 0 -6.91/1.91/8.82 -7.45/0.40/7.85
500 0 -1.81/1.22/3.03 -1.93/1.06/2.99
1000 0 -1.25/0.76/2.01 -1.35/0.76/2.11
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Table 7.3: The percentages of times (coverage) that the median (τ = 0.5), the
90th percentile (τ = 0.9), and the 99th percentile (τ = 0.99) was in 90/95/99%
confidence intervals when data were generated from the standard normal distribution.
Method abbreviations correspond to the Wald test (Wald), the percentile bootstrap
confidence interval (Perc), the percentile-t bootstrap confidence interval (PercT), the
LR test using chi-squared thresholds (χ2) and the LR test using bootstrap thresholds
(BootLR).

n Wald Perc PercT χ2 BootLR
τ = 0.5
100 71/79/90 91/95/98 83/90/96 83/90/97 90/94/98
500 72/82/92 91/95/99 89/93/98 83/90/97 90/95/99
1000 69/80/90 91/95/99 87/92/97 82/90/96 90/95/99

n Wald Perc PercT χ2 BootLR
τ = 0.9
100 40/49/62 87/93/97 78/83/92 64/75/86 87/92/98
500 43/50/62 91/95/98 85/91/97 66/74/89 90/95/98
1000 44/52/64 91/95/99 87/93/98 69/78/90 91/95/99

n Wald Perc PercT χ2 BootLR
τ = 0.99
100 08/09/12 65/65/65 61/68/76 45/48/54 81/86/94
500 08/09/13 87/88/96 76/80/90 31/37/48 85/90/97
1000 09/10/14 84/92/96 77/85/91 32/39/49 84/92/97
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Table 7.4: The average lower bound/upper bound/width of the 95% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.17/0.14/0.31 -0.26/0.23/0.49 -0.26/0.23/0.49
500 0 -0.07/0.07/0.14 -0.11/0.11/0.22 -0.11/0.11/0.22
1000 0 -0.05/0.05/0.10 -0.08/0.07/0.15 -0.08/0.08/0.16
n μ̂ χ2 BootLR
100 0 -0.32/0.22/0.54 -0.34/0.29/0.63
500 0 -0.10/0.10/0.20 -0.14/0.12/0.26
1000 0 -0.08/0.07/0.15 -0.09/0.08/0.17

τ = 0.9
n μ̂ Wald Perc PercT
100 1.28 1.13/1.36/0.23 0.93/1.59/0.66 0.92/1.60/0.68
500 1.28 1.22/1.32/0.10 1.13/1.42/0.29 1.13/1.43/0.30
1000 1.28 1.24/1.31/0.07 1.17/1.38/0.21 1.17/1.38/0.21
n μ̂ χ2 BootLR
100 1.28 0.91/1.62/0.71 0.80/1.69/0.89
500 1.28 1.15/1.38/0.23 1.09/1.46/0.37
1000 1.28 1.20/1.36/0.16 1.15/1.40/0.25

τ = 0.99
n μ̂ Wald Perc PercT
100 2.33 2.10/2.20/0.10 1.59/2.50/0.91 1.77/2.88/1.11
500 2.33 2.26/2.31/0.05 1.99/2.56/0.57 2.01/2.61/0.60
1000 2.33 2.29/2.32/0.03 2.08/2.54/0.46 2.08/2.54/0.46
n μ̂ χ2 BootLR
100 2.33 1.38/2.39/1.01 1.35/2.50/1.15
500 2.33 2.00/2.38/0.38 1.87/2.69/0.82
1000 2.33 2.15/2.38/0.23 2.00/2.61/0.61
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Table 7.5: The percentages of times (coverage) that the median (τ = 0.5), the
90th percentile (τ = 0.9), and the 99th percentile (τ = 0.99) was in 90/95/99%
confidence intervals when data were generated from the standard logistic distribution.
Method abbreviations correspond to the Wald test (Wald), the percentile bootstrap
confidence interval (Perc), the percentile-t bootstrap confidence interval (PercT), the
LR test using chi-squared thresholds (χ2) and the LR test using bootstrap thresholds
(BootLR).

n Wald Perc PercT χ2 BootLR
τ = 0.5
100 75/84/92 90/96/99 83/88/96 84/92/97 89/95/98
500 77/84/93 91/95/99 87/92/97 85/91/97 90/95/99
1000 76/84/93 90/94/99 89/92/97 84/90/96 90/94/98

n Wald Perc PercT χ2 BootLR
τ = 0.9
100 39/46/58 87/93/98 77/85/92 63/72/86 87/93/98
500 41/49/62 89/95/99 83/89/95 67/75/86 88/95/99
1000 41/48/60 89/94/99 86/91/96 65/74/86 88/94/98

n Wald Perc PercT χ2 BootLR
τ = 0.99
100 06/08/10 63/63/63 62/67/76 42/44/49 80/86/94
500 07/09/11 85/85/97 75/79/91 26/31/41 86/93/98
1000 08/09/12 85/92/97 77/85/93 27/31/41 87/98/94
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Table 7.6: The average lower bound/upper bound/width of the 95% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard logistic distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.29/0.25/0.54 -0.40/0.38/0.78 -0.42/0.37/0.79
500 0 -0.13/0.12/0.25 -0.18/0.17/0.35 -0.18/0.17/0.35
1000 0 -0.09/0.08/0.17 -0.13/0.12/0.25 -0.13/0.12/0.25
n μ̂ χ2 BootLR
100 0 -0.50/0.44/0.94 -0.55/0.48/1.03
500 0 -0.18/0.17/0.35 -0.22/0.20/0.42
1000 0 -0.12/0.11/0.23 -0.15/0.14/0.29

τ = 0.9
n μ̂ Wald Perc PercT
100 2.20 1.93/2.35/0.42 1.55/2.85/1.30 1.50/2.83/1.33
500 2.20 2.09/2.28/0.19 1.90/2.48/0.58 1.91/2.49/0.58
1000 2.20 2.12/2.26/0.14 1.99/2.40/0.41 1.99/2.40/0.41
n μ̂ χ2 BootLR
100 2.20 1.44/2.77/1.33 1.33/3.07/1.74
500 2.20 1.90/2.44/0.54 1.83/2.56/0.73
1000 2.20 2.02/2.32/0.30 1.95/2.44/0.49

τ = 0.99
n μ̂ Wald Perc PercT
100 4.60 4.06/4.26/0.20 2.86/5.14/2.28 3.12/6.07/2.95
500 4.60 4.44/4.54/0.10 3.74/5.28/1.54 3.74/5.39/1.65
1000 4.60 4.51/4.58/0.07 3.98/5.19/1.21 3.94/5.17/1.23
n μ̂ χ2 BootLR
100 4.60 2.50/4.75/2.25 2.35/5.14/2.79
500 4.60 3.89/4.70/0.81 3.46/5.66/2.20
1000 4.60 4.19/4.71/0.52 3.78/5.40/1.62
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Table 7.7: The percentages of times (coverage) that the median (τ = 0.5), the 90th

percentile (τ = 0.9), and the 99th percentile (τ = 0.99) was in 90/95/99% confidence
intervals when data were generated from the standard Cauchy distribution. Method
abbreviations correspond to the Wald test (Wald), the percentile bootstrap confi-
dence interval (Perc), the percentile-t bootstrap confidence interval (PercT), the LR
test using chi-squared thresholds (χ2) and the LR test using bootstrap thresholds
(BootLR).

n Wald Perc PercT χ2 BootLR
τ = 0.5
100 99/100/100 90/95/99 88/95/98 99/100/100 92/96/99
500 100/100/100 92/95/99 92/95/98 99/100/100 92/96/99
1000 100/100/100 91/94/99 92/96/99 100/100/100 92/96/99

n Wald Perc PercT χ2 BootLR
τ = 0.9
100 61/67/78 88/94/99 86/92/97 77/85/93 91/95/99
500 72/78/87 88/93/99 87/93/98 81/88/95 90/95/99
1000 77/83/90 88/93/98 89/93/98 83/89/96 90/94/98

n Wald Perc PercT χ2 BootLR
τ = 0.99
100 06/07/09 63/63/63 62/68/74 39/39/42 78/83/89
500 09/10/13 86/87/96 83/88/95 29/34/42 90/94/97
1000 11/13/16 87/93/97 87/91/96 29/34/43 91/95/98
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Table 7.8: The average lower bound/upper bound/width of the 95% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard Cauchy distribution.
τ = 0.5
n μ̂ Wald Perc PercT
100 0 -1.55/1.45/3.00 -0.23/0.17/0.40 -0.47/0.14/0.61
500 0 -0.81/0.80/1.61 -0.14/0.14/0.28 -0.27/0.27/0.54
1000 0 -0.65/0.65/1.30 -0.10/0.10/0.20 -0.18/0.17/0.35
n μ̂ χ2 BootLR
100 0 -0.15/0.17/0.32 -0.24/0.19/0.43
500 0 -0.21/0.18/0.39 -0.18/0.17/0.35
1000 0 -0.14/0.14/0.28 -0.12/0.12/0.24

τ = 0.9
n μ̂ Wald Perc PercT
100 3.08 0.85/5.33/4.48 1.68/6.35/4.67 -1.86/9.86/11.72
500 3.08 1.94/4.24/2.30 2.35/4.11/1.76 1.48/5.08/3.60
1000 3.08 2.24/3.92/1.68 2.54/3.76/1.22 2.02/4.24/2.22
n μ̂ χ2 BootLR
100 3.08 1.38/7.78/6.40 1.28/8.68/7.40
500 3.08 2.18/4.24/2.06 2.14/4.58/2.44
1000 3.08 2.30/4.05/1.75 2.39/4.03/1.64

τ = 0.99
n μ̂ Wald Perc PercT
100 31.82 27.22/36.87/9.65 6.38/244.15/237.77 -185.54/872.40/1057.94
500 31.82 29.19/34.66/5.47 14.56/78.39/63.83 -40.98/168.46/209.44
1000 31.82 29.98/33.88/3.90 17.93/65.00/47.07 -8.65/96.62/105.27
n μ̂ χ2 BootLR
100 31.82 5.27/66.17/60.90 3.92/244.15/240.23
500 31.82 15.15/53.20/38.05 10.67/144.71/134.04
1000 31.82 16.70/53.98/37.28 14.44/96.16/81.72
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Table 7.9: The percentages of times (coverage) that the median (τ = 0.5), the
90th percentile (τ = 0.9), and the 99th percentile (τ = 0.99) was in 90/95/99%
confidence intervals when data were generated from the standard folded distribution.
Method abbreviations correspond to the Wald test (Wald), the percentile bootstrap
confidence interval (Perc), the percentile-t bootstrap confidence interval (PercT), the
LR test using chi-squared thresholds (χ2) and the LR test using bootstrap thresholds
(BootLR).

n Wald Perc PercT χ2 BootLR
τ = 0.5
100 68/76/87 89/94/98 83/88/94 79/87/95 87/93/98
500 71/79/91 93/96/99 89/94/98 84/91/97 93/96/99
1000 68/76/89 91/96/99 87/94/98 82/88/96 91/96/99

n Wald Perc PercT χ2 BootLR
τ = 0.9
100 36/42/53 84/92/98 78/85/93 61/68/81 86/93/98
500 35/42/53 89/94/98 82/88/95 61/70/83 87/94/98
1000 34/40/51 89/94/99 85/91/96 59/68/84 90/94/98

n Wald Perc PercT χ2 BootLR
τ = 0.99
100 08/09/12 63/63/63 64/70/78 43/45/50 81/86/94
500 07/08/12 86/87/96 75/81/90 29/33/42 85/92/98
1000 07/09/13 84/92/98 77/84/92 31/35/44 86/92/97
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Table 7.10: The average lower bound/upper bound/width of the 95% confidence
intervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th

percentile (τ = 0.99) when data were generated from the standard folded normal
distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0.67 0.52/0.71/0.19 0.52/0.75/0.23 0.49/0.71/0.22
500 0.67 0.63/0.71/0.08 0.60/0.74/0.14 0.60/0.74/0.14
1000 0.67 0.64/0.70/0.06 0.62/0.72/0.10 0.62/0.72/0.10
n μ̂ χ2 BootLR
100 0.67 0.55/0.71/0.16 0.51/0.75/0.24
500 0.67 0.61/0.74/0.13 0.59/0.76/0.17
1000 0.67 0.63/0.72/0.09 0.62/0.73/0.11

τ = 0.9
n μ̂ Wald Perc PercT
100 1.64 1.53/1.70/0.17 1.35/1.91/0.56 1.35/1.93/0.58
500 1.64 1.60/1.68/0.08 1.51/1.77/0.26 1.52/1.77/0.25
1000 1.64 1.61/1.67/0.06 1.55/1.73/0.18 1.55/1.73/0.18
n μ̂ χ2 BootLR
100 1.64 1.27/1.84/0.57 1.25/2.00/0.75
500 1.64 1.54/1.74/0.20 1.48/1.80/0.32
1000 1.64 1.58/1.70/0.12 1.53/1.75/0.22

τ = 0.99
n μ̂ Wald Perc PercT
100 2.58 2.37/2.45/0.08 1.91/2.74/0.83 2.07/3.12/1.05
500 2.58 2.52/2.56/0.04 2.27/2.80/0.53 2.29/2.85/0.56
1000 2.58 2.55/2.57/0.02 2.36/2.77/0.41 2.36/2.78/0.42
n μ̂ χ2 BootLR
100 2.58 1.85/2.62/0.77 1.70/2.74/1.04
500 2.58 2.25/2.62/0.37 2.16/2.92/0.76
1000 2.58 2.36/2.62/0.26 2.29/2.84/0.55
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Table 7.11: The percentages of times (coverage) that the median (τ = 0.5), the 90th

percentile (τ = 0.9), and the 99th percentile (τ = 0.99) was in 90/95/99% confi-
dence intervals when data were generated from the standard log normal distribution.
Method abbreviations correspond to the Wald test (Wald), the percentile bootstrap
confidence interval (Perc), the percentile-t bootstrap confidence interval (PercT), the
LR test using chi-squared thresholds (χ2) and the LR test using bootstrap thresholds
(BootLR).

n Wald Perc PercT χ2 BootLR
τ = 0.5
100 86/91/97 90/95/98 83/89/96 89/94/98 89/95/98
500 88/94/98 91/95/99 89/94/97 89/95/99 90/95/99
1000 87/92/98 91/95/99 87/93/97 89/94/98 90/95/99

n Wald Perc PercT χ2 BootLR
τ = 0.9
100 30/36/48 87/93/97 79/86/94 56/65/80 87/92/97
500 33/38/49 91/95/98 85/92/97 60/67/82 89/95/99
1000 35/41/52 91/95/99 88/93/98 62/71/84 91/95/99

n Wald Perc PercT χ2 BootLR
τ = 0.99
100 04/04/06 65/65/65 63/69/78 42/43/45 80/85/92
500 04/05/06 87/88/96 78/82/91 24/27/33 86/91/97
1000 04/05/07 84/92/96 79/85/93 23/27/35 85/92/97
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Table 7.12: The average lower bound/upper bound/width of the 95% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard log normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 1 0.82/1.24/0.42 0.89/1.16/0.27 0.91/1.19/0.28
500 1 0.90/1.10/0.20 0.90/1.11/0.21 0.89/1.11/0.22
1000 1 0.93/1.07/0.14 0.92/1.08/0.16 0.92/1.08/0.16
n μ̂ χ2 BootLR
100 1 0.88/1.17/0.29 0.88/1.17/0.29
500 1 0.88/1.14/0.26 0.87/1.14/0.27
1000 1 0.91/1.09/0.18 0.91/1.09/0.18

τ = 0.9
n μ̂ Wald Perc PercT
100 3.60 3.22/3.83/0.61 2.56/5.00/2.44 2.29/4.93/2.64
500 3.60 3.45/3.72/0.27 3.10/4.16/1.06 3.06/4.15/1.09
1000 3.60 3.48/3.68/0.20 3.23/3.98/0.75 3.21/3.97/0.76
n μ̂ χ2 BootLR
100 3.60 2.47/4.66/2.19 2.26/5.65/3.39
500 3.60 3.16/3.96/0.80 2.98/4.34/1.36
1000 3.60 3.34/3.85/0.51 3.16/4.07/0.91

τ = 0.99
n μ̂ Wald Perc PercT
100 10.24 8.77/9.24/0.47 5.01/13.51/8.50 4.35/19.58/15.23
500 10.24 9.82/10.05/0.23 7.37/13.22/5.85 6.91/13.72/6.81
1000 10.24 9.98/10.15/0.17 8.08/12.82/4.74 7.68/12.65/4.97
n μ̂ χ2 BootLR
100 10.24 3.97/10.97/7.00 3.95/13.51/9.56
500 10.24 7.42/10.54/3.12 6.53/15.39/8.86
1000 10.24 8.75/10.52/1.77 7.45/13.94/6.49



Chapter 8

Quantile Regression

Quantile regression is a regression estimation method of how quantiles of a population

vary as a function of covariates [16]. In the case that τ = 0.5, quantile regression

minimizes the weighted absolute residuals instead of the sum of squared residuals.

This gives it some robustness to outlying observations [21]. Importantly, however,

it is estimating something different in this case, the median responses as a function

of the covariates rather than the mean responses. More generally, when τ is large

or small, quantile regression allows one to model how extremes tend to vary with

covariates. As such it is a good tool for modeling how, for instance, extreme weather

patterns or longevity depend on covariates.

8.1 Nonparametric Bootstrapping on Quantile Regression

The quantile regression model can be expressed as

yi = xi
′β + εi, i = 1, ..., n

where yi represents the ith obsevation, xi represents the covariate vector for the

ith individual, and εi is the ith independent error variable having an ALD with 0

location parameter. Thus x′
iβ is interpretable as the τth quantile of the conditional

distribution of yi, conditional upon the ith individual having covariate value xi, Thus

βj can be interpreted as the change in the τth quantile due to a unit change in xj,

holding all other values in x fixed.

We can write the likelihood function of β as

L(β; , σ, τ) =
n∏

i=1

f(εi; σ, τ)

=

(
τ(1− τ)

σ

)n

exp

(
−

n∑
i=1

ρτ (
yi − xi

′β
σ

)

)
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where the quantile loss function is

ρτ (u) =

⎧⎨⎩(τ − 1)u u < 0

τu u ≥ 0

Then the log likelihood function can be written as

l(β; σ, τ) = n log τ(1− τ)− n log σ −
n∑

i=1

ρτ

(
yi − xi

′β
σ

)
Thus, under quantile regression model, minimizing weighted absolute residuals is

equivalent to solving the maximum likelihood function of β . Thus,

argmax
β

l(β; σ, τ) ⇔ argmin
β

n∑
i=1

ρτ

(
yi − xi

′β
σ

)

⇔ argmin
β

n∑
i=1

ρτ (yi − xi
′β)

Numerical algorithms are required to obtain the minimizer, fî. Similarly as in

Equation 5.6, one obtains that

σ̂(β̂) = −
∑

yi−xi
′β̂<μ(yi − xi

′β̂ − μ̂)

n
+ τ

∑
(yi − xi

′β̂ − μ̂)

n

We now describe how to obtain the confidence interval for the jth coefficient,

βj, using a LRT, in a quantile regression. First y − βjxj is regressed on the rest

regressors. The log likelihood coming from this quantile regression is l(β̂(βj), βj),

where β̂(βj) is the estimated coefficients of the regression model holding βj fixed.

The log likelihood obtained by regressing y on all of the regressors is denoted by

l(β̂). Then the LRT statistic is

Wj = 2(l(β̂)− l(β̂(βj), βj)).

In bootstrapping simulation, each bootstrap data set is randomly selected from

the original data by entry with replications, each entry represent one independent

variable y and the dependent variables x. The size of bootstrap data is same to the
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size of original data, n. Let y∗ denote the independent variable of bootstrap data

and x∗ represent the dependent variables of bootstrap data respectively. Let β̂∗

denote the bootstrap coefficients obtained by regressing y∗ on x∗.

Suppose the bootstrap coefficients are estimated with the restriction that β̂j is

fixed. Then we can obtain y∗(β̂j) by subtracting the x∗′
j β̂j from y∗. The bootstrap

coefficients estimated by regressing y∗(β̂j) on other independent variables except xj

is denote as β̂∗(β̂j), and the associated log likelihood function is l(β̂∗(β̂j), β̂j). Let

the associated log likelihood function when there are no restrictions be l(̂

β∗). Then the LRT statistics of the bootstrap data is

β∗)− l(β̂∗(β̂j), β̂j)).W
∗
j = 2(l(̂

The αth threshold of nonparametric bootstrap LRT under null hypothesis of β∗
j

is denoted as W ∗
j,α. The 100(1− α)% bootstrap CI of β̂j is[

min{β∗
j |Wj ≤ W ∗

j,α)},max{β∗
j |W ∗

j ≤ W ∗
j,α}
]
.

The percentile CI of β̂j corresponding to original data is[
β̂∗
j,α/2, β̂

∗
j,1−α/2

]
,

where β̂j,ζ denotes the ζth quantile of the estimated β̂j over bootstrap samples.

8.2 Real Data Example

The most common form of regression is mean regression, which only fits the mean

of relationships between dependent variable and independent variables. By contrast,

the quantile regression is used to assess the relationships between any particular

quantile of the dependent variable and independent variables. This feature of quantile

regression gives advantages in estimating data where it is the more extreme responses

that are of interest, like salaries of same position [30], mortality rates [17], and etc.

One example of mortality rate data is the medfly data used by Koenker and

Geling (2001)[17]. The medfly data from the Carey et al’s experiment [4], which

is known as “flies” in R package “REBayes” [18]. They monitored mortalities of

Mediterranean fruit flies (Ceratitis capitata), where a cohort of more than 1 million

medflies are used. One interesting feature of this data was that only 1% of the
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population survived past 50 days but mortality (the rate of death, given survival

to the time point of interest) decreased dramatically from 15% to less than 5% by

100 days. Interest therefore is how the upper quantiles of age were dependent on

explanatory variables.

This data frame includes 19072 observations and 17 variables. Koenker and

Geling’s weighted quantile regression model set the logarithm of ages in days of

medflies (“age” in “flies” data) as the response. One of the covariates of substantial

interest in their model is the sex the medflies (“sex” in ”flies” data), since Carey et

al. (1992) found out that male medflies have higher mortality rate during age 20

to 60 days. The variable “sex” has value female= 1 and male= 0. Other covariates

included initial density of flies across cages (“begin”), initial proportion of male

in each cage (“prebegin”), and five classes of pupae size in each cage (“size”), i.e.

sorted by pupal sorter from 4mm to 8mm, are also included in their model. The last

regressor been considered is batches (“batch”), i.e. pupaes are rised in eight distinct

batches.

Two different quantile regression models, Model A and Model B, are established

in Koenker’s paper [17]. In this thesis, we will follow the same models, where model

A regresses logarithm of age on female (indicator variable), pupal size, initial cage

density and initial proportion. The model can be expressed as:

log(age) = β0,A + β1,Afemale+ β2,Asize+ β3,Abegin+ β4,Aprebegin

Model B considered the effect of 8 different batches on logrithm of age, where we

added seven indicator variables to represent batch 1 to batch 7 respectively.

log(age) = β0,B+β1,Bfemale+ β2,Bsize+ β3,Bbegin+ β4,Bprebegin

+ β5,Bbatch1 + β6,Bbatch2 + β7,Bbatch3 + β8,Bbatch4

+ β9,Bbatch5 + β10,Bbatch6 + β11,Bbatch7

A total of 5000 sets of bootstrap samples are generated from the original data to

model A and model B repectively. Compared to Koenker and Geling’s results, when

τ equals 0.5, 0.9, and 0.99 our results are close with wider CI.
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Table 8.1 shows that when τ = 0.5, while the quantile regression estimates

the mean of response variable, the nonparametric boostrap and percentile CIs are

close to each other. The coefficients of model A with the original medfly data are

−0.1964 (β̂1,A), −0.0018 (β̂2,A), 0.4915 (β̂3,A), and 1.0937 (β̂4,A). The nonparametric

CI of β1,A is [−0.1993,−0.1938] with width 0.0055, and the percentile CI is slight

tighter, which is [−0.1982,−0.1943]. The nonparametric and percentile CIs of β2,A

are [−0.0029,−0.0006] and [−0.0023,−0.0011], where the width of the percentile CI

smaller than the nonparametric bootstrap CI by 0.0011. The nonparametric boot-

strap CIs of β3,A and β4,A are also wider than the percentile CIs. When τ = 0.9 and

τ = 0.9, the quantile regression estimates the 90th and 99th percentile of response

variable instead of mean.

Table 8.1 also indicates that all the nonparametric bootstrap CIs are wider than

the percentile CIs, where the coefficients of model A with the original medfly data

with τ = 0.9 and 0.99 are all located in their corresponding CIs. The coeffcients of

model A with τ = 0.9 are −0.0345 (β̂1,A), −0.009 (β̂2,A), 0.4590 (β̂3,A), and 1.2624

(β̂4,A), and the coefficients of τ = 0.99 are 0.0614, −0.0151, 0.3777, and 0.8848. Of

particular interest is the coefficient for sex. This was negative for τ = 0.5 and 0.90,

suggesting that the median or even 90th percentile of lifetime was lower for females

than males. For very long-lived flies, however, the results with τ = 0.99 suggest that

long lived flies are more likely to be female than male. It may be that other reasons

for mortality make females more susceptible in the earlier stages of their life stages.

The 95% CIs do not include 0, so the results are significant. Coefficients for the

other variables remained relatively constant over different choices of τ .

Table 8.2, 8.3, and 8.4 indicated the coefficients CIs of model B with τ = 0.5, 0.9,

and0.99. The estimated coefficients of model B when τ = 0.5 are −0.2048 (female),

−0.0045 (size), 0.0371 (begin), 0.0421 (prebegin), and −0.1220, 0.1637, −0.2281,

−0.1565, 0.0265, −0.0625, and 0.1335 (batch 1 to 7). Table 8.2 indicates nonpara-

metric bootstrap CIs are all wider than percentile CIs, where in some special cases

that differences between them are smaller than 0.01. The widths of nonparametric

bootstrap and percentile CIs for β1 are 0.0094 and 0.0042, for β2 are 0.0041 and

0.0025, for β7 are 0.0147 and 0.009, for β9 are 0.00138 and 0.0076, for β10 are 0.0116

and 0.0067, and for β11 are 0.0138 and 0.0065. Although the difference of widths
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of CIs of above coefficients are too small to tell in 8.2, the results still indicated

the nonparametric bootstrap has wider CIs than the percentile method. The results

including batches have not changed the coefficients much.

When τ = 0.9, the first four estimated coefficients of model B with original data

are −−0.0103, −0.0151, 0.0323, and 0.4342. The estimated coefficients for 6 batches

are −0.1127, 0.0795, −0.3715, −0.2276, −0.0862, −0.1725, and 0.0676. In Table 8.3,

special cases that differences of nonparametric nootstrap CIs and percentile CIs are

smaller than 0.01 are β1 (0.0118 and 0.0080), β2 (0.0053 and 0.0030), and β8 (0.0165

and 0.0086). When τ = 0.99, estimated coefficients of model B with original data are

−0.0927 (female), −0.0142 (size), 0.0344 (begin), 0.5280 (prebegin), and −0.1835,

0.0052, −0.4249, −0.2842, −0.1368, −0.1769, and 0.0771 (batch 1 to 7). In Table

8.4,the only case that differences of nonparametric bootstrap CIs and percentile CIs

are smaller than 0.01 is β2 (0.0076 and 0.0041).

8.3 Simulation of Quantile Regression

In this section we consider the results of a small simulation study. The model is the

one that Feng et al. (2011) used in their simulation study [10] is a multiple regression

model with two independent variables. In their model, the dependent variable yi with

i = 1, . . . , n is generated from

yi = β0 + β1x1,i + β2x2,i + 3−
1
2 [2 +

1

10
{1 + (x1,i − 8)2 + x2,i}]εi, (8.1)

where β0 = β1 = β2 = 1 and n = 1000 in simulations. The residual variable ε is

generated from a t distribution with degree of freedom 3 (t3). The variable x1 is

generated from standard log-normal distribution, and 80% of the indicator indicator

variables, x2, were independently random selected to be 1. Let ζ denote the τ th

quantile of y, then

τ = P (yi ≤ ζ|x1,i, x2,i)

= P

(
εi ≤ ζ − β0 − β1x1,i − β2x2,i

3−
1
2

(
2 + 1

10
(1 + (x1,i − 8)2 + x2,i)

)) , i ∈ 1, . . . , n

Given ε is distributed under t3, then the τ th quantile of ε is

tτ,3 =
ζ − β0 − β1x1,i − β2x2,i

3−
1
2

(
2 + 1

10
(1 + (x1,i − 8)2 + x2,i)

) ,



61

which gives

ζ = (β0 + 3−
1
2 ∗ 8.5 ∗ tτ,3) + (β1 − 3−

1
2 ∗ 1.6 ∗ tτ,3)x1,i

+ (β2 + 3−
1
2 ∗ 0.1 ∗ tτ,3)x2,i + 3−

1
2 ∗ 0.1 ∗ tτ,3x2

1,i.

In our study, we also add a new variable x3,i = x2
1,i, where i ∈ 1, . . . , n. Then the

regression model can be expressed as

yi = β0 + β1x1,i + β2x2,i + β3x3,i + 3−
1
2 ∗ 8.5 ∗ tτ,3εi

− 3−
1
2 ∗ 1.6x1,iε+ 3−

1
2 ∗ 1

10
x2,iεi + 3−

1
2 ∗ 1

10
x3,iεi,

where β3 = 0. Because we simulate from β0 = β1 = β2 = 1 in (8.1), the using (

)thetruecoefficientsforthequantileregressionforquantile

τ are quantile of coefficients can be expressed as

βτ,1 = 1− 3−
1
2 ∗ 1.6 ∗ tτ,3

βτ,2 = 1 + 3−
1
2 ∗ 0.1 ∗ tτ,3

βτ,3 = 3−
1
2 ∗ 0.1 ∗ tτ,3

An example of comparison of percentile CIs and nonparametric CIs of coefficients

in our model was taken below.

A total of 1000 data sets were simulated for each setting. To summarize results

we consider the average lower and upper bounds of the intervals over the simulations

and their width. We also calculate coverage as the proportions of the 1000 data sets

where the true values of coefficients were in a confidence interval. For bootstrapping

we used 1000 bootstrap samples for each data set.

The simulation results of our model are shown in Table 8.5, 8.6, and 8.7. In Table

8.5, given the true values of β1, β2, and β3 are 1, 1, and 0 when τ = 0.5, good coverage

properties are shown by the nonparametric bootstrap LRT. The nonparametric boot-

strap coverages of β1 are 91%, 96% and 99% with respect to 90%, 95%, and 99% CIs.

The percentile coverages are 84%, 90%, and 96%, which is a bit off. The widths of

nonparametric bootstrap CIs are larger than the percentile CIs, being 0.93/1.02/1.15

compared to 0.66/0.77/0.99. Somewhat larger CIs were expected given the larger
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coverages. The results for β2 are similar. The nonparametric bootstrap coverages

are 92%, 96% and 99%. The percentile coverages of β2 are slight better than the

percentile coverages of β1 and as good as the nonparametric bootstrap coverages of

β2. For the percentile method they are 91%, 95%, and 99%. However, the percentile

CIs have tighter ranges than nonparametric bootstrap CIs (1.74/1.94/2.28), which

are 1.29/1.53/2.00. The last coefficient β3 has small CIs, where the nonparametric

bootstrap CIs are wider (0.11/0.12/0.13) than the percentile CIs (0.07/0.08/0.11).

The corresponding nonparametric bootstrap coverages are 88%, 94% and 99%, and

the percentile method has worse coverages, which are 79%, 85% and 93%. Overall,

the nonparametric bootstrap LRT had better coverage properties than the percentile

method.

When τ = 0.9, the true values of β1, β2, and β3 are −0.51, 1.09, and 0.10.

The nonparametric bootstrap coverages are 0.87/0.93/0.99 for β1, 0.93/0.96/0.99 for

β2, and 0.84/0.90/0.96 for β3. While the percentile coverages are 0.83/0.90/0.97,

0.93/0.95/0.99, and 0.77/0.84/0.93, where the perforamce of β1 and β2 are fine,

but β3 has smaller coverages than β3 in nonoparametric bootstrap. The widths of

nonparametric bootstrap CIs are all larger than percentile CIs. Similarly as when

τ = 0.5 and 0.90, the nonparametric bootstrap CIs are wider than percentile CIs.

When τ = 0.99 as Table 8.7 indicates, the advantages of nonparametic bootstrap

CIs over percentile CIs are even larger than in Table 8.6. In summary, although the

percentile intervals often performed well and tended to give slightly shorter confidence

intervals, it tended to undercover, sometimes substantially so. By comparison, the

LRT intervals tended to be closer to the nominal levels.
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Table 8.1: For the medfly data, the average lower bound/upper bounds and width of
the 95% confidence intervals for the median (τ = 0.5), the 90th percentile (τ = 0.9),
and the 99th percentile (τ = 0.99) of model A by the nonparametric bootstrap LRT
and percentile method.

Method β1 β2

τ = 0.5 β̂1 lb/ub width β̂2 lb/ub width
Bootstrap -0.20 -0.20/-0.19 0.01 0.00 0.00/0.00 0.00
Percentile -0.20 -0.20/-0.19 0.01 0.00 0.00/0.00 0.00

Method β3 β4

τ = 0.5 β̂3 lb/ub width β̂4 lb/ub width
Bootstrap 0.49 0.47/0.50 0.03 1.09 1.09/1.17 0.08
Percentile 0.49 0.48/0.49 0.01 1.09 1.09/1.15 0.06

Method β1 β2

τ = 0.9 β̂1 lb/ub width β̂2 lb/ub width
Bootstrap -0.04 -0.04/-0.03 0.01 -0.01 -0.01/-0.01 0.00
Percentile -0.04 -0.04/-0.03 0.01 -0.01 -0.01/-0.01 0.00

Method β3 β4

τ = 0.9 β̂3 lb/ub width β̂4 lb/ub width
Bootstrap 0.46 0.43/0.47 0.04 1.26 1.20/1.32 0.12
Percentile 0.46 0.43/0.46 0.03 1.26 1.25/1.29 0.04

Method β1 β2

τ = 0.99 β̂1 lb/ub width β̂2 lb/ub width
Bootstrap 0.06 0.05/0.07 0.02 -0.02 -0.02/-0.01 0.01
Percentile 0.06 0.06/0.07 0.01 -0.02 -0.02/-0.01 0.01

Method β3 β4

τ = 0.99 β̂3 lb/ub width β̂4 lb/ub width
Bootstrap 0.38 0.35/0.40 0.05 0.89 0.83/0.96 0.13
Percentile 0.38 0.36/0.39 0.03 0.89 0.84/0.92 0.08
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Table 8.2: For the medfly data, the average lower bound/upper bounds and width
of the 95% confidence intervals for the median (τ = 0.5) of model B by the nonpara-
metric bootstrap LRT and percentile method.

Method β1 β2

τ = 0.5 β̂1 lb/ub width β̂2 lb/ub width
Bootstrap -0.21 -0.21/-0.20 0.01 0.00 -0.01/0.00 0.01
Percentile -0.21 -0.21/-0.20 0.01 0.00 -0.01/0.00 0.01

Method β3 β4

τ = 0.5 β̂3 lb/ub width β̂4 lb/ub width
Bootstrap 0.04 0.02/0.06 0.04 0.32 0.25/0.36 0.11
Percentile 0.04 0.02/0.04 0.02 0.32 0.30/0.35 0.05

Method β5 β6

τ = 0.5 β̂5 lb/ub width β̂6 lb/ub width
Bootstrap -0.12 -0.14/-0.11 0.03 0.16 0.16/0.18 0.02
Percentile -0.12 -0.13/-0.12 0.01 0.16 0.16/0.17 0.01

Method β7 β8

τ = 0.5 β̂7 lb/ub width β̂8 lb/ub width
Bootstrap -0.23 -0.23/-0.22 0.01 -0.16 -0.16/-0.14 0.02
Percentile -0.23 -0.23/0.22 0.01 -0.16 -0.16/-0.15 0.01

Method β9 β10

τ = 0.5 β̂9 lb/ub width β̂10 lb/ub width
Bootstrap 0.03 0.02/0.03 0.01 -0.06 -0.07/-0.06 0.01
Percentile 0.03 0.02/0.03 0.01 -0.06 -0.07/-0.06 0.01

Method β11

τ = 0.5 β̂11 lb/ub width
Bootstrap 0.13 0.13/0.14 0.01
Percentile 0.13 0.13/0.14 0.01
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Table 8.3: For the medfly data, the estimated coverages and width of confidence
intervals of regression coefficents by chi-square and nonparametric bootstrap LRT
threshold in model B of medfly data when τ = 0.9.

Method β1 β2

τ = 0.9 β̂1 lb/ub width β̂2 lb/ub width
Bootstrap -0.01 -0.02/-0.01 0.01 -0.02 -0.02/-0.01 0.01
Percentile -0.01 -0.02/-0.01 0.01 -0.02 -0.02/-0.01 0.01

Method β3 β4

τ = 0.9 β̂3 lb/ub width β̂4 lb/ub width
Bootstrap 0.03 0.02/0.07 0.05 0.43 0.37/0.49 0.12
Percentile 0.03 0.02/0.06 0.04 0.43 0.39/0.48 0.09

Method β5 β6

τ = 0.9 β̂5 lb/ub width β̂6 lb/ub width
Bootstrap -0.11 -0.13/-0.10 0.03 0.08 0.07/0.09 0.02
Percentile -0.11 -0.12/-0.11 0.01 0.08 0.07/0.08 0.01

Method β7 β8

τ = 0.9 β̂7 lb/ub width β̂8 lb/ub width
Bootstrap -0.37 -0.39/-0.36 0.03 -0.23 -0.23/-0.22 0.01
Percentile -0.37 -0.38/-0.36 0.02 -0.23 -0.23/-0.22 0.01

Method β9 β10

τ = 0.9 β̂9 lb/ub width β̂10 lb/ub width
Bootstrap -0.09 -0.09/-0.07 0.02 -0.17 -0.18/-0.16 0.02
Percentile -0.09 -0.09/-0.08 0.01 -0.17 -0.18/-0.17 0.01

Method β11

τ = 0.9 β̂11 lb/ub width
Bootstrap 0.07 0.06/0.08 0.02
Percentile 0.07 0.06/0.07 0.01
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Table 8.4: For the medfly data, the estimated coverages and widths of confidence
intervals of regression coefficents by chi-square and nonparametric bootstrap LRT
threshold in model B of medfly data when τ = 0.99.

Method β1 β2

τ = 0.99 β̂1 lb/ub width β̂2 lb/ub width
Bootstrap 0.09 0.08/0.10 0.02 -0.01 -0.02/-0.01 0.01
Percentile 0.09 0.09/0.10 0.01 -0.01 -0.02/-0.01 0.01

Method β3 β4

τ = 0.99 β̂3 lb/ub width β̂4 lb/ub width
Bootstrap 0.03 0.00/0.07 0.07 0.53 0.43/0.63 0.20
Percentile 0.03 0.01/0.06 0.05 0.53 0.46/0.58 0.12

Method β5 β6

τ = 0.99 β̂5 lb/ub width β̂6 lb/ub width
Bootstrap -0.18 -0.21/-0.15 0.06 0.01 -0.01/0.02 0.03
Percentile -0.18 -0.20/-0.17 0.03 0.01 -0.01/0.01 0.02

Method β7 β8

τ = 0.99 β̂7 lb/ub width β̂8 lb/ub width
Bootstrap -0.42 -0.44/-0.39 0.05 -0.28 -0.30/-0.26 0.04
Percentile -0.42 -0.44/-0.40 0.04 -0.28 -0.30/-0.27 0.03

Method β9 β10

τ = 0.99 β̂9 lb/ub width β̂10 lb/ub width
Bootstrap -0.14 -0.15/-0.12 0.03 -0.18 -0.20/-0.17 0.03
Percentile -0.14 -0.15/-0.13 0.02 -0.18 -0.19/-0.17 0.02

Method β11

τ = 0.99 β̂11 lb/ub width
Bootstrap 0.08 0.05/0.10 0.05
Percentile 0.08 0.07/0.09 0.02
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Table 8.5: The average lower bounds, upper bounds, widths, and coverages of the
90%, 95%, and 99% confidence intervals for the median (τ = 0.5) of simulated
quantile regression model.

β1 Bootstrap Interval Percentile Interval
α β1 lb ub width cov lb ub width cov

0.10 1 0.54 1.47 0.93 0.91 0.68 1.33 0.66 0.84
0.05 1 0.49 1.52 1.02 0.96 0.62 1.39 0.77 0.90
0.01 1 0.43 1.58 1.15 0.99 0.51 1.50 0.99 0.96

β2 Bootstrap Interval Percentile Interval
α β2 lb ub width cov lb ub width cov

0.10 1 0.13 1.87 1.74 0.92 0.35 1.65 1.29 0.91
0.05 1 0.03 1.97 1.94 0.96 0.23 1.77 1.53 0.95
0.01 1 -0.13 2.14 2.28 0.99 -0.00 2.00 2.00 0.99

β3 Bootstrap Interval Percentile Interval
α β3 lb ub width cov lb ub width cov

0.10 0 -0.06 0.06 0.11 0.88 -0.04 0.04 0.07 0.79
0.05 0 -0.06 0.06 0.12 0.94 -0.04 0.04 0.08 0.85
0.01 0 -0.07 0.07 0.13 0.99 -0.05 0.05 0.11 0.93

Table 8.6: The average lower bounds, upper bounds, widths, and coverages of the
90%, 95%, and 99% confidence intervals for the 90th percentile (τ = 0.9) of simulated
quantile regression model.

β1 Bootstrap Interval Percentile Interval
α β1 lb ub width cov lb ub width cov

0.10 -0.51 -1.31 0.49 1.81 0.87 -0.96 0.20 1.16 0.83
0.05 -0.51 -1.40 0.58 1.98 0.93 -1.07 0.31 1.39 0.90
0.01 -0.51 -1.51 0.69 2.20 0.99 -1.29 0.53 1.82 0.97

β2 Bootstrap Interval Percentile Interval
α β2 lb ub width cov lb ub width cov

0.10 1.09 -1.29 2.92 4.21 0.93 -0.46 2.37 2.83 0.93
0.05 1.09 -1.52 3.10 4.62 0.96 -0.79 2.60 3.39 0.95
0.01 1.09 -1.92 3.35 5.27 0.99 -1.45 3.03 4.47 0.99

β3 Bootstrap Interval Percentile Interval
α β3 lb ub width cov lb ub width cov

0.10 0.10 -0.00 0.19 0.19 0.84 0.03 0.14 0.11 0.77
0.05 0.10 -0.01 0.20 0.21 0.90 0.02 0.15 0.13 0.84
0.01 0.10 -0.01 0.21 0.23 0.96 0.00 0.18 0.17 0.93
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Table 8.7: The average lower bounds, upper bounds, widths, and coverages of the
90%, 95%, and 99% confidence intervals for the 99th percentile (τ = 0.99) of simulated
quantile regression model.

β1 Bootstrap Interval Percentile Interval
α β1 lb ub width cov lb ub width cov

0.10 -3.19 -8.96 2.89 11.86 0.89 -5.54 0.30 5.84 0.87
0.05 -3.19 -9.54 3.31 12.86 0.94 -6.33 0.93 7.26 0.92
0.01 -3.19 -10.29 3.99 14.29 0.99 -8.16 2.47 10.62 0.97

β2 Bootstrap Interval Percentile Interval
α β2 lb ub width cov lb ub width cov

0.10 1.26 -16.66 14.14 30.80 0.91 -13.39 7.99 21.37 0.92
0.05 1.26 -16.94 14.89 31.83 0.94 -14.40 9.30 23.70 0.96
0.01 1.26 -17.25 15.59 32.85 0.98 -16.02 12.01 28.03 0.99

β3 Bootstrap Interval Percentile Interval
α β3 lb ub width cov lb ub width cov

0.10 0.26 -0.18 0.99 1.17 0.86 0.00 0.51 0.51 0.86
0.05 0.26 -0.22 1.05 1.28 0.92 -0.04 0.61 0.65 0.92
0.01 0.26 -0.27 1.17 1.43 0.98 -0.14 0.86 1.00 0.97



Chapter 9

Conclusion

Generally, the nonparametric bootstrap LRT confidence intervals worked better than

other methods that we discussed in this thesis. However, the coverages of the per-

centile approach we often comparable. The coverages of nonparametric bootstrap

CI almost always did well at estimating their stated significance level when τ = 0.5.

When τ has extreme values like 0.9 and 0.99, the coverages of the nonparametric

bootstrap CI tended to be closer to the significance level than the other methods con-

sidered.The widths of the nonparametric bootstrap CI are often among the widest,

but this was usually because other methods had a tendency to undercover.

Even though the percentile-t method is commonly recognized as a more accurate

method than the percentile method, in our thesis the percentile CI worked better

than the percentile-t CI, which is the second best method among those considered.

One of our contributions to the percentile CI methods was to improve calculation

in estimating percentile CI with ALD by normal approximation, as introduced in

Chapter 5. One possible reason that the percentile-t CI didn’t work as expected

may be the the calculation of standard error estimates. Since the distributions are

misspecified with ALD in many of our examples the benefits of estimating standard

errors may not be as apparent as when there is no misspecification. When we es-

timating the percentile-t CI for bootstrap data, the bootstrap standard errors of

parameter of interest are estimated on ALD during this process even though that

need not be the true generating process. Consequently, the arguments that suggest

the percentile-t should perform best, which are based on the standard errors being

good approximations to the actual standard errors, no longer hold.

The results of chi-square LR CI and Wald CI are the worst two methods from the

results we got. The reason that the chi-square LR didn’t perform well is the limitation

of constant chi-square thresholds. Since the value of chi-square thresholds are below

6.63 with significant level less than 0.01 and constant, their coverage probabilities
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will tend to be low when the true generating distribution tends to give very large LR

statistics. The Wald test is based on a standard normal approximation, which assume

the estimated parameters are symmetrically distributed. Such approximations do not

work well, particularly with extreme value of τ (i.e. extremely skewness). The results

for the LR CI with chi-square thresholds and Wald tests indicate the importance of

making robustness adjustments.

Finally, the nonparametric bootstrap LRT also the best CI of coefficients in quan-

tile regression. Since the quantile regression contain only fixed effects, it may be

valuable to consider adding random effects into the regression model as a follow-up

to the work in this thesis. It may also be valuable to consider the use of boot-

strap LR methods in other contexts where likelihood estimation is robust to model

misspecification.
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Appendix: Table

Table 1: The average lower bound/upper bound/width of the 90% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard asymmetric Laplace distri-
bution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.35/0.31/0.66 -0.38/0.34/0.72 -0.39/0.33/0.72
500 0 -0.15/0.14/0.29 -0.16/0.14/0.30 -0.15/0.15/0.30
1000 0 -0.11/0.10/0.21 -0.11/0.11/0.22 -0.10/0.11/0.21
n μ̂ χ2 BootLR
100 0 -0.56/0.49/1.05 -0.56/0.44/1.00
500 0 -0.19/0.18/0.37 -0.19/0.17/0.36
1000 0 -0.14/0.14/0.28 -0.13/0.12/0.25

τ = 0.9
n μ̂ Wald Perc PercT
100 0 -0.63/0.46/1.09 -0.79/0.48/1.27 -0.70/0.60/1.30
500 0 -0.26/0.23/0.49 -0.29/0.23/0.52 -0.27/0.26/0.53
1000 0 -0.18/0.16/0.34 -0.20/0.16/0.36 -0.18/0.18/0.36
n μ̂ χ2 BootLR
100 0 -1.17/0.78/1.95 -1.54/0.85/2.39
500 0 -0.34/0.30/0.64 -0.36/0.30/0.66
1000 0 -0.23/0.23/0.46 -0.24/0.20/0.44

τ = 0.99
n μ̂ Wald Perc PercT
100 0 -2.60/0.69/3.29 -4.00/0.40/4.40 -2.46/2.20/4.66
500 0 -0.92/0.56/1.48 -1.23/0.68/1.91 -1.04/0.87/1.91
1000 0 -0.61/0.43/1.04 -0.72/0.42/1.14 -0.61/0.55/1.16
n μ̂ χ2 BootLR
100 0 -6.91/1.49/8.40 -7.29/0.40/7.69
500 0 -1.81/1.02/2.83 -1.87/0.82/2.69
1000 0 -1.25/0.66/1.91 -1.30/0.63/1.93
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Table 2: The average lower bound/upper bound/width of the 99% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard asymmetric Laplace distri-
bution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.53/0.49/1.02 -0.58/0.54/1.12 -0.62/0.51/1.13
500 0 -0.24/0.23/0.47 -0.25/0.24/0.49 -0.24/0.25/0.49
1000 0 -0.17/0.16/0.33 -0.19/0.16/0.35 -0.17/0.18/0.35
n μ̂ χ2 BootLR
100 0 -0.59/0.55/1.14 -0.61/0.58/1.19
500 0 -0.27/0.24/0.51 -0.27/0.26/0.53
1000 0 -0.20/0.19/0.39 -0.20/0.19/0.39

τ = 0.9
n μ̂ Wald Perc PercT
100 0 -0.94/0.77/1.71 -1.15/0.91/2.06 -1.11/1.03/2.14
500 0 -0.40/0.37/0.77 -0.45/0.41/0.86 -0.44/0.44/0.88
1000 0 -0.28/0.26/0.54 -0.29/0.30/0.59 -0.32/0.27/0.59
n μ̂ χ2 BootLR
100 0 -1.73/0.95/2.68 -1.79/0.91/2.70
500 0 -0.54/0.45/0.99 -0.54/0.44/0.98
1000 0 -0.31/0.35/0.66 -0.3/0.33/0.65

τ = 0.9
n μ̂ Wald Perc PercT
100 0 -3.53/1.62/5.15 -7.25/0.40/7.65 -2.65/5.08/7.73
500 0 -1.33/0.98/2.31 -1.83/1.19/3.02 -1.56/1.39/2.95
1000 0 -0.91/0.73/1.64 -1.23/0.79/2.02 -1.00/1.06/2.06
n μ̂ χ2 BootLR
100 0 -6.91/2.33/9.24 -7.66/0.40/8.06
500 0 -1.94/1.40/3.34 -2.21/1.20/3.41
1000 0 -1.25/1.02/2.27 -1.41/0.99/2.40
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Table 3: The average lower bound/upper bound/width of the 90% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.14/0.12/0.26 -0.22/0.19/0.41 -0.22/0.19/0.41
500 0 -0.06/0.06/0.12 -0.09/0.09/0.18 -0.10/0.09/0.19
1000 0 -0.04/0.04/0.08 -0.07/0.06/0.13 -0.07/0.06/0.13
n μ̂ χ2 BootLR
100 0 -0.27/0.21/0.48 -0.32/0.26/0.58
500 0 -0.09/0.10/0.19 -0.12/0.11/0.23
1000 0 -0.07/0.06/0.13 -0.08/0.07/0.15

τ = 0.9
n μ̂ Wald Perc PercT
100 1.28 1.15/1.34/0.19 0.97/1.51/0.54 0.98/1.55/0.57
500 1.28 1.23/1.32/0.09 1.15/1.40/0.25 1.15/1.40/0.25
1000 1.28 1.24/1.31/0.07 1.19/1.36/0.17 1.19/1.36/0.17
n μ̂ χ2 BootLR
100 1.28 0.97/1.51/0.54 0.98/1.55/0.57
500 1.28 1.15/1.40/0.25 1.15/1.40/0.25
1000 1.28 1.21/1.35/0.14 1.16/1.38/0.22

τ = 0.99
n μ̂ Wald Perc PercT
100 2.33 2.11/2.19/0.08 1.68/2.50/0.82 1.77/2.75/0.98
500 2.33 2.26/2.30/0.04 2.03/2.56/0.53 2.03/2.56/0.53
1000 2.33 2.29/2.32/0.03 2.12/2.49/0.37 2.12/2.50/0.38
n μ̂ χ2 BootLR
100 2.33 1.38/2.37/0.99 1.36/2.50/1.14
500 2.33 2.00/2.36/0.36 1.89/2.62/0.73
1000 2.33 2.17/2.36/0.19 2.02/2.57/0.55
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Table 4: The average lower bound/upper bound/width of the 99% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.22/0.19/0.41 -0.33/0.30/0.63 -0.34/0.31/0.65
500 0 -0.09/0.09/0.18 -0.15/0.14/0.29 -0.15/0.14/0.29
1000 0 -0.07/0.06/0.13 -0.10/0.10/0.20 -0.10/0.10/0.20
n μ̂ χ2 BootLR
100 0 -0.37/0.28/0.65 -0.38/0.34/0.72
500 0 -0.15/0.14/0.29 -0.16/0.15/0.31
1000 0 -0.10/0.09/0.19 -0.11/0.10/0.21

τ = 0.9
n μ̂ Wald Perc PercT
100 1.28 1.10/1.39/0.29 0.84/1.69/0.85 0.83/1.72/0.89
500 1.28 1.21/1.34/0.13 1.09/1.47/0.38 1.08/1.47/0.39
1000 1.28 1.23/1.32/0.09 1.14/1.41/0.27 1.14/1.42/0.28
n μ̂ χ2 BootLR
100 1.28 0.90/1.62/0.72 0.77/1.76/0.99
500 1.28 1.12/1.44/0.32 1.06/1.49/0.43
1000 1.28 1.17/1.36/0.19 1.13/1.43/0.30

τ = 0.99
n μ̂ Wald Perc PercT
100 2.33 2.08/2.21/0.13 1.47/2.50/1.03 1.76/3.12/1.36
500 2.33 2.25/2.31/0.06 1.91/2.72/0.81 1.88/2.72/0.84
1000 2.33 2.28/2.32/0.04 2.03/2.61/0.58 2.01/2.61/0.60
n μ̂ χ2 BootLR
100 2.33 1.38/2.42/1.04 1.33/2.50/1.17
500 2.33 2.00/2.42/0.42 1.84/2.77/0.93
1000 2.33 2.10/2.42/0.32 1.98/2.67/0.69
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Table 5: The average lower bound/upper bound/width of the 90% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the logistic distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.25/0.21/0.46 -0.34/0.31/0.65 -0.36/0.31/0.67
500 0 -0.19/0.17/0.36 -0.15/0.14/0.29 -0.15/0.14/0.29
1000 0 -0.07/0.07/0.14 -0.11/0.10/0.21 -0.11/0.10/0.21
n μ̂ χ2 BootLR
100 0 -0.47/0.35/0.82 -0.51/0.42/0.93
500 0 -0.18/0.15/0.33 -0.19/0.17/0.36
1000 0 -0.12/0.10/0.22 -0.13/0.12/0.25

τ = 0.9
n μ̂ Wald Perc PercT
100 2.20 1.97/2.32/0.35 1.64/2.67/1.03 1.63/2.71/1.08
500 2.20 2.11/2.27/0.16 1.95/2.43/0.48 1.95/2.44/0.49
1000 2.20 2.13/2.25/0.12 2.02/2.36/0.34 2.02/2.37/0.35
n μ̂ χ2 BootLR
100 2.20 1.53/2.69/1.16 1.38/2.93/1.55
500 2.20 1.96/2.41/0.45 1.87/2.51/0.64
1000 2.20 2.07/2.32/0.25 1.97/2.41/0.44

τ = 0.99
n μ̂ Wald Perc PercT
100 4.60 4.07/4.24/0.17 3.07/5.14/2.07 3.13/5.72/2.59
500 4.60 4.45/4.53/0.08 3.83/5.28/1.45 3.78/5.25/1.47
1000 4.60 4.51/4.57/0.06 4.06/5.04/0.98 4.07/5.07/1.00
n μ̂ χ2 BootLR
100 4.60 2.50/4.67/2.17 2.38/5.14/2.76
500 4.60 3.89/4.68/0.79 3.51/5.47/1.96
1000 4.60 4.19/4.67/0.48 3.83/5.28/1.45
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Table 6: The average lower bound/upper bound/width of the 99% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the logistic distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0 -0.37/0.34/0.71 -0.52/0.49/1.01 -0.55/0.50/1.05
500 0 -0.16/0.15/0.31 -0.23/0.22/0.45 -0.23/0.22/0.45
1000 0 -0.12/0.11/0.23 -0.16/0.16/0.32 -0.16/0.16/0.32
n μ̂ χ2 BootLR
100 0 -0.50/0.49/0.99 -0.62/0.56/1.18
500 0 -0.20/0.21/0.41 -0.26/0.24/0.50
1000 0 -0.16/0.15/0.31 -0.18/0.17/0.35

τ = 0.9
n μ̂ Wald Perc PercT
100 2.20 1.87/2.42/0.55 1.40/3.07/1.67 1.31/3.05/1.74
500 2.20 2.06/2.31/0.25 1.82/2.58/0.76 1.82/2.58/0.76
1000 2.20 2.10/2.28/0.18 1.93/2.46/0.53 1.93/2.46/0.53
n μ̂ χ2 BootLR
100 2.20 1.39/2.95/1.56 1.27/3.25/1.98
500 2.20 1.90/2.49/0.59 1.78/2.63/0.85
1000 2.20 2.00/2.38/0.38 1.91/2.49/0.58

τ = 0.99
n μ̂ Wald Perc PercT
100 4.60 4.02/4.29/0.27 2.58/5.14/2.56 3.09/6.76/3.67
500 4.60 4.43/4.56/0.13 3.56/5.78/2.22 3.36/5.66/2.30
1000 4.60 4.50/4.59/0.09 3.83/5.39/1.56 3.77/5.36/1.59
n μ̂ χ2 BootLR
100 4.60 2.50/4.83/2.33 2.32/5.14/2.82
500 4.60 3.84/4.78/0.94 3.40/5.92/2.52
1000 4.60 4.11/4.78/0.67 3.72/5.56/1.84
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Table 7: The average lower bound/upper bound/width of the 90% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard Cauchy distribution.
τ = 0.5
n μ̂ Wald Perc PercT
100 0 -1.31/1.21/2.52 -0.21/0.16/0.37 -0.43/0.12/0.55
500 0 -0.68/0.67/1.35 -0.12/0.11/0.23 -0.21/0.20/0.41
1000 0 -0.55/0.54/1.09 -0.08/0.08/0.16 -0.14/0.13/0.27
n μ̂ χ2 BootLR
100 0 -0.15/0.17/0.32 -0.19/0.15/0.34
500 0 -0.20/0.18/0.38 -0.17/0.15/0.32
1000 0 -0.14/0.14/0.28 -0.11/0.11/0.22

τ = 0.9
n μ̂ Wald Perc PercT
100 3.08 1.21/4.97/3.76 1.83/5.30/3.47 -0.17/8.22/8.39
500 3.08 2.12/4.05/1.93 2.45/3.92/1.47 1.88/4.57/2.69
1000 3.08 2.38/3.78/1.40 2.62/3.64/1.02 2.29/3.97/1.68
n μ̂ χ2 BootLR
100 3.08 1.38/7.78/6.40 1.35/7.48/6.13
500 3.08 2.18/4.24/2.06 2.21/4.40/2.19
1000 3.08 2.44/4.05/1.61 2.45/3.91/1.46

τ = 0.99
n μ̂ Wald Perc PercT
100 31.82 27.99/36.10/8.11 7.95/244.15/236.20 -185.13/595.68/780.81
500 31.82 29.63/34.22/4.59 16.09/77.08/60.99 -14.17/126.83/141.00
1000 31.82 30.30/33.56/3.26 19.52/54.95/35.43 2.56/77.76/75.20
n μ̂ χ2 BootLR
100 31.82 5.27/66.17/60.90 4.00/244.15/240.15
500 31.82 15.15/53.20/38.05 11.15/105.34/94.19
1000 31.82 16.70/53.98/37.28 15.00/83.81/68.81
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Table 8: The average lower bound/upper bounds/width of the 99% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard Cauchy distribution.
τ = 0.5
n μ̂ Wald Perc PercT
100 0 -2.02/1.93/3.95 -0.24/0.19/0.43 -0.50/0.16/0.66
500 0 -1.06/1.06/2.12 -0.18/0.18/0.36 -0.39/0.40/0.79
1000 0 -0.86/0.85/1.71 -0.13/0.13/0.26 -0.27/0.26/0.53
n μ̂ χ2 BootLR
100 0 -0.41/0.17/0.58 -0.24/0.19/0.43
500 0 -0.21/0.18/0.39 -0.21/0.20/0.41
1000 0 -0.14/0.14/0.28 -0.14/0.14/0.28

τ = 0.9
n μ̂ Wald Perc PercT
100 3.08 0.15/6.03/5.88 1.43/7.95/6.52 -5.37/13.12/18.49
500 3.08 1.58/4.60/3.02 2.17/4.51/2.34 0.59/6.11/5.52
1000 3.08 1.98/4.18/2.20 2.40/4.01/1.61 1.48/4.86/3.38
n μ̂ χ2 BootLR
100 3.08 1.38/7.78/6.40 1.21/10.20/8.99
500 3.08 2.18/5.19/3.01 2.05/4.86/2.81
1000 3.08 2.30/4.05/1.75 2.31/4.20/1.89

τ = 0.99
n μ̂ Wald Perc PercT
100 31.82 25.70/38.39/12.69 4.84/244.15/239.31 -188.05/1390.52/1578.57
500 31.82 28.33/35.52/7.19 11.99/149.91/137.92 -92.83/277.95/370.78
1000 31.82 29.37/34.49/5.12 15.50/82.94/67.44 -35.30/139.90/175.20
n μ̂ χ2 BootLR
100 31.82 5.27/86.07/80.80 3.77/244.15/240.38
500 31.82 15.10/73.20/58.10 10.18/321.51/311.33
1000 31.82 14.63/62.12/47.49 13.78/115.83/102.05
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Table 9: The average lower bound/upper bounds/width of the 90% confidence inter-
vals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard folded normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0.67 0.54/0.69/0.15 0.53/0.74/0.21 0.49/0.70/0.21
500 0.67 0.64/0.71/0.07 0.62/0.73/0.11 0.61/0.73/0.12
1000 0.67 0.65/0.70/0.05 0.63/0.71/0.08 0.63/0.71/0.08
n μ̂ χ2 BootLR
100 0.67 0.55/0.71/0.16 0.52/0.72/0.20
500 0.67 0.61/0.73/0.12 0.60/0.74/0.14
1000 0.67 0.64/0.72/0.08 0.62/0.72/0.10

τ = 0.9
n μ̂ Wald Perc PercT
100 1.64 1.55/1.68/0.13 1.39/1.84/0.45 1.40/1.87/0.47
500 1.64 1.61/1.67/0.06 1.53/1.74/0.21 1.54/1.75/0.21
1000 1.64 1.62/1.66/0.04 1.57/1.72/0.15 1.57/1.72/0.15
n μ̂ χ2 BootLR
100 1.64 1.27/1.82/0.55 1.27/1.95/0.68
500 1.64 1.55/1.72/0.17 1.50/1.78/0.28
1000 1.64 1.58/1.69/0.11 1.55/1.73/0.18

τ = 0.99
n μ̂ Wald Perc PercT
100 2.58 2.38/2.44/0.06 1.99/2.74/0.75 2.07/2.99/0.92
500 2.58 2.52/2.55/0.03 2.31/2.79/0.48 2.30/2.80/0.50
1000 2.58 2.55/2.57/0.02 2.39/2.72/0.33 2.40/2.75/0.35
n μ̂ χ2 BootLR
100 2.58 1.85/2.61/0.76 1.72/2.74/1.02
500 2.58 2.25/2.61/0.36 2.18/2.85/0.67
1000 2.58 2.36/2.61/0.25 2.30/2.81/0.51
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Table 10: The average lower bound/upper bounds/width of the 99% confidence
intervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th

percentile (τ = 0.99) when data were generated from the standard folded normal
distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 0.67 0.49/0.73/0.24 0.51/0.75/0.24 0.48/0.72/0.24
500 0.67 0.62/0.73/0.11 0.59/0.76/0.17 0.58/0.76/0.18
1000 0.67 0.63/0.71/0.08 0.61/0.74/0.13 0.61/0.73/0.12
n μ̂ χ2 BootLR
100 0.67 0.53/0.78/0.25 0.51/0.75/0.24
500 0.67 0.60/0.76/0.16 0.58/0.77/0.19
1000 0.67 0.62/0.73/0.11 0.61/0.74/0.13

τ = 0.9
n μ̂ Wald Perc PercT
100 1.64 1.51/1.72/0.21 1.28/1.99/0.71 1.28/2.03/0.75
500 1.64 1.59/1.69/0.10 1.48/1.81/0.33 1.48/1.81/0.33
1000 1.64 1.61/1.67/0.06 1.53/1.76/0.23 1.53/1.76/0.23
n μ̂ χ2 BootLR
100 1.64 1.27/1.95/0.68 1.22/2.07/0.85
500 1.64 1.52/1.78/0.26 1.46/1.83/0.37
1000 1.64 1.55/1.72/0.17 1.52/1.77/0.25

τ = 0.99
n μ̂ Wald Perc PercT
100 2.58 2.36/2.46/0.10 1.80/2.74/0.94 2.06/3.38/1.32
500 2.58 2.51/2.56/0.05 2.20/2.95/0.75 2.17/2.95/0.78
1000 2.58 2.54/2.58/0.04 2.30/2.84/0.54 2.30/2.85/0.55
n μ̂ χ2 BootLR
100 2.58 1.84/2.66/0.82 1.69/2.74/1.05
500 2.58 2.25/2.66/0.41 2.14/2.99/0.85
1000 2.58 2.36/2.65/0.29 2.26/2.89/0.63
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Table 11: The average lower bound/upper bounds/width of the 90% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard log normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 1 0.85/1.20/0.35 0.90/1.15/0.25 0.92/1.18/0.26
500 1 0.92/1.08/0.16 0.91/1.10/0.19 0.91/1.09/0.18
1000 1 0.94/1.06/0.12 0.94/1.07/0.13 0.93/1.06/0.13
n μ̂ χ2 BootLR
100 1 0.88/1.17/0.29 0.90/1.14/0.24
500 1 0.91/1.11/0.20 0.89/1.12/0.23
1000 1 0.93/1.08/0.15 0.92/1.08/0.16

τ = 0.9
n μ̂ Wald Perc PercT
100 3.6 3.27/3.78/0.51 2.67/4.61/1.94 2.52/4.67/2.15
500 3.6 3.47/3.70/0.23 3.17/4.06/0.89 3.14/4.05/0.91
1000 3.6 3.50/3.66/0.16 3.28/3.92/0.64 3.27/3.91/0.64
n μ̂ χ2 BootLR
100 3.6 2.67/4.31/1.64 2.31/5.30/2.99
500 3.6 3.24/3.90/0.66 3.03/4.23/1.20
1000 3.6 3.36/3.85/0.49 3.20/4.01/0.81

τ = 0.99
n μ̂ Wald Perc PercT
100 10.24 8.81/9.20/0.39 5.52/13.51/7.99 4.38/17.25/12.87
500 10.24 9.84/10.03/0.19 7.68/13.19/5.51 7.20/13.04/5.84
1000 10.24 10.00/10.14/0.14 8.38/12.15/3.77 8.16/12.19/4.03
n μ̂ χ2 BootLR
100 10.24 3.97/10.97/7.00 3.99/13.51/9.52
500 10.24 7.42/10.43/3.01 6.64/14.18/7.54
1000 10.24 8.75/10.45/1.70 7.59/13.39/5.80
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Table 12: The average lower bound/upper bounds/width of the 99% confidence in-
tervals for the median (τ = 0.5), the 90th percentile (τ = 0.9), and the 99th percentile
(τ = 0.99) when data were generated from the standard log normal distribution.

τ = 0.5
n μ̂ Wald Perc PercT
100 1 0.75/1.30/0.55 0.88/1.17/0.29 0.90/1.20/0.30
500 1 0.87/1.13/0.26 0.87/1.15/0.28 0.85/1.14/0.29
1000 1 0.91/1.09/0.18 0.90/1.10/0.20 0.90/1.10/0.20
n μ̂ χ2 BootLR
100 1 0.88/1.17/0.29 0.88/1.17/0.29
500 1 0.87/1.15/0.28 0.85/1.17/0.32
1000 1 0.90/1.10/0.20 0.90/1.11/0.21

τ = 0.9
n μ̂ Wald Perc PercT
100 3.6 3.12/3.92/0.80 2.33/5.52/3.19 1.88/5.50/3.62
500 3.6 3.40/3.77/0.37 2.97/4.37/1.40 2.89/4.33/1.44
1000 3.6 3.45/3.71/0.26 3.13/4.12/0.99 3.10/4.10/1.00
n μ̂ χ2 BootLR
100 3.6 2.46/5.13/2.67 2.18/6.07/3.89
500 3.6 3.07/4.14/1.07 2.90/4.49/1.59
1000 3.6 3.27/3.91/0.64 3.09/4.18/1.09

τ = 0.99
n μ̂ Wald Perc PercT
100 10.24 8.70/9.31/0.61 4.42/13.51/9.09 4.30/24.45/20.15
500 10.24 9.79/10.09/0.30 6.80/15.72/8.92 5.41/15.16/9.75
1000 10.24 9.96/10.18/0.22 7.61/13.81/6.20 6.93/13.55/6.62
n μ̂ χ2 BootLR
100 10.24 3.97/11.14/7.17 3.87/13.51/9.64
500 10.24 7.42/10.89/3.47 6.37/16.92/10.55
1000 10.24 8.75/10.81/2.06 7.26/14.78/7.52


