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Abstract

This thesis considers variations on Lagrangian approaches to constraint-handling in
the context of stochastic black-box optimization. The augmented Lagrangian is one
such approach from the well-known method of multipliers that transforms a con-
strained problem into a sequence of unconstrained problems. Iterative updates to the
Lagrangian parameters are designed to use each solution in the sequence of problems
to drive the next solution closer to the desired optimum of the constrained problem.
We review a novel adaptation of this method for evolution strategies that simultane-
ously updates Lagrangian parameters alongside internal parameters in order to avoid
the cost of converging to intermediate values that become obsolete later in the se-
quence. Existing implementations of this adaptation are compared analytically and

experimentally, and a new weakness highlighted.

This investigation leads to proposing a new algorithm for constrained optimization
that for the first time adapts an exact Lagrangian approach for use with evolution
strategies. This is related to augmented Lagrangian evolution strategies in that it
forms iterative updates for Lagrangian parameters such that convergence to an opti-
mum in the search space corresponds with convergence to optimal Lagrange multipli-
ers. The approach is distinguished however by framing the multipliers as dependent
on position in the search space rather than as separate parameters and by approach-
ing a solution through solving implicit quadratic subproblems with identical optimal
multipliers. Along with comparisons on selected benchmark results from the litera-
ture, the exact Lagrangian method is compared experimentally on a range of archety-
pal test problems against previous implementations using the augmented Lagrangian
approach, and found to compare favourably. These results are further justified by

single-step analyses of an evolution strategy on the exact Lagrangian function.
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Chapter 1

Introduction

1.1 Optimization

The study of optimization is a rigorous approach to solving problems that require
determining an input for a given process in order to achieve a desired outcome: finding
a path that minimizes distance traveled, or a manufacturing plan that balances safety
and efficiency, are both examples that can be framed as optimization problems. This
thesis specifically considers optimization problems with a continuous domain or search
space. Mathematically, we seek a value x that maximizes or minimizes an objective
function f(x). The solution is called a global optimum, and is a point z* for which
f(z*) < f(x) Yo € R. Algorithmically, it is often sufficient to find a local optimum x*
which satisfies f(2*) < f(z) within a local neighbourhood A (2*) which is an open set
containing x*. Since maximizing and minimizing are equivalent operations up to a
change of sign, I use the term minimization to refer to them both. The same concepts
extend directly to when f : R"™ — R is a function mapping n-dimensional vectors x

to a scalar objective value f(«), in which case we seek an optimum x* € R".

Depending on the particulars of the objective function, various methods exist for
solving such problems. If derivative information is not available, a solution may be
undertaken using derivative free optimization. If additionally no analytic definition
of f(x) is available, black-bozx optimization methods are employed that operate using
only the computed value f(x). Black-box methods assume no other knowledge of
the internals of the function or how the value is calculated, and in particular no
derivative information is assumed. Evolution strategies (ES) are a prominent example
of stochastic black-box methods that are inspired heuristically by evolution in nature:
a candidate solution is iteratively modified by combining information sampled locally

and randomly that is selected with a bias for improvement.
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Evolution strategies have been used effectively for solving a wide variety of problems
[1, 33, 91, 47, 37], and in the context of continuous optimization problems under
certain assumptions are known to converge log-linearly! on convex-quadratic prob-
lems [53]. It remains an open question which constraint-handling methods are most
appropriate for use with evolution strategies, and a central goal of this thesis is to
propose an approach that will demonstrably improve on existing methods. Efficacy
of the algorithm will be justified both through a type of single-step analysis previ-
ously used to investigate constraint-handling with evolution strategies [92] as well as

experimental validation.

1.2 Constrained optimization

Constrained optimization considers approaches to problems where the domain of so-
lutions is somehow restricted: we seek a point * which minimizes an objective func-
tion f(x) while also satisfying a set of constraints. The restrictions imposed by
constraints partition the search space into two complementary regions: the feasible
region of points that satisfy all constraints, and the infeasible region where at least
one constraint is violated. At a general level, constraints can be classified using a
taxonomy [75] that distinguishes between important characteristics using four named
and largely orthogonal partitions. This in turn distinguishes between optimization

algorithms that are applicable on different types of constraints.

Under this taxonomy, the majority of this thesis will focus on Quantifiable (as opposed
to non-quantifiable), Relaxable (as opposed to unrelaxable), and Known (as opposed
to hidden) constraints, given as QR*K in the taxonomic notation. Respectively, these
taxonomic classifications imply that every constraint can be evaluated as a numerical
value, infeasible points still have meaningful objective function values, and the number
of constraints is known before execution. This matches with the assumptions of
much of the literature from numerical optimization, where constraints are implicitly

assumed to be of type QRAK. The additional letter indicates that the constraints

!Stochastic log-linear convergence can be thought of as the expected difference between the
logarithms of the distance from the optimum in successive iterations tending to a constant value. If
A®) is the distance from the optimum in iteration k, then log-linear convergence (in expectation)
implies kILH;oE [log (A®)) —log (A*+D)] = ¢, for some positive constant c. See [103, 53].
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must also be given A priori (as opposed to by simulation). The notion of constraints
being determined a priori overlaps significantly with considering constraints that are

of negligible cost to calculate relative to evaluating the objective function.

In the case of quantifiable and known constraints (Q**K), it is usually convenient to
further separate them into two categories: equality constraints where feasible points
satisfy g;(x) = 0, i € &, and inequality constraints where feasible points satisfy
gi(x) <0, i € Z. As with objective functions, constraints in the black-box setting
are treated by using only the values of g;(x), and without relying on the specific
definitions of the functions g; or assuming any derivative information. This justifies
the use of the wildcard * in the QR*K taxonomic classification for this thesis, implying

that a priori constraint information is permitted but not required.

1.3 Numerical optimization

Numerical optimization here broadly refers to the overlapping collection of classi-
cal approaches from numerical analysis including, among others, linear program-
ming, quadratic programming, nonlinear programming, convex programming, and
non-differentiable optimization. These stem historically from attempting to devise
rigorous solutions for decision and planning problems involving multiple variables,
and frame their approaches in terms of the underlying mathematical structure of the
problems. Awareness of this structure is a key distinction between the assumptions
underpinning the methods of numerical optimization and those of black-box methods
like evolution strategies. In spite of this, the insights carry over in a natural way that
justifies their study in the context of black-box optimizers. These are important to
understanding and justifying the approach I take to constraint-handling for evolution
strategies, so while a brief outline is given here of several important concepts from
numerical optimization, additional details are given in Appendix B at the cost of

additional exposition.

In unconstrained optimization, the minimum for a sufficiently smooth (differentiable)
objective function f(x) can be characterized in terms of its first and second deriva-
tives, analogously to the one-dimensional case from introductory calculus. It is nec-

essary for the minimum point x* to satisfy V,f(x*) = 0 for instance, which states
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that the gradient at the optimum must be zero. Relatedly, any point where the gra-
dient is zero is a stationary point. Throughout the search space, the value of the
gradient gives useful first-order information about the objective function that can be
exploited. One of the simplest examples of this is in the method of gradient descent
(equivalently ascent) which attempts to iteratively converge to the minimizer of f
from an arbitrary starting point within a neighbourhood of the optimum. In the
k-th iteration, the gradient at the current point is calculated as V, f(x®)), and the
next point is determined by making a step in the negative direction of that gradient

as
2*+) = g ® _ (®) .y f(z®)

with the scalar a® controlling the length of the step, and superscripts throughout
indicating the associated iteration number. Since the negative gradient points in the
direction of greatest decrease for f, we expect that moving in this direction will lead
to a point with decreased objective value. With sufficient iterations and appropriately
chosen step sizes, the sequence of points {a:("‘)} generated by these steps can be shown

to converge to the minimum a@* on continuously differentiable convex problems.

In constrained optimization, similar statements can be made about the combination
of objective f and constraint functions g; by using their respective first- and second-
order derivative information. The most significant result of these characterizations
is the idea of Lagrange multipliers that are expressed as the coefficients «; in the

Lagrangian function

L(z) = f(x) + Z @;g;i(x).

This function expresses a relationship between the m constraints and the objective
function in such a way that under certain conditions, the point that minimizes L(x)
corresponds to the point x* that minimizes f(x) while satisfying the constraints g;.
In other words, solving the constrained problem may be possible simply by apply-
ing standard unconstrained minimization routines to L(x). Framed this way, the
Lagrangian resembles a type of penalty function that transforms the constrained op-

timization problem into one of unconstrained optimization, similar in spirit to the



penalty function

Qx) = f(x) +w-g(x)

that quadratically penalizes points away from the constraint boundary. Like the
Lagrangian L(x), it can also be shown under certain conditions that the point x* that
minimizes the constrained problem defined by objective function f and constraint
functions g; is a point that minimizes Q(x). The key difference between the two
unconstrained formulations lies in their parameters. In order to achieve convergence
for Q(x) using an iterative approach, the penalty coefficient w will often need to
be increased to become very large, and convergence proofs will even assume that
w — 00. This creates problems with numerical stability, and significantly increases
the ill-conditioning of the problem, meaning small changes in @ are able to have
disproportionately large impacts on the value of Q(x). Both of these are serious
issues for unconstrained optimizers. On the other hand, the parameters «; for L(x)
have finitely-bounded values that are provably optimal under certain conditions. This
ties in closely with the first- and second-order characterization of the problem, and
the result is that in fact there is a Karush-Kuhn-Tucker pair of optimal vector values
(z*,a*) that gives the minimizer of the constrained problem and that corresponds
to the point minimizing L(x). Rather than having to increase the parameter w to
become arbitrarily large in order to achieve convergence on @(x), this result means
we only have to accurately set the values of «; in the expression of L(x) in order to

be able to find the constrained minimizer.

A visual example is given in Figure 1.1 for the objective function f(x) = 22 (blue
lines) and single constraint function g(x) = 2 — 2 = 0. In the left-most plot, the

curves resulting from

L(z,a) = f(x) + ag(z)

using various choices of Lagrange multiplier o are shown along with their associated
minima. Since the optimal choice of Lagrange multiplier is a* = 4 for this problem,
the curve for L(x,4) (red lines) shares its unconstrained minimum with the solution

of the constrained problem at z = 2. In the right-most plot, lines

lz) = a2 —1)
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Figure 1.1: Visualizations in n = 1 of objective function f(z) = z? with equality
constraint x = 2 and the Lagrangians L(z, ) resulting from o = 2* for k = 0,...,4.
The optimal multiplier is a* = 4. At left, the minimal points are marked for each
curve Lo(z, ). At right, the intersection is marked between each curve L(z,a) and
the line (2 — z). Figure B.1 gives the analogous case for an inequality constraint.

are additionally shown for selected increasing values of a. These equations ¢(x)
represent the second half of the respective Lagrangian functions, and geometrically
the lines are seen to lead to a “shift” of the objective function that results in a curve
which shares its minimum with the solution of the constrained problem. Choosing a
value of « that is distant from the optimum value o* results in a curve with a solution

distant from the solution of the constrained problem.

At first, it seems that we may have only shifted the difficulty from finding x* to
now additionally finding optimal o). However, it is possible to derive relatively pre-
cise update rules for the Lagrange multipliers «;, that even operate independently of
the minimization of @. The method of multipliers gives one such approach by com-
bining the quadratic penalty and Lagrangian functions given above into the single

expression
m

Lo(z, ) = f(z) + Z (aigi(z) + wig (x))

=1

referred to as the augmented Lagrangian, having parameter vectors w = [wy, ..., W]
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and a = [aq,...,q,] for the penalty coefficients and Lagrange multipliers, respec-

tively.

A visual example of the augmented Lagrangian is given in Figure 1.2 for the TR2
sphere problem showing objective function f(x) = zTz (blue contour lines) and
both the infeasible region (shaded grey) and constraint boundary (dashed lines) for
the linear inequality constraint 2 — x; — xo < 0. Shaded contour regions are given
for three augmented Lagrangian functions resulting from using the optimal o* = 2
and unit penalty coefficient w = 1 (top right), from increasing the penalty coefficient
by a factor of 20 (bottom left), and from increasing the Lagrange multiplier by a
factor of 20 (bottom right). The colours used to indicate the contour regions are
inconsistent between each plot, and are instead scaled to highlight relevant details.
When using the optimal multiplier, the unconstrained minimum of L, (x, «) is seen to
correspond with the constrained optimum x* = [1, 1]. The contour lines also indicate
that the augmented Lagrangian is still reasonably well-conditioned; they are slightly
stretched ellipsoids, rather than the circles seen for f(x). Increasing the penalty
coefficient w while holding the multiplier a steady does not change the location of the
unconstrained optimum of the augmented Lagrangian, but it significantly increases
the ill-conditioning near that optimum as the ellipsoids are seen to become much
more elongated. Increasing the multiplier o while holding the penalty coefficient w
steady maintains the milder conditioning while shifting the unconstrained minimum

of L,(x,a) far from the constrained optimum.

It can be proven [43, 27| that so long as the penalty coefficients satisfy a lower bound
w; > w for a finite value of w, the augmented Lagrangian function is appropriate for
use with unconstrained minimization when the Lagrange multipliers are updated in
the k-th iteration using a variation of
k41 k k
041(- +1) _ al( )+wl§ )gi(m(k))‘
Even more, this can be proven to give a sequence of Lagrange multiplier vectors {a®)}
that converges to the optimum KKT point a* under mild conditions. Because of this

prescribed update rule, a general unconstrained optimization routine is suitable for

minimizing L, in order to thereby find the constrained minimizer *. This makes
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Figure 1.2: Visualizations in n = 2 of contour lines for the objective function f(x) =

x'x with inequality constraint g(x) = 2 — x; — x5 < 0. Top left: objective and

constraint functions given with the infeasible region shaded. Top right: contour
regions for L, (x,a) with @ = 2, w = 1. Bottom left: contour regions for L, (x, a)
with @ = 2, w = 20. Bottom right: contour regions for L, (x, ) with a = 40, w = 1.
The constrained optimum is marked throughout at * = [1, 1].

use of the method of multipliers and augmented Lagrangian a broadly attractive

approach.

1.4 Constrained optimization with evolution strategies

The method of multipliers and associated augmented Lagrangian function have been
used extensively in continuous numerical optimization, and stochastic and evolution-

ary optimization methods have also implemented variations of the approach many
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times [121, 97, 35, 80, 81, 78, 79, 23, 24], much of the work occurring in the last
decade. A consistent feature between these varied implementations is their adherence
to the basic inner/outer loop model implied by the original method of multipliers:
an outer loop sets the values of the Lagrangian’s parameters a and w in order to
determine an unconstrained problem that is operated on by an optimizer in the inner
loop. Once a solution is found, this is fed back to the outer loop in order to update
the Lagrangian parameters and repeat the cycle until convergence is observed to the
optimum. Although the original method of multipliers assumes that each inner loop
will find an ezact solution for the given Lagrangian parameters, and some convergence
results even rely on this assumption, in practice it seems that only an approximation

to the solution is needed within some reasonable bounds.

A novel augmented Lagrangian algorithm for evolution strategies (the AL-ES) was
proposed as part of early work for this thesis [14] in the context of problems with
a single linear constraint. A significant contribution of the AL-ES was to propose
updates for the Lagrangian parameters as being integrated alongside other internal
parameter updates of the evolution strategy. The motivating idea was that perhaps
the limits of reasonable bounds for finding a solution of the inner loop could be pushed
sufficiently far that the evolution strategy could keep pace with changes to the La-
grangian parameters within a single iteration. If so, then considerable computational
expense could be saved. With integrated updates, there would be no need to converge
to intermediate results within each inner loop that would ultimately become obsolete
in subsequent iterations. This was demonstrated to be the case through single-step
analysis and experimental results, in large part due to careful updates of the penalty
coefficient w that maintains balance between the evolution strategy’s progress on the

constraint and objective functions.

The AL-ES was analyzed by Atamna et al. [16] who used Markov chain analysis to
describe linear convergence results for a single constraint. Similar results were given
by the same authors for a version of the AL-ES modified for multiple constraints
[18, 19], and for the AL-ES integrated with covariance matrix adaptaion (CMA) on
a single constraint [17]. Encouraging empirical results on archetypal problems were

shown for both modified algorithms. The thread of AL-ES convergence results from
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Markov chain analysis also formed part of the PhD thesis of Atamna [15]. Dufossé
and Hansen considered an adaptation of the AL-ES for use with surrogate functions
[38], and additionally performed a parameter study to suggest improved parameter
values for the AL-ES when using covariance matrix adaptation (the AL-CMA-ES).
Empirical results on a selection of benchmark problems showed improved performance

for the AL-CMA-ES when using those parameter settings.

The inclusion of CMA is an important modification. It is the “de facto standard”
[53] for continuous optimization with evolution strategies, to the extent that it is
reasonable to partition ES algorithms into those that use CMA and those that do
not. Although its implementation invokes some technical detail, a key concept is that
it uses an approximation of the inverse of the local Hessian [52, 110] to make more
informed choices about where the evolution strategy should sample next. This will
significantly reduce the impact of ill-conditioning, as the evolution strategy is often
observed to adaptively determine an appropriate scaling of the local search space.
Put another way, the effect of including covariance matrix adaptation is that the
evolution strategy is ideally able to operate on a search space resembling a sphere
or reasonably well-conditioned ellipsoid, with the CMA encoding the transformation
between that almost-spherical space and the true search space. For any method that
uses evolution strategies then, it remains important to understand its behaviour on

those sphere and ellipsoid search spaces when no CMA is employed.

1.5 Contributions

Work from this thesis led to proposing the (1 + 1)-AL-ES [14], a novel constraint-
handling approach for evolution strategies that was considered on convex quadratic
problems with a single linear constraint. Single-step analysis revealed that updates
to Lagrangian parameters should be done with the goal of balancing the progress of
an evolution strategy in the constrained subspace with that in the unconstrained sub-
space. Experimental results showed log-linear convergence on spheres and moderately

conditioned ellipsoids.

This thesis will demonstrate that existing extensions of the AL-ES, in spite of promis-

ing published results, can exhibit poor performance on well-conditioned, spherical
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problems after the addition of even small numbers of linear constraints. The most
notable of these is when the constraint boundaries form a narrow feasible region.
An example in two dimensions with two constraints is when the constraint bound-
aries form nearly antiparallel lines with the optimum lying at their intersection. The
resulting augmented Lagrangian becomes ill-conditioned, introducing a significant im-
pediment to convergence that is partly covered by application of CMA (which greatly
reduces the negative impacts of any ill-conditioning) but persists without. The ability
of CMA to correct for the ill-conditioning is also directly affected by how effectively
the penalty parameter w is adapted, yet the penalty update rule used for AL-ES
is designed to give good update steps for the Lagrange multipliers, not necessarily
to give good information about the relative constraints. Finally, by considering the
AL-ES update rule for the Lagrange multipliers as a type of gradient ascent for op-
timizing a dual function, I will argue that effective progress of the AL-ES toward
the constrained optimum should depend both on progress of the evolution strategy
in the primal search space and on good progress of the gradient ascent method in
the dual space. As a result, problems that are ill-conditioned in the dual space will
progress more slowly toward the optimal Lagrange multipliers, regardless of progress
in the primal search space. I will show experimentally that the performance on cer-
tain problems of the existing CMA adaptations of the AL-ES can be improved upon,
even without the use of CMA.

This improvement is achieved by the proposed exact Lagrangian approach for evo-
lution strategies (the EL-ES) forming the core of my thesis. This is a result of my
investigation into alternative ways of including constraint information as part of the
AL-ES and accounting for ill-conditioning outside the use of CMA. The EL-ES relies
on unconstrained optimization of a function similar in form to the augmented La-
grangian, but justifies its Lagrange multiplier updates in a different way that is more
aligned with the iterative and stochastic nature of an evolution strategy. By adapting
an early approach from Fletcher [41] that defines an exact Lagrangian function, the
optimizing step in any given iteration of the EL-ES can be understood as solving
certain quadratic subproblems that are defined for any candidate solution reached
by the ES. The state of the exact Lagrangian function operated on by the evolution

strategy is therefore defined completely in terms of the current position in the search
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space. In order to calculate the needed values related to each quadratic subproblem,
it becomes necessary to approximate which constraints are active at the optimum.
This is accomplished through heuristics proposed as part of the EL-ES for managing

the working set of constraints likely to be active.

The efficacy of this novel approach for handling constrained optimization problems
with evolution strategies is supported both by theoretical and experimental results.
The rule used for updating the Lagrange multiplier is justified through performing a
single-step analysis, similar to the theoretical analyses performed on the original AL-
ES [92] and on a class of constrained problems consisting of linear objective functions
and conically constrained feasible regions [14]. Experimental results on a range of
archetypal and benchmark problems from the literature additionally demonstrate
that the EL-ES is competitive on the selected problems when compared on number

of function evaluations used to converge.

1.6 Summary and outline

The remainder of this thesis is organized as follows.

Chapter 2 summarizes evolution strategies as a stochastic approach to continuous
optimization, and provides an overview of the literature on constrained optimization
that highlights approaches using Lagrangian methods and approaches for evolution
strategies. Specific criteria are outlined for allowing comparisons between the variety

of distinct approaches to constrained optimization.

Chapter 3 outlines the method of multipliers (augmented Lagrangian) in Section 3.1
and exact Lagrangian approach in Section 3.2, both in the context of constrained
numerical optimization where the objective and constraint functions (and their related

derivatives) can be written analytically.

Chapter 4 presents black-box evolution strategy implementations of the augmented
Lagrangian approach (AL-ES) in Section 4.1 and the proposed exact Lagrangian
approach (EL-ES) in Section 4.3. For the AL-ES, both the original proposal and
subsequent variants are considered and compared in Section 4.2. Key connections

between both approaches are given in Section 4.4, including a single-step analysis of
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the novel EL-ES algorithm.

Chapter 5 provides experimental results validating the efficacy of the proposed EL-
ES. Archetypal sphere and ellipsoid problems are considered in Section 5.2, including
with randomly generated linear constraints that sample from the full range of possible
orientations. Section 5.3 compares on selected benchmark problems that are widely
used in the literature. Section 5.4 compares on a recently proposed scalable problem

based on the Klee-Minty hypercube.

Chapter 6 summarizes and discusses the results of the thesis holistically, and presents

several viable avenues for future research.

The additional contents of the appendices are included as valuable information that
would nonetheless interrupt the flow of presentation elsewhere in the thesis. Ap-
pendix A provides a detailed description of the constrained optimization problems
used from the literature. Appendix B contains a general overview of optimization
with particular emphasis on understanding the Lagrangian approach to constraint
handling. Appendix C consists of additional plots and figures supporting the experi-

mental results of Chapter 5.



Chapter 2

Background and literature review

Constraint handling for evolutionary algorithms is an active and diverse area of re-
search. For black-box optimizers like evolution strategies, which have no explicit
knowledge of the underlying constraint or objective functions, a fundamental issue
is establishing a balance between managing feasibility of individuals and improving
their objective function values. Achieving this balance is very specific to both the
underlying problem’s definition and the optimizer being used, and the result is an
abundance of constraint handling methods [84, 32]. The evaluation and subsequent

comparison of these methods is not always straightforward.

In this chapter, I focus on providing relevant background information and surveying
the current state of the literature for constrained optimization relevant to evolu-
tion strategies. In Section 2.1, I give a simplified overview of evolution strategies as
applied to unconstrained optimization, along with pseudo-code and explanations of
several representative implementations. Section 2.2 discusses three separate criteria I
use for making comparisons between alternative approaches and with my own work:
benchmark performance, archetypal problem performance, and constraint handling
classification. In Sections 2.3 - 2.6, I survey comparable evolutionary and stochastic
approaches to constrained optimization, in particular those using penalty or aug-
mented Lagrangian methods. Section 2.7 highlights approaches specifically applied
to evolution strategies, excepting those related to AL-ES which are covered in detail

in Chapter 4.

2.1 Evolution strategies

Evolution strategies (ES) [29, 53] are a well-established class of iterative, stochas-

tic algorithms for solving black box unconstrained optimization problems. They are

14
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comparison based, and so operate by using only objective function evaluations. Evo-
lution strategies are considered an example of the broader category of evolutionary
algorithms, although often the only shared feature with other evolutionary algorithms
is the heuristic for their original development being nature-inspired. Roughly speak-
ing, evolution strategies move through a search space by evaluating local samples
about the current iteration’s candidate solution, then combining this information to
determine a candidate solution for the next iteration. If the transitions between
iterations are appropriately biased towards improved solutions, then with enough it-
erations an evolution strategy may converge towards an optimum. The subsequent
performance of an algorithm is measured both in its ability to converge and in the

number of iterations (or function evaluations) required to do so.

One key feature of success for an ES algorithm lies in adapting the step size, an
internal parameter that determines the variance of each local sample. Intuitively, the
step size should grow when successive iterations show a sufficient improvement in f(z),
and shrink when the values of f(x) for candidate solutions stagnate or degrade. In the
former case, this leads to sampling with larger variances, potentially saving iterations
by replacing many smaller successful steps with fewer large ones. The latter case
encourages smaller variances for sampling, thereby decreasing the chance of making
an unsuccessful step and permitting convergence when in the neighbourhood of a

local optimum.

In a general way, the function of an evolution strategy can be broken down into four
steps: first, given an existing set of parent candidate solutions, a set of offspring is
generated through stochastic sampling scaled by a step-size o0 and centered on the
parent(s). Second, these offspring are evaluated based on an objective function that
takes as input one individual and returns a score that the ES optimizer is seeking to
minimize (this is without loss of generality, as if maximization is desired then we may
consider the negative of the objective function). Third, the offspring are combined in
order to form the parent solution(s) for the next generation in such a way that bias
is introduced toward improving objective function scores. And fourth, the step-size o
is updated in a manner that allows it to decrease in the vicinity of a local minimum

in order to achieve convergence.



16

Defining exactly how each of these four steps are performed determines which of the
many favours of evolution strategy will be used, although some steps are more distin-
guishing than others. For instance, it is almost universal that a normal distribution
is used when performing the stochastic sampling needed in the first step. This is
justified by the normal distribution being both a distribution of maximum entropy
and inherently isotropic [53, 54]. Given a parent candidate solution (¥ in iteration

k, the next candidate solution could therefore be created by computing

where N(0,1) represents the n-dimensional normal distribution, centered at 0 and
with covariance matriz I (the identity matrix in dimension n). This applies a muta-
tion to the original candidate solution, resulting in a new candidate which then must

be evaluated as part of a selection process.

We will see that modifying this covariance matrix and updating the step-size o be-
tween iterations are two key areas where designs of evolution strategies may differ.
The step size controls the expected sample distance from the distribution’s centre
point, and directly affects the convergence of the algorithm; setting o too large will
prevent the ES from sampling candidate offspring that improve upon their parent,
while setting o too small may cause the ES to converge prematurely to a non-
stationary point. Meanwhile, the covariance matrix gives control over the relative
directions emphasized by the sample; using the identity matrix leads to an isotropic
sampling distribution in all dimensions, while other positive-definite matrices dictate
the relative preferences between dimensions. In practice, this models various levels of
ill-conditioning of the Hessian, as recent directions with relatively large improvement
can be sampled with greater frequency (in accordance with the covariance matrix).

This is given more explicitly by the description of CMA-ES in Section 2.1.3.

There are several combinations of selection and recombination operations that give
viable evolution strategy variants. A shorthand notation is used to encapsulate these
differences, given as (u/ptA). Taken from right to left: the value of A indicates the
population size or number of offspring generated in each iteration, the value of p

indicates the number of parent individuals used to generate each offspring, and the
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value of p indicates the total number of parent individuals in each iteration. The
value of p is sometimes omitted; this has been used to refer to the case of p = u
when it is clear from context, but the case of p = 1 is otherwise to be assumed.
Additionally, the separator indicates whether elitism is used in the selection process:
a plus indicates that the best individuals are maintained between generations (so
i parents are chosen from g + A individuals), while a comma indicates that each
generation is evaluated separately (so p parents are chosen from A individuals). As
an example of interpreting this notation, the (1+ 1)-ES is an evolution strategy that
generates a single offspring using a single parent, and in each iteration allows the best
of those two individuals to continue to the next iteration. This is a single-membered
evolution strategy with elitism. Another example is the (u/p, A)-ES, which is an
evolution strategy that combines the best u offspring from a population of A to create
the next generation’s parental centroid. This is a multimembered evolution strategy
without elitism. Covariance matrix adaptation (CMA) may be used alongside either
of these approaches, and results in one of the most competitive black-box optimizers

based on benchmarking results [56, 125].

2.1.1 The (1+1)-ES

One of the simplest examples of an evolution strategy, the (1 4+ 1)-ES creates one
offspring candidate y from the single parent candidate & in each generation. Both
the offspring and parent are evaluated using the same objective function f, and their
results compared. If f(y®) < f(xz®) in the k-th iteration then the offspring is

considered successful and it becomes the parent for the (k+ 1)-th generation as

2FHD) = 40,

Otherwise, the offspring is considered unsuccessful, and the parent 2*) remains the

parent for the next generation as

2D — &)

In this way, unsuccessful candidates are discarded, and only those with a better objec-

tive function value are retained to become the parent for the next generation. At any
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point, the current parent candidate solution is the best solution discovered thus far;

this implements the concept of elitism in the context of evolutionary algorithms.

Control of the step-size is a critical component for any evolution strategy, including
the (1 + 1)-ES. In this case, it is the only internal parameter of the algorithm that
changes between iterations, and the sample distribution is always kept isotropic. One
of the earliest step size control schemes is Rechenberg’s 1/5-th rule [94], which updates
o in order to maintain in expectation a ratio of 1 : 4 between the successful and
unsuccessful offspring. A multiplicative version of this rule [70] is to compute o*+!)

from the k-th iteration as

S—0.2
o* D) — k) L exp ( 0 ) 7 (2.1)
n

where n is the problem dimension and S is a binary value that indicates whether the
latest offspring was successful or not. Under this rule, the step size will be increased
when the proportion of successful candidates is more than 1/5, and decreased when

this proportion is less than 1/5.

Algorithm 2.1 Single iteration of (1 4 1)-ES with 1/5-th rule

Require: f:R" — R

: z + N(0,1) > sample from normal distribution

Y xr+oz

S+ (f(y) < f(x)) > boolean check

if S then
Ty

end if

o« o-exp

870.2) > control step size

A single iteration of the (14 1)-ES is given in Algorithm 2.1, using the multiplicative
1/5-th rule of Eq. (2.1).

2.1.2 The (u/u, \)-ES

The (14 1)-ES has very little overhead and is a straightforward optimization method.
At each iteration where an improvement is found, there is no consideration given for
how much of an improvement is made; the (1+1) method will accept an offspring that

offers any improvement. This is problematic on functions exhibiting multimodality,
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that are highly non-convex, or with very narrow basins surrounding the optimum
point. In a general sense, the issue is that the single-membered ES does not convey
sufficient information about the local neighbourhood of the parent before updating
its position in the search space along with other internal parameters including the

step size.

The issue of insufficient information is partly addressed through performing multiple
sampling operations within a single iteration in order to generate the offspring pop-
ulation. The (u/p, A\)-ES approach does this by creating a set of A offspring for each

parent candidate solution x®) as

for i < A\, where the z; € N'(0, I) are vectors with elements drawn independently and
identically from the standard normal distribution. The offspring y; are all evaluated
using the objective function and re-ordered so that their indices 7 indicate their rel-
ative ranking according to f(y;). The best u offspring are then combined using the

average

1 - k
w0 = sy v (22)
=17 =1

1 H
e Z wiz(k)

where the coefficients w; are weights. The new point £**1 is referred to as a parental
centroid as it is a combination of the u selected previous offspring, rather than any
single individual. The simplest case of chosen weights is setting w; = 1 for each of

the p offspring, in which case the update becomes the usual average

M

1
w0 = 3yl (2.3)
i=1
L ®
— p(k) (k)
= +o0o" = z;

and this is assumed to be the case if weights are not specified. In the case that the
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coefficients w; are specified and not all equal to values of unity, the update becomes a
weighted average. The shorthand notation is modified in this case to be (u/puw, A) to
indicate that a set W of weights is used when combining the offspring. Such weights

can always be normalized so that

and this allows for writing the update succinctly as

U
=1

w
=1

Like the weights in W, the values of 1 and A are parameters to be chosen by the user,
and are maintained for the entire run of an evolution strategy. Choosing values that
result in a truncation ratio given by p/A in the range of 0.2 to 0.5 is typical. There is
an inherent trade-off here, as larger parameter values for a given ratio will increase the
number of offspring and make it more likely that a single generation will improve its
candidate solution, yet may slow down the algorithm overall by using more objective
function evaluations than are actually needed. There is no elitism in (1/p, A), as the

centroid in each generation is always calculated from the offspring.

To accompany the increasing complexity in moving from a (1 + 1) to a (u/p, \)
evolution strategy, a more sophisticated step size update rule is appropriate. While
the 1/5-th rule is generally successful in the context of (1 + 1) strategies on well-
conditioned convex problems, it enforces a fixed ratio between successful and unsuc-
cessful iterations that may not be optimal through the entire run of the algorithm
on more general problems. One alternative approach is that of cumulative step-size
adaptation (CSA) [89, 58] which adaptively updates the step size by incorporating
non-local information through the use of an exponentially fading record of successful

steps.

After each iteration, the mutation vector is computed for the average of the y best
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offspring as
. IR
z= 5 w) ;wizi (2.5)
using the same weights as in Eq. (2.2). Taking this sum involves modifying the
normally distributed samples in two ways: through introducing a bias by considering
only the u best z; according to their associated objective function values, and through
combining those z; using a linear (affine) combination. As will be seen shortly, we are
interested in the information conveyed by the former process and not by the latter,
so it will be necessary to normalize the resulting distribution of 2 to account for its
derivation from a linear combination of normally distributed variables. To do so, we

recall first from elementary probability theory that:
1. normal distributions are equal if they have equal mean and variance;

2. a scalar multiple w applied to a standard normal variable z results in a variable

with equal mean and modified variance w?; and

3. the distribution of a sum of normal variables z; drawn independently from

N(m;,0?) is equal to

V()

Using the above, we derive a normalizing constant pg for the variance of z that will
account for the variances of the terms in the weighted sum. Referring to Eq. (2.5),

each term is seen to be an independent normal variable with distribution

2
Nlo |2 .1
(23'“’1)

so calculating a weighted sum without re-ordering for the best u offspring would give

a random variable of mean 0 and variance given by I scaled by the coefficient

w; 2_ 1 ' w2,
Zi:<zjwj> (Zﬂ%‘)g Z l
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The desired normalizing constant g resulting in unit variance is given by the inverse

of the above, so is therefore represented by

o (5) (2)

(=)
== 7/ (2.6)

This results in /e - 2 being normalized such that it would be distributed as a
standard normal variable if the samples z; were not re-ordered in Eq. (2.5) to only
select the p best individuals. Note that in the case of using a weighted average

with weight values already normalized as in Eq (2.4), the expression for the constant

u -1
Heft = (Z wzg) :
=1

Similarly, in the case of using weights equal to unity as in Eq. (2.3), the expression

becomes

for the normalizing constant becomes simply

Heff = K.

An exponential record is maintained of the average mutations 2, termed the search

path or evolution path and calculated as

s = (1 — ¢)s™ + \/pege(2 — ¢) 2 (2.7)

where the ¢ € (0,1) is a user chosen parameter controlling the rate of exponential
fading. The coefficient \/per(2 — ¢)/c involves the normalizing constant peg already

derived. The extra terms result from the geometric series [89]

tim (e (L= 0 (e (L= ot e (1— 0 =[5
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and normalize the distribution of zZ with respect to the other half of the sum in
Eq. (2.7). This chosen normalization ensures that if successive steps are uncorre-
lated, then the expected squared length of the search path s is equal to the problem

dimension n.

Algorithm 2.2 Single iteration of (u/u, A)-ES with CSA
Require: f:R*" =R, c€(0,1), D>0

1: fort=1— Ado
2: z; + N(0,1) > sample from normal distribution
3: Y; < T+ 02
4: end for
5: sort([z1, ..., 2], [f(y1), .-, f(yn)]) > sort z; by values of f(y;)
6: 2 = l sz
M=

T T+ 02

8: s (1—c)s+\Juc(2—c)z > update s
< Is]

9: 0 4 0 -expD (E A0, I 1) > update o

An overview of (u/p, A)-ES using CSA is given in Algorithm 2.2. On Line 9, the step
size o is updated using the search path s, and a damping constant D controls how
rapidly the step size can be adapted. The denominator E [||N (0, I)||] is the expected
length of an n-dimensional vector with elements drawn independently and identically
from a standard normal distribution, and can be calculated numerically from

()
g

E [N (0, I)] = V2-

r

—
~—

2.1.3 The CMA-ES

A common theme between the two previous ES approaches is the isotropy of the
sampling distribution; since the z; are drawn from A(0, I), their relative direction
with respect to @ is distributed uniformly. Yet the underlying search space of an op-
timization problem is rarely so symmetric, and ill-conditioned problems in particular
can cause these approaches to use far more iterations than needed, or even converge

completely to a non-stationary point.

Ideally, we would like to control the step sizes along each dimension independently
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in a way that does not rely on the coordinate representation. To this end, CMA-ES
[58, 51] uses a covariance matrix C' to define a linear map that approximately models
the inverse of the underlying Hessian of the optimization problem [110], ill-conditioned

or otherwise. In each iteration, offspring y; are generated using
yfk) =a® + a(k)C(k)%zi(k) (2.8)

where the elements of z; ~ N(0,I) are drawn independently and identically from
a standard normal distribution as before, and the matrix C('“)_71 transforms these
isotropic samples into samples within the space defined by the linear map of the
covariance matrix. The square root notation of this matrix refers to using its eigen-
decomposition as

C = BD?’B"

with D a diagonal matrix in order to arrive at

C: — BDB".

In each iteration, the covariance matrix is updated as

-
=

M‘:

C(k+l) _ (1 — —CM)C(k) +clp(k+1) k+l) +CM

c

w; <C(k )2 ) <C’(k) zi>T (2.9)

=1
with non-negative learning constants ¢; < 1 and ¢, < 1 and normalized weights w;.
This is an accumulated value consisting respectively of a multiple of the estimated
matrix C®) taken from the current iteration, a rank one update term, and a rank
1 update term. The second term is the rank one update, and is defined using the

exponentially faded evolution path

similar to the update rule from Eq. (2.7), with non-negative learning rate ¢, < 1.
This evolution path accumulates information about steps taken in the search space

in order to encourage sampling in directions that have been recently successful. The
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third term of Eq. (2.9) is a rank g update that is based on the weighted average of

candidates’ mutations from the most recent generation.

The global step size o is updated separately with a generalization of the CSA rule
outlined in Algorithm 2.2. This generalization updates the evolution path

;1
PE = (1= e, )p® + Vet - € (2 — ¢,)CH T (2®+) — g0 . (2.10)

o)

in each generation, and compares this against the expected path length in n dimen-
sions. The intent of p, is to accumulate information about successful samples z;
drawn from the isotropic distribution N(0, I). If the offspring y; are generated with
C:=1 , then the usual CSA rule in Eq. (2.7) is appropriate; however, when trans-
forming the samples as in Eq. (2.8), the effects of the covariance matrix must be

accounted for when calculating p, in Eq. (2.10).

Algorithm 2.3 Single iteration of (u/uw, A)-CMA-ES
Require: f:R" - R, ¢, ¢p,c, €(0,1), D>0, Y Hw; =1

1: fort=1— A do

2 z; < N(0,1I) > sample from normal distribution
3 yi <z +0C2z; >y~ N(z,o*C)
4: end for

5: sort([z1, ..., 2\, [f(x1),..., f(x))]) > sort zg by values of f(xy)
6: 2 < Z?:l U}ZC%ZZ

7. x—x+0Z > Update centroid

8: Pg (1 - CU)pU + \//Jleff : Co’(2 - CU)CTI,é

e 1ps | >
9: 04 0-expD (——1 > update o
E[|N (0, T)|]
10: pe < (1 — co)Pe + / HeiCe(2 — c.) - 2
K 1 1 T
11: C+—(1—c¢;—¢,)C+ clpcch +cu Zwi (Cizi> (Cizz) > Eq. (2.9)
i=1

An overview of (p/pw, A\)-CMA-ES is given in Algorithm 2.3, adapted directly from
Hansen [51]. For the multimembered CMA-ES, suggested defaults for the population
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parameters are given by Hansen as

A=4+|3Inn], w

I
-
ik

(2.11)

for problems of dimension n. Similar recommended values are given for each of the

other parameters, including learning rates, and are omitted here for brevity.

The (1 + 1)-CMA-ES

Covariance matrix adaptation can also be employed with the much simpler (14 1)-ES
[67]. The (1 + 1)-CMA-ES may also make use of an active step size update scheme
[68] that in the context of a (1/p, A)-CMA-ES uses negative weightings for the worst
individuals in each generation in order to shift the covariance matrix away from those
directions where individuals are observed with poor objective function values. In
the context of a (1 + 1)-CMA-ES there is only one individual in each generation, so
instead a comparison is made between the individuals from the most recent iterations

and the current candidate solution, in order to determine how the covariance matrix

should be updated.

An overview of an implementation of the (1 + 1)-CMA-ES that additionally uses
active updates is given in Algorithm 2.4, adapted directly from the approach pro-
posed by Arnold and Hansen [5]. Certain implementation details are omitted in the

presentation in the interest of clarity.

The matrix A is the Cholesky decomposition AAT = C of the covariance matrix
C, and in practice is used as a more cost-effective implementation for both of the
covariance matrix updates [120]. This is based on the fact that if z is drawn from a
standard normal distribution, then Az gives a vector sampled from a normal distribu-
tion with covariance matrix C. An exponentially fading record P, is maintained of
the proportion of successful iterations. This is used in the global step size adaptation
of o using a multiplicative version of Rechenberg’s 1/5-th rule, with user parame-
ter D acting as a damping constant. An exponentially fading record s is used for

updating the covariance matrix C, in a manner similar to the rank 1 component of
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Algorithm 2.4 Single iteration of (1 4 1)-CMA-ES
Require: f:R" =R, c,cp€(0,1), ¢t ,ce.,D >0, AAT=C

cov? ~cov?

1. z + N(0,I) > Sample from normal distribution
2: Yy x+ oAz

3. if (f(y) < f(z)) then

4: Pyyee (1 - CP)Psucc +cp

5: s (1—c)s+/c(2—c)Az

6: C+ (1—-cf,)C+ c;gvss > Implicit by updating A
T Ty

8: else

9: if (f(y) > f(z%)) then > Compare with 5" order ancestor
10: C+ (14 c)C — oo (A2z)(AZ)T > Implicit by updating A
11: end if

12: Pyee < (1 - CP)Psucc

13: end if )

14: 0 < 0 - exp ( 1 Psfi g) > Update global step size

Eq. (2.9). The active update is performed whenever the current offspring y is inferior
to its fifth-order ancestor. In this case, the covariance matrix is updated to discourage
sampling future offspring similar to y. The principle behind active covariance matrix
updates derives from Jastrebski and Arnold [68] who proposed it in the context of

multimembered evolution strategies.

2.2 Criteria for comparison

Benchmarks

Problem benchmarks such as those used in competitions from the IEEE Congress on
Evolutionary Computation (CEC) [77, 82, 129] aim to rank algorithms by establishing
a metric of comparison (in this case, comparing solution quality with fixed budgets
of function evaluations) across multiple distinct problems. The underlying metric for
comparison between algorithms on a single problem is based on either distance from a
known optimum or best feasible point found. These results can provide useful guide-
lines, although it can be difficult to extrapolate from individual benchmark results
to performance on broader problem classes or even real-world examples. Hellwig and

Beyer [62] observe that the CEC 2006 benchmark problems have a bias in favour of
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algorithms using axis-aligned searches. This bias is less severe, though still present, in
both of the CEC 2010 and 2017 problem sets, yet those problems have comparatively
few constraints (an average of slightly over 2 per problem). The established metric
is also at issue. Hansen et al. [55] argue that evaluating on fixed budgets gives data
that is not usefully interpretable, as comparing the quantitative quality of solutions
found by different algorithms does not give insight into the relative quality of the
algorithms themselves. Instead, they advocate comparing the number of function

evaluations needed by each algorithm to reach fixed targets.

The COCO (Comparing Continuous Optimizers) benchmark [55, 57] is a proposed
framework for benchmarking and comparing algorithms, and that aims in part to
address the aforementioned shortcomings. At present, the constrained portion of
the benchmark is still quite new, and few published results are available using the

framework.

The top results in the CEC 2006 and 2010 benchmarks [77, 82] are both variants
of the e-constrained differential evolution (¢DE) approach of Takahama and Sakai
[122, 123], while a 2019 update [111] to the CEC 2017 benchmark [129] ranks as first
the HECO-DE approach [130, 131] of Xu et al. Results are reported according to the
fixed budget CEC benchmark specifications, and so involve hundreds of thousands of

function evaluations.

Problem archetypes

Work on evolution strategies has provided an alternative to pure benchmark perfor-
mance by establishing an analytical framework for understanding algorithm perfor-
mance through simple, archetypal test problems with known difficulties for optimiza-
tion. This began with very early work from Rechenberg [94] and Schwefel [107] who
established methods for parameter control on unconstrained optimization problems in
part by analyzing behaviour on archetypal problems, such as the sphere and corridor
fitness functions. Ellipsoidal problems are also naturally considered [20], especially in
the context of non-isotropic offspring mutation mechanisms like CMA by Hansen and

Ostermeier [58]. It then seems natural to consider similar archetypal problems for
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constrained optimization. In order to evaluate performance and suggest new direc-
tions of research, the behaviour of an evolution strategy can be analyzed [83] under a
given constraint-handling method when applied to an elementary problem. So long as
these problems are chosen to have representative properties, they can be generalized
to predict the behaviour of the constraint-handling mechanisms in more complicated

situations.

Arnold and Brauer [13] analyze a simple (1 + 1)-ES on a linear objective function
with single linear constraint, building on earlier work and observations from Schwefel
[108] and Rechenberg [94]. Arnold continues these analyses in differents contexts,
considering the impacts of repair of infeasible offspring for the (1, \)-ES [3], as well
as resampling of infeasible offspring for the (1, \)-ES with cumulative step-size adap-
tation [2] and mutative self-adaptation [9]. Analysis of multiple linear constraints
is facilitated by modeling a conical feasible region with the optimum point at the
cone’s apex for a (1, A)-ES by Arnold [4, 10] and by Porter and Arnold [92] for the
multirecombinative (u/u, A)-ES. Related steady-state analyses are performed for con-
ically constrained problems with repair by projection by Spettel and Beyer using the
(p/pr, N)-ES with o-self-adaptation [113], the (1, \)-ES with o-self-adaptation [114],
and the (u/pr, A)-ES with CSA [116]. Spettel et al. [118] and Hellwig and Beyer [61]

also analyze the use of a meta-ES for parameter control with conical constraints.

Linear problems like these are simple to describe, but serve as limited models for
general optimization problems. The sphere model is perhaps the next simplest case,
which is the class of quadratic problems with positive definite Hessian equal to a
scalar multiple of the identity matrix. Knowing that even single-membered evolution
strategies converge log-linearly on the unconstrained sphere, and considering that
every constraint adds an extra dimension to the problem, a naive expectation would
be for performance on the constrained sphere to scale approximately with the number
of constraints. In that case, an ES algorithm operating on the constrained sphere with
a single linear constraint should have very similar performance to the unconstrained
sphere. A limited version of this problem with dimension 2 is evaluated by Kramer
and Schwefel [72] in the general context of constraint handling for evolution strategies

and found to be surprisingly difficult for techniques available at the time.
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Constraint classification

Le Digabel and Wild [75] define a taxonomy for classifying constraints at their most
general level. Algorithms for constrained optimization can then be identified using the
taxonomy in order to contextualize their comparison. The QRAK taxonomy uses four
letters that partition the constraint types, distinguishing between constraints that are
Quantifiable or Non-quantifiable, Relaxable or Unrelaxable, Simulation based or A
priori, and Known or Hidden. Hidden constraints (H) are not given explicitly or
are not known to the solving algorithm until they are encountered, whereas known
constraints (K) are given explicitly in the problem definition. Relaxable constraints
(R) permit violations by candidate solutions, while for unrelaxable constraints (U) an
infeasible point is not meaningfully interpretable by the objective function or other
constraint functions. Quantifiable constraints (Q) confer a magnitude of violation
on points in the search space and allow an ordering of more or less infeasible values,
whereas non-quantifiable constraints (N) simply indicate a binary value for whether

a point is feasible or infeasible.

The augmented Lagrangian and exact Lagrangian evolution strategies (AL-ES and
EL-ES) considered in this thesis deal exclusively with quantifiable, relaxable, and
known constraints, and so are identified as QR*K in the taxonomic notation. Quan-
tifiable constraints potentially include both equality constraints g;(z) =0, i € £ and
inequality constraints g;(z) < 0, ¢ € Z. An important distinction can be further
made between those QR*K constraints that are a priori (A), where the constraint
is calculable from the input parameters to the constrained optimization algorithm,
versus simulation based (S), where part or all of the optimization algorithm must be
executed in order for the constraints to be evaluated. This latter case includes black
box constraints where no gradient information is available. Optimization methods
from classical numerical optimization, including those using augmented and exact
Lagrangians, typically deal with constraints that are fully defined a priori, and so are
identified as QRAK.
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2.3 Penalty methods

Penalty methods transform constrained problems into unconstrained optimization
problems by using a penalty term alongside the objective function. The resulting
function measures fitness in the constrained search space. The quadratic penalty

function Q(x) for equality constraints is defined as

Q(z) = f(z) +w - g(x)*, (2.12)

using both the values of the objective function f and a non-negative measure of the
constraint violation, and this is used to evaluate an individual . A similar formula-
tion can be given for inequality constraints by instead using the term w-min (0, g(w))Q.
By penalizing infeasible individuals, the quadratic penalty approach results in an un-
constrained problem with an optimum point that ideally corresponds with the con-
strained optimum. This correspondence relies on the choice of penalty coefficient w
in the penalty term of @), and Nocedal and Wright [128] give convergence results for
the quadratic penalty approach under the assumption that w — co. They note that
under-penalizing with w set too small can result in convergence to an infeasible or non-
stationary point, yet over-penalizing with large values of w induces several other prob-
lems: the Hessian of the fitness function becomes increasingly ill-conditioned, issues
of numerical accuracy are encountered, and Taylor series quadratic approximations

are accurate only in increasingly small neighbourhoods of the optimum point.

The simplest penalty method is the death penalty which discards all infeasible candi-
dates by assigning a static “infinite” penalty to constraint violation. In the context
of an evolution strategy that relies on fitness comparisons between successive gener-
ations, this may be handled by resampling infeasible individuals until feasible indi-
viduals are found. The behaviour of evolution strategies with resampling has been
investigated by Arnold [4, 10] and Porter and Arnold [92] where it was found to lead

to premature convergence to non-stationary points on certain problem types.

Finite static penalties other than the death penalty are not typically employed for
stochastic approaches to constrained optimization as there may be no single value

that will lead to convergence for every possible state of the algorithm. Methods using
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a dynamic penalty attempt to modify the penalty parameter on a fixed schedule, yet
this still leaves the problem of determining a reasonable schedule. Early examples
include work from Joines and Houck [69], who describe a dynamic penalty method
for a real-valued genetic algorithm that was later adapted for an evolution strategy

by Kramer [73]. In both cases, the penalty P is steadily increased as

P=(C-t" (ngw)ﬁ)

with fixed parameters C' < 1, f > 0, A > 1, and iteration number given by ¢.
Michalewicz and Attia [86] also follow a dynamic schedule as part of GENOCOP II,
which employs an inner /outer loop model that increases the penalty coefficient in the
outer loop after termination of a genetic algorithm optimizing a quadratic penalty

function in the inner loop.

More modern penalty-based methods employ adaptive updates [84] of the penalty
parameter by using the state information of the algorithm. Beyond some benchmark
comparisons, the general performance of these methods is difficult to evaluate [25].
Given the reliance of convergence on arbitrarily large penalties, and the noted prob-
lems this creates, it seems unlikely that a simple penalty approach will be generally

competitive.

2.4 Lagrangian method of multipliers

The method of multipliers refers to an approach for constrained optimization proposed
independently by Powell [93] and Hestenes [64] in the context of solving equality con-
strained problems (ECP). As observed by Fletcher [43], the idea is that convergence
properties of the quadratic penalty method of Eq. (2.12) may be preserved while
avoiding the difficulties incurred by increasing the penalty to infinity. By including

the Lagrangian function, the augmented Lagrangian

Lulw, @) = f(x) + (@) + Jo(x) ().
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is defined, with vector ax of Lagrange multipliers, and diagonal penalty matrix {2 with
nonzero entries consisting of the entries of w = [wy,...,wy]. The original method is
presented as suitable for an iterative approach, where the Lagrange multipliers are
continually approximated in a sequence {a(k)} — o and solutions ® are found
for each vector of Lagrange multipliers in this sequence. The multipliers are updated

as

where x(a®) is the solution @ in iteration k that minimizes L, with respect to fixed
a®. Under relatively mild assumptions, it can be proven [27] that this sequence of
multipliers converges to a* as & — x*. The method of multipliers is extended to the
case of inequality constrained problems (ICP) by Rockafellar [99, 98, 101], resulting
in the slightly modified augmented Lagrangian given by

a;igi() + swigi(x)®  if oy + wigs(x) >0

Ly(x, a) :f(a:)—l-z —o7 if o; + wigi(z) <0

2w;

Using either formulation of the function L., an important feature of the method
of multipliers is that it allows placing finite limits on the values of the Lagrange
multipliers a and penalty terms w. This is in contrast with penalty methods that may
require increasing the penalty parameter arbitrarily in order to achieve convergence.
By alternating between finding a minimum x(a) and updating multipliers «, both
the optimal point &* of the ECP (or ICP) will be approached as well as the optimal
Lagrange multipliers a*, and these are the optimal Karush-Kuhn-Tucker (KKT) pair
(x*,a*). A more detailed description of the method of multipliers in the context of

other Lagrangian optimization is given in Section 3.1.

Genetic or evolutionary algorithms based on the method of multipliers or that rely
on the augmented Lagrangian function typically implement the alternating behaviour
by employing an inner and outer loop. The outer loop takes as input a point x(*
representing the solution x(c®)) and uses this to calculate updates to the parameters
resulting in a1 (and possibly the penalty term w*+) before executing the inner
loop. The inner loop takes as input these Lagrangian parameters as fixed and uses

them to find the local optimum a(a**1), which is returned again to the outer loop
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to be used as a starting point in the next iteration.

This inner/outer loop format is used by Costa et al. [34] along with a hybrid ge-
netic algorithm and pattern search method (HGPSAL) to optimize the augmented
Lagrangian. Their inner loop consists of first running a genetic algorithm to generate
a population of candidate solutions, then applying a Hooke and Jeeves pattern search
to refine the candidates locally. The scalar penalty parameter w is either held steady
or increased by a constant factor. Safeguards are used in the outer loop to maintain
boundedness on the Lagrange multipliers as well as updating stopping criteria for the

inner loop.

In [35], Srivastava and Deb expand on previous work [119] to implement a genetic
algorithm (GAAL) using tournament binary selection, simulated binary crossover,
and adaptive polynomial mutation for solving the inner optimization loop for an
augmented Lagrangian. Each candidate solution from the genetic algorithm is further
improved with a “classical algorithm” (the authors use fmincon from Matlab) for
local optimization. The outer loop iterations then rely on user-supplied parameters
to evaluate the inner loop solution and subseqneutly determine whether to update

either the Lagrange multipliers or the penalty coefficient.

In [80], Long et al. use a modified differential evolution approach (MAL-DE) for
optimizing the inner loop that combines multiple trial vector generation strategies and
adaptively selects the best within each iteration. The penalty term w is either held
steady or increased by a constant factor, subject to several criteria on the decreasing
constraint violation. Termination criteria are also evaluated based on the decrease in

constraint violation.

Multiple authors have also implemented the augmented Lagrangian approach for
several variations of particle swarm optimization: Rocha et al. [97] use a fish swarm
method, Mahdavi and Shiri [81] use a continuous ant colony method, Wen et al. use
both grey wolf optimization [78] as well as an artificial bee colony algorithm [79],
Bahreininejad [23] applies a water cycle algorithm, and Balande and Shrimankar [24]

use a firefly algorithm.
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By relying on the inner/outer loop model, each of these augmented Lagrangian meth-
ods will necessarily spend a significant portion of their function evaluations in pro-
gressing to intermediate, non-optimal solutions. Each run of an inner loop converges
to a solution for the given parameters, but the parameters themselves need to also
converge in the outer loop before this will coincide with the optimum a* of the fitness
function. Additionally, both of the genetic algorithm approaches rely heavily on sep-
arate optimizers like fmincon to ultimately achieve convergence on each subproblem

formed by the augmented Lagrangian in the inner loop.

2.5 Surrogate methods

Surrogate model algorithms attempt to reduce expensive function evaluations by
maintaining an internal model that can be queried instead. A notable example is the
COBRA algorithm described by Regis [95] that matches radial basis functions with
the search space in order to apply numerical constrained optimizers like fmincon. In
order to reduce the need for parameter tuning, Bagheri et al. [22, 21] propose SACO-
BRA as a refinement, and experimentally demonstrate convergence on most of the
CEC 2006 benchmark problems [77] while using fewer than 500 function evaluations.
Given their strong performance in the presence of expensive objective or constraint
function evaluations, surrogate models have also been used in various contexts by

evolutionary algorithms.

Regis [96] proposes CONOPUS as a particle swarm method, and uses an implementa-
tion with radial basis function surrogate models of the objective and constraint func-
tions to compare performance on several real-world as well as selected CEC benchmark

problems.

Wang et al. [127] introduce GLoSADE which relies on surrogate-assisted differential
evolution to globally locate regions of interest, then applies a gradient descent interior

point method to a local surrogate model in order to refine solutions.

The MPMLS method of Li and Zhang [76] applies multiobjective optimization prin-
ciples to solve multiple penalty problems simultaneously using differential evolution,

and performance is evaluated on selected problems from CEC benchmarks as well as



36

an airfoil design problem.

Surrogate methods are combined with an augmented Lagrangian approach by Dufossé
and Hansen [38]. The MM-AL-CMA-ES uses a linear model to internally represent
the constraints, and applies CMA-ES to the unconstrained function formed by an
augmented Lagrangian using the modeled constraints. Lagrangian parameters are
updated in every iteration, analogous to the AL-ES [14] and as described in Sec-
tion 4.2 of this thesis. Good performance is observed across the same selection of

problems as used to evaluate the (1 4 1)-aCMA-ES [6].

2.6 Other notable approaches to constraint handling

Several other notable approaches exist for constrained optimization with evolutionary
algorithms that either offer significant variations of penalty, Lagrangian, and surro-
gate methods, or else avoid them entirely. Given the difficulty in setting user-defined
parameters for penalty-style methods [84], a common theme is to find alternate ways
of balancing progress on feasible individuals against progress on infeasible individu-

als.

The stochastic ranking method of Runarsson and Yao [104] is based on the idea that
penalty parameters are intrinsically difficult to set correctly. They argue that the
ultimate goal of any penalty-based method is a ranking of individuals that does not
give undue preference to either the objective function value or the constraint violation.
Instead of trying to achieve this through a derived penalty, their ranking of individuals
is directly manipulated by setting a fixed probability for preferring the objective
function value over constraint violation. The given probability must be set by the
user, something that is done implicitly in a penalty method. Stochastic ranking has
been applied to several optimization strategies, including differential evolution (DE)
by Zhang et al. [132] and a multimembered evolution strategy [85] by Mezura-Montes
and Coello Coello.

Tahk and Sun [121] employ a modified augmented Lagrangian approach by main-

taining two separate populations and co-evolving a candidate solution in the search
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space alongside the Lagrangian parameters. Simulated annealing is used to discour-
age premature convergence near the constraint boundaries. Evolution strategies are
used to evolve both populations, which are framed as solving a zero-sum game where
the worst individual in the opposing population is used to determine the fitness of

each offspring.

The ASCHEA method of Hamida and Schoenauer [50] uses an adaptive penalty that
is specifically updated to maintain a user-defined proportion of feasible individuals in
the population of each generation. The penalty is modified by multiplying by a user-
defined constant, with larger penalties resulting from too few feasible individuals. A
special selection operator is used to try to maintain a certain user-defined proportion
of feasible individuals, and a special combination operator explicitly encourages ex-
ploration near the border when the proportion of infeasible individuals is within a

specified range.

Tessema and Yen [124] use an adaptive two-penalty approach that normalizes both
the objective and constraint function values for an individual, then attempts to ex-
plicitly balance favouring feasible over infeasible offspring. The proportion of feasible
individuals is used to adapt the amount of additional penalties imposed on infeasible

candidates.

The e-constrained differential evolution (eDE) aproach of Takahama and Sakai [122,
123] maintains a bounded region within distance € of each constraint and compares
candidate solutions within this band exclusively on their objective function values.
The value of € is decreased according to a fixed schedule so that the solutions are
eventually driven to satisfy the constraints exactly. Gradient approximations are ad-
ditionally used to generate offspring, and feasible elitism ensures that the best-so-far
feasible individuals are preserved. Xu et al. [130, 131] propose the HECO-DE ap-
proach which applies a similar e-constrained approach to multi-objective optimization
with differential evolution, where the constraints and objective functions are treated

as separate functions to be jointly optimized.

The CORCO method is proposed by Wang et al. [126] which attempts to measure the

correlation between objective and constraint functions. A pre-processing step is used
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to generate separate populations based on improved objective or improved constraint
violation scores, and these in turn generate a scalar measure of correlation that is

used to guide the subsequent evolution of a population using differential evolution.

2.7 Constrained optimization with evolution strategies

Constraint handling specifically for evolution strategies has thus far followed several
of its own lines of inquiry. One approach is to directly modify the population rankings
in each iteration of an ES to balance the preference of feasible over infeasible candi-
date solutions. Runarsson and Yao [104] use an evolution strategy for defining their
stochastic ranking process, which is adapted for a multimembered evolution strategy
by Mezura-Montes and Coello Coello [85]. The authors of both works report experi-
mental results on a subset of the 2006 CEC benchmark using hundreds of thousands

of function evaluations.

The Adaptive Ranking Constraint Handling (ARCH) method is introduced by Sakamoto
and Akimoto [105, 106] which uses CMA and adaptively updates an additional rank-
ing coefficient based on the Mahalanobis distance between infeasible offspring and
their projection on the constraint boundary, within the context of the underlying
covariance matrix. This ranking coefficient in turn determines the total ranking of
candidate solutions. The ARCH method explicitly assumes that constraints are a
priori according to the taxonomy of Le Digabel and Wild [75] and inexpensive to
calculate, and aims to preserve certain invariance properties that allow taking full

advantage of covariance matrix adaptation.

Constraint-handling methods are adapted from differential evolution for use with
evolution strategies as with eMAg-ES by Hellwig and Beyer [60]. Their MA-ES
variant implements a reduced variant of CMA-ES alongside e-level comparisons and
gradient-based repairs from Takahama and Sakai [123]. The authors note that within
each iteration that uses the repair operation, extra function evaluations are consumed
making the action more expensive. The eMAg-ES method was retroactively ranked
third in 2019 [111] among all submissions to the CEC 2017 problem set, using the

prescribed 2n - 10* budget of function evaluations for problems of dimension n.
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Active CMA methods re-purpose active updates from unconstrained optimization
(68, 5], where a separate evolution path is maintained to track the worst offspring
and the covariance matrix is then adapted to avoid long steps in these directions.
This is used by Arnold and Hansen with the (141)-aCMA-ES [6] by shifting the
variances of the covariance matrix away from recently violated boundaries, specifi-
cally to avoid sampling problems caused by small constraint angles. This is extended
to the multimembered case by Chocat et al. [31] for application to a rocket design
problem in the presence of noise, and by Krause and Glasmachers [74] who integrate
features of natural evolution strategies to propose xXCMA-ES and evaluate its per-
formance on several sphere problems with varying bound constraints. Similar active
updates are combined with both a multimembered MA-ES and CMA-ES by Spet-
tel and Beyer [115], and experimental results for each compared across a variety of
problems. The resulting CA-MA-ES algorithm’s performance seems promising, but
focuses on a benchmark that is still under development and not yet widely used in

the literature.

Under the assumption of purely linear constraints, Spettel et al. [117] propose the
lcCMSA-ES that uses a pre-processing step to project onto the manifold of inter-
secting feasible regions. Feasibility is then maintained by a combination of biased
mutations for encouraging new offspring within the feasible manifold together with
a repair mechanism. The algorithm is shown to perform well across a selection of
linearized problems from the COCO bbob-constrained framework, as well as on the

Rotated Klee-Minty problem in various dimensions.

Active-set evolution strategies project candidate solutions onto the feasible subspace
where constraints are satisfied as equality constraints, then update the step size ac-
cording to the reduced subspace dimension. Lagrange multipliers are used implicitly
to determine whether a constraint is active. So long as there is a robust method
for adding and dropping constraints from the active set, this allows the step size
to adapt appropriately and avoid issues of stagnation. Building on initial work by
Arnold [11, 12], Spettel et al. [112] implement a (14 1)-ES with an updated approach
for suspending constraints from the active set. Experimental results show good per-

formance on certain linearly constrained sphere problems, as well as problems from
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the CEC 2006 benchmark. Throughout, the active set approaches assume that con-
straints are given a priori according to the taxonomy of Le Digabel and Wild [75] and

inexpensive to calculate.

2.8 Summary

A wide variety of constraint handling methods exist for stochastic optimization. In
order to make reasonable comparisons between algorithms, the QRAK taxonomy
allows classifying approaches based on assumptions made about the constraints. For
instance, approaches like the active set ES [112] and ARCH [106] methods perform
very well for QUAK problems where constraints can be evaluated with negligible

cost.

Other approaches for evolution strategies including the aCMA-ES [6] and MM-AL-ES
[38] have established a set of QR*K problems, many of them taken from the CEC
2006 benchmark problem set, that serve as a useful starting point for comparing the
performance of any novel ES approach. Convergence on these problems is observed
to occur within several thousand function evaluations. By comparison, algorithms
evaluated on the CEC 2006 problem set [77] typically report solutions with tens or

even hundreds of thousands of function evaluations.

Augmented Lagrangian approaches are a popular mode for handling QR*K optimiza-
tion problems, but the usual design relies on an inner/outer loop model that consumes
function evaluations while converging to values that quickly become obsolete. Imple-
menting an approach without the inner/outer loop model may provide the benefits
of the augmented Lagrangian model without its largest drawback. Integrating a La-
grangian approach with evolution strategies may additionally take advantage of their

beneficial convergence and invariance properties [19].



Chapter 3

Augmented and exact Lagrangian methods

This chapter presents the augmented and exact Lagrangian methods for solving con-
strained optimization problems, framed in terms of approaches from numerical op-
timization. Fach of Sections 3.1 and 3.2 respectively provide justifications for the
evolution strategy algorithms presented later in Sections 4.1 and 4.3. A more compre-
hensive overview of some of the theory behind optimization with Lagrangian functions

is given in Appendix B.

Section 3.1 describes the method of multipliers, also referred to as the augmented
Lagrangian method, which aims to both define an unconstrained function with an
optimum shared by the constrained problem and give update rules for the Lagrange
multipliers that will lead to an optimal KKT pair. Section 3.2 outlines Fletcher’s
exact penalty method for both equality and inequality constraints, which also defines
an unconstrained function with a desired optimum but replaces multiplier updates
with a continuous approximation that can be understood as implicitly solving lo-
cal quadratic approximations of the constrained problem. Connections between the
two approaches are given in Section 4.4 in the context of their implementations for

evolution strategies.

Note that to avoid confusion with the (i, A\) notation commonly used for evolution
strategies, Lagrange multipliers here are generally referred to as a rather than the

traditional A used both in the appendix and in the literature.

3.1 Method of multipliers

The method of multipliers is a method proposed independently by Hestenes [64]
and Powell [93] for solving ECPs by combining penalty and Lagrangian functions

41
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with a sequence of Lagrange multiplier approximations {a®)} that converges to a*.
Central to the method is the definition of an augmented Lagrangian function as well

as recommended updates for the parameters of that function.

Powell forms an augmented Lagrangian by beginning with the usual quadratic penalty

method that attempts to solve

1

Qu(x) = f(x) + 59(90)T99(90) (3.1)

by gradually increasing w; — oo which are the elements of w forming the nonzero
entries of the diagonal matrix €2. However, in order to avoid ill-conditioning and
other problems with arbitrarily large w;, the penalty term’s origin is shifted and a

new variable @ introduced to instead solve

1

L (x,0) = f(x) + 5(g(x) — 0) Qg(z) - 0). (3.2)
These new variables are updated as
0 =0+ gi(2(9)) (3.3)

where x*)(0) represents the local solution for parameter 8, and the values w; are
intended to be kept relatively constant. Formulated this way, Powell’s augmented
Lagrangian has the large advantage that w; — oo is no longer a requirement for
finding a solution, so long as both w and 6 are updated correctly in order to shift the
constraints so that the minimum for LE°(x) is also *. By expanding the expression
in Eq. (3.2) for Powell’s augmented Lagrangian and dropping a constant term, we
find

Lulw,0) = f(x) + (2 0)g(x) + sole) () (3.4)

and after defining 2 - @ = a we have an equivalent formulation of the augmented

Lagrangian as proposed by Hestenes

L, 0) = f(a) + 0" g(@) + o) Qg(x) (35

This is the form of the augmented Lagrangian we will most often use, and so refer to
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it simply as L,,. The values of a are here updated as
ot = ol ;- gi(x(a®))

or equivalently
altth) = a® 4+ Q. g(x(a™)). (3.6)

This encodes a shift of the quadratic penalty term (compare to Eq. (3.3)) and can be
proven under mild assumptions to give a sequence of vectors that converges to the
optimal Lagrange multipliers a* as * — x*. An implementation of this approach to
the method of multipliers in given in pseudo-code by Algorithm 3.1, using the usual
inner /outer loop model. Line 2 encapsulates the inner loop portion, where an itera-
tive algorithm is used to minimize the unconstrained function given by L. Exactly
how the penalty coefficients w should be updated in Line 4, and whether they should
be increased in every iteration, is a decision that can vary by implementation. We
omit these details here in the interest of simplicity, but recommended bounds are

offered analytically by both Fletcher [43] and Bertsekas [27].

Algorithm 3.1 Method of multipliers with inner/outer loop

Require: Initialize (©, @, w©@ k=0, y>1

1: while z® # 2* do > Outer loop: updates a and w
2: D) mgcin [Lw<k)(w, a(’“))] > Inner loop: minimizes L,
3 at+D) ) 4 ®) T (kD) > Eq. (3.6)
4: wkHD) k) Ly > Optional: increase, if needed
5 k+—k+1

6: end while

3.1.1 Justification of the update rule

One justification behind the specific update term for the Lagrange multipliers in
Eq. (3.6) comes from observing that a solution to the augmented Lagrangian in
Eq. (3.5) may not always lead to a solution of the underlying constrained prob-

lem, particularly if we have not used the correct Lagrange multipliers. This is often
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the case in practice, such as when the Lagrange multipliers a®) are iteratively ap-
proximated. This is obviously a relevant concern for an adaptation of augmented
Lagrangian approaches for stochastic methods, and so the justification is summarized
below. The core idea of the justification is that inaccurate solutions to L., allow ex-
pressing the Lagrange multiplier approximations in terms of gradients with respect to
local changes in the constraint violations, and setting these gradients to 0 to find the
stationary point where the constraints are satisfied leads to Eq. (3.6). The discussion
here is given in terms of equality constraints (ECP) for simplicity of presentation,

but extends similarly to inequalities.

To begin, note that if our current approximation a*) # a*, then the local minimum
of L, (x,a™) need not correspond to the constrained solution x*. For brevity, let
) = x(a®) represent the solution minimizing L (z,a®)). Then recalling the
necessary conditions of Theorem B.6, and assuming w is set appropriately in order
to guarantee locally positive curvature for L., we can identify the situation where
x®) £ x* by the existence of constraint values g(xz®) # 0. With this in mind,

k

we return to the augmented Lagrangian defined using a®, and since *) is a local

minimizer, this implies we have also found a stationary point satisfying

Vo Lo(@®, o) = Vo f(x®) + (@) Veg(z™) + g(x®) Q- Vog ()
= Vo f (@) + (a® + Q. g(w(m)T Vag(z™)

Again for brevity, let u = g(x®) € R™ be the vector of constraint violations for the

found point ®). Then the gradient above can also be re-written as
VeLo(x® a®) =V, Lo(xz® a® + Q- u). (3.7)

This is the gradient of the ordinary Lagrangian L, evaluated at the points *) and
a® +Q-g(x™), and it is also equal to zero. Note that if w = 0 then as mentioned, we
are already at the solution «* of the constrained optimization problem and ®*) = &*.
If however u; # 0, then the current point *) minimizes the ordinary Lagrangian with

gradient given in Eq. (3.7), and so is also a local minimum of a related but distinct
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ECP, one given by

This is the equality constrained problem asking for the point @ that minimizes f(x)
subject to constraints g; being violated by exactly u; = g;(x®), the amount of viola-
tion at our current solution. If we treat w as a variable, then we find an entire family
of related ECPs, each asking for the point & minimizing f(x) subject to constraint
violations being equal to u. Clearly, we are interested in the behaviour as u — 0.
Let x(u) be the minimizing point @ for the variable w, then the solutions to these

ECPs can be expressed as solutions to the ordinary Lagrangian
Lo(z(u), ) = f(z(u)) +a'u
with corresponding gradient
Vulo(z(u),a) =V, f(x(u)) + a.
Setting this equal to zero we arrive at
—Vauf(xz(u)) = a. (3.8)

Thus, the Lagrange multipliers a correspond with the negative gradient of f taken at

the local minimizer x(w) with respect to the variable u of constraint violation.

Returning to consider this in the context of our augmented Lagrangian, we can re-

write its expression as

1
Lo(xz(u),a®) = f(®) + (a™)Tu + §uTQu

where £*) = 2(u). Minimizing this expression with respect to u requires a stationary
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point, which can be found using
Vulw =V (f(:c(k)) + (a(k))Tu + %uTQu>
which after equating to zero and re-arranging gives
—Vof(x®) =a® + Qu.

This gives the negative gradient of f taken at the local minimizer x(u) with respect
to w. Since this should correspond to the Lagrange multipliers by Eq. (3.8), we

(k+1)

therefore have an appropriate value for setting a This is the same update rule

as in Eq. (3.6) and serves to justify its use.

This idea behind justifying the multiplier step is treated more rigorously by Bertsekas

[27] who defines the primal functional p in terms of constraint violation u as

p(u) = min f(x)

g(z)=u

and observes in part that

Vup(u) = —a(u),
and in particular

Vup(0) = —a’.

Since the primal functional returns the minimal value of f(x) across all points where
g(x) = u, this means the Lagrange multipliers near the optimum can be interpreted
as rates of change of the minimum of f with respect to changes in constraint viola-

tions u.

3.1.2 Extensions and inequalities

Along with having a convenient multiplier update rule, it can be shown [43, 27] that

the augmented Lagrangian given in Eq. (3.5) is also positive definite in a region of the
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optimum x* and thus satisfies Eq. (B.18) for sufficiently large choices of w;. Together,
Egs. (3.5) and (3.6) form what is generally understood as the method of multipliers for
equality constraints, but there are alternative ways of viewing this formulation that
give beneficial insight. Nocedal and Wright [128] describe the augmented Lagrangian
as a suitable function for correcting consistent errors or perturbations in the quadratic
penalty approach. They show that approximate solutions for minimizing Q,,(x) will
tend to give constraint violations g;(x) =~ i—, and therefore include this term as an
estimator for the optimal Lagrange multiplier within each iteration. Bertsekas [27, 28]
meanwhile treats the quadratic penalty function in Eq. (3.1) fully as an objective

function, and constructs the related Lagrangian function as

Lofwa) = (1(@)+ Ja(@) (@) + a"s(@),

The augmented Lagrangian is then no longer bound only to a quadratic penalty

function; other penalty functions would lead just as easily to a variation thereof.

The method of multipliers was originally extended to solving ICP problems by Rock-

afellar [99, 98, 101] and results in expressing the Lagrangian as
Lo(z,a) = f(z) + V() (3.9)

where

a;gi(®) + swigi(x)®  if a; + wigi(x) >0

U(z)=>) L

i L if o + wzgz(m) < 0.

2&)1'

Roughly speaking, this defines a function continuous at the constraint boundaries
that nonetheless distinguishes between constraints that are consequential for the La-

grangian and those that are not.

Rockafellar arrives at this expression by converting the inequalities using introduced

slack variables z; > 0 so that the augmented Lagrangian can be written as

L, ) = fl@) + 3 (o) + 2) a5 3w (i) + =)

i€ €T

= f(z) +a’(g(z) +2) + %(g(w) +2) ' Qg(x) + 2) (3.10)
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for inequality constraints indexed by Z. The expression in the second line follows

from using vector notation and defining the vector of slack variables

z=(-Q'a— g(:c))+

where the plus operator -, = max(0, -) restricts element-wise to non-negative values.
The value of LE° can be explicitly minimized with respect to the z; by taking partial

derivatives and writing

oL
57 wigi(x) + wizi +a; =0
and then re-arranging gives
= — — gi(x). 3.11
5= ) (3.11)

Now since z; € R, each value must be either positive or 0. If we allow P and Z to
respectively indicate the complementary index sets for positive and zero values of z;,
we can write the augmented Lagrangian L, with respect to these index sets. Consider
first the situation where only one index set is non-empty at a time. Taking Z to be

non-empty resolves to the Lagrangian

L2 (@, a) = @)+ (aigi(@) + = gi(@)?)

i€EZ

which is equivalent to the expression in Eq. (3.10), while non-empty P gives

» 2
Lgo(x,a) = f(x) + %sz <04_Z2 B Qa;)

W Wi

i€P

after expansion and substitution of the value given by Eq. (3.11). Noting that the
indices i € Z imply w;g;(®) > —q; and include any constraints satisfied as equalities,
the two alternative expressions for the augmented Lagrangian can be joined together
to encompass both of P and Z and simply expressed as in Egs. (3.9) and (3.10). The
condition of the top row of Eq. (3.10) is indexed by Z and includes both weakly active

constraints where g;(x) = 0 and active constraints where additionally «; > 0. The



49

condition of the bottom row is indexed by P and accounts for inactive constraints.

The statement of Eq. (3.9) is also equivalent to

1
Lo(z,a) = f(x) + Z o ([ai + wzgz(m)]i - a?) (3.12)
where the plus operator -, again maps to non-negative values, or using matrix nota-

tion evaluated only on specified constraint sets as

2

Lofa.a) = (@) + (@To(@) + o(e) ul@)] (3

1
— (—aTQ_la
z

P

The same extension to ICPs is derived by Nocedal and Wright [128] by solving

a; >0

max L, (x,a) = f(x) + Z a;g;(x) + 2%}1 Z (Oéi _ Oél(k)>2 (3.13)

explicitly in terms of variables «;. The result is the same as in Eq. (3.9), but frames
the augmented Lagrangian as quadratically penalizing new multipliers «; that are
(k)

more distant from the current multiplier ;" in a given iteration k. This is similar
in principle to solving a dual problem in order to determine good updates for the

multipliers, as outlined in Section B.5.

3.2 Fletcher’s exact penalty method

Penalty methods typically require coefficients that must be made arbitrarily large
in order to guarantee convergence. The method of multipliers as described in Sec-
tion 3.1 provides an alternative formulation where an optimum can be reached for
finite penalty coefficients, and Fletcher [39, 40] together with Lill [45] additionally pro-
pose several so-called penalty functions with the desirable feature that any penalty
coefficients above a fixed limit would be sufficient for convergence. These are ex-
amples of exact penalty methods, so named in order to contrast them with existing
sequential methods; while the latter attempt to approach the constrained optimum
by solving a sequence of optimization problems with an increasing penalty coefficient

and the sequence of solutions converging to x*, the former aim to define a single
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problem with its unconstrained solution corresponding exactly to x*. In sequential
methods such as the method of multipliers, both an inner and an outer loop control
the algorithm, with the outer loop updating parameters like the penalty coefficient
only after the inner loop has found an appropriate intermediate solution under the
existing parameters. In the exact method, only a single optimization problem is it-
erated on, defined completely in terms of location x in the search space. As will be
seen in Chapter 4, existing implementations based on the AL-ES [14] straddle the
difference between the exact and sequential approaches, while other augmented La-
grangian methods such as from Deb and Srivastava [35] rely entirely on a sequential

approach.

The exact penalty functions will be seen to be directly connected with Lagrangian
functions, as both of the functions’ values and their gradients are equal at the opti-
mum and their formulations are similar. The continuous approximation of Lagrange
multipliers provided by the exact Lagrangian functions is also used to extend the

method to handle inequality constraints [41].

3.2.1 Exact Lagrangian for equality constraints

Recall that the ECP asks for a solution « to the problem

min_ f(z)

s.t. gi(x) =0.

With objective function f(x) and constraint function g(x) : R™ — R™ both continu-

ously differentiable, Fletcher’s exact penalty function is defined as
¢(x) = f(x) — g(x)" - TVf+w- glx) (J'T) g(x) (3.14)

with scalar w > 0, full rank n x m Jacobian matrix J of g, and other relevant
terms including derivatives evaluated with respect to . So long as w is chosen
sufficiently large, ¢(a) will be positive definite in a neighbourhood N, (z*) of the

optimum because of the associated “augmenting” penalty term, ensuring it is a local
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minimum.

Relation to Lagrangian functions

In order to see how the exact penalty function is related to Lagrangian functions, first

define the ordinary Lagrangian 1 in the usual way as

Y(@) = f(z) +g(x) a
~ f(2) — g(@)TT* - VF. (3.15)
where the derivatives are taken with respect to . The multipliers a here are derived
from the KKT first-order necessary condition (see Theorem B.6) that V1 = 0, which

allows evaluating and re-arranging the condition to give

Vaof +Vaeg' -a=0
J a=-V,f
a=-J"-V,f (3.16)

as a least-squares solution for the Lagrange multipliers. This is also equivalent to

determining the multipliers by solving

J(=J"Vaf) ==Vaf

with respect to the projection matrix P = JJ* described in Eq. (B.4). This says
that the KK'T optimum must be among the points & where the gradient is zero after

projection into the unconstrained subspace by (I — P).

Although the Lagrangian function ¢ (x) has a stationary point at the constrained
optimum a*, this is not guaranteed to be a minimum as the curvature in the directions
of the constraint normals may not be positive. However, positive curvature may
be induced in these directions within A, (x*) by adding an extra term involving a
sufficiently large positive definite matrix. To this end, the exact penalty function

o() is defined as ¥ (x) together with the term g(z)TQg(x) for some positive definite
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matrix Q. Fletcher suggests appropriate choices as including Q = wI, @ = wV2f(x),
and ©Q = w(JTJ)7!, all with scalar w > 0, and it is the final option used in the
definition of the exact Lagrangian in Eq. (3.14).

Rather than modifying the Lagrangian, we could equivalently consider this as a mod-
ification of the Lagrange multipliers. Returning to the definition of the ordinary

Lagrangian ¢ (x) in Eq. (3.15), let the multipliers be given in terms of x by
a(x) =-J"Vf(x)+w- (J'J) 'g(x) (3.17)

then after substitution we again have the definition of the exact Lagrangian in

Eq. (3.14).

A key difference arises here between the exact Lagrangian and other Lagrangian
approaches: rather than taking the vector a of multipliers to be a parameter alongside
@ that will be solved by minimizing L(x, ), the exact approach is to instead define
the multipliers completely in terms of x using the above approximation. It is in
this sense that the Lagrangian is exact, as its optimum will correspond under mild
assumptions to the constrained optimum without any sequential updates to external

parameters.

Using Eq. (3.16) and defining 3 = (JTJ)™!, the exact Lagrangian defined in Eq. (3.14)
is seen to still very closely resemble an augmented Lagrangian with a slight change

to the definition of the Lagrange multipliers:

Ls(z, o)) = f(z) + a(z) g() +w - ()" By ().

The important distinction is that a(x) is not a separate parameter, as it would be
for the method of multipliers, but is defined completely in terms of the position & in

the search space.
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Multiplier equivalence with subproblems

To help understand the way these multipliers are continuously estimated, it will first
be shown that each set of approximated multipliers is in fact shared with an equal-
ity constrained subproblem involving quadratic/linear approximations for the objec-

tive/constraint functions of the ECP, respectively.

Theorem 3.1 (Fletcher [41]). The Lagrange multipliers defined in Eq. (3.17) are

tdentical to those solving the equality constrained subproblem

min Q(8) = gaTa + 67V, f
st U8)=J"6+g=0 (3.18)

consisting of a local quadratic approzimation of f(x) and linear approximations of

the constraints g; evaluated at x.

Proof. From Eq. (3.18) we can write the associated Lagrangian function as
L(6,a) = Q(8) + o ¢(6).

The usual first-order necessary condition then requires that both Vs L and VL equal

0 at the subproblem’s optimum, and solving analytically gives the two expressions

VsL = VsQ(8) + a'Vsl(6)

=wd + Vuf +Ja,
Vol = £(5)
=J%6+g
which each re-arrange to
—Vaof =wd + Ja,

—g=J"%s.
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Thus, the KKT pair §, a for the subproblem can be recovered from the linear system

of block matrices
wl J 0\ [—Vaf
JT 0 a) —q
(- (0m ()
o J+ —w(JTT)! —g

The validity of the inverse matrix given in the second line above can be verified
explicitly. To do so, first recall that the projection matrix defined by Eq. (B.3) gives
both

(I-P)=T-JJ"
—I—JJ )"

=I1-J"J"
and
Jt=(Jra) gt
Therefore,
1
wI-—(I-P)+ J"HJI) =T -P)+P
=1
and

Lr-p). ()= i(J —JJT) LT J)

w
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satisfy the first line of the inverse block matrix on the right-hand side of Eq. (3.19),

while

JTwl + (—w(JT )™M IY) =wd T —wd T

and

satisfy the second line.

With the matrix validated, we can expand the full expression of Eq. (3.19) and collect

terms in order to find

5— %1(1 _P)V.f—J",

a=—J"Vuf +wJTJ) g,

as the KKT pair for the equality subproblem defined in the theorem statement. The

expression above for a corresponds directly with Eq. (3.17), as required. |

This theorem justifies an understanding of the sequence of multiplier approximations
given by the function in Eq. (3.17) by means of understanding the sequence of under-
lying subproblems. Each subproblem also allows examining its solution analytically.
Consider a shift of origin for §-space from the subproblem so that we let § = 0 cor-
respond to the current point @ in the search space for the ECP, and recall that the
subproblem of Eq. (3.18) is quadratic with Hessian wI and the constraints ¢; are lin-
ear. The function () must have a global unconstrained minimum where its derivative
is zero. Let 8* indicate the constrained optimum of the subproblem and 6™ be the

unconstrained optimum of (), so that by solving the first-order equation

VsQ = wé + Vaf
~0 (3.20)
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we get

50 = Vel (3.21)

w

Geometrically, this is the location 6*) reached by moving from § = 0 in the direc-
tion of the negative gradient of the objective function f. The solution 6* to the
constrained subproblem must therefore lie on the intersection of the constraints at
minimal distance from §*). This statement makes intuitive sense, and is also sup-

ported by referring to Eq. (3.19) which gives the subproblem’s solution analytically

5 = 1-P) (=) -5t
= (- P) <_me) — J(JITT) (). (3.22)

This vector is written as the sum of two complementary components in the uncon-
strained and constrained subspaces, respectively: the first term is the negative gra-
dient vector of Q)(d) evaluated at § = 0 (recall that this is the current position of @
in the search space) and projected into the unconstrained subspace, while the second
term is the vector connecting § = 0 orthogonally with the intersection of the linear

constraints.

Moving towards the solution of the subproblem given by Eq. (3.18) therefore means
moving in both the unconstrained subspace to minimize f and in the constrained
subspace to minimize g. Across a sequence of such subproblems, the sequence of their
solutions {8*} approaching § = 0 corresponds to the origin in §-space approaching
the solution &* to the constrained problem. Referring to our understanding of each
subproblem’s solution in Eq. (3.22), this in turn corresponds with the first term being
pushed to zero, satisfying the first-order condition of a stationary point for f, and

the second term also being pushed to zero, satisfying the constraints.

For equality constrained problems with derivative information available, the multi-
pliers a can even be calculated directly from Eq. (3.17) without solving the actual

subproblems. For inequality constrained problems, generalizing the approach relies
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on their solution.

3.2.2 Exact Lagrangian for inequality constraints

Recall that the ICP asks for a solution x to the problem

min f(x)

T

st gi(x) <0

with all the same notation as detailed in Section B.2, including the active set which
is the collection of indexed constraints satisfied as equalities at the optimum. The

subproblem analogous to Eq. (3.18) for inequality constraints involves solving

min Q(8) = ngé 1TV, f

st. £(6)=J"d+g<0. (3.23)

Importantly, a true solution in terms of § seems required, as using Eq. (3.17) to
directly approximate multipliers « is applicable only if the set of active constraints

at the optimum is already known.

When using numerical methods, even arriving at this quadratic subproblem greatly
simplifies the situation: it is generally easier to deal with a quadratic/linear problem
than one in which the objective or constraint functions may be more general or more
complex. Indeed, in proposing the extension of the exact Lagrangian to inequality
constraints, Fletcher [41] applies a general quadratic programming routine to the
subproblems in order to determine the associated Lagrange multipliers. However,
for stochastic methods such as evolution strategies, the simplification from nonlinear
to quadratic offers no immediate advantage. While the subproblems still provide a
valuable framework for understanding the algorithm, actually solving a sequence of
inequality subproblems would regress to a variation of the traditional inner/outer loop
model of the method of multipliers that expends function evaluations while converging

to intermediate values.
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The approximations of Eq. (3.17) can still be used if the active constraints are known,
so one alternative is to estimate the active set separately from the Lagrange multi-
pliers and use this to calculate a(x), allowing the estimated set to change as new
constraint information is collected. Since any number of such changes may occur, it
is useful to separately consider the working set ¥V as the current best approximation
to the true active set at the optimum, with the goal being W*) — A as ¥ — x*.
Note that unlike in the original formulation of the exact Lagrangian, our resulting
Lagrange multipliers will be discontinuous due to discrete transitions in the members
of the working set. This results in the noted symptom of zigzagging, where the work-
ing set repeatedly adds then removes a constraint (or a set of constraints) so that
the resulting multiplier approximations cause the algorithm solving the ICP to be
drawn between alternating constraint boundaries instead of towards the constrained
optimum. An implementation of an exact Lagrangian algorithm will need to address

this concern.



Chapter 4

Augmented and exact Lagrangian evolution strategies

This chapter presents the augmented Lagrangian (AL-ES) and exact Lagrangian evo-
lution strategies (EL-ES) for constrained optimization, respectively framed and jus-
tified in terms of the method of multipliers and Fletcher’s exact method given in

Chapter 3.

Moving from the context of numerical optimization to evolution strategies introduces
several challenges. Most importantly, no first- or second-order derivative information
is available. The AL-ES adaptively updates a penalty coefficient based on recent
changes in the constraint and Lagrangian function values, while the EL-ES relies on
expressions such as Eq. (3.17) which require approximating the involved terms. As
each algorithm’s progress through the search space is governed by stochastic processes,
leading to changes in local values between iterations that resemble noise, it is a related
concern that the resulting approximations are stable enough to be useful. Finally,
the EL-ES requires careful management of the working set, as the automatic means
of determining the active set as used in the exact Lagrangian method from numerical

optimization cannot be meaningfully adapted for use with evolution strategies.

4.1 AL-ES for one constraint

Early work for this thesis led to the proposal by Arnold and Porter [14] of a novel aug-
mented Lagrangian approach for a (1 4+ 1)-ES which demonstrates good convergence
performance on n-dimensional spheres and moderately conditioned ellipsoids with a
single constraint. This approach was later extended to handle multiple constraints
by Atamna et al. [18, 19]. A key feature of the AL-ES algorithm is the integration of
updates for the Lagrangian parameters alongside updates for the internal parameters

of the evolution strategy adapted within every iteration.

29
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Under the assumption of only one constraint, the original AL-ES from Arnold and

Porter uses the corresponding augmented Lagrangian defined as
Ly(z,0) = f(z) + ¥(x)

where

W) = ag(x) + jwg(x)®  if o+ wg(x) >0 1)

2 .
otherwise.

o
2w

Updates for « follow the method of multipliers, so that in iteration k£ the lone multi-

plier is updated according to

) = () 1 W g(@®))

= max (0, a® +w®g(z®)). (4.2)

In order to permit updating the Lagrangian parameters within every iteration of the
evolution strategy, the original AL-ES proposes to adaptively update the penalty
coefficient w based on changes in the constraint violation between parent and off-
spring candidate solutions. The goal for updating w this way is to ensure a balance
in progress for the evolution strategy between the constrained and unconstrained

subspaces. In iteration k, the penalty coefficient is thus calculated as

wrny @O i w®g(x®)? < ki |AL|/n or ksl Ag®] < |g(x®)|
k)1

X otherwise

and this is used in defining the augmented Lagrangian of Eq. (4.1). The values of
X, k1, and ko above are control parameters that affect how quickly the Lagrangian
parameters (o and w) are updated. In the original AL-ES of Arnold and Porter,
values of y = 2Y/4, k; = 3, and ky = 5 are used. The delta values used in Eq. (4.3)
represent changes in their respective functions between subsequent iterations with

Lagrange parameters held fixed, so

]AL(’““)‘ — ‘Lw(m(w(kﬂ)’oé(k)) — L,w (x(k)’a(k))‘
’Ag(kﬂ)‘ — ‘g(w(kﬂ)) _ g(w(k))‘ )
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With this in mind, the conditions of the first line in Eq. (4.3) can be broken into two
parts: the first aims to increase w when changes in the augmented Lagrangian are
due primarily to changes in the objective function over changes in the Lagrangian pa-
rameters, while the second aims to increase w when overly small changes in constraint

violation may signal that progress is slowing down.

Full details of the original (1 + 1)-AL-ES approach are given in Algorithm 4.1.

Algorithm 4.1 Single iteration of (1 + 1)-AL-ES
Require: f:R" - R, g:R" - R™, x> 1,k;,k >0

z < N(0,1)
Yy+—xr+oz > Generate offspring
Ag <+ g(y) — g(x)
AL, <+ L,(y,a) — L,(x, a)
if A,L, <0 then
Ty
o o-2Un
a < max(0,a + wg(y))
if wg*(y) < ki|ALy|/n or ky|Ag| < |g(x)| then > Update penalty
w — w4
else
w4 wy !
13: end if
14: else
15: o o271
16: end if

—_ = =
T

A single offspring y is generated in each iteration, and values are calculated for both
the constraint g(y) and augmented Lagrangian L, defined using Eq. (4.4) in Lines 3 -
4. If the offspring y gives an improvement in L, over the parent «, then the parent and
step-size o are updated in Lines 6 - 7, the Lagrange multiplier is updated in Line 8, and
the penalty coefficient w is updated in Lines 9 - 13. The condition on the update for w
aims to balance the progress of the evolution strategy on improving with respect to the
constraints and improving with respect to the objective function, as well as avoiding
premature stagnation signalled by rapidly decreasing magnitudes of change in the

constraint violation. Convergence is observed on spheres and moderately conditioned
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ellipsoids in the presence of a single linear constraint.

4.2 AL-ES for multiple constraints

A direct extension of the AL-ES to handle problems with multiple constraints is pro-
posed by Atamna et al. [18; 19] for multimembered evolution strategies, where con-
vergence properties are investigated analytically using a Markov chain approach. Im-
proved parameter settings are investigated by Dufossé and Hansen [38] and compared

experimentally alongside other approaches using CMA and surrogate models.

A summary and synthesis including these two additional approaches is presented
here and differences are highlighted. Both of the additional implementations use
(p/pw, A)-ES with weighted recombination and cumulative step-size adaptation. To
allow for multiple constraints, the augmented Lagrangian is defined as usual for each

implementation. Recall from Eq. (3.9) that this gives
Ly(w,a) = f(z) + V(z)

with
7| agi(e) + twigi(e)? if @ +wigi(x) >0

U(x) =) . - (4.4)

i=1 L otherwise.
2w;

Constraints that are inactive will correspond with the condition of the bottom row of
Eq. (4.4), while constraints that are active will correspond with the top. Equivalently,
constraint ¢ is active when

— o < w;gi(x). (4.5)

The multipliers «; are written here as elements of the vector a, while the penalty
coefficients are written as the vector w with (possibly distinct) elements w; forming

the diagonal of € = wl.

Updating Lagrange multipliers

Each of the AL approaches implement variations on the method of multipliers, so

that in iteration k the Lagrange multipliers a are updated according to Eq. (4.2).

1

Both Atamna et al. and Dufossé and Hansen use an additional damping factor i
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to slow down the adaptation of a, while Atamna et al. do not use the plus operator

(+)+, resulting in update rules of

) — o 4 di - Q) (20

for Atamna et al., and

for Dufossé and Hansen, which results in each element being updated as

1
agkﬂ) = max (O, agk) + T Cw; gi(w(k))) .

Updating penalty terms

The original AL-ES assumes only a single penalty coefficient and uses the update
rule of Eq. (4.3) in each iteration, while the others allow for multiple distinct penalty

coefficients and so use the modified rule

k o (K k
LU w§ )X1/4 if wl( )gi(m(k))Q < k:1|AL(k)|/n or k2|Ag§ )| < |gi(:1:(k))|
wlgk) X' otherwise
with minor differences in the fixed parameters. The AL-ES rule from Arnold and
Porter uses ki = 3, ky = 5, and y = 2"/, while Atamna et al. use xy = 2'/°" and

Dufossé and Hansen use y = 21/V7",

Dufossé and Hansen are the only ones to give a recommended initialization for w, de-
rived by first calculating the inter-decile range (IDR) for the objective and constraint

functions among the first set of offspring as
IDR(f(y")) = Af.

IDR(g;(y")) = Ag;, (4.6)

i<
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and then setting
Af

0) _ 102
Additionally, Dufossé and Hansen add a check whereby the penalty term w; is updated

only if it is associated with an active constraint according to Eq. (4.5).

Applying CMA

Only Dufossé and Hansen apply CMA to allow for application to a broader selection
of problems. Atamna et al. consider CMA elsewhere [17] to determine convergence
results, but only in the limited case of a single linear constraint. Dufossé and Hansen
note that since CMA should be more adept at handling ill-conditioning, it should
be possible to allow the penalty terms w; to become larger and hopefully speed up
convergence. To this end, they set the fixed parameter k; = 10, while keeping all
others the same. A comprehensive experimental comparison is given using the AL-
CMA-ES formulation (identified there as “AL many”), and the result is an apparently
widely applicable algorithm.

4.3 EL-ES algorithm

The EL-ES algorithm is presented here, which is the familiar (u/pw, A\)-ES along
with calculations for updating the Lagrange parameters and managing the working
set in order to implement an exact Lagrangian approach. The algorithm itself is
given first, and its main operations are presented as three subroutines: two that
update the working set through expansion and pruning, and one that uses local/global
approximations to estimate values for the exact Lagrangian parameters a and w. One
additional subroutine is called occasionally in order to maintain linear independence

of constraints within the working set.

Throughout, the discussion will focus on the case of inequality constraints, as these
pose the greatest difficulty in terms of determining their inclusion in the working
set. This is without any loss of generality, as equality constraints may be considered

as having been converted to the double-sided inequality constraints g(x) < 0 and
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—g(x) < 0. In practice of course, an equality constraint should be explicitly guar-
anteed inclusion in the working set, in which case the rest of the proposed EL-ES

algorithm could proceed with only trivial adjustments to accommodate this fact.

4.3.1 Algorithm outline

The main idea of the EL-ES is to use an evolution strategy to solve a constrained
optimization problem (GCP) by minimizing an approximation of the unconstrained
exact Lagrangian given in Eq. (3.14). In each iteration, local information from the
offspring selection process inherent to the ES is combined with historical information
from previous iterations to give approximate values for the Lagrangian parameters
a(x) and w in terms of the current location in the search space. Although this
approach on its own gives good convergence results on some problems, it can encounter
difficulties with arrangements of constraints that produce instability in the iterative
working set approximations. In the case of inaccurate estimates for the Lagrange
multipliers using Eq. (3.17) or oscillating constraints that are repeatedly added and
removed from the working set W, a good strategy is to stay close to the current
constraint boundaries defined as active by W until either an optimum is found or else
the working set is reliably updated. To encourage this behaviour, the EL-ES evaluates
offspring against two separate objective functions to determine their rankings: the

Lagrangian ¢(x) and a pure penalty function defined as

Qpen(m) = gW(w)TgW(w) (47)

that uses only local evaluations of constraint function gy, evaluated on constraints
in W at the current centroid. Once the offspring rankings are calculated separately
for ¢ and @Qpen the rankings themselves are summed to establishing a new ranking.
This explicitly assigns equal weight to minimizing the violation for all constraints in
W and minimizing the approximated Lagrangian, encouraging progress in the search
space within close proximity to the intersection of the active constraint boundaries.
This is the desired outcome in most cases; however, it may rarely occur that the

offspring rankings are exactly reversed for ()pen and ¢, in which case the sum of equally
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weighted rankings will give identical values for all offspring. Offspring selection in that
iteration would then degrade to a random walk. To avoid this disruptive outcome,
a tie-breaking process is needed. The result of applying @, can thus be summarized
as taking the sum of both sets of ranks to be the new rankings, while preferring the

rankings given by () in the case of a tie.

Sums of offspring rankings appear in other constraint-handling methods for evolution
strategies proposed by Runarsson and Yao [104] as part of stochastic ranking, and by
Sakamoto and Akimoto [105, 106] as part of ARCH. For the EL-ES, the merging of

ranks is performed using a simple sum together with the given tie-breaking procedure.

Algorithm 4.2 Single iteration of (u/u, A)-EL-ES with CSA
Require: f:R" - R, ¢:R"—=R™, ce(0,1), D>0, Y w; =1

1: ExpANDWS()
2: PRUNEWS()

3: UPDATEALPHAOMEGA()
4: for {=1— X do
5: zp < N(0,1) > Generate offspring
6: Yp < T+ 02y
7: end for
8: sort([z1a], [A(Y1) Be Qpen(Y1), - -, O(Yn) Be Qpen(Yn)]) > Combine ranks
“w
9. Z < ZU)ZZ[
=1
10: x < x+ 02
11: s+ (1 —¢)s 4+ \/fteic(2 — )2 > Update s
< Is]] )
12: 0 < 0 - expD (——1 > Update o
E [N (0, I)]]

An outline of the multimembered exact Lagrangian evolution strategy is given in
Algorithm 4.2, using calls to subroutines that are defined in subsequent sections of
this chapter. In Lines 1 - 3, three subroutines are called for expanding the working
set, pruning the working set, and updating the Lagrange parameters. Details for
these operations are given in Sections 4.3.2 and 4.3.3. In Lines 4 - 7, X offspring are

generated by sampling from an n-dimensional normal distribution. Both the exact
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Lagrangian ¢(x) and the penalty function of Eq. (4.7) are evaluated for each offspring,

and in Line 8 the operator

D(Yi) De Qpen(Yi)

is used to indicate the sum of the rank of offspring y; according to ¢(y;) (scaled by
(1 —€)) and the rank according to Qpen(y;). This joint ranking is used to sort the
offspring, which are then combined in Lines 9 and 10 to form a new parental centroid

x. Finally, the evolution path s and step size o are updated in Lines 11 and 12.

4.3.2 Calculating Lagrange parameters

Central to the EL-ES algorithm is using the approximation given by Eq. (3.17) to
determine the Lagrange multipliers. This is initially problematic in the context of
black-box algorithms like evolution strategies, as none of the gradient information
will be readily available. Instead, it is necessary to calculate local approximations to
relevant terms. This is done by taking advantage of the objective and constraint func-
tion evaluations used for ranking the offspring of a multimembered evolution strategy,
reducing the need for extra function evaluations to only evaluating the centroid as
part of the approximation process. The subroutine for approximating the Lagrange
multipliers a is called once per iteration of the EL-ES and is given in Algorithm 4.3.
The first line is a call to the subroutine detailed in Algorithm 4.6 which ensures that
the matrix inversion of the next line is operating on a nonsingular matrix; in other
words, that the Jacobian of the constraints in the working set are linearly indepen-

dent, as in Theorem B.6. An explanation of the other components follows.

The multiplier expression in Eq. (3.17) can be expanded as

a() = -JVf(z)+w- (J'J) g(z)
=—(J"3) IV (@) o () g(a)
—— Y= S~——
as(x) ap(x) as(x)
showing the collected terms a4(x) and ag(x) are the only unknowns and are deter-

mined with respect to . One approach for reliably approximating these values is to

blend together local and historical information taken from offspring evaluations on
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Algorithm 4.3 Subroutine for updating o, w

Require: Current values for f(y;),g(y;) for i = 1 : X offspring, g(x) for centroid,
step size o, fixed learning rate co <1

1: function UPDATEALPHAOMEGA

2 ENFORCELI() > Algorithm 4.6
3: oy 25 cov (g(y:)) > Eq. (4.11)
4 ap o oov(g(i), f(yi) > Bq. (4.12)
5 W < % : min(%stid(f(yi))7 %stid(d)(yi))) > Eq. (4.10)
6 g (1—cq) g+ ca- g(x) > Eq. (4.9)
7: s (1—co) @atco -y

8 g+ (1—cq) Qp+ca-ap

9: W (1 —co) W+ o w

10: a<« —(aq) ' ag+w-(aax)t-g > Eq. (4.8)

11: end function

functions f and ¢g. This results in a modified expression for the Lagrange multipli-

ers

a=—(J'J)" - JVf+w- (JTJ) "7
g (4.8)

=—(oa) o5+ (o)
where the bar notation indicates exponential fading is used to combine values from
the current iteration with the previous estimate. It is also understood that while
these values are accumulated across all constraints in each iteration, only the ele-
ments corresponding to constraints in the working set are used in updating a in the
expression above and in the discussion that follows. Each component of Eq. (4.8) is

exponentially faded using the same positive learning rate co, < 1 as

g9 = (1 - ca) T + o - g(a®) (19)
T®) = (1 —cq) - T* Y e w

a7® = (1 - co) - @x® D + o - aa(@®)

5™ = (1 ca) - w58 + o - ap(@™)
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so that it only remains to calculate the values given in the right-most terms of each
sum above. The learning rate is set to ¢, = ¢, as preliminary work on tuning
parameter ¢, indicates that this value is roughly appropriate on the selection of
problems considered in Chapter 5. The value of g(a:(k)) is simply the constraint
violation of the centroid in iteration k, while the value of w is calculated in each

iteration as
[0 ) std(9(y:)

w = = -min )
2 o o

- (4.10)

This attempts to maintain locally positive curvature of ¢ with the smallest needed
value. From Eq. (3.21), the quadratic subproblems will stagnate and ) will approach
0 as w — 00, so there is motivation in using a value of the penalty coefficient that
is no larger than necessary. The terms a4 (z®) and ap(z™®) are each estimates

calculated by using information around the centroid in the k-th iteration as

~ — - cov (g(yi(k))) (4.11)

and

ag(@®) = IV ()
o (96). £w)). (112

o2 i

Q

Justification for both of these expressions is given by using the definition of covari-
ance taken across the offspring y; to construct a linear approximation that will be
increasingly accurate as o decreases. The approximation for a4 is derived by starting

with

cov (9(y:)) = E [(9(y:) — Elg(y:))(9(y:) — Elg(w:))"]

E [(9(y:) — 9(=*))(g(w:) — g(x™)"]

Q
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and using the first-order approximation of the differences this becomes

Q

E [(Vmg(w(k))T(yi —z™)) (Vag(@™) " (y; — w(k)))T}
—E |(0WJ"z) (61" z)" |

= (cW)2. JTE [z2]] - T

=a’J"J.

The final line corresponds with Eq. (4.11), and follows from the vectors z; being
T

i

standard normally distributed, giving the off-diagonal elements of the matrix z;z
expected values of 0 and the diagonal elements x? distributed with mean & = 1, thus

E [z2]] =1

By a similar calculation, the approximation for ap is

cov (9(y:), £ (u:)) = E [(9(y:) — Elg(wa))(f () — ELf (x:)])"]
~E [(9(yi) — 9(@™)(f (i) — f(&™))"]
E [(Uw) J7z) (o™ -V, f(z®)T zi)T]
(0 IR [22T] - Ve f ()
=o*J" - Vuf (4.13)

which matches with Eq. (4.12).

Combining the approximations in Egs. (4.11) and (4.12) with Eq. (4.9) and @, we
have every term needed to calculate the faded multiplier vector in Eq. (4.8). In each
iteration, this approximates the Lagrange multipliers of Eq. (3.17) for the inequality
subproblem in Eq. (3.23), which are in turn equal to the Lagrange multipliers of the
underlying ICP by extension of Theorem 3.1. At each stage of the EL-ES, the value
of @ represents the best estimate for the current Lagrange multipliers which should

be minimized against.
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Using Eq. (4.8) to write this as part of the Lagrangian seen by the ES, we have

¢(x) = f(x) + g(x)" (~(JTT) " - JVf+w- (JTJ)"-7)
(x) + g(@)" (001 o +w- 01 - g)

(x) + g(z)"a. (4.14)

Note that while this is written as an ordinary Lagrange function above, it is also

similar in form to the augmented Lagrangian

Ls(x) = f(z) + g(x) ao + g(x)" By (). (4.15)

if we take the multipliers to be

ap=—(JTT) - TV S

and augmenting term

B=w(JTJ) "

In comparing the Lagrangian function ¢(x) with the augmented Lagrangian Lg(x)
so constructed, the only apparent difference is in their augmenting terms: while the
ordinary Lagrangian ¢(x) uses the averaged value g of constraint violations in the
final term, as seen in the first line of Eq. (4.14), the augmented Lagrangian Lg(x) of
Eq. (4.15) uses only the local value g(x). In spite of this small difference, the impact
is significant. In the former, we use § to approximate a continuous function a(x)
that gives Lagrange multipliers corresponding to the solution of the local subproblem
consisting of quadratic and linear approximations of f and g;, respectively. Assuming
the objective function is locally quadratic and the constraints locally linear, calculat-
ing the subproblem multipliers can lead to a good estimate for the true multipliers
of the ICP. The main effect of @ is in matching the subproblem’s quadratic approx-
imation to the underlying objective function f. In the latter, the multipliers o are
determined without any reference to the value of g(x), and instead can be determined
using the same approach as in Theorem 3.1 to correspond to an unbounded linear

subproblem with no constrained minimum. The effect of @ is to moderate the effect
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of the augmenting penalty term.

4.3.3 Working set management

The discussion in Section 4.3.2 assumes that the active set A is known, consisting of
those constraint indices satisfying g;(x*) = 0 at the optimum. This is not generally
a realistic assumption, and so instead calculations like Eq. (4.8) rely on the current
working set W being a reasonable approximation. At any stage of the algorithm,
constraints in the working set are treated as needing to be satisfied as equalities,
while constraints not in the working set are disregarded both in terms of calculat-
ing Lagrange multipliers and in terms of ranking offspring. Since a constraint g; is
considered active at point « if g;(x) > 0, and the working set aims to converge to
the set of active constraints as &) — z*, a simple approach would be to define
W =1{i : gi(x™) > 0}. However, this definition is inherently unstable due to the
stochastic nature of an evolution strategy that may move unpredictably between fea-
sible and infeasible regions near a constraint boundary. Instead, separate processes
are defined below for expanding and pruning the working set. The pruning process
attempts to remove a constraint from the working set based on the existence of neg-
ative Lagrange multipliers, while the expansion process attempts to add indices of
constraints that are recently violated. If either the size of the working set |W| < m
becomes greater than the dimension n of the search space, or if a constraint is added
that is linearly dependent with the existing working set, then steps are taken to prune

W and restore linear independence.

4.3.4 Normalized constraint violation

Constraint violation, whether for a feasible or infeasible point, is difficult to compare
between constraints with potentially different scaling and between iterations while
the ES moves stochastically through the search space. In order to allow meaningful
comparisons, a single normalized value is calculated for each constraint in order to

represent the magnitude of recent violations.
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The normalization occurs by using an approximated positive linear scaling factor
for each constraint. Between any two points « and y, a finite difference of the j-th
constraint values g;(y)—g;(x) divided by the distance ||y —x|| gives an approximation
of the linear scaling of the constraint function between those points. By taking the
average of the finite differences of an evaluated constraint across all y; offspring, we

arrive at

(9i(ys) — gj(=))
3 Z

||yz_m||

as an approximation of the local scaling. Since the distance between offspring and
centroid is well approximated by the step size o of the evolution strategy, the square

of the linear scaling is well approximated by the variance divided by o2 as

A 2
1 (9j(yi) — gj(x))
3 Z

and so the linear scaling factor itself is well approximated by the standard devia-

tion.

The ratio of the constraint violation g;(z®)) to the normalizing factor Std(gj(yi(k)))
(2

is therefore a candidate for a normalized constraint violation in iteration k. In order

to smooth the value between iterations, accumulation is additionally used in order to

calculate
5, = (1-ca) 7+ ca i),
which is given previously in Eq. (4.9), and
A = (1—ca) @V ey - % std(g(y;")).

calculated in the same manner. The normalized constraint violation v ) for the J-th
constraint in the k-th iteration is then defined as the associated ratio of the faded

constraint value to the faded standard deviation, expressed as

_(k)
* _ 95

P = (4.16)

(
J %

J
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4.3.5 Expanding the working set

The subroutine for expanding W is given in Algorithm 4.4 and is called once per
iteration of the evolution strategy. Expanding the working set involves potentially
adding to its indexed list of constraints. First, an initial set of eligible constraints is
constructed, consisting of all violated constraints not already indexed in the working
set. The associated normalized constraint violations of Eq. (4.16) are compared and

the single constraint with the largest violation is considered for inclusion in W.

Algorithm 4.4 Subroutine for expanding the working set
Require: W, v; for constraints not in working set

1: function EXPANDWS

2: if r%%((vl) > (0 then > Eq. (4.16)
3: W=WwWu{i}
4: end if

5. end function

The most significant potential complication of this subroutine is if a constraint is
added that causes the working set to become linearly dependent. Identifying this
situation proactively involves matrix operations in [W| < m dimensions. Addition-
ally, a proactive check would have to consider all constraints in the working set, not
just those recently added: constraints, especially nonlinear constraints, may be added
to the working set while their locally approximated normals are independent, only
to approach dependence as the ES approaches the optimum. For these reasons, the
difficulty is addressed elsewhere within Algorithm 4.3 by calling the subroutine given
by Algorithm 4.6.

4.3.6 Pruning the working set

The subroutine for pruning W is given in Algorithm 4.5 and is called once per itera-
tion of the evolution strategy. Pruning the working set involves potentially removing
one of its indexed constraints, and is comprised of a two-stage process: first decid-

ing whether any constraints at all should be considered for removal, then potentially



75

choosing which constraint is best to remove. The case where the working set is over-

constrained is also considered.

Algorithm 4.5 Subroutine for pruning the working set
Require: W, v; fori e W

1: function PRUNEWS
2 Ag <+ |f(2®D) — f(x®)] > k is current iteration
3: Ay |f(2*D) — f(x()] > e is iteration of last removal
4 if Af < Ay, then
5 if min(a;) < 0 then

iEW
6: W — W\ {argmin(ai)} > Remove index i from set W
7 ek =
8: else
9: if W|>n & Eréll/{}l(vl) < 0 then > v; from Eq. (4.16)
10: W+ W\ {argmin(vi)}

iew

11: ek
12: end if
13: end if
14: end if

15: end function

The initial decision is based on a simple idea of Fletcher’s [43], which is to compare
the historical change in f over recent iterations to the expected change in f for the
next iteration if the current working set were to be maintained. When the expected
change in f under the current working set is sufficiently large, the working set is
locked and no removals are allowed; the heuristic principle here is that in order to
avoid unnecessary oscillations in the working set, a constraint should be removed from
W only when there is evidence that better progress on minimizing f can be made
without it. For an evolution strategy, the expected change can be calculated as a

direct difference between candidate solutions using the same values of a, as

Ay =[f®) = f(=)]

and then compared to the historical change in f since the last iteration e in which a
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constraint was removed from the working set
Ay = |fa®D) = f(2)].

Whenever the expected future change in f is less than the historical change in f since
the last constraint removal, the working set is eligible for constraint removal. Other-
wise, no constraint is removed. Note that this incurs one extra function evaluation
per iteration on the candidate solution x® calculated before updating the values of
a and w; selection and recombination is performed first using the older values of «

and w, then again after those values have been updated.

Once W is marked eligible for a removal, the values «; for the Lagrange multipliers
indexed by 2 € W are compared and the constraint with the most negative Lagrange
multiplier is removed. If no negative multiplier is found, an additional check is made
whether the working set is over-constrained with [W| > n. If so, the constraint with

the minimal normalized constraint violation v; from Eq. (4.16) is removed.

4.3.7 Enforcing linear independence

The subroutine for enforcing linear independence within W is given in Algorithm 4.6.
As it can be a computationally expensive operation involving matrix operations based
on the number of constraints, it is called only when a singular matrix is encountered,

such as while attempting to calculate the inverse in Eq. (4.11) as part of Algorithm 4.3.
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Algorithm 4.6 Subroutine for enforcing linear independence in the working set
Require: W, tolerance ¢ > 0
1: function ENFORCELI

2 while W is linearly dependent do
3 (ur,...), (wi,...) = eig [C?V(g(yi))] > Eq. (4.11)
4: for j=1— |W| do
5 if |u;| < € then
6 B—{k: [l > o}
7 W =W\ argmin(vy)
keB
8: end if
9: end for

10: end while
11: end function

The subroutine relies on the fact that linearly dependent vectors in the column-space
of a matrix will have corresponding zero eigenvalues. This fact is used to identify and
consider for removal those constraints in W that are causing the set to be linearly

dependent.

Line 3 of Algorithm 4.6 uses the covariance approximation of JTJ from Eq. (4.11),
calculated using constraints in the current working set. If any collection of the con-
straints in W are linearly dependent, then the matrix is singular and there should
be corresponding zero eigenvalues. Let u = 0 be one such eigenvalue with associated
eigenvector w of the approximated matrix ccy ~ J*J that is not of full rank. Then
the entries of w also give the coefficients of a linear combination of the columns of
a4 that equal zero, since

a, - w=u=0

by the definition of an eigenvector. If we consider the indices of the non-zero en-
tries of w, then these give the indices of the columns of a4 appearing in the linear
combination, and thus give a collection of columns that form a linearly dependent
set. If there are multiple zero eigenvalues, then the same process can be repeated by
analyzing the respective associated eigenvectors to retrieve indices of columns that
form a linearly dependent set. Note that since ay ~ JTJ, the column indices of this
matrix correspond to the column indices of J which in turn correspond to the indices

of constraints in the working set, so that the i-th column of a4 corresponds with the
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1-th constraint in WW. By finding a set of columns that form a linearly dependent set,
we have found a set of constraints that can be compared and considered for removal

in order to restore linear independence in W.

In order to implement this in practice, we first note that the eigenvalues and eigen-
vectors will usually not contain entries that can be identified as exactly zero due to
numerical inaccuracies, so a pre-selected tolerance value ¢ > 0 is used throughout
instead of 0. This value does not appear to be overly sensitive, and in experiments
¢ = 1075 has been found to work well. The implementation for the rest of the pro-
cess is largely straightforward. When the subroutine is called, the eigenvalues u; and
eigenvectors w; of the singular matrix are calculated, and for each eigenvalue with
lu;| < e (indicating linear dependence, within the selected tolerance) the indices k
are collected from within the associated eigenvector where the absolute values satisfy
|[w;]x] > € (indicating non-zero, within the tolerance). The normalized constraint
violations vy are compared across the collected indices k£, and the constraint associ-
ated with the smallest value of vy is removed from the working set. If necessary, this
process is repeated until either the needed matrix is invertible, or else W is empty.

In practice, only one constraint is usually observed being removed at a time.

4.4 Connections between exact and augmented Lagrangians

As already remarked, the basic expression of the exact Lagrangian can in some con-
texts be treated as an augmented Lagrangian, so it is natural to consider connections
between the two. The EL-ES approach proposed in Section 4.3 can similarly be

connected with previous implementations of the AL-ES.

In order to motivate the derivation of these connections, we begin with consider-
ing how to improve on the results of the AL-ES as described Section 4.2 through
re-examination of the justification used [14] for the original multiplier update rule,
as presented in Eq. (4.2). There, the update rule for « is tied with updating the
penalty coefficient w in a way that balances terms of the Lagrangian so that the ES
is able to make balanced progress in all dimensions of the search space. This balance
is expressed as part of a single-step analysis of the evolution strategy’s expected be-

haviour. In the discussion of Section B.4, the augmented Lagrangian is understood
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to be an unconstrained function that shares its minimum with a related constrained
problem (a GCP) so long as the elements of the penalty term  are large enough
to ensure locally positive curvature at the optimum. At the same time, the discus-
sions of Sections 3.1 and B.5 portray the choice of penalty terms w; as being good
step-sizes for applying the method of gradient ascent on the negative dual function
—1), () with respect to the Lagrange multipliers. Apparently, updating the penalty
coefficient in the AL-ES serves several overlapping purposes, and a good update rule

for w should:
1. modify the Lagrangian function so that the ES can make balanced progress,

2. be large enough to ensure appropriate positive curvature of the Lagrangian

function in the search space, and
3. provide a good choice of step-size for updating the Lagrange multipliers cx.

It is desirable to determine if any of these criteria can be relaxed or removed, so
that the impact of the penalty coefficient update rule can be better understood for
each component separately. The easiest to relax is perhaps the condition on positive
curvature, which can instead be achieved by for instance limiting the objective and
constraint functions to being convex. This is because the second-order necessary
condition of Eq. (B.17) becomes a sufficient condition whenever f and g are convex,
and this in turn guarantees locally positive curvature of the augmented Lagrangian
at the constrained optimum for any values of w;. In particular, the ordinary (non-
augmented) Lagrangian

Lo(z. a) = f(z) + o' g(x) (4.17)

is positive-definite in an open neighbourhood N,.(*) of the optimum and corresponds

to the augmented Lagrangian with penalty term w chosen to be the zero vector.

As desired, this simplifying assumption results in eliminating the need for w updates
to enforce positive curvature, as well as decoupling the penalty coefficient update
from the Lagrange multiplier update; since there is no penalty term included in
the Lagrangian Lg(x, ), we need to approach the update step for a in a different

way. The Lagrange multipliers are themselves defined in terms of the linear basis
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of constraint normals active at the optimum, so it seems natural to consider how
constraint information can be used. Indeed, as demonstrated in Section 5.2, one
motivation for developing the EL-ES is the observed poor performance of the AL-
ES on certain linearly constrained sphere problems, even when using CMA, with

particular arrangements of the constraints resulting in narrow feasible regions.

The Newton update step for a as given in Eq. (B.33) includes constraint information
which could be helpful for devising a new update rule for the Lagrange multipliers,
but it requires approximating local derivative information. Using the process given
by Eq. (4.11) introduced as part of the EL-ES, and assuming an approximation for
the Hessian matrix of f is available, say A, then a quasi-Newton update for the

multipliers is given by

ol = o 4 [JTA7 ]

cg(x®). (4.18)
In the simplest case that the Hessian approximation A ~ a - I, then the objective

function is locally spherical and the above calculation is greatly simplified as

D = a® 4. (JTI) 7

. g(w(k)).

As in the EL-ES, this formulation of a quasi-Newton update rule for o conveniently
allows for local approximations of necessary terms simply by using constraint function
evaluations that will already be performed for the regular ES updates. However,
convex objective functions that are not spherical (that is, those functions with Hessian
not equal to a scalar multiple of the identity matrix) are unlikely to perform well unless
a better approximation is made for the Hessian, or information about the objective

function is included through other means.

A similar update rule that does include objective function information can be arrived
at by generalizing the single-step argument used to derive the original (1+ 1)-AL-ES
update rule for . To do so, we first reproduce the original single-step analysis for
the AL-ES.
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4.4.1 Single-step analysis for (1 + 1)-AL-ES

Following the argument given as part of the proposal of the AL-ES [14], the objective
function

f(x) = ax’x

is spherically symmetric and only a single linear constraint is considered. Thus, the
location of the parent candidate solution can be written without loss of generality
as the vector = [z1, R,0,...,0] and the function for the lone (active) constraint
as

g(x) = bxy +c.

By writing the coordinates this way, only changes along the x; axis will affect con-
straint violation, and the value R gives the distance from the optimum in the (un-

constrained) subspace spanned by the remaining z, ..., x, axes.

A single step of the (14 1)-ES considers the value of the augmented Lagrangian for
the offspring y, expressed as

L,(y) = L,(x+0z)

which after expansion gives

2

n

= aZ(a:Z +oz) +a

=1

Zb T +o0z)+c

Zb T+ 0z;) +

The elements of the mutation vector z are sampled independently from a standard
normal distribution, and recalling that we can write the parent x in terms of only x;
and R, the augmented Lagrangian for the offspring becomes

n

L,(y) = L,(x)+20ax121 + 2Roaze + acbzy +wob(c+ bxy)z + ga%ng +c’a Z 22,
i=1

This expression can be simplified considerably if we introduce the normalized step

size 0* = on/R, then assuming this approaches a finite value in the limit as the
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dimension n — oo and after collecting terms, we can write

2R2 = *2
L,(y) =~ L,(x) + - e a*ﬁzl + 02 + 02 (4.19)

where

[1]

= o+ o (ot wg(a)).

The (1+1)-ES will accept the offspring only when L, (y) < L, (x), yet examining the
expression above reveals that only the first two terms within the square brackets may
be non-positive, and their sign depends on the sampled values for z; and z5. In order
for the ES to make balanced progress on both the distance from the (active) constraint
boundary and in the remaining n — 1 dimensions, we can therefore conclude that the
first and second terms within the square brackets should be of approximately equal
magnitude. Thus, % should be of unit order magnitude, meaning the magnitude of =
should decrease approximately in proportion with the decrease in the distance R from
the optimum in the n—1 dimensional unconstrained space. Approaching the optimum
point implies that R — 0, yet neither term of = does so on its own. In order for rates
of decrease to remain proportional, the two terms of = should be of approximately
equal magnitude and opposite sign. Since changes in « are already determined by the
method of multipliers update rule, this implies in particular that changes to wg(x)
should be approximately proportional to 2a/b. Given that the constraint function is

linear, this is equivalent to desiring

Although the explicit values of @ and b are not available to the algorithm, the AL-ES
uses an update rule for the penalty coefficient that aims to approximate this value in
order to maintain balanced progress of the evolution strategy in both the constrained

and unconstrained subspaces.

4.4.2 Single-step analysis for multimembered ES

This analysis can be extended to problems with multiple constraints and applied to

evolution strategies beyond the (1 + 1)-ES. Multirecombinative evolution strategies



83

were analyzed on conical feasible regions by Porter and Arnold [92], and predicted
behaviour was shown to match well with experimental results under certain assump-
tions. In two dimensions, these conical feasible regions align with the narrow feasible
regions discussed in Section 5.2, and have a similar structure in higher dimensions.
As in both the analysis for conical constraints as well as in Section 4.4.1, it makes
sense to consider balanced progress of the evolution strategy in the constrained as
well as the unconstrained subspaces of the problem. For Lagrangian functions, this
can be expressed in terms of the complementary linear maps given by matrices P
and (I — P), as defined in Eq. (B.3).

For a constrained problem with potentially multiple constraints, the single step equa-
tion for an evolution strategy operating on the augmented Lagrangian is given similar
to before by writing the function value for a selected centroid L(x + c2) = L(y) in
terms of the change in parameter values. Let R be the distance from the optimum
in the unconstrained subspace of R" and normalize the step-size as 0* = on/R. By
assuming o* approaches a stationary value and taking a second-order Taylor expan-
sion of L, for the next selected step y = & + 0z around the current centroid x, we

have the single-step equation given by

Lo(y) = Lo(z) + (y — )" - ViLu(z) + (y —2)" - V2, Lo(z) - (y — )

n n
o*R? [£7 - VyLo(x) o
:L TrHHw _'\T. 2 L - ) 42
w(T) + - 7 + - VizLlo(T) - 2 (4.20)

For the evolution strategy to improve in this iteration, we require L, (y) < L, (),
implying the bracketed term in the last line of Eq. (4.20) needs to evaluate to a
negative value. In the situation where the Hessian of the Lagrangian L, is positive-
definite, then the second half of the bracketed term will always be positive. The
elements of 2T are equivalent to those drawn from a weighted sum of standard normal
variables, and these determine the sign of the first half of the bracketed term. Note
that if we let 2 = VL, then Eq. (4.20) is similar to Eq. (4.19) given for the simpler

case of one linear constraint on the sphere.

We claimed in the introduction of Section 4.4 that a generalization of the single-step



84

analysis for multiple constraints would lead to a new update rule for a, and we arrive

at this update now.

Multiplier update for ordinary Lagrangian

Consider the single step equation of Eq. (4.20) in the context of the ordinary La-
grangian in Eq. (4.17). In order to separately consider the progress of the evolution
strategy in the constrained and unconstrained subspaces, we can use the orthogonal

decomposition of VL by projection matrices as given in Eq. (B.3) so that

VaLlo=P - (Vof+Vaeg-a)+ (I —P)-(Vuf +Vzg- )
= (P -Vaf+Ja)+(I—P)-Vyf
=J (J'Vof +a)+ (I - P)-Vaf,

where the second line follows by recalling that V,g = J is the Jacobian, and this is
unaffected by the projection matrix P so that PJa = Ja. Using this decomposition
in Eq. (4.20), we can write the first half of the bracketed term as

ST .V, I, 1 1
z x 0(-’13):zT<E(P.wa_|_Ja)_|_E(I—P)-me> (4.21)
= 2T<}%J (J*Vof +a) + }%(I— P) . me>.

Since R measures the distance from the optimum in the unconstrained space, then

R—0as |[(I—P)-Vgf| — 0, and in particular
(T~ P)- V. f
R X

is of approximately unit order of magnitude as the optimum is approached. In order

for the evolution strategy to make balanced progress then, the term
J (JVaf + @)
must go to zero along with R so that

1
= (J*Vaf +a)
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has an approximately unit order of magnitude. In order for the two inner terms
to progressively cancel out as the optimum is approached, we must have o =~ —J+ -
V. f(x). The same result is reached by using the first-order condition that V, Lo(x) =
0 to give

0=Vaf(x)+ Vyg(z) o
—JF Vaf(x)+ I -«
=J" V.f(z) + a, (4.22)

where the second line follows by multiplying through by the pseudo-inverse J* of the

Jacobian of g.

4.4.3 Derivation from inexact solutions

Similar conclusions were reached by Miele et al. [87], Haarhoff and Buys [49], and
Buys [30], and highlighted by Bertsekas [26], in the context of numerical optimiza-
tion routines achieving inexact solutions. Rather than expending extra calculations
precisely solving for z(a®)) for a given a®), the idea is to allow points ® that are
close to stationary within some bounds, say ||V L, (x®, a®)|| < ¢, yet for which the

method of multipliers can still proceed.

Recalling that a local minimum requires a point where the derivative of the ordinary

Lagrangian Ly is zero with respect to a, we can construct the quadratic function

Q(z, @) = (Vo Lo)" (VaLo)
= (vacf + vacg : a)T (vmf + vacg : a)

that measures the “error” in estimation of the optimum, and which will obviously
equal 0 with a = a*, ® = x* by Theorem B.6. Taking the derivative of this function

with respect to ar and solving gives

2Vg ' Vaof +2Veg ' Vag-a =0
a=—(Vad"Vag)  Vag" Vof  (4.23)
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Note that this expression matches the one given in Eq. (4.22). If the solution is exact,
then both ||V L,(x® a®)|| =0 and ¥ = z(a®), and Eq. (4.23) then reduces to
the usual multiplier update of Eq (3.6). However, when the solution & only satisfies
the stationary condition ||V L, (x®, a*))|| within the ¢ > 0 bound, the usual proce-
dure for the method of multipliers is no longer appropriate. In this case, Eq. (4.23)

gives the proper correction to the multiplier update.

4.4.4 Summary and resulting exact Lagrangian

From the above discussion, we have arrived at an ordinary Lagrangian given by

Lo(@) = [(@) + (= (Vag"Vag) " Vag™ Vaf) o) (124

which combines Eq. (4.17) and update step Eq. (4.23) into a single expression. De-
spite having eliminated the penalty coefficient w, Eq. (4.22) suggests the Lagrangian
function will be modified such that the ES can make balanced progress, and Eq. (4.23)
suggests that a will be a good approximation to the optimal Lagrange multipliers.
There is no augmenting penalty term, but for fully convex problems we might ex-
pect this approach to suffice; however, this may not be the case. As noted by both
Fletcher [43] and Bertsekas [27], if we consider a problem defined with quadratic ob-
jective function f having Hessian A and linear constraints g with Jacobian V,.g = J,

then the Hessian of the ordinary Lagrangian in Eq. (4.24) can be written as

V2 Lo=A—AJJ D) I — J(J T Tt A
—A(I-P)-PA
= (I-P)A(I - P)— PAP

where the last line follows by using the definition of Eq. (B.3) and then completing
the square with respect to (I — P). This shows that the Hessian of the ordinary
Lagrangian has the same curvature as the objective f in the unconstrained directions,
but opposite curvature in the subspace spanned by the constraint normals. Therefore,

setting a according to Eq. (4.23) will give a Lagrangian function with an appropriate
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unconstrained minimum if and only if the curvature of f is negative exactly in the
directions of the constraint normals and positive elsewhere. In the simplest case of
minimizing on the sphere with linear constraints, as with many other convex problems,

this is obviously not the case.

The solution is to once again include an augmenting penalty term, and doing so
results in Eq. (3.14) and the subsequent exact Lagrangian method of Section 3.2.
The penalty term w is once again responsible for ensuring locally positive curvature,
but now in a different way. While the penalty term (and thus the step size of the
multiplier update) needed to increase for the method of multipliers and related AL-ES
approaches of Section 4.2 in order to balance against less positive curvature of f in
the directions of the constraint normals, the penalty term for the exact Lagrangian
method needs to increase in order to balance against more positive curvature of f in

those same directions.

An instructive visualization of this effect is given in Figure 4.1 for the TR2 sphere
problem having objective function f(x) = xx (blue contour lines) and both the
infeasible region (shaded grey) and constraint boundary (dashed lines) for the linear
inequality constraint 2 — x; — xo < 0. The exact Lagrangian defines a(x) in terms
of position @ in the search space, so the only parameter is w. Shaded contour regions
are given for three exact Lagrangian functions ¢(x) when using a roughly appropri-
ate value of w = 2 (top right), a value of w = 21072 that is comparatively very
small (bottom left), and a value of w = 2 - 10 that is very large. For the roughly
appropriate value, the contours for the exact Lagrangian are similar to the circles
seen for f(x) and have a minimum corresponding with the constrained optimum at
x* = [1,1]. When the value of w is very small, it is insufficient to maintain posi-
tive curvature in the directions of the positive and negative constraint normals, and
the constrained optimum becomes a saddle point for ¢(x). When the value of w is
very large, the curvature is locally positive and the minimum again corresponds with
the constrained optimum but with increased ill-conditioning in ¢(x). Compare with
Figure 1.2 which shows the same effects on changing parameters for the augmented

Lagrangian L (x, «).
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Figure 4.1: Visualization in n = 2 of contour lines for the objective function f(x) =
x'x with inequality constraint g(x) = 2 — x; — 3 < 0. Top left: objective and
constraint functions given with the infeasible region shaded. Top right: contour
regions for ¢(x) with w = 2. Bottom left: contour regions for ¢(z) with w = 21072
Bottom right: contour regions for ¢(x) with w = 2 - 10%. The constrained optimum
is marked throughout at =* = [1, 1].



Chapter 5

Experimental evaluation

This chapter evaluates the proposed exact Lagrangian evolution strategy (EL-ES) by
comparing its performance with that of existing constraint-handling methods using
data collected experimentally. Comparisons are split into three main problem sets,
consisting first of archetypal problems formed by combining sphere and ellipsoid ob-
jective functions with linear constraints, followed by a selection of commonly used
constrained optimization benchmark problems from the literature, and finally using a
recently proposed scalable benchmark problem with multiple linear constraints. We
will demonstrate by these results that the EL-ES outperforms the augmented La-
grangian approach (AL-ES) on all problems considered. The improvement resulting
from using the exact Lagrangian approach is also significant enough that the EL-ES
(without CMA) will be seen to outperform the AL-CMA-ES on a majority of the

selected problems while still being closely competitive on the others.

Section 5.1 introduces experimental criteria that will be used for evaluating the per-
formance of the different algorithms. Certain concerns are highlighted with how best
to make comparisons between approaches. Importantly, we summarize the concept of
an empirical cumulative distribution function (ECDF) that will be used to plot and
visually compare performance results throughout this chapter, including how target

sets are defined and evaluated against multiple runs on a chosen problem.

In Section 5.2, spherical and ellipsoidal objective functions are combined with linear
constraints and evaluated against. The particular case of a sphere with constraints
that form a narrow feasible region (NFR) highlights a situation found difficult by
AL-ES implementations, even when including CMA. Linear constraints of random
orientation are also considered, generated in such a way that each constraint will be

active and have a positive Lagrange multiplier.

89
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In Section 5.3, benchmark problems from the literature are selected and used to
demonstrate that the EL-ES is also applicable to problems with various combina-
tions of linear and non-linear features. As these problems are all commonly used to
benchmark the performance of constrained optimization algorithms, this places the

EL-ES among a variety of published results.

In Section 5.4, the linear Rotated Klee-Minty problem is considered which is scalable
in both dimension and number of linear constraints. Performance comparisons are
made between the EL-ES and AL-CMA-ES as previously described and the eMA-ES
and lcCMSA-ES. Both of the latter algorithms have published competitive results
when comparing on the Rotated Klee-Minty problem as well as other problem sets,
and so serve as useful comparative benchmarks of performance for the Lagrangian

approaches.

5.1 Methods of comparison

Problem benchmarks such as those used in competitions from the IEEE Congress on
Evolutionary Computation (CEC) [77, 82, 129] aim to rank algorithms by comparing
solution quality under fixed budgets of function evaluations. The results can be diffi-
cult to compare and extrapolate [62], and Hansen et al. [55] argue that comparisons
on fixed budgets are not in general usefully interpretable: analyzing quantitative re-
lationships between quality indicators (such as observing that one metric is twice as
small as another) need not indicate a similar relationship between the algorithms used
to reach them. Instead, Hansen et al. advocate comparing the number of function
evaluations needed by each algorithm to reach a set of fixed targets. This approach

forms part of the Comparing Continuous Optimizers (COCO) benchmark [57].

An important method of comparison between algorithms for COCO relies on empiri-
cal cumulative distribution functions (ECDFs) that can be plotted as visualizations.
These are in turn a generalization of single-target data profiles [88], which aggregate
multiple runs of an algorithm and yield the proportion of those runs meeting a fixed
target on a specified optimization problem after an elapsed measure of runtime. Tar-
gets are usually chosen to be the distance from a known optimal value, and runtime is

typically measured in function evaluations or iteration count. Targets are evaluated
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against a chosen function used through the algorithm’s operation (such as the objec-
tive function), and are considered met if the value returned by the function does not
exceed the target value. Once a target is met, the entirety of the run is considered as
successfully meeting the target, and the associated runtime for a successful target is
the earliest runtime for which the target was met. A data profile, or equivalently a
single-target ECDF, therefore measures the experimental success rate on the chosen
target with respect to runtime. Plotting a single-target ECDF as a graph such as
in Figure 5.1, with runtime on the z-axis and proportion of successful runs on the
y-axis, gives a curve that visually represents the range of performance on the selected
problem: runs that meet the target with relatively few function evaluations form the
left portion of the curve, while runs that take relatively more function evaluations (in-
dicative of worst-case performance) form the right portion. With enough runs to give
a representative sample, the extremes of the curve are thus indicative of best-case and
worst-case performance respectively, with the slope of the curve correlating inversely
with variance in performance between successful runs. In the example given by Fig-
ure 5.1, the observed best-case performance is seen to correspond with meeting the
fixed target using fewer than 10%° function evaluations, while worst-case performance

corresponds with taking just over 103 evaluations.

Single-target ECDF

proportion of runs successful

S & 6 S o B
o N B o ® o

2.5 3.0
log(# evals)

N
=}

Figure 5.1: Example of a single-target ECDF plot showing proportion of successful
runs (y-axis) for a single algorithm with respect to function evaluations (z-axis) scaled
logarithmically.

It is straightforward to generalize this idea to runtime ECDF's for multiple targets by
yielding the proportion of a target set that has been met after an elapsed measure
of runtime across a set of runs on a problem. The target set constitutes a sequence
of fixed targets, usually of increasing difficulty. Evaluating a single run with respect
to a fixed runtime as in a single-target ECDF, the number of targets met from the

sequence is a measure of its performance. Extending this to evaluate across a set of
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R runs in aggregate with respect to a fixed runtime, if we write the target set T' as
having size |T|, and |T;| as being the count of targets met by the i-th run from the

set, then the proportion of met targets across all runs is expressed as the ratio

T x,IT)
Zm R

This can be thought of as the average proportion of targets achieved across all R runs,
or as the total number of targets achieved from within the total set of |7'| - R targets
as considered across all runs. Plotting an ECDF for multiple targets as a graph with
runtime on the z-axis and proportion of met targets on the y-axis gives a curve that
represents algorithm performance in a manner analogous to that of the single-target
data profile: the left portion of the curve indicates performance on easier targets, the
right portion indicates performance on more difficult targets, and the slope correlates

inversely with variance in convergence speed between targets.

Generating ECDF's for constrained optimization problems introduces extra complex-
ity, since targets can then reasonably be defined for the objective function as well
as for each of the constraints. It is therefore necessary to either consider target sets
separately for constraints and objective, or else combine them in a way that gives

meaningful results.

5.1.1 Target definitions

The latest COCO benchmark for single-objective constrained optimization recom-
mends! the use of 41 targets defined as t; = f(x*) + 10% with exponents e; evenly
distributed in the closed interval [2,—6]. For a constrained optimization problem

(GCP), these are evaluated against the combined function
f(@) = max[f(z"), f()] + ) max[0, g:(@)] (5.1)

so that a run is successful on target t; in iteration k if f (a:(k)) < t;. This addi-

tively combines a measure of success for the objective function with a measure of

!Taken from the COCO outline for bbob-constrained at http://numbbo.github.io/coco-doc/
bbob-constrained/, retrieved Apr 25, 2022.
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feasibility.

A related approach is used by Hellwig et al. [63] and Spettel et al. [117] that instead
defines targets separately for objective and constraints. Respectively, these are two
sequences of values defined as

i = f(@) + 10%, = g(a*) + 109 (5.2)
with distinct exponents evenly distributed in the closed intervals e; € [0, —8] for /
and e; € [2, —6] for t{. The set of constraint targets additionally contains the value 0.

The objective targets are simply evaluated against f(x) while the constraint targets

are evaluated against the sum of violated constraints
ge(x) =Y max[0, gi(a)]. (5.3)
i=0

A run is therefore successful in its k-th iteration on the i-th f-target if f(z®) <t/
and successful on the j-th g-target if gs(z®) < t?. The runtime for a successful run
is measured as number of function evaluations consumed by the algorithm, either for

f or g, up to the first successful iteration.

Both of these approaches have their drawbacks. The sum defined in Eq. (5.1) and
used by COCO obfuscates the distinction between convergence to the feasible region
and convergence to the optimal objective function value. The use of Eq. (5.3) can
also be problematic, both because it may contain spurious information (a constraint
being violated which is inactive at the optimum may be an irrelevant feature of an
algorithm’s progress towards that optimum) and because its information is “lossy”
(initialization within, or a single step made into, the feasible region is enough to
universally satisfy all g-targets for the remainder of a run). Recall that the runtime
for a target is evaluated according to the first iteration in which that target is met,
so that if gs(z*)) = 0 in iteration k, then clearly gs(z®) < ¢4 will also be satisfied
for all j indexing the g-target set.

[ propose an alternative to address these concerns, which is to instead define the (¢;)
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active constraint distance

gal@) =7 lg:()| (5.4)

icA
as the sum of absolute values of constraint function values g;(x) limited to those in-
dexed by the optimal active set [A. When used to evaluate against a set of g-targets
near the optimum, Eq. (5.4) approaches the same value as Eq. (5.3), and using either
equation there is equivalently appropriate. However, for evaluating g-targets farther
from the optimum, the active constraint distance gives a more meaningful value that
is not strictly a measure of feasibility. In particular, algorithms are not rewarded for
remaining feasible with respect to constraints that become irrelevant in a neighbour-
hood of the optimum. One possible drawback with this alternative is that the active
constraint distance becomes a meaningless measure if there are no constraints active

at the optimum; however, this situation is not a common test case.

5.1.2 Staggered ECDF's

Considering separate target sets on even a moderate number of problems can lead to
ECDF plots that contain all of the relevant information, but are difficult to interpret
quickly. As an alternative, I will primarily use staggered ECDF's that visually repre-
sent combined performance by showing success on the full set of f-targets together
with one of two fixed g-target values. An example is given in Figure 5.2 with the
proportion of met targets plotted against the count of (f + g) evaluations. Runs on
the first target set (shown in solid lines) are considered successful on the i-th target
if both f(x) < t{ and gx < 10° are satisfied, while runs on the second target set
(shown in dashed lines) are considered successful on the i-th target if both f(x) < t/
and gz < 1079 are satisfied. By using fixed g-targets staggered at roughly opposing
edges of the difficulty range, a clear picture is given for the two extremes of algorithm

performance while sacrificing minimal detail.

Additional figures beyond the staggered ECDFs show progress on the full range of
f-targets and the full range of g-targets. As in the example given by Figure 5.3, these
regular ECDF plots are grouped together by problem and arranged into pairs of rows
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Figure 5.2: Example of a staggered ECDF plot containing a single pair of curves for
the targets met by one algorithm.

representing the proportion of successful f-targets plotted against the count of f-
evaluations (top) and successful g-targets plotted against the count of g-evaluations
(bottom). The horizontal axes are shared across plots for the same problem and
aligned to allow comparisons between plots for f- and g-targets. In the example

figure, one pair of rows is given, labeled for the TR2 sphere problem.
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Figure 5.3: Example of ECDF plots paired vertically by problem (indicated by the

label) showing f-evals vs. f-targets (top plot of pair) and g-evals vs. g-targets (bottom
plot of pair).

5.2 Spheres and ellipsoids

Spheres and ellipsoids constitute a class of functions with search space features that

are relatively simple to describe. In n-dimensional space, these can be parameterized
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as the sphere function

fon(x) =a- Z:ﬂ (5.5)

with single coefficient a, and generalized to the axis-aligned ellipsoid function

e zax 56)

with n coefficients a; not all equal. Common examples of the latter with single

parameters £ > 1 include the discus function

fdlb gl’l—f—z,f

and cigar function

fClg —$1+§Zmz,

while an ellipsoid with varying parameters is

fen(z (5.7)

It will be noted that each of these objective functions as given are highly separable, in
that the optimal value of the i-th coordinate does not depend on the chosen values for
other coordinates. However, the selected algorithms to be evaluated are all addition-
ally invariant to rotations of the coordinate system, so the results will be unaffected.
Adding linear constraints to any of these functions gives a simple constrained op-
timization problem, and different variations have been used to evaluate augmented

Lagrangian ES approaches both without [14, 16, 18] CMA and with [17, 38].

5.2.1 Fixed constraints

It is argued by Arnold and Porter [14] that any effective constraint-handling technique

for evolution strategies should necessarily be able to achieve log-linear convergence on
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convex quadratic problems subject to a single constraint. In this section, we demon-
strate that this is a feature of the EL-ES by performing experimental comparisons on a
sphere and moderately conditioned ellipsoid. Using these problems has the additional
benefit of allowing comparisons with other published results for evolution strategies
in the literature. We further consider a specially constructed type of linearly con-
strained sphere with two constraints that form a narrow feasible region (NFR) and
show that this type of problem poses difficulties for existing AL-ES implementations,
even when using CMA, but on which the EL-ES is able to converge effectively to the

optimum.

To begin, a set of problems is generated by combining objective functions with fixed

constraints, resulting in multiple instances of ICPs. Both the unit sphere func-

n
_ 2
fsph— g X;
=1

and ellipsoid function fo as in Eq. (5.7) are used, with £ = 10 giving moderate

tion

conditioning for the ellipsoid. In both problems, a single linear inequality constraint
function

g(x)=bjx+c <0

is used with by = —[1,0] and ¢; = 1. Thus the constraint boundary is orthogonal
to the 27 axis, and the optimal point is located at * = [1,0]. With respect to the
isotropic sphere function fypn, this is equivalent (up to a rotation and shift of the
constraint boundary, centered on the origin) to the TR2 sphere problem introduced
by Kramer and Schwefel [72] and used by both Arnold and Hansen [6] and Dufossé and
Hansen [38], for which b; = —[1, 1] and ¢; = 2 with optimal point at * = [1, 1].

To highlight performance on a problem found difficult by the standard AL-ES, an

additional sphere problem for m = 2 is constructed with a narrow feasible region

(NFR). The first constraint is fixed using g; as above, and the second constraint gen-

erated by negating the normal vector b; then rotating by %—th of a right angle about
1

the origin; equivalently, rotating b; by 7 (1 — 2—00) radians. The resulting constraint
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normal vectors are

by = H | b [ ( (1- 2—30))]

0 sin (7T (1 — ﬁ))

defining constraint functions

gi(z)=blz+c, <0
ga2(x) = by + ¢y <0

with ¢; = ¢o = 1. Note that both constraints are active at the optimum with non-zero

Lagrange multipliers.

Figures 5.4 and 5.5 give visualizations of the NFR sphere problem, with scaled axes
to highlight relevant details, using both augmented and exact Lagrangians. The
plots display contours of the objective function f(x) (blue lines) as well as both
the infeasible region (shaded grey) and constraint boundaries (dashed lines) for the
two inequality constraints. Shaded contour regions are given for three augmented
Lagrangian functions in Figure 5.4 defined by using the optimal a* and unit w = 1
(top right), by increasing the penalty coefficient w by a factor of 20 (bottom left),
and by increasing the Lagrange multipliers a by a factor of 20 (bottom right).

For optimal e and unit w, the resulting augmented Lagrangian is well-conditioned
and its unconstrained minimum corresponds with the constrained optimum at x* ~
[1,127.321]. However, as w increases the ill-conditioning also significantly increases,
and non-optimal values for a move the unconstrained minimum far from the con-
strained optimum. Perturbations in either of these Lagrangian parameters will have

significant impacts on the underlying augmented Lagrangian.

Similar shaded contour regions are given in Figure 5.5 for three exact Lagrangian
functions defined by using w = 2 (top right), smaller w = 2 - 1072 (bottom left),
and larger w = 2 - 10? (bottom right). The values w = 2 and w = 2 - 10? both give
exact Lagrangians with almost no ill-conditioning (compare also with Figure C.2 in
the appendix, which uses equal scaling for both axes) and an unconstrained minimum

corresponding to the constrained optimum x*. The value of w = 2 - 1072 however is
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Figure 5.4: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for L, (x, o) with
a = af, w = 1. Bottom left: contour regions for L,(x,a) with a = a*, w = 20.
Bottom right: contour regions for L, (x, a) with a = 20a*, w = 1. The constrained
optimum is marked throughout at * ~ [1, 127.321]. Figure C.1 gives a similar version
with equal axis scaling.

not large enough to ensure locally positive curvature, and the resulting Lagrangian

has an unconstrained maximum at x*.

With simple, convex quadratic objective functions and linear constraints all active,
each of the sphere, ellipsoid, and NFR problems as given above can be described

entirely by their respective Hessian and Jacobian matrices H and J, and the objective



100

150 n 150 B
b H
1! 1!
11 11
It TT
145 H 145 h
H ¥
1! 1l
1! 11
1B T
140 1 140 i
i I
1 1
1 [l
1 1]
135 i 135 "
" 1l
[} [}
[
130 130
b
125 -4 -2 0 2 4 6 143 -4 =2 0 2 4 6 8
150 T 150 T
i 1
1! 11
1! 1l
[ 11
T TT
145 i 145 T
i 1
1" 1
1! 1
LI 1L
140 i 140 i
1 i
[l 1
1 1
1] 1
i 1]
135 i 135 i
[ 1l
[ [l
[ [
130 130
b b
125 -4 =2 0 2 4 6 8 L3 -4 =2 0 2 4 6 8

Figure 5.5: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for ¢(x) with
w = 2. Bottom left: contour regions for ¢(x) with w = 2 - 1072 Bottom right:
contour regions for ¢(x) with w = 2 - 10%. The constrained optimum is marked
throughout at x* ~ [1,127.321]. Figure C.2 gives a similar version with equal axis
scaling.

and constraint functions can be written as

(@) = Ja" Ha,
glz)=J 'z +c<0. (5.8)

By combining these definitions with the first-order necessary conditions given in

Egs. (B.15) and (B.16), we can give analytic descriptions of the optimal KKT pair
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as

o =—H'J. (JTH'J) " ¢
o = (JTH'J) "¢

= (J"H'J) " T

— —J*Hz".

The equivalence of the last line for a* follows either by using identities given by
Fletcher [43] for deriving the optimal KKT pair for the method of multipliers, or by
relying on the identity

1

(JTH'J) " = (JTH(IT)Y)

which can be verified through explicit calculation.

Experimental results

These three problems consisting of the m = 1 sphere, m = 1 ellipsoid, and m = 2
NFR sphere are experimentally tested with problem dimensions of both n = 2 and
n = 20, creating six problems in total. To begin with, the problems are used as defined
and with no modifications, then later in Section 5.2.1 variations are considered with

changes to the scaling between the objective and constraint functions.

Data sets are generated for each problem by performing 25 runs on each of four al-
gorithms. The aCMA-ES [6] is a (1 4 1) evolution strategy that uses a covariance
matrix for generating offspring which is actively updated away from constraint vio-
lations. The AL-ES is a (u/puw, A) evolution strategy that follows the outline given
in Section 4.2 and otherwise implements Algorithm 2.2, which is the implementation
given by Atamna et al. [18, 19] using parameter settings suggested by Dufossé and
Hansen [38]. The AL-CMA-ES is also a (u/pw, A)-ES, but with CMA used in-
stead for offspring generation following the outline and parameter recommendations
of Section 4.2 and otherwise implementing Algorithm 2.3. Duffosé and Hansen [38]
apply surrogate modeling to an augmented Lagrangian approach with CMA-ES, and
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additionally implement AL-CMA-ES without surrogate modeling in order to inves-
tigate improved parameter settings. Their implementation of AL-CMA-ES without

surrogate modeling largely matches the implementation given in Algorithm 2.3.

Population parameters for each algorithm are set according to Eq. (2.11). Offspring
weights are generated numerically for AL-ES according to the recommendations of
Arnold [7, 8] for infinite-dimensional spheres, matching the implementation of Atamna
et al., while the AL-CMA-ES uses the default weights (including negative weights)
recommended for CMA-ES, matching the implementation of Dufossé and Hansen.
Finally, the EL-ES is the exact Lagrangian approach proposed in Section 4.3. Other
than the EL-ES, the performance of each chosen algorithm has been previously studied
on either or both of the m = 1 sphere and ellipsoid problems, providing a point of

comparison with results in the literature.

Runs are terminated only when f(x) and g4(x) are both within 1.0e-8 of optimum
values, given by f(x*) and ga(ax*) = 0, respectively. Starting points are initialized
randomly using coordinates drawn uniformly from the interval [—10,10], with the
exception of the aCMA-ES which requires a feasible starting point. In order to
accommodate a reasonable comparison, a set of feasible points is generated for each
problem in a pre-processing step similar to [38] by using CMA-ES to minimize the
sum of constraint violations function gs(x) in a series of 200 runs. The result is a set
of 200 feasible points within the search space for each problem and an associated count
of g-evaluations used to find each point. This set is then sampled from uniformly at
random in order to initialize each run of the aCMA-ES, and the count of g-evaluations

is initialized to the number used to locate the feasible starting point.

Runtimes throughout are measured as evaluation counts for the objective function f
or constraint function g, or as a sum of both; these are referred to respectively as f, g,
and (f + g) evaluations (or evals). In the given ECDF plots, the base-10 logarithm of
the count of function evaluations is used as the unit for the x-axes. On all problems,

only a single constraint evaluation is considered needed to return g;(x) for all 7.

Convergence plots are given in Figure 5.6 showing the distance ||z — x*| from the

constrained optimum and in Figure 5.7 showing the step size o for all algorithms, both
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Figure 5.6: Convergence plots showing distance || — x*|| from the constrained opti-
mum with respect to the first 3.5 x 10* (f + g)-evals for median runs from each of
four algorithms. The z-axes are scaled to present as much detail as possible without
obscuring relevant data points.
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Figure 5.7: Convergence plots showing step size o with respect to the first 3.5 x 10*
(f + g)-evals for median runs from each of four algorithms. The z-axes are scaled to
present as much detail as possible without obscuring relevant data points.
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plotted against the total number of (f + g) function evaluations. Figure 5.8 addition-
ally shows the normalized distance ||a—a*||/||a*|| between the current approximation
of ar and the optimal Lagrange multiplier vector a* for the three Lagrangian methods.
Each of the plots is generated from median runs of the corresponding 25 runs set, and
displays behaviour only across the first 3.5 x 10* total function evaluations in order
to highlight relevant details. The problems on the NFR sphere are made evident, in
particular for AL-ES and AL-CMA-ES on the n = 2 variant in Figures 5.7 where
the adapted step sizes are erratic and far too large. After an initialization period
for each problem in Figure 5.8, all three Lagrangian algorithms appear to exhibit
log-linear convergence of the Lagrange multiplier vector on the m = 1 sphere and
ellipsoids problems. The EL-ES appears to converge with slightly fewer overall func-
tion evaluations compared to the other two algorithms. This difference is much more
pronounced for the NFR spheres, where the EL-ES convergence is notably faster, and
the AL-ES approximation is seen to be overall very poor. Both the AL-CMA-ES and
EL-ES also appear to enter a final period of oscillation with no further improvements

near the end of these runs on the NFR sphere.

TR2 sphere Elln=2, m=1,£=10 Sph NFR n=2, m=2

104
102
100 5—Awy
102
1074

10-¢ V)
108 ‘ I \é
1000 2000 3000 1000 2000 10000 20000 30000
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Sph n=20, m=1 Ell n=20, m=1, £=10 Sph NFR n=20, m=2

L L ! \‘\,
5000 10000 15000 10000 20000 30000
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—— AL-ES —6— AL-CMA-ES —= EL-ES

Figure 5.8: Convergence plots showing distance ||a@ — a*||/||a*|| from the optimal
Lagrange multiplier vector with respect to the first 3.5 x 10* (f + g)-evals for median
runs from the three Lagrangian methods. The z-axes are scaled to present as much
detail as possible without obscuring relevant data points.

In order to generate ECDF data for the same six problems, target sets are fixed

according to Eq. (5.2) with f-target and g-target values evenly logarithmically spaced



105

in the closed intervals [10°, 108] and [102, 107%], respectively. The function g4 defined
in Eq. (5.4) is used to evaluate against g-targets. Note that the termination condition
used for this data set is more strict than any in the target sets, thus ensuring each

algorithm is permitted to succeed on as many targets as it is able.
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Figure 5.9: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 107° (dashed lines). The x-axes are scaled to present
as much detail as possible without obscuring data points.

Plots are given for each problem in Figure 5.9 representing combined performance
using staggered ECDFs as described in Section 5.1.2. In these curves, the poor
performance of AL-ES on the NFR spheres is made apparent; for the n = 2 case, fewer
than 20% of the targets are reached. The NFR spheres in both dimensions also show
the largest differences in performance overall, with the EL-ES converging significantly
faster than either of AL-CMA-ES or AL-ES, and AL-CMA-ES even failing to reach
all targets for the n = 2 case. For n = 20, EL-ES also out-performs the aCMA-ES
on some targets. Across all m = 1 problems, the performance is roughly equivalent
between AL-CMA-ES and EL-ES, with a small advantage for AL-CMA-ES when
n = 2 and a small advantage for EL-ES when n = 20. This may be explained by the
EL-ES requiring one additional f evaluation per iteration; both approaches evaluate
f (ygk)) for the A offspring in the k-th iteration, however only the EL-ES needs to

additionally evaluate f(x*)) while approximating a**1).

Additional ECDF plots are given in Figure C.3 of Appendix C that separately show
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progress on the full range of f- and g-targets. On the NFR sphere, the difference in
performance between aCMA-ES and EL-ES on n = 2 versus n = 20 can be attributed
to the performance on f-targets, as the g-target plots are almost identical for both

dimensions.

Overall, the EL-ES is at least a close competitor throughout to the AL-CMA-ES, and
draws roughly even with the aCMA-ES performance on some measures, in spite of not
using CMA for generating offspring. Specifically on the NFR problems, the EL-ES
appears to be the clearly superior choice; the aCMA-ES has better performance in
smaller dimensions, but this advantage appears to decrease markedly with increasing
dimensionality of the problem. The ability of the EL-ES to deal with narrow feasible
regions is due in part to the construction of its Lagrange multiplier, which accounts
for both the magnitudes of and correlations between the various constraints. For the
approaches based on AL-ES, the NFR sphere problems result in both increased ill-
conditioning for the Lagrangian functions as well as increased difficulty in converging

to an optimal Lagrange multiplier, and these issues are only partly addressed by the
addition of CMA.

Experimental results with varied scaling

The linearly constrained spheres of Section 5.2.1 involve objective and constraint func-
tions with equal scaling, in the sense that both the magnitudes of the constraints’
normal vectors and the eigenvalues of $H from Eq. (5.8) are equal to one. For the
linearly constrained ellipsoids, the eigenvalues of %H vary because of the parameter
&, but the smallest eigenvalue is still equal to one. In order to observe the algo-
rithms’ behaviour on problems with different scaling factors between the objective
and constraint functions, two new problem sets are considered with increased objec-
tive function scaling (termed large A) and with increased constraint function scaling

(termed large B). Formally, the large A problems use coefficient A = 103 and re-define
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the sphere and ellipsoid functions as

i—1

fa(z) = A- Zf(nﬂx?, (5.9)

fson(@) = A me
i=1
while the large B problems set B = 10? and re-define the constraint functions as
gi(x) =B -blx+c <0. (5.10)

In both variations, only the related scaling factor is changed, and no other aspects of

the problem definitions are modified.

Large B scaling

The methodology for generating data for the large B problem variants is the same
as in Section 5.2.1, except the six problem sets use the updated constraint function
definitions of Eq. (5.10). Figure 5.10 gives convergence plots for the distance ||z —z*||,
while additional Figures C.4 - C.5 in Appendix C give convergence plots for the step
size o and normalized distance ||a — a*||/||a*||. As before, each plot is with respect
to the total number of (f + ¢) function evaluations consumed by median runs of the
corresponding 25 runs set, and truncated to the first 3.5 x 10* evaluations to ensure

relevant details are visible.

As with the unit scaled problems, the performance of all four algorithms exhibits
varying degrees of log-linear convergence on the m = 1 problems. On these median
runs, the most significant differences are again on the NFR spheres, with AL-ES in
particular showing erratic step size adaptation and poor convergence towards the
optimum. Convergence to the optimal Lagrange multiplier by the EL-ES is also
notably faster for the NFR spheres.

Figure 5.11 gives staggered ECDFs for the large B variants. Performance on the
m = 1 sphere and ellipsoid problems gives a similar overall ranking of the algorithms

as in Section 5.2.1, with the EL-ES drawing closer to the AL-ES performance on the
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Figure 5.10: Convergence plots showing distance || — x*|| from the constrained
optimum with respect to the first 3.5 x 10* (f 4 g)-evals for median runs from each
of the four algorithms on large B variants. The z-axes are scaled to present as much

detail as possible without obscuring relevant data points.
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Figure 5.11: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 107° (dashed lines) on large B problem variants. The
x-axes are scaled to present as much detail as possible without obscuring data points.
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moderately conditioned ellipsoids. As with the unit-scaled problems, the aCMA-ES
is overall superior. However, on the m = 2 large B NFR sphere problems, the EL-ES
is superior to both of the other Lagrangian methods, with the AL-ES failing to meet
all f-targets even with the easiest staggered g-target.

Additional ECDF plots are given in Figure C.6 of Appendix C that show progress on
the separate f- and g-targets for the large B problem variants, similar to Figure C.3.
For the m = 2 NFR spheres in particular, the EL-ES is seen to be roughly equal in
performance to the aCMA-ES on g-targets and superior to the other two Lagrangian

methods on both target types.

Large A scaling

The methodology for generating data for the large A problem variants is the same
as in Section 5.2.1, except the six problem sets use the updated objective function
definitions of Eq. (5.9). Figure 5.12 gives convergence plots for the distance || —x*||,
while additionally Figures C.7 - C.8 in Appendix C give convergence plots for the
step size o and normalized distance ||a — a*||/||a*||. As before, each plot is with
respect to the total number of (f + ¢) function evaluations consumed by median runs
of the corresponding 25 runs set, and truncated to the first 3.5 x 10* evaluations to

ensure relevant details are visible

Roughly log-linear convergence is shown again by all of the algorithms’ median runs
on the m = 1 problems, while the NFR spheres are again problematic for the AL-
CMA-ES and especially the AL-ES. The flattening of the curves at the end of each
median run for the n = 20 NFR sphere appears to be a result of the limitations of

numerical accuracy caused by selecting both large A and larger n.

Staggered ECDF plots are shown in Figure 5.13 for the four algorithms evaluated
on the six large A problem sets. The aCMA-ES remains dominant on the four m =
1 problems, although by a more narrow margin than in either the unit scaled or
large B problem variants. The performance of the EL-ES and AL-CMA-ES is again
comparable on the m = 1 problems, with a slight advantage on the n = 2 sphere.

The advantage of the EL-ES is pronounced on the NFR sphere in both dimensions,
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Figure 5.12: Convergence plots showing distance || — x*|| from the constrained
optimum with respect to the first 3.5 x 10* (f 4 g)-evals for median runs from each
of the four algorithms. The z-axes are scaled to present as much detail as possible
without obscuring relevant data points.
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Figure 5.13: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 107 (dashed lines) on large A problem variants. The
x-axes are scaled to present as much detail as possible without obscuring data points.



111

with its performance even exceeding the aCMA-ES on some of the easier targets
with n = 20. Both the AL-ES and AL-CMA-ES struggle significantly on the two
NFR sphere problems, and for n = 2 neither are able to converge to all targets even
within 10° of feasible. Additional ECDF plots are given in Figure C.9 of Appendix C
showing progress on the separate f- and g-targets for the large A problem variants.
These highlight the difficulty of the augmented Lagrangian methods on meeting the
f-targets for the NFR spheres in particular.

Summary for fixed constraints

The EL-ES is seen to converge reliably on the eighteen problem variations tested
with fixed constraints (six each for unit, large B, and large A scaling), with mea-
sured performance on f- and g-targets generally close to that of the AL-CMA-ES
on single-constrained problems in spite of the use of CMA for improved offspring
generation. Convergence plots for these problems also show that the step size and
distance from optimum decrease log-linearly with respect to function evaluations, in
line with the other evolution strategies. The NFR sphere with two constraints is
seen to be a difficult problem for existing augmented Lagrangian methods; in some
contexts, they are not able to converge at all, even while using CMA. The EL-ES is
consistently successful on this problem however, and in larger dimensions is even able
to exceed the performance of the aCMA-ES. Convergence plots for the Lagrangian
methods demonstrate that the Lagrange multiplier approximations of the EL-ES can

be significantly more accurate after an equal number of function evaluations when
compared to either the AL-ES or AL-CMA-ES.

5.2.2 Random constraints

Fixed linear constraints as determined by the experimenter provide a valuable base-
line for performance, but do not accurately encompass the full range of possible
constraint combinations. One possibility for doing so is to construct a parameteriza-
tion for the constraints that allows their random generation in a reliable and unbiased

manner.
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Atamna et al. [18] generate constraints by means of normal vectors b;, where each

constraint function is linear and represented as

A fixed point x* is chosen to serve as the constrained optimum, then the constraint
normals are generated so that the selected point lies on the boundary of each feasible
region. The first constraint is always determined by setting by = —V f(x*) and
c1 = =V f(z*)Tx*, giving a constraint that immediately satisfies the first-order KKT
condition of Eq. (B.11) with a; = 1 and guarantees the chosen x* will be a constrained
optimum for convex f. Any additional constraints are then added by sampling from
a normal distribution N (0, I) to form additional vectors b; and setting the matching
¢; = —blz* to maintain x* as the optimum. For each additional vector so constructed,
a simple check is performed to ensure that the point * + V f(x*) remains feasible,

setting b; = —b; and ¢; = —¢; if needed.

The result of this process is a set of linear constraints that are all active at the
optimum in the sense that all g;(x*) = 0, but for which only ¢g; has a nonzero
Lagrange multiplier. In the context of the complementary slackness condition in
Eq. (B.13), all constraints beyond the first one are weakly active. This construction
makes sense for the context in which it was originally used, but is a somewhat limited
problem formulation for testing a Lagrangian algorithm in that only a single Lagrange
multiplier ever needs to be approximated. The same method is also used by the
COCO benchmark for constrained optimization?, which does not evaluate algorithms
based on Lagrange multipliers. I propose an alternative here that duplicates desirable
features of the method used by Atamna et al. (such as fixing &* at a chosen point),
but ensures that each active constraint will have an associated positive Lagrange

multiplier.

Given a convex objective function f, the goal is to generate m < n active linear

constraints with respect to a chosen point &* such that at that point:

2Taken from the COCO outline for bbob-constrained at http://numbbo.github.io/coco-doc/
bbob-constrained/, retrieved Apr 25, 2022.



113

1. all constraints g;(¢) = bl x + ¢; have associated positive Lagrange multipliers

a;, and

2. the gradient V f(a*) can be written as a linear combination of the constraint

normals Vg; = b; using these ;.

These conditions together satisfy the KKT necessary conditions of Theorem B.6, and
since the functions are convex the conditions are in fact sufficient for &* to be a
constrained optimum of the ICP. These can equivalently be combined to require at

x* the lone condition that

1. the gradient V f(x*) can be written as a linear combination of constraint nor-
mals using positive «;, and there is no proper subset of the constraint normals

for which this is also true.

This essentially excludes the possibility of any linear dependence between the con-
straint normals, as in the LICQ of Definition B.2. For any constraint ¢g; with normal b;,
we will ensure ||b;|| = 1 by normalizing vectors as needed, and always set ¢; = —b] x*
so that x* lies on the boundary of the constraint as desired. It therefore suffices to

determine how the directions of the constraint normals should be generated.

To begin, sample independently from a normal distribution N (0,I) to create (m —1)
random vectors b; constituting the constraint normal vectors, and normalize them to
be of unit length. This is equivalent to creating unit vectors from sampling (m — 1)
angles independently and uniformly from [0, 27), corresponding with rotations about
the origin. Additionally, these vectors are linearly independent with probability 1
since the dimension n is strictly greater than (m —1). The final constraint normal b,,
must then be chosen carefully so as to satisfy the first-order KKT condition Eq. (B.11).

This can be re-arranged to write
m—1
b, = ag(—Vf)+ Z a;(—b;)
i=1

in terms of positive scalars a;. With appropriate normalizations, this is equivalent
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to
m—1

b= = 312~V + (1 - 2)(~b) (511)

i=1
where the z; lie in the open interval (0, 1), and a > 0 is simply a normalization constant
ensuring b,, is a unit vector. Thus the final constraint normal b,, can be generated
by sampling z; from the open uniform distribution ¢/(0,1) and then normalizing by

the resulting vector’s length to arrive at the value given in Eq. (5.11).

The result of this process is m vectors that satisfy the needed KKT condition: the
objective gradient can be written as a linear combination of the constraint normals
at the optimum using positive coefficients, which are the Lagrange multipliers. With
probability 1 they are linearly independent, and so no smaller subset of the b; could

be used to represent the gradient of f as a linear combination.

30 : 30

-10 : -10

-10 0 10 20 30 -10 0 10 20 7 30

Figure 5.14: Visualized stages for generating two active linear constraints in n = 2.
Arrows correspond to vectors —V f(x*) (blue), —b; (orange), and by (purple). The
line £tV f(z*) = 0 is given by a dotted line, while both constraint boundaries are
given by dashed lines and their infeasible regions shaded. Contour lines shown are
for the ellipsoid objective function f(x).

The process can be made clear through a simple example in n = 2 for generating m =
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2 active linear constraints. Let f be a convex quadratic function with unconstrained
minimum at the origin® and x* = [10, 10] be the selected optimum. A visualization
of the resulting process is given in Figure 5.14. In order for the selected point x* =
[10, 10] to be the constrained optimum under linear constraints, all points superior to
x* with respect to f must end up in the infeasible region. The linear open boundary
of the region containing all those points with an objective function value smaller than
f(x*) is given by ™V f(z*) = 0 (dotted blue lines in the figure), which is the line
orthogonal to the gradient Vf at x* and tangent to the objective function f at a*.
This line divides the plane into two half-planes, a feasible half-plane and an infeasible
half-plane, the latter of which includes the origin for our chosen f. Clearly, all points
in the infeasible half-plane must end up being infeasible under our constructed linear
constraints (or else there would be a feasible point y for which f(y) < f(x*)) and the
feasible half-plane must end up being non-empty (or else there would be no feasible
solutions to f)*. After randomly generating the first constraint normal (left image
in the figure), the infeasible region associated with b; is seen to cover only part of
the infeasible half-plane. The range of possible choices for the second constraint
normal is therefore restricted to the highlighted arc between the vectors —V f(x*)
and —b;, which visualizes the relationship given in Eq. (5.11). So long as the second
constraint normal is selected from within this range (right image in the figure), the
resulting infeasible region will encompass the remainder of the infeasible half-plane,

as desired.

Experimental results

By following the given random process for generating active constraints, problems
are created based on the n = 2 sphere with m = 2, and on the n = 10 sphere with
m = 2,5, and 10. Data sets are generated for each selected combination of parameters
n and m by performing 100 runs using each of the four algorithms described in
Section 5.2.1. The larger number of runs is chosen to help account for the fact

that problem definitions will change between each run. In order to ensure a fair

3For this example, I specifically use feig with & = 5, but for any other appropriate objective
function the process is the same.

4Taken together, these give the overall restriction that neither constraint normal b; can be equal
to either of V f(x*) or —V f(x*), and this will be true with probability 1.
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comparison, each combination of parameters n and m is assigned a random seed that
is then used to generate in advance 100 constraint sets for all 100 runs, resulting
in each algorithm being given the same sequence of randomly-generated constraints
for each problem set. As in Section 5.2.1, target sets for the ECDF's rely on the
definition in Eq. (5.2) with f-target and g-target values evenly logarithmically spaced
in the closed intervals [10°, 1078] and [102, 107°], respectively, and runtimes are again

measured as f-evals, g-evals, or (f + g)-evals, depending on the target set.

A run is terminated when f(x) and g4(x) are both within 10™® of optimum values,
represented by f(z*) and g4(x*) = 0, respectively, or when more than 10° total
(f+g) function evaluations have been used. It will be seen that convergence for these
problems typically occurs with not much more than 10* total function evaluations.
Starting points are initialized randomly using coordinates drawn independently and
uniformly from the interval [—10,10]. To avoid the computational expense involved
in generating a full set of 200 feasible points for each of the 100 distinct problems
in each problem set, a smaller scale approach is instead undertaken for enabling the
aCMA-ES to have a feasible starting point. At the start of each run, a pre-processing
step uses the CMA-ES to minimize the sum of constraint violations gs(x) in a small
series of 15 runs. These runs are sorted by g-function evaluations and the median
entry is selected to serve as the starting point for the aCMA-ES algorithm. The
number of g-evals is also initialized to the number of evaluations used by the median

entry to locate the feasible point.

Staggered ECDF plots are given for each problem in Figure 5.15 representing com-
bined performance plotted against the sum of f- and g-evaluations. The interpretation
of the lines and staggered f- and g-targets is otherwise the same as in Figure 5.9,
where the TR2 sphere (n = 2,m = 1) serves as a point of performance comparison.
Despite only adding one additional constraint, the performance of each of the aCMA-
ES, AL-CMA-ES, and AL-ES algorithms is significantly degraded with the m = 2
random constraints, while the performance of the EL-ES is visually quite similar to
that seen in the previous m = 1 case of Figure 5.9. The EL-ES strictly dominates
the performance of the three other algorithms on the n = 10 sphere for both m = 5

and m = 10, and is closely competitive with the aCMA-ES for m = 2. As the only
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Figure 5.15: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 107° (dashed lines) for randomly generated constraints
on n = 10 spheres. The z-axes are scaled to present as much detail as possible without
obscuring data points.

other non-CMA algorithm, AL-ES performs quite poorly across all problems.

Similar staggered ECDF plots for n = 20 spheres are presented in Figure 5.16 with
m = 2,10, and 20. The process for generating 100 runs and other criteria are identical
to those used to generate Figure 5.15, and the single staggered plot for the n = 2,m =

2 random sphere is included again verbatim to facilitate comparison.

As in the case of the n = 10 spheres, the performance benefits of the Exact Lagrangian
approach appear to increase along with the number of constraints. The dimension
of the search space is now large enough that the EL-ES is superior to the aCMA-
ES in all cases, and is also strictly superior to both other Lagrangian approaches

throughout.

Additional plots for the separate f- and g- targets are given in Figures C.10 and C.11
for the n = 10 and n = 20 problems, respectively. The main advantages of EL-ES
over other algorithms is seen here to be due primarily to its performance with respect
to convergence on the g-targets, where it is strictly dominant over all other algorithms
for the most difficult 80% of the targets. In the plot for the AL-ES on the sphere

with n = 10 and m = 2, the associated line is almost invisible because only 11 of 25
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Figure 5.16: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 107° (dashed lines) for randomly generated constraints
on n = 20 spheres. The z-axes are scaled to present as much detail as possible without
obscuring data points.

runs are recorded as able to reach even the first f-target (resulting in the proportion

of met targets being slightly under 0.9%) and none came closer than 1071.

Summary for random constraints

The overall performance of the EL-ES on randomly generated active constraints is
seen to be notably superior to the two other Lagrangian methods tested. With
increasing constraint number, the performance of the EL-ES also appears to improve
relative to all other algorithms. On even a moderate n = 10 dimensional problem, the
EL-ES is able to out-perform the aCMA-ES with m = 5 and m = 10 constraints by
almost a factor of two with respect to total function evaluations. On the n = 20 sphere
problems, the superior performance of the Exact Lagrangian approach is evident

across all chosen numbers of constraints.

5.3 Benchmarks from the literature

To exhibit broader applicability of the proposed Exact Lagrangian algorithm, it is

necessary to compare performance against other algorithms in the literature. A set
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of constrained optimization problems has been selected with published experimental
results for evolution strategies [6, 38| that includes S240 and S241 taken from [107],
and G04 (also referred to as HB or Himmelblau’s problem), G06, G07, and G09 from
the 2006 CEC competition [77]. In addition, Rosenbrock’s Parcel problem is taken
from [43]. These are all unimodal constrained problems with a mixture of linear and
nonlinear inequality constraints. Problems S240 and S241 do not have upper bound
constraints, while all other problems have both upper and lower bound constraints
defined in addition to their other inequality constraints. Table 5.1 gives a summary
of the various problem attributes. Note that for problem G04, Dufossé and Hansen
[38] identify an error in previous definitions of the non-linear constraints, which has
been corrected here. Additionally, the identified number of constraints active at the
optimum has previously been in error [6, 38]. The correct constraint definition [65] is
used in experiments throughout this section, and the corrected value of m,¢ for G04

is given in Table 5.1. Full definitions for all of these functions are given in Appendix A.

Problem | n | m mae f Ji
5240 516 5 lin. lin.
S241 51 6 5 lin. lin.

Parcel 3|7 1 non-lin. lin.
GO04 (HB) | 5 |16 5 | non-lin. non-lin.
GO06 216 2 non-lin. non-lin.
GO7 10 {28 6 | non-lin.  both
G09 7118 2 non-lin. non-lin.

Table 5.1: Summary of problem attributes used in benchmark including dimension
n, total number of constraints m, number of active constraints m,., linearity or non-
linearity of objective function f, and whether non-bound constraints g; are linear,
non-linear, or a mix of both.

5.3.1 Experimental results

Data sets are generated for each problem by performing 25 runs using each of the four
algorithms used in Section 5.2, which are the aCMA-ES (1 4 1) evolution strategy,
the AL-ES (u/pw, A) evolution strategy outlined in Section 4.2 and implementing
Algorithm 2.2, the AL-CMA-ES (p/pw, A)-ES with covariance matrix adaptation
outlined in Section 4.2 and implementing Algorithm 2.3, and EL-ES as proposed in
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Chapter 4. The same target sets are fixed according to Eq. (5.2) with f-target and
g-target values evenly logarithmically spaced in the closed intervals [10°,1078] and
[102,107°], respectively. As before, the function g, defined in Eq. (5.4) is used to
evaluate against g-targets, and runtimes are measured as counts of f, g, or (f + g)

evaluations.

All runs are terminated only when f(x) and g4(x) are both within 10~ of optimum
values, represented by f(a*) and g4(x*) = 0, respectively, ensuring that each algo-
rithm is permitted to succeed on as many targets as it is able. Problems S240 and
S241 use the recommended initial starting points, while all other problems have their
initial starting points generated by sampling randomly and uniformly within the re-
gion defined by the problem’s bound constraints. As the aCMA-ES requires a feasible
starting point, a set of feasible points is generated in a pre-processing step similar to
[38] and mirroring Section 5.2 by using CMA-ES to minimize the sum of constraint
violations function gs(x) in a series of 200 runs. The resulting set of 200 feasible
points within the search space is sampled from uniformly to initialize the aCMA-ES,
and the count of g-evaluations is initialized to the number used to locate the feasible

starting point.

ECDF plots are given for each problem in Figure 5.17 representing combined per-
formance by showing success on staggered targets plotted against the sum of f- and
g-evaluations. As for the staggered plots in Section 5.2, the combined performance
is displayed for f-targets with fixed g-target of 10° (solid lines) and fixed g-target of
1079 (dashed lines). Thus, runs on the first target set are considered successful on the
i-th target if both f(x) < t{ and g4 < 10° are satisfied, and runs on the second target
set are considered successful on the i-th target if both f(x) < t{ and g4 < 107° are
satisfied.

In these staggered target curves, the overall performance of the top three algorithms is
seen to be generally competitive. The combined performance for EL-ES and aCMA-
ES is seen to be nearly equivalent on S240, S241, and G04, particularly for the fixed
target g4 < 10° with small differences visible elsewhere. The combined performance
of aCMA-ES is superior on Rosenbrock’s Parcel, G06, and G09, while the Exact La-

grangian is narrowly superior on GO7. The EL-ES is superior to the other augmented



121

5241 RosenbrockParcel

i !
! /
Ji 05 /
VY _J
ay; ;
4! N /
0.0 35 4.0 4.5 35 4.0 4.5 2.5
log(# evals) log(# evals)
Go4 GO06 Go7

3.5 4.0 4.5
log(# evals)

3.0 3.5 4.0 4.5
log(# evals)

e
o ® o

N

proportion of targets met

© o o o o
iy

o

30 35 70 45

—— AL-ES —&— AL-CMA-ES —&— EL-ES —&— aCMA-ES

Figure 5.17: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 107° (dashed lines). The x-axes are scaled to present
as much detail as possible without obscuring data points.

Lagrangian algorithms on all problems except Rosenbrock’s Parcel and G09, where
for both problems it is slightly behind the AL-CMA-ES but still notably superior to
the AL-ES.

Additional ECDF plots are given in Figure 5.18 showing separate performance on f-
and g-targets. The plots are grouped together by problem and arranged into pairs of
rows representing the proportion of successful f-targets plotted against the count of
f-evaluations (top) and successful g-targets plotted against the count of g-evaluations
(bottom). A distinctive feature of aCMA-ES is evident as it is seen to require signif-
icantly fewer f-evaluations to succeed on all targets, visible in the top rows with the

best performance on f-targets for each problem.
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vs. g-targets (bottom). The axes are shared across plots for the same problem and
aligned to allow comparisons between plots for f- and g-targets.
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5.3.2 Summary for literature benchmarks

The overall performance of EL-ES is favourable on the selected problems, even while
comparing against ES algorithms enabled by covariance matrix adaptation that ex-
ploit more information from the search space and avoid issues from ill-conditioning.
On four of the seven problems (5240, S241, G04, and GO7), the combined performance
of EL-ES is approximately equal or superior to that of all other algorithms. Only
on two problems (RosenbrockParcel and G09) is the EL-ES performance not strictly
superior to that of both the other Lagrangian methods, and these both have relatively
ill-conditioned objective functions. While there are evident advantages from includ-
ing CMA with the AL-ES approach, which is to be expected, the EL-ES approach
on its own is able to deal with some the Lagrangian ill-conditioning, likely due to the

inclusion of constraint information in its multiplier update.

5.4 Rotated Klee-Minty problem

The Klee-Minty problem is a scalable constrained optimization problem with linear
objective function and linear constraints. It was proposed originally as a pathological
case for which the simplex algorithm exhibits worst-case performance [71] and more
recently modified by Hellwig and Beyer [59] with the inclusion of a translation and
rotation to make it suitable as a potential benchmark for probabilistic search algo-
rithms. They provide initial experimental results for both the CEC2017 competition
winner L-SHADE [90] based on differential evolution and their own algorithm eMAg-
ES [60] based on a reduced form of CMA-ES with e-level constraint handling. The
benchmark has also been used Spettel et al. [117] while introducing the lcCMSA-ES
algorithm, a CMA-ES variant specifically designed for solving problems with linear
constraints, and by the same authors [63] in a broader survey of stochastic algorithms,

including various CEC competition winners as well as active-set-ES [112].

The original Klee-Minty problem defines an ICP in n dimensions having 2n inequality
constraints. Geometrically, the feasible space is contained within a hypercube with

slightly distorted corners and the linear objective function is given by

flx)=c"z
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where ¢ = [0,0,...,1] so the optimal point is located at the origin. The Rotated
Klee-Minty problem applies a transformation to the constraints by means of a rota-
tion about the origin by angle =27 and translation by the vector [n® n?,... n%.
Bound constraints are also applied, primarily to limit the region for generating initial

(feasible, if necessary) points.

5.4.1 Experimental results

Comparative data sets are generated for four algorithms on Rotated Klee-Minty prob-
lems. The eMAg-ES [60] algorithm implements a reduced variant of CMA-ES along-
side e-level comparisons and gradient-based repairs from Takahama and Sakai [123].
The authors note that within each iteration that uses the repair operation, extra con-
straint function evaluations are consumed making the action more expensive. The
eMAg-ES method was retroactively ranked third in 2019 among all submissions to the
CEC 2017 problem set, using the prescribed 2n - 10* budget of function evaluations
for problems of dimension n. The lcCMSA-ES [117] implements another reduced
variant of CMA-ES with a special focus on repair and projection of points into the
unconstrained subspace. The assumption of constraints being linear is strict, and
the first step of the algorithm is to gather a large number of sample points to be
used in the linear projection of infeasible points. Both eMAg-ES and IcCMSA-ES are
implemented using code from the authors®. Additionally, both the AL-CMA-ES
and EL-ES are used as described in Sections 5.2 and 5.3. Both the lcCMSA-ES
and eMAg-ES algorithms have published experimental results on the Rotated Klee-
Minty problem that compare favourably against other competitive algorithms from

the literature.

Existing work on the Rotated Klee-Minty problem has an established process for
performance comparison that is distinct from elsewhere in the literature. For each al-
gorithm, 1000 bootstrapped samples are generated from 15 run sets. A brief overview
of the bootstrapping process is given in Section A.2 of the appendix. Target sets are

fixed according to Eq. (5.2) and the function gx, defined in Eq. (5.3) is used to evaluate

SRetrieved April 25, 2022, from https://github.com/patsp/RotatedKleeMintyProblem/tree/
ea_comparison/1cCMSA-ES
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against g-targets. Runtimes are measured as evaluation counts for either f or g, de-
pending on the target set being evaluated against, before being divided by the problem
dimension. Monotonicity is enforced during the bootstrapping process, giving plots
comparable to those previously published [63]. Repeating, near-horizontal plateaus

in some plots are indicative of the effects of enforcing the monotonic condition.

To allow a more direct and alternative comparison, data is generated for ECDF plots
here without any bootstrapping. In addition, unlike previous results, our function
evaluation counts are not scaled by dimension. To generate this data, 100 runs
were performed for the Rotated Klee-Minty problem in each of the dimensions n =
2,3,5,10,15, and 20 for each of the four algorithms. Target sets for the ECDFs rely
on the definition in Eq. (5.2) with f-target and g-target values evenly logarithmically
spaced in the closed intervals [10°, 107®] and [10%, 10~°], respectively, and runtimes are
again measured as f-evals, g-evals, or (f + g)-evals, depending on the target set. In
order to facilitate comparisons with published results on these particular algorithms,

the value given by Eq. (5.3) is used for evaluating g-targets across all algorithms.

A run is terminated when f(zx) and gs(x) are both within 1.0e-8 of optimum values,
represented by f(x*) and gs(x*) = 0, respectively. The IcCMSA-ES and eMAg-ES,
following their default parameters, also terminate when more than 2n-10* total (f+g)
function evaluations have been used. Starting points are initialized randomly using

coordinates drawn independently and uniformly from the interval [0, 5n3].

Staggered ECDF plots are given in Figure 5.19 plotted against the sum of f- and
g-evaluations. As for the staggered plots in Section 5.2, the combined performance
is displayed for f-targets with fixed g-target of 10° (solid lines) and fixed g-target of
107% (dashed lines). Runs on the first target set are considered successful on the i-th
target if both f(x) < tzf and gy, < 10° are satisfied, and runs on the second target
set are considered successful on the i-th target if both f(x) < ¢/ and gx < 107¢ are
satisfied.

The performance of IcCMSA-ES is given throughout by only a single line because
both of the fixed g-targets are the first targets satisfied during its pre-processing step.

The performance of EL-ES is seen to be broadly superior to all other algorithms
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Figure 5.19: ECDF plots showing (f + g)-evals vs. f-targets for fixed g-target 10°
(solid lines) and fixed g-target 1075 (dashed lines) for the Rotated Klee-Minty problem
in varying dimensions n. The x-axes are scaled to present as much detail as possible
without obscuring data points.

for dimensions n = 10 and above, and is additionally superior on the most difficult
targets for n = 5 and n = 3. The EL-ES is also strictly superior to the AL-CMA-ES
on all problems. The lcCMSA-ES appears very competitive on easier targets and in
smaller dimensions, but this deteriorates significantly with increasing n and it fails to
reach all targets within the allocated budget for problems in dimension n = 10 and

above.

Additional ECDF plots for the separate f- and g- targets are given in Figure 5.20,
where as before, the top rows are associated with success on f-targets plotted against
f-evaluation counts, while the bottom rows show success on g-targets plotted against
g-evaluation counts. The value of the pre-processing step of the IcCMSA-ES is evi-
dent, as it is able to succeed on all g-targets for all problems within only a few hundred
g-evaluations. The advantage of the EL-ES algorithm in higher dimensions appears
mostly due to success on f-targets, as it is otherwise comparable to the eMAg-ES in
satisfying g-targets for problems with n = 5 and above. On all problems, the EL-
ES is also seen to strictly dominate the three other algorithms on the most difficult

f-targets.
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Figure 5.20: Pairs of ECDF plots showing f-evals vs. f-targets (top) and g-evals vs.
g-targets (bottom) for the Rotated Klee-Minty problem. The axes are shared across
plots for the same problem and aligned to allow comparisons between plots for f- and
g-targets.

It should be noted that in trial runs for generating data on the n = 20 Rotated Klee-
Minty problem, the EL-ES was observed to fail in very rare cases (< 1% of runs),
likely due to instability in the working set caused by the large number of constraints.
These issues were not encountered while performing the 100 independent runs to gen-

erate the data used for the plots given above.
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5.4.2 Summary for Rotated Klee-Minty

Across all tested dimensions for the Rotated Klee-Minty problem, the performance
of the EL-ES algorithm is seen to largely out-perform three algorithms that employ
various forms of covariance matrix adaptation for generating improved offspring, one
of which was designed specifically for solving linear problems with linear constraints.
The Exact Lagrangian approach also appears to scale much better with increasing
dimension and number of constraints. This is potentially limited by rare cases of

failure in the n = 20 case due to difficulties in managing the working set.



Chapter 6

Discussion and future work

We have proposed through this research a novel approach for constrained continuous
optimization with stochastic black-box algorithms by adapting for the first time an
exact Lagrangian method from numerical optimization for use with evolution strate-
gies. Previous study and subsequent proposal of the augmented Lagrangian approach
(AL-ES) with a (1 + 1)-ES showed that using the Lagrange multiplier update rule
from the method of multipliers alongside careful adaptation of the penalty coefficient
could lead to log-linear convergence on certain sphere and ellipsoid problems with a
single constraint. This desirable behaviour is understood as resulting from adapting
the Lagrangian parameters in order to balance progress of the evolution strategy in
the constrained and unconstrained subspaces, as demonstrated by single-step analy-

sis.

Extensions of the AL-ES method [17, 16, 18, 38] exhibit good performance on certain
problems, but our experimental investigation highlighted that it appears necessary to
include covariance matrix adaptation in order to arrive at a widely applicable algo-
rithm. Without CMA, the ill-conditioning of the augmented Lagrangian was often too
significant to allow convergence, primarily due to the update rules for the Lagrangian’s
parameters. Additionally, from the discussion in Section B.5, the multiplier update
used by the AL-ES is seen to be a form of gradient ascent for the dual function with
step size determined by the penalty coefficient w. This raises two potential concerns:
first, that the implicit maximization of the dual is based on only first-order derivative
information, and second, that the adaptation of the penalty coefficient is performed

without regard for its role as the step size.

A particular example of difficulty was demonstrated, by showing that even well-

conditioned spherical objective functions with linear constraints that create narrow

129
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feasible regions (NFR) result in much slower convergence (or even non-convergence)
when using existing implementations of the AL-ES. In part, this is because of poor
values arising from the multiplier update. In the dual formulation, this can be inter-
preted as a result of the multiplier update not accounting for second-order features

of the dual function, like curvature and ill-conditioning.

In Section 4.4 and in connection with Section B.5, we defined a multiplier update
rule that did include second-order information, based on quasi-Newton maximization
of the dual. One observed difficulty was that implementing the rule would require
knowledge of the derivatives of the objective and constraint functions. Instead, we
derived a multiplier update rule that only relies on first-order information. As such,
the proposed expression for the multiplier does not account for any ill-conditioning
in the objective function, but crucially includes information about the constraints
and the correlations between them. This rule was justified in two complementary
ways, both by application of the first- and second-order KKT conditions, as well as
through step-size analysis on the Lagrangian. Exactly how this information should be
included for use with stochastic algorithms like evolution strategies is not immediately

straightforward.

Our approach was to adapt an exact Lagrangian penalty method from Fletcher that
continuously defines Lagrange multipliers with respect to position in the search space,
rather than as part of an external update rule. Doing so allows approximating con-
straint information that is then included within the Lagrangian function in a way
that is usable by an evolution strategy, resulting in the EL-ES. By applying single-
step analysis to this new method, and taken together with theoretical insight from
the literature on numerical optimization, we showed that the multiplier update for
the EL-ES rule balances the progress of the evolution strategy in the constrained and

unconstrained subspaces, in a manner analogous to that of the original multiplier rule

for the AL-ES.

In order to validate our proposed approach, experimental data was generated for
multiple runs on spheres and moderately scaled ellipsoids with a single constraint.
The results showed that the EL-ES was able to perform almost as well as the AL-
CMA-ES on these archetypal problems, except where it performed significantly better
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on NFR spheres with two constraints. This increased performance is in spite of the

advantage given by improved offspring generation from CMA.

Results were also generated for varied scaling between objective and constraint func-
tions, as well as for constraints with random orientation. In order for evaluation on
the random constraints to be reliable and unbiased, an approach was proposed for
generating active constraints based on the relationship between their normal vectors
and the gradient of the objective function. This process makes use of the KKT condi-
tions that describe an optimum point in order to allow as much freedom in selecting
constraint orientations as possible while guaranteeing a pre-selected point will be-
come the optimum. These constraints were additionally guaranteed to not merely be
weakly active, and instead would have an associated non-zero Lagrange multiplier.
Performance of the EL-ES on all random constraint problems was observed to be
superior to that of either of the existing AL implementations, and even performed
better than the active-CMA-ES on problems with increasing number of constraints
and dimension. On problems with the number of generated constraints equal to the
dimension for n = 10 and n = 20, the EL-ES converged to the optimum with 2-4

times fewer function evaluations than the other algorithms.

Additional experimental results on benchmarks from the literature and the Rotated
Klee-Minty problem showed that the EL-ES is also competitive on certain problems
beyond archetypal spheres and ellipsoids, even when compared against algorithms us-
ing CMA for generating offspring. On the standard benchmark problems, the number
of function evaluations required for convergence using the EL-ES was smaller than
that required for the AL-ES by approximately a factor of 10. The overall performance
of the exact Lagrangian approach was also observed to never be far behind the meth-
ods using CMA. The benchmark problems were selected to match those previously
used [6, 38| for evaluating evolution strategies on constrained optimization problems,

allowing the EL-ES to be evaluated in light of those published results.

The Rotated Klee-Minty problem was selected as an additional benchmark that has
previously been used for evaluating performance of constrained optimization algo-
rithms, including the eMA-ES and 1cCMSA-ES [59, 117, 63]. In addition to hav-
ing published results for the Rotated Klee-Minty problem, the eMA-ES has been
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favourably compared to leading algorithms when evaluated against the CEC 2017
benchmark problems [60], and the lcCMSA-ES has published very encouraging results
using an early variant of the BBOB COCO framework for constrained optimization
[117]. In our results on the Rotated Klee-Minty problem, the EL-ES outperformed
both other algorithms on the most difficult evaluated targets in all dimensions but
n = 2 and n = 20. In the smaller case, the EL-ES was roughly comparable to the
performance of the IcCMSA-ES algorithm. In the larger case, the EL-ES converged
with 2-4 times fewer function evaluations than the other algorithms. In rare cases,
the EL-ES may have difficulties converging for the n = 20 case due to instability in

the working set caused by the large number of constraints.

From this collection of encouraging empirical comparisons together with the justi-
fications given by both step-size analysis and consideration of the KKT conditions,
the exact Lagrangian method for evolution strategies is seen to offer an attractive

approach for continuous constrained black-box optimization.

Future work

An immediate and obvious improvement for the EL-ES would be the inclusion of
CMA for generating offspring, allowing for faster convergence on resulting Lagrangian
functions in spite of a certain degree of ill-conditioning. This needs to be done with
some care, as both the working set management and the approximation of Lagrange
multiplier terms assume to some extent that offspring are sampled isotropically from
the search space. If this can be properly accounted for, then an EL-CMA-ES imple-

mentation could be an algorithmic approach with very promising properties.

A limitation of the current implementation of the EL-ES relates to reliably managing
the working set, as on some problem instances the current approach appears to be
insufficient. In the case of the Rotated Klee-Minty problem in high (n = 20) dimen-
sion, there are a large number of similar constraints active near the optimum, and in
rare instances the working set will oscillate between adding and removing a subset
of constraints. This leads to a form of zigzagging, which in the case of an evolution
strategy can result in poor adaptation of the step size. Similarly, the problem G10

has been previously used for evaluating evolution strategies [6, 38|, yet the EL-ES
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progresses far too slowly to result in reliable convergence. A key feature of this prob-
lem is the relatively large number of constraints with different weights. Deriving a
more reliable method of working set management would allow broader application of

the EL-ES.

Application of the EL-ES approach, either in its current form or using future improve-
ments, should be evaluated on the COCO bbob-constrained benchmark. Comparative
results for the AL-CMA-ES using this benchmark have recently been published by
Dufossé and Atamna [36]. Similar benchmark performance could be investigated for
the EL-ES with the addition of surrogate models for problems with expensive con-
straint evaluations, similar to the evaluation performed by Dufossé and Hansen [38]
for the AL-CMA-ES.

For work farther in the future, it would be beneficial to further investigate a broader
range of approaches previously used in numerical optimization, and consider how they
might be applied to stochastic algorithms like evolution strategies. The success of the
EL-ES is evidence that there are approaches in the literature that might benefit from
a second look. Work like that of Glad and Polak [48], which expands on the work of

Fletcher for exact Lagrangians, should in particular be investigated.

Finally, it would be interesting to consider whether extension of the Markov chain
analysis used to originally give convergence results for variations of the AL-ES [16,

17, 18] would be possible for the case of the EL-ES.
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Appendix A

Experimental details

A.1 Function definitions

Explicit function definitions are given here for the selected literature benchmarks used
in Section 5.3 for experimentally comparing the performance of the EL-ES with other

evolution strategies for constrained optimization.

Problem TR2
(Kramer & Schwefel [72])
Minimize
flx) =21 + 23

subject to
91(23)22—1’1—1‘2 SO

The lone constraint is active at * = [1, 1] with f(a*) = 2. The starting point is fixed

as « = [50, 50].

Problem S240
(Schwefel [109])

Minimize
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subject to

5
g1(x) = —50000 + > (9 +i)a; <0

=1

and lower bound constraints 0 < x; for ¢« = 1,...,5, with no upper bound con-
straints. Constraint g;, along with the lower bounds on zs, x3, x4, x5, are all ac-
tive at &* = [5000,0,0,0,0] with f(x*) = —5000. The starting point is fixed as
x = [250, 250, 250, 250, 250].

Problem S241
(Schwefel [109])

Minimize .
flo) == iz

i=1
subject to

5

gi(x) = =50000 + » (9 +i)a; <0

i=1

and lower bound constraints 0 < z; for ¢ = 1,...,5, with no upper bound con-

straints. Constraint ¢g;, along with the lower bounds on x1, xs, x3, x4, are all active
at * = [0,0,0,0,25000/7] with f(x*) = —125000/7. The starting point is fixed as
x = [250, 250, 250, 250, 250].

Problem RosenbrockParcel
(Rosenbrock [102], Fletcher [41])
Minimize

f(x) = —zy2973
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subject to
gi(®) =21+ 209+ 223 —72<0

and bound constraints 0 < z; < 42 for ¢ = 1,...,3. Constraint ¢g; is active at

o = [24,12,12] with f(x*) = —3456.

Problem G04 (HB)

(Himmelblau [65])

Minimize

f(x) = 5.3578547x3 + 0.8356891x1 w5 + 37.293239x; — 40792.141

subject to
gi(x) = hi(x) —92<0
g2(x) = —hi(x) <0
g3(x) = hao(x) —110 <0
ga(x) =90 — ha(x) <0
gs(x) = hs(x) —25<0
g6() = 20 — hy(z) < 0

where

ha(2) = 85.334407 + 0.00568582925 + 0.0006262z, 24 — 0.00220532525
ha(x) = 80.51249 + 0.00713172525 + 0.00299552, 25 + 0.002181322
hs(z) = 9.300961 + 0.00470262525 + 0.001254721 25 + 0.00190852574
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and bound constraints

78 <1 <102
33 < w9 <45

and 27 < z; < 45 for ¢ = 3,4,5. Both ¢g; and gg are active, along with the lower

bounds on x; and x5 and the upper bound on x4, at
x" ~ [78,33,29.99525602, 45, 36.77581290)]

with f(z*) ~ —30665.53867178.

Problem G06
(Floudas & Pardalos [46])
Minimize
f(x) = (21 — 10)® + (zy — 20)*

subject to

gi(x) = —(21 — 5)* — (22 — 5)* + 100 < 0
go(x) = (11— 6)* + (12 — 5)* —82.81 < 0

and bound constraints

13 < z; <100

0 < z9 < 100.

Both ¢, and g, are active at x* ~ [14.095, 0.84296] with f(x*) ~ —6961.81387558.



139

Problem GO07

(Hock & Schittkowski [66])

Minimize

f(x) = 2% + 23 + 11209 — 1421 — 1639 + (23 — 10)? + 4(24 — 5)?
+ (25 — 3)* + 2(wg — 1)* + 52 + T(wg — 11)?
+2(wg — 10)* + (210 — 7)* + 45

subject to

g1(x) = 4xy 4+ bxy — 3x7 + 925 — 105 < 0

go(x) = 102y — 8x9 — 1727 4+ 223 < 0

g3(x) = —8x1 + 2w + bwg — 2219 — 12 < 0

ga(x) = =321 + 629 + 12(29 — 8)% — T210 <0

gs(x) = 3(x1 — 2)* + 4(zy — 3)% + 2235 — Twy — 120 < 0
gs(x) = 2% + 2(wy — 2)* — 2129 + 1425 — 626 < 0
g7(z) = 523 + 8y + (23 — 6)* — 224 — 40 < 0

gs(x) = (w1 — 8)? + 4(zy — 4)* + 622 — 226 — 60 < 0

and bound constraints

—10<2; <10

fori=1,...,10. Each of g1, 92, g3, g5, gs, g7 are active at

x* ~[2.17199638, 2.36368294, 8.77392572, 5.09598444, 0.99065475,
1.43057395, 1.32164423, 9.82872583, 8.28009174, 8.37592676|

with f(z*) ~ 24.30620906.
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Problem GO09
(Hock & Schittkowski [66])

Minimize
f(x) = (x1 — 10)* + 5(xg — 12)® + 23 + 3(24 — 11)?
+ 101’2 + 71‘(25 + x‘% —4dxgx7 — 1026 — 827

subject to

g1(z) = =127 + 227 + 325 + 23 + 427 + 515 < 0

g2() = =196 + 23z + 25 + 625 — 827 < 0

g3(T) = =282 + Tay + 39 + 1023 + 74 — 25 < 0

ga(x) = 4a] + 25 — 3x129 + 2235 + S — 117 <0

and bound constraints

—10 < 2, < 10

fori =1,...,7. Both of ¢g; and g4 are active at

" ~[2.33049932, 1.95137235, —0.47754169, 4.36572630,
— 0.62448696, 1.03813102, 1.59422672]

with f(z*) & 680.63005737.

A.2 Bootstrapping

In order to simulate restarts and allow comparisons between algorithms with failures
on certain targets, the COCO benchmark [57] uses a method inspired by statisti-
cal bootstrapping for extending results in a viable way without requiring excessive
experimental runs. Instead, a small number of runs (COCO recommends 15) are per-

formed and these are used to generate a larger number of bootstrapped results. The
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operation for generating a bootstrapped runtime proceeds in the same way for each
target in the fixed set: if at least one of the experimental runs succeeded, then the
set of runs is drawn from uniformly at random and with replacement until a success
is found. The bootstrapped runtime is then the sum of the runtime of the successful
run and the runtimes for all unsuccessful runs, if any. A full set of bootstrapped sam-
ples is generated in this way for each target. The outline of this process is given in
pseudo-code by Algorithm A.1. To represent this as an ECDF graph, the proportion

of successful targets among the bootstrapped samples is plotted against the runtime.

Algorithm A.1 Generating bootstrapped results for ECDF's
Require: Indexed sets of runs R and targets 7', max runtime m, bootstrap sample
size b

1: Initialize B of size b

2: fori=1— |T| do

3 for j=1— |B| do

4 B;j=0

5: while no successful run found do

6 k<« U[L,|R|] > Sample from random uniform distribution
7 if run R, succeeded for target T; then

8 B, j < B;; + Ri(T;) > Add sample’s runtime on success
9: else

10: B« B;j+m > Add max runtime on failure
11: end if

12: end while

13: end for

14: end for

15: return B

This differs from the process used in previous work on the Klee-Minty problem
(63, 117] which additionally enforces monotonicity’. In this process, each of the
bootstrapped samples for a fixed target is considered as part of a contiguous vir-
tual run, where runtimes for subsequent (more difficult) targets are not permitted
to be less than runtimes for prior (easier) targets. More concretely, for the set of
bootstrapped samples B;; corresponding to target ¢ and with 7 = 1,... indexing the

samples, the authors enforce the condition that B;; = max(B;;, B;_1,). This has the

!Based on the authors’ code, retrieved April 25, 2022, from https://github.com/patsp/
RotatedKleeMintyProblem/tree/ea_comparison/1cCMSA-ES
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effect of propagating forward the runtime of the worst run on simpler targets to later,
more difficult targets, regardless of the likelihood that the target would result in that
runtime. In published ECDF plots, this effect is visualized by horizontal plateaus
followed by sharp vertical increases, that overall shift the apparent performance of al-
gorithms to appear worse. In the experimental results throughout Chapter 5, we aim
to largely avoid these issues by relying on raw data instead of using a bootstrapping

process.



Appendix B

Theory of optimization

The theory of numerical optimization is well covered by many authors. In order
to summarize key concepts that are important for understanding and justifying my
own work, I provide here an amalgam of standard work taken from the literature
and adapted for brevity and notational coherence, based primarily on the works of
Fletcher [44, 43], Bertsekas [27, 28], and Nocedal and Wright [128]. Throughout the
following I will use the V and V? operators to refer to the gradient and Hessian

matrix, respectively defined as

of () 9% f () 9% f ()
ox1 0x10x1 et 0x10Tn
Vi@)=1{ |, Vif(®)=| L
of () % f(=) 9% f ()
Oxn OrnOx1 O0xn0x1

where the variable under differentiation is understood. Where clarity is required,
subscripts such as V, and V2 will be used. In some expressions that benefit from
notational simplicity, I also write f, g, and related matrices and derivatives with the
understanding that they are to be evaluated at the current point x, unless otherwise

specified.

B.1 Unconstrained optimization

Optimization is the study of algorithms for finding extrema. For continuous numer-
ical optimization, this can be understood through the simple example given by an

unconstrained optimization problem where we are given a function

f(x):R" >R

143
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and desire a solution x* that satisfies either

mg}nf(zc) or mwaxf(w)

across all  in the domain R™. Since one optimization problem is identical to the other
up to the sign on f, we will throughout refer to minimization as the optimization

operation, without loss of generality.

Without restrictions on the function f, it may not be realistic to determine a global
manimum across the entire domain, so we are frequently satisfied with finding a local
minimum. This is a solution x* satisfying f(x*) < f(«) for all other points in the
neighbourhood N, with ||z* — @|| < r for some r > 0, and is a strict local minimum
if the inequality is made strict. With mild restrictions on f, a local minimum within

a neighbourhood can be characterized with the following propositions.

Proposition B.1 (First-order Necessary). Let f be continuously differentiable within
neighbourhood N, = {x : ||lz* — x|| < r} with r > 0, having associated strict local

minimum x*. Then the gradient satisfies

Vf(x*)=0.

Proposition B.2 (Second-order Necessary). Let f be twice continuously differen-

tiable in N,., having associated local minimum x*. Then the Hessian satisfies
2"V f(x")z >0

for all z € N, and is therefore positive semidefinite.

Proposition B.3 (Second-order Sufficient). Let f be twice continuously differentiable
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in N, around point *. If both V f(x*) = 0 and the Hessian satisfies
2V f(x*)z > 0
for all z € N, and is therefore positive definite, then x* is a strict local minimum.

In the particular case that the neighbourhood N, is extended to include the entire
domain, then these conditions refer to global rather than local solutions. The impli-
cations of these three propositions taken together typically play a foundational role in
the design of any numerical optimization algorithm. In the simplest cases, it may be
possible to even solve the problem analytically simply by solving for the conditions
placed on the first and second derivatives of f. For anything more complicated than
these relatively simple problems, an iterative algorithm may be used that takes place
over multiple steps. In the k-th iteration of such an algorithm, an estimate &®) is
generated using local or historical information, and the aim is to have the sequence
converge as {x*} — x*. The domain of f contains the estimates «(*) and is referred

to as the search space.

A fundamental example is that of Newton’s method, which uses derivative information
together with an initial estimate x(®) to attempt to converge to a local minimum. In
each iteration of the algorithm, a local quadratic approximation is formed from the

truncated Taylor series about *) as

FB () = f@®) + 4"V @) + Sy W)y

where y = 0 corresponds to the point ® by a shift of origin, and this function is
minimized instead. By the first-order necessary condition of Proposition B.1, it must
hold that a local minimum of the quadratic approximation satisfies Vf* = 0, so

solving

Vi) + V2 f®)y =0
y = —VQf(a:(k))*l . Vf(a:(k))

gives a candidate point ¥y relative to & by the shift of origin. If V2 is positive definite
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then it is also invertible, and this additionally implies that the point y is a local
minimum for the quadratic approximation by the second-order sufficient condition of

Proposition B.3. Newton’s method is then to use the update formula

2D = 20 4 4 (B.1)
=2® — V2 f(x) 1. v f(x®)

in order to generate the next step of the algorithm in the search space.

B.2 Constrained optimization

Constrained optimization expands on the ideas in Section B.1 by placing limitations
on the domain of f where a solution is acceptable. These constraints are commonly
expressed as a combination of equalities and inequalities that must be satisfied along
with the objective function. Beginning with the simpler case of the equality con-

strained problem (ECP), we ask for a solution satisfying

min /(@)

s.t. gi(x) =0. (ECP)

We are again minimizing the objective function f : R" — R, but have now added
a set of m equality constraint functions g; : R® — R indexed by i = 1,....,m < n,
or equivalently the single vector function g : R” — R™, that must be satisfied. The
solution for the ECP is the point * with minimal value f(x*) among all {f(x) :
g(x) = 0}. Any point that satisfies all of the given constraints in this way is said to
be feasible, while a point that violates one or more of the constraints is said to be
infeasible. We will specifically refer to the unconstrained minimum of the objective
function f to distinguish from the constrained minimum or simply minimum, which

is that point solving the ECP that minimizes f among all feasible solutions.

If the constraint functions under consideration are differentiable in AN, then their

first-order behaviour can be described by writing the Jacobian

J = [Vglvv.g%w"vv.gm] (BQ)
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as an n X m matrix, with columns consisting of the constraint normals. In the special
case that the constraints are all linear, this means the equality conditions can be
written as

glx)=J"c+c=0

for some constant vector c. If the constraint normals are linearly independent in a
neighbourhood of the constrained optimum, then J has full rank there. This case
proves to be important for much of what follows, as do the following two important

definitions.

Definition B.1 (Tangent cone). Let & be a feasible point and {x®} — & be any
infinite sequence of feasible points approaching . Then vector s is a feasible direction

if there is also a sequence of positive scalars 6¢*) — 0 such that

sF gk — £k _ 4
with

lim s = s.
k—oo

The set of all feasible directions so defined is the tangent cone at .

Definition B.2 (LICQ). The linear independence constraint qualification (LICQ)
assumes the linear independence of the (active) constraint normals at x*, and is al-

ternately referred to as the regularity or quasi-regularity assumption of point x*.

The notion of an active constraint will be made explicit in Section B.3, but when
dealing only with equality constraints it suffices to note that all constraints are ac-

tive.

It will be helpful to consider the inverse of the matrix J under the assumption of full

rank, even in situations where m < n, so we rely on the notion of the generalized
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Moore-Penrose inverse written as

1

Jt=(J"J) J.

This generalized inverse is rank m, and satisfies J*J = I. Combining the Jacobian

and its generalized inverse gives the projection matrix

P=JgJjt=J"Jg"
—J(JT) " JT (B.3)

which maps a vector into the constrained subspace spanned by the constraint normals
Vg;. To see this, recall that the vector after projection Px is in the span of the
columns of J if and only if it is a linear combination of those columns Vg;. Writing

the projected vector using Eq. (B.3) and collecting terms therefore gives

Pa—J (1) J"al

:J.fr'

for some vector r € R™, and whose elements r; give the coefficients of the desired
linear combination. The complement of this projection is (I — P) which maps into
the unconstrained manifold, an affine manifold (vector subspace with possibly shifted
origin). These are complementary in the sense that any point @ in the search space

can be written as a combination

x=Px+ (I - P)x
=Jr+s (B4)

of its constrained and unconstrained components.

As in the unconstrained case, it is possible to characterize a solution to the constrained
problem. Given f and g both continuously differentiable, let &* be a constrained local

minimum with respect to f and all g; for an ECP and consider the set of first-order



149

feasible variations

V={veR"\0:v"'Vg(xz*) =01} (B.5)

This set is a recurring concept, and it is helpful to interpret it in different ways. It is
the set containing those vectors which remain feasible with respect to a linear approx-
imation of the constraints at «*. It is also the set of non-zero directions v which are
orthogonal to the normals of the hyperplanes tangential to the constraint boundaries

at x*.

Proposition B.4. Under the LICQ) of Definition B.2, the tangent cone of Defini-
tion B.1 is equal to the set of feasible variations V' from Eq. (B.5).

From this proposition, we can also observe that the condition on membership in V' is
equivalent to requiring J¥v = 0. Roughly speaking, if we consider a small step s from

x* that remains feasible, a first-order Taylor expansion must therefore satisfy

g(x* +s) = g(x") + 8" Vg(a*)
=0

where the additional Taylor terms vanish in the limit with respect to s. For this
equality to hold, any feasible step s must be in the direction of a feasible variation,
and so s"Vg(x*) = 0. Finally, the definition of V is equivalent to those vectors
that constitute the entirety of the unconstrained manifold of Eq. (B.4) defined by the

Jacobian at x*.

Using the equivalence between incremental feasible steps and the set V' of feasible
variations together with the fact that x* is a constrained local minimum by assump-
tion, it must be the case that sTV f(x*) > 0 as well; otherwise, it would be possible
to take a feasible step with f decreasing. Stated concisely then, at the constrained

minimum x* there can be no vectors s where both conditions

s'Vg(z*) =0,
s'Vf(x*) <0

—
o
(=)}

N~—
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are satisfied: moving along any vector s from x* must either result in a non-decreasing
change in the objective function or a change in the feasibility, or both. This permits

proving a fundamental result for constrained optimization.

Theorem B.5 (First-order necessary condition). At a constrained minimum x* with
f and g; continuously differentiable, and with linearly independent Vg;(x*) (LICQ),
the gradient of the objective function is equal to a linear combination of the constraint

function gradients evaluated at x* as

Vf(x*) = — Z AiVgi(x*)
= —_J. (B.8)

Proof. If we view the gradient V f(a*) in its projected form similar to Eq. (B.4), we

can write

Vf(z") =PV f(z’) + (I - P)Vf(x)
=—J\+s (Bg)

as a sum of components in two distinct subspaces. Since we are assuming x* is
optimal, this implies both Egs. (B.6) and (B.7) are satisfied. We will prove that these
equations are satisfied if and only if s = 0 in Eq. (B.9), and therefore that Eq. (B.8)

is a necessary condition for * being optimal.

First, if there are no vectors satisfying both Eqgs. (B.6) and (B.7), then s must also
be 0. To see this, first note that because it lies in the unconstrained manifold by
the decomposition by projection matrix P in Eq. (B.9), the vector s must satisfy
sTVg(xz*) = Js = 0 and is orthogonal to any vectors projected into the constrained
subspace. Now the claim is proven by contradiction: assume that s is nonzero,
then the direction —s immediately satisfies Eq. (B.6) as it lies in the unconstrained

manifold. After applying the inner product with the expression for the gradient in
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Eq. (B.9), we also have

(—8)'Vf(x*) = —t"JX—s"s

= —s's <0,

which shows that s must also satisfy Eq (B.7) and give a direction in which f de-
creases, contradicting the assumption that there are no vectors satisfying both con-

ditions.

From the other side, if s = 0 then there can be no vectors satisfying the conditions
of both Egs. (B.6) and (B.7). This is trivially true since s = 0 implies that the
gradient V f(x*) = —J X is a linear combination of the constraint normals, thus any

u satisfying u' (—JA) = 0 immediately violates Eq. (B.7). |

From this proof we see that under certain assumptions, at a constrained minimum
x* it will always be possible to express the gradient of the objective function as a
linear combination of the gradients of the constraints. The coefficients in the vector
A determine the linear combination and their existence is a necessary condition for
a point to be a constrained optimum. These coefficients are the Lagrange multipliers

and they play an important role in many approaches to constrained optimization.

B.3 Extending to inequalities

If the constraints are defined with inequalities instead of equalities, then we have the

inequality constrained problem (ICP) given by

mwin f(x)

s.t. gi(x) <0. (ICP)

The major difference is of course how the constraints are treated: feasible points are
no longer only at the intersection of the constraint boundaries, and the number of
constraints m may be larger than the search space dimension n without violating the

LICQ. The notion of a feasible point in this case is extended to those satisfying the
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constraint inequalities, and as with the ECP an infeasible point will have a positive
constraint value g;(x) > 0 for some i. The Jacobian J and projection matrix P now
also refer to the constraint boundaries, which can be thought of as the set of points

that satisfy a particular constraint g; as an equality.

Inequality constraints also necessitate introducing the concept of an active constraint.
We say that constraint g; is active at a point x if g;(x) > 0, and inactive otherwise.
The active set is denoted by A and corresponds to the set of constraints (or equiva-
lently, of constraint indices) that are active at x*, and the size of this set is limited
under the LICQ by the dimension of the search space |A| < n. In the most general

setting, the types of constraints may be mixed and we have

min f(x)
st gi(x) <0, iel

This gives separate index sets Z, £ for inequality and equality constraints, respectively.
As it generalizes and encompasses the ECP and ICP cases, we refer to it simply as
the general constrained optimization problem (GCP). This definition also overlaps
significantly with that of a nonlinear programming problem (NLP) sometimes used

in the literature for numerical optimization.

Since the constrained optimum must be feasible, the set of active constraints at x*

are those that are satisfied as equalities
A={i:g(x*)=0,i€ZTUE}

which necessarily includes all equality constraints. Since g;(x) < 0 indicates feasibility
for i € Z, the definition of the set of feasible variations V' of Eq. (B.5) is modified

accordingly as

V={veR"\0:v"'Vg(z") <0VicZ, v'Vgj(z*) =0Vj € E} (B.10)
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which are those directions which remain feasible with respect to the linearized con-
straints at &*. Similarly, Definition B.2 of the LICQ is expanded to require the linear
independence of the constraint normals for constraints in A rather than only for
equality constraints. Generalizing this way to include inequality constraints leads to

re-stating the necessary conditions as the Karush-Kuhn-Tucker (KKT) conditions:

Theorem B.6 (KKT Necessary Conditions). If * is a local minimum of f(x) that
satisfies the equality constraints g;(x) = 0 for j € € and inequality constraints g;(x) <
0 fori € Z, and if additionally the constraints in A have linearly independent normals

(LICQ), then there exists an optimal Lagrange multiplier vector X* where

Vi) +> A Vg(x) =0, (B.11)
€A

>0, i€Z, (B.12)

Ngi(z*) =0, ieTUE. (B.13)

Proof. The condition of Eq. (B.11) is essentially the same as in Theorem B.5 which
stated the same necessary condition for equality constraints, while Egs. (B.12) and (B.13)
are a result of now including inequalities. The necessity of requiring non-negative La-
grange multipliers in Eq. (B.12) can be seen by considering the opposite: if A, < 0,
then as [ANZ| < n and the normals are linearly independent by assumption, it is pos-
sible to determine a vector s that is orthogonal to the constraint normals Vg;(z*) for
all inequality constraints that are active but not associated with \,, so i € A, i # p,
yet for which sTVg,(z*) < 0 ensuring s € V according to Eq. (B.10). Then by
Eq. (B.11) we can write

s'Vf(x*) =—(\) (s"Vgy(z*)) < 0.

Note that this inequality holds since both bracketed terms are themselves negative.
This gives a feasible direction in which f decreases, violating the assumption that a*
is a local minimum. We can therefore conclude that Lagrange multipliers must be

non-negative for inequality constraints.
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The condition of Eq. (B.13) is referred to as the complementary slackness condition
as it forces no more than one of g;(z*) < 0 and A} > 0 to be true. This is equivalent
to requiring that both g;(x*) and A! cannot be non-zero, or that inactive constraints
have Lagrange multipliers equal to zero. If strict complementarity holds, then exactly
one of g;(x*) < 0 and A\; > 0 is true, otherwise constraints with g;(x*) = A} = 0 may

exist and are termed weakly active. |

B.4 The Lagrangian function

Following the result of Theorem B.6 outlining the KKT first-order necessary condi-

tions, we define the Lagrangian function as

Lz, A) = f(z) + Z Aigi(x)
= f(x) + ATg(x). (B.14)

Doing so gives a very helpful interpretation of KKT conditions by expressing them in

terms of the first-order derivatives of L. The condition of Eq. (B.11) becomes

Vi(x*) + X Vg(x*) =0
— Vo L(z", A") (B.15)

and the requirement that constraints in the active set are satisfied as equalities be-

comes

g(z*) =0
= VaL(z*, \*). (B.16)

Under the assumption of LICQ, the Jacobian J = Vg(x*) is of full rank and the
Lagrange multipliers given by A are unique at the constrained optimum, so we refer
to (x*, A*) as the optimal pair. Thus, the necessary conditions for the existence of an
optimal KKT pair (x*, A*) are equivalent to requiring that the Lagrangian L(x, )
has a stationary point at (x*, A*). This correspondence underlies the fundamental

connection between constrained optimization and unconstrained minimization of a
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Lagrangian function.
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Figure B.1: Visualizations in n = 1 of objective function f(x) = z? with inequality
constraint x > 2 and the Lagrangians L(z, \) resulting from A = 2% for k = 0,...,4
after enforcing Eq. (B.13). The optimal multiplier is \* = 4. At left, the minimal
points are marked for each curve Ly(z, A). At right, the intersection is marked between
each curve L(z,\) and the line A\(2 — x). Figure 1.1 gives the analogous case for an
equality constraint.

A visual example of the correspondence between Lagrangian functions and their op-
timal points is given in Figure B.1, analogous to Figure 1.1, for the simple objective
function f(x) = z? (blue lines) and single constraint function g(x) =2 —z < 0. In

the left-most plot, the curves resulting from
L(z,A) = f(z) + Ag(x)

using various choices of Lagrange multiplier A are shown along with their associated
minimums. As the constraint is an inequality, the curves for the resulting Lagrangian
functions are truncated to visualize the effect of Eq. (B.13) given by Theorem B.6,
resulting in L(z,\) = f(z) whenever g(z) < 0. The optimal choice of Lagrange
multiplier is A* = 4 for this problem, and so the curve for Lagrangian L(x,4) (red

lines) shares its unconstrained minimum with the solution of the constrained problem
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at x = 2. In the right-most plot, lines

are additionally shown for selected values of A, representing the second half of the
Lagrangian functions defined by Eq (B.14) and geometrically shifting the curve of the
objective function so that the resulting curve shares its minimum with the solution

of the constrained problem.

The Lagrangian equations of Egs. (B.15) and (B.16) together give a system of n+ |A|
equations and unknowns, which is n+m if all constraints are active. In practice, this
system may even be solved analytically if the problem equations are known, giving
precise Lagrange multipliers and minimum x*. Often, the multipliers must instead
be approximated alongside the candidate solution. Using the Lagrangian function,
it becomes possible to give a concise description of second-order conditions on an

optimal solution ax*.

Proposition B.7 (Second-order Necessary Conditions). Given a KKT pair (x*, X*)
satisfying the conditions of Theorem B.6, if f and g are also twice continuously dif-

ferentiable, then

YV, (@ Ay = 0 (B.17)

for all y in the set
V' ={y:y"Vg(x") =0, Vie A}.

This states that for * to be a constrained optimum, it is necessary for the Hessian
of the Lagrangian to be positive semi-definite at &* with respect to the set V' C V
containing directions y that satisfy as equalities those constraints that are in the
active set. If f and the g; are additionally convex, then these necessary conditions
become sufficient conditions, and the lone optimal KKT pair corresponds to the lo-
cal minimum for the problem. However, in practice it is possible that a solution
satisfying both the first- and second-order necessary conditions will not also be a

local minimum. In order to guarantee that our solution is also a local minimum for



157

L, and thus a constrained minimum for the ICP, we can use the following proposition:

Proposition B.8 (Second-order Sufficient Condition). Given a KKT pair (x*, X*)

and with the same conditions of Proposition B.7, if additionally
y V2 L(z*, X\ )y >0 (B.18)

for all y in V', then * is a local minimizer.

This states that if the Hessian of the Lagrangian is positive-definite with respect to
the set of feasible variations for a*, then it is guaranteed to be a local constrained
minimum. Note the similarities between this sufficient condition for a constrained
optimum of ICP phrased in terms of the Lagrangian, and the second-order sufficient
conditions given in Proposition B.3 for unconstrained optimization. While any point
for which the Hessian of the Lagrangian is positive-definite will also be positive-
definite with respect to V', the reverse need not be true: a point satisfying the second-
order sufficient condition could still only be a saddle point of the Lagrangian function
L. Meeting this second-order sufficient condition through unconstrained optimization
of a Lagrangian is a primary motivator behind the augmented Lagrangian approach
or method of multipliers. There are several ways to approach its construction, but the
chief result is to construct a Lagrangian function that is augmented with a penalty
term that ensures positive curvature in a neighbourhood of the optimum. In this
way, a local minimum found through unconstrained minimization of the Lagrangian
will correspond to the constrained minimum of the ICP, due to the second-order

sufficiency condition.

B.5 Dual formulation for the augmented Lagrangian

The concept of duality comes from a more general theory for numerical optimization
[28]. For the augmented Lagrangian, it involves describing a related dual, the solutions
for which give information about (or even correspond directly with) solutions to the

primal problem. Note that this is closely related to the primal functional described
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in Section 3.1 but may be treated distinctly, so when referring to the latter case I
explicitly use the term of primal functional. Duality results are given by each of
Rockafellar [99, 100], Fletcher [42, 43], and Bertsekas [26, 27] for both convex and
non-convex problems using Lagrangian functions. This section synthesizes key points
of their results below. Given the definition of L, in either of Eq. (3.9) or Eq. (3.12),
the dual is here defined as

Yo(a) = Ly(z(a), o) (B.19)

= min L,(x, o)

with respect to a, where z(a) is again the associated KKT point « (local optimum)
for a given value of a, and L, is the augmented Lagrangian which is solved by the
KKT pair (*, a*). An important feature of the dual is that the value of a* maximizes

the function v, (a). This can be seen by noting first that
Vu(ar) = Ly(z(a), a) < Ly (z", o) (B.20)

where the inequality follows by the definition of @(a). That is, x(a) minimizes L,
across all x for this choice of a, which includes the vector &* that minimizes L.,

across all  for a*. Additionally, the inequality

(L)l < 5 (B.21)

can be shown to hold across all constraints. To see this, we refer to Eq. (3.9) and recall

that membership in the index set ¢ € Z corresponds with constraints where

U(x)]; = cuigi(x) + %Wigi(w)z

while ¢ € P corresponds with the complementary set of constraints where
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Now if ¢ € P, the inequality of Eq. (B.21) is immediately satsified by the definition
above, while on the other hand if i € Z then we have g;(z*) > % from the corre-
sponding condition of Eq. (3.9), and this also satisfies Eq. (B.21). We can therefore
write

Lo(x", o) < Ly(x*, ") = ¢, (a¥). (B.22)

By combining the inequalities of Egs. (B.20) and (B.22), we can therefore conclude
that ¢, (a) < Y, (a*) ¥V a.

The same conclusion can be reached by considering derivatives of the dual function.
To begin with, assume that all constraints are indexed by Z as given in Eq. (3.9).
Then the first-order gradient is found by expanding the dual function and taking the

derivative with respect to a as

=V (lala)) + ayla(e) + Sole(e) (el

and by applying the chain rule then collecting terms we have

= Vaa(a) - Vaf(x(a)) + gl@(a)) + o - Vaz(a) - Vag(z(a))
+ Vaz(e) - Vag(x(a)"Qg(2(e))

= Vaz(@) (Vaf(@(a)) + o Vag(a(a)) + Vag(z(a) ' Qg(x(e)))
+ g(z(a))

= V(@) (VaLu(@(a), ) + g@(@)) (B.23)

where the V operator applied to a vector throughout refers to the associated Jacobian
matrix consisting of columns of gradients. The same result arises from treating L., as
a function of two variables and applying the “multivariable” chain rule. Let [0z /0]
refer to the matrix of partial derivatives with the entry of the i-th row and j-th

column being 0x;/0c;, then

Vot (a)' = {aLw(m(a),a)] [am(a)] N [0Lw(m(a),a)] laa}

ox 15/6" o da
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which also reduces to Eq. (B.23).

A simplification for these expressions for V41, () arises from using the first-order

conditions of Theorem. B.6, since
Vaelo(x(a)) =0
and so Eq. (B.23) reduces to
Vatu(a) = g(z(a)) (B.24)

and thus each element is given by the partial derivative

Vatbo(a)]; = %Sm)

for constraints indexed by 7 € Z. By a similar argument, the partial derivative

OL,(x(a), ) —q

aOéZ' w;
applies to constraints indexed by ¢ € P, and thus

0y, ()
80%

— max g e(a)), ] (5.25)

Wy

gives the elements of the entire gradient, aligning with the conditions of Eq. (3.9).

Calculating the Hessian is slightly more involved. As we did with the gradient, assume
first that the index set P is empty. Then begin by considering the partial derivatives
of Voo from Eq. (B.24) after application of the chain rule, given by

Og(a(e)) _ 09 0x _ Ly 0u

oo T oxda U Oa (B.26)

with J the Jacobian of the constraints as in Eq. (B.2). For notational brevity, the
parameters of g are dropped in the above expression, and we will continue to do so
for functions where the parameters are understood. To solve for 2_27 we can introduce

known quantities by applying 0/0a to VL, (x(a), @) = 0 with the multivariable
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chain rule in order to get

OVayLly, OVal,dx OVl

- =0. B.2
oo or Oo * O 0 (B-27)
In particular, the partial derivative
OV gL
Y V2L, B.28
e v (B.25)

is the Hessian of the augmented Lagrangian with respect to @, and the partial deriva-
tive

OV gLy, 0
=Vzg(x)=J (B.29)

is the Jacobian of g. Taking the values of Egs. (B.28) and (B.29) and substituting
into Eq. (B.27), we have

OVgL 9 Ox
p— Lw * —_— p—
e (ViLle) 0 T J=0
which re-arranges to give
0
£ - _(ViLw)_l -J.

Using this identity together with Eq. (B.26), we can therefore write the Hessian of
the dual as

ox
2 _ g1 9%
Vive(la)=J o

=—J' (VL)' J (B.30)

To also include the case where the index set P is not empty, observe that the various

second-order partial derivatives of ¥(x) in Eq. (3.9) for i € P are given by

0*W

aOZiOZj

=0
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everywhere except when ¢ = 7, where they are equal to ;—1 Without loss of generality,
the constraint indices may be re-arranged so that the Hessian of the dual can be

written using block matrices as
V() = (B.31)

with —J*-(V2L,)~!-J corresponding to i € Z and —Q2~! toi € P. Since the Hessian
of the augmented Lagrangian is positive definite at the optimum, the Hessian of the

dual is negative, and so is maximized by a at the stationary point Vi = g(x(ar)) =

0.

Using the above, and in particular Eq. (B.24), it can be seen that the update used
in Eq. (3.6) for the method of multipliers is in fact a form of gradient ascent with
stepsize given by w. Other step sizes are possible, and Bertsekas [26] even derives an
optimal value that is expressed in terms of minimum and maximum eigenvalues of the
Hessian of the dual. The understanding of approximations for Lagrange multipliers
as being maximizing steps in the search space of a dual function also suggests alter-
native approaches for constructing a sequence of multiplier approximations intended

to converge to the optimum, such as Newton’s method.

B.5.1 Newton’s method for Lagrange multipliers

Newton’s method for calculating Lagrange multipliers applies the same approach as
described in Eq. (B.1) by minimizing the negative of the dual function —1,,(a) in
order to generate a sequence {a(k)} that approaches a*. Explicitly, the Newton step
calculates

o) = oM — (Vwa)fl (V) (B.32)
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from a given estimate a®) in order to minimize —1,(c). Combining the first- and

second-order derivatives from Egs. (B.24) and (B.30) gives the Newton step as

-1

o = a1 [17 (V2 Lufw(a®),a®) " a] gaa®)  (B33)

L g(z(@®))

=a® 4+ (JT-VIL - J)
The sequence arrived at for {a®)} as generated by this approach can then be used as
a sequence of Lagrange multipliers for L, (x, a). Also of interest is to note [43] that
(JT- V2L, J)_1 ~  for large values in €2, which reduces Eq. (B.33) to the same
update rule as in Eq. (3.6).



Appendix C

Additional figures

Additional figures are collected here for the experimental results discussed in Chap-
ter 5. Where given, regular ECDF plots are grouped together by problem and di-
mension, and arranged into pairs of rows representing the proportion of successful
f-targets plotted against the count of f-evaluations (top) and successful g-targets

plotted against the count of g-evaluations (bottom).
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Figure C.1: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for L, (x, o) with
a = af, w = 1. Bottom left: contour regions for L,(x,a) with a = a*, w = 20.
Bottom right: contour regions for L, (x, a) with a = 20a*, w = 1. The constrained
optimum is marked throughout at «* ~ [1,127.321]. Similar to Figure 5.4 but with

equal axis scaling.
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Figure C.2: Visualization in n = 2 of contour lines for the objective function f(x) =
Tz with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for ¢(x) with
w = 2. Bottom left: contour regions for ¢(x) with w = 21072, Bottom right:
contour regions for ¢(x) with w = 2 - 10%. The constrained optimum is marked
throughout at «* ~ [1,127.321]. Similar to Figure 5.5 but with equal axis scaling.
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Figure C.3: ECDF plots paired vertically by problem (indicated by in-column labels)
showing f-evals vs. f-targets (top plot of pair) and g-evals vs. g-targets (bottom plot
of pair). The axes are shared across plots for the same problem and aligned to allow
comparisons between plots for f- and g-targets.
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Figure C.4: Convergence plots showing step size o with respect to (f + g)-evals for
median runs from each of four algorithms on large B variants.
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Figure C.6: Pairs of ECDF plots showing f-evals vs. f-targets (top) and g-evals vs.
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Figure C.7: Convergence plots showing step size o with respect to (f + g)-evals for
median runs from each of four algorithms.
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and aligned to allow comparisons between plots for f- and g-targets.
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