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Abstract

Pseudocolimits are formal gluing constructions that combine objects in a category
indexed by a pseudofunctor. When the objects are categories and the domain of the
pseudofunctor is small and filtered it is known [1, Exposé 6] that the pseudocolimit
can be computed by taking the Grothendieck construction of the pseudofunctor and
inverting the class of cartesian arrows with respect to the canonical fibration. In
this thesis we present a set of conditions on an ambient category &£ for defining the
Grothendieck construction as an oplax colimit and another set of conditions on &
along with conditions on an internal category, C, in Cat(£) and a map w : W —
C, that allow us to translate the axioms for a category of (right) fractions, and
construct an internal category of (right) fractions. We combine these results in a
suitable context to compute the pseudocolimit of a small filtered diagram of internal

categories.
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Chapter 1

Introduction

The term ‘Grothendieck construction’ is used to describe a correspondence between
pseudofunctors A — Cat, and fibrations over A. For a given pseudofunctor A —
Cat the domain of the corresponding fibration is often called ‘the Grothendieck con-
struction’ (of the pseudofunctor) or the ‘category of elements.” The ‘construction’
aspect of this naming is fitting because the category of elements is the oplax colimit
of the pseudofunctor [6], which we can think of as a category constructed from the
diagram in Cat determined by the pseudofunctor. The pseudocolimit of the pseud-
ofunctor can be computed by a bit of renovation to the Grothendieck construction;
more precisely, by localizing with respect to a suitable class of arrows. When the
indexing category, A, is filtered the Grothendieck construction satisfies the Gabriel-
Zisman axioms for a (left) category of fractions [5] and the pseudocolimit is given by
a category of (left) fractions. A weaker set of axioms is given in [14] which allows for

localization with respect to a smaller class of arrows.

Having colimits in a category is important for understanding how to glue or
combine things in that category. The usual Grothendieck construction, as an oplax
colimit, is a gluing construction for categories indexed by a pseudofunctor and this
has been translated in various other settings such as (oo, 1)-cats [6], enriched cate-
gories [3], and bicategories by [14]. The geometric realization of the Grothendieck
construction for a diagram of small categories has also been studied as a homotopy
colimit by Thomason in [12] and for a diagram of quasi categories in [10]. In the
first part of this thesis we will translate the usual Grothendieck construction into
the language of internal category theory in order to compute an oplax colimit of a
small diagram of internal categories. The fibration perspective of the Grothendieck
construction has already been developed for monoidal categories [9], 2-cats and bi-
categories [4], and (oo, 1)-categories [6] as well but we focus more on the colimit

perspective because it is not possible to view the indexing category as an internal



category in general.

A different setting in which this would be useful is to describe the tom Dieck
fundamental group for a space equipped with a group action. This is a category
enriched in topological spaces that is the oplax colimit of fundamental groups of fixed
point sets of all the subgroup actions [13]. This is also useful for computing atlas
groupoids for orbifolds, which are pseudocolimits of categories internal to Top [11].
Yet another relevant setting is for double categories, which are internal categories in
Cat. Such a construction here would allow us to compute oplax colimits of category-
indexed diagrams of double categories.

To replicate these colimit constructions we need an ambient category, £, with
sufficient structure. In particular, to define an internal Grothendieck construc-
tion/category of elements for a pseudofunctor D : A% — Cat(£) we need that
£ has pullbacks along certain source and target maps of the internal categories in
the image of D, has disjoint coproducts of these pullbacks and of the objects of ob-
jects for the internal categories in the diagram, and that these commute with one
another. This allows us to construct an oplax colimit of D, by Theorem 19 which

we restate here:

Theorem (The internal Grothendieck Construction, D, as an oplax colimit). Let
E admit an internal Grothendieck construction of D : A — Cat(E), as in Defini-
tion 2.Let D denote the internal Grothendieck construction. Then for every internal
category X € Cat(€), the category of lax natural transformations D —> AX and
their modifications is isomorphic to the category of internal functors D — X and

their internal natural transformations.
D, AX], = Cat(€)(D, X)

The pullback and coproduct commutativity is an extensivity property and is relied
on heavily to define the internal category structure and prove the required properties
are satisfied and makes the construction unlikely to work for arbitrary diagrams of
categories internal to non-extensive categories such as the category of vector spaces.
The internal category of fractions requires a special class of epimorphisms in the
ambient category to locally witness internalized versions of category of fractions

axioms in the sense of admitting lifts that define local sections. Part of what makes
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these epimorphisms special is that the local data they witness (on their codomains)
can be combined to give global definitions of structure on their codomains provided
the pieces of local data satisfy a kind of compatibility /descent condition.

In the contexts we describe we show that the constructions used and the result
stated in [1] can be translated into the language of internal categories. The class
of epimorphisms we require for our internal category of fractions are coequalizers of
their kernel pairs, stable under pullback, and closed under composition. Such a class
always exists in any category, namely the identity arrows, but it is not always possible
to get an internal fractions construction with this class. The Internal Fractions
Axioms are described in Definition 34 in terms of certain lifts of these epimorphisms
and a section of an induced target structure map. Asking for sections in settings
where continuity is important can be a strong condition. For example, when working
with an arbitrary internal category in Top asking for continuous global sections is
generally too much when the axiom of choice is being used, but there are nice classes
of effective epimorphisms given by open surjections or étale surjections which give
us local sections instead of global sections. In Section 5.1 we show that the internal
Grothendieck construction, when it exists in a suitable context, satisfies the Internal
Fractions Axioms with respect to the object representing the canonical cleavage of
the cartesian arrows by global sections, meaning it only requires identities for the
class of epimorphisms in Definition 33. We prove this in the main theorem of this

thesis which we restate here:

Theorem. Let D : AP — Cat (&) be a pseudofunctor for which € admits an internal
Grothendieck construction 2 and let w : W — Dy be the object of a canonical cleavage
of the internal Grothendieck construction as defined in Section 5.1.1. If the pair
(D, W) satisfies the Internal Fractions Azioms in Definition 34, then for any X in

Cat(&) there is an isomorphism

[D, AX],s = [DW ], X]
between the category of pseudonatural transformations D — AX (and their modi-
fications) and the category of internal functors D[W 1] — X,

We begin in Chapter 2 with a few words on notation and internal categories.

In Chapter 3 we present a context, £, in which we define an internal Grothendieck
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construction for a pseudofunctor A — £. We then define the internal Grothendieck
construction, I, and show it is a lax colimit. The context for an internal (right)
category of fractions and its definition are given in Chapter 4 and an isomorphism of
categories that describes the universal property of the internal localization is proven
at the end in Section 4.6. Chapter 5 describes a setting in which we can compute
the pseudocolimit of D as the localization of the internal Grothendieck construction

with respect to the canonical cleavage of the cartesian arrows object, w : W — Dy.



Chapter 2
Notation and A Word on Internal Categories

Composition is written diagrammatically, so that ‘f followed by ¢’ is written by
juxtaposition as ‘fg.” Internal categories are denoted with blackboard bold font,
C,D, X, and we use A to denote the indexing category for pseudofunctors we will
consider. We assume A is small for Chapter 3 and will assume it is also cofiltered in
Chapter 5.

The main point of this thesis is to take a technique for computing pseudocolimits
of small filtered diagrams of categories, give an internal category theoretic version
of it, and show that it satisfies the universal property of a pseudocolimit of a small
filtered diagram of internal categories. Internal categories are defined in Section
B2.3 in [7] when working in an ambient category with all pullbacks. Some of the
ambient categories we wish to consider in future applications of this thesis, such as
the category of smooth manifolds, do not have all pullbacks however. In this thesis,
we do note assume the existence of all pullbacks in an ambient category, rather
we make the existence of the necessary pullbacks and structure maps part of the

definition of an internal category.

Definition 1. An internal category, C in &£, consists of the following data.
e An object of objects, Cy € &.
e An object of arrows, C; € &,.

e Structure maps

C, —= Cy — G
t
in & such that e is a common section of s and t.

e The iterated pullbacks of composable chains of arrows, C,, = C; ,x, ... ;x,C

in 51.



e A composition structure map ¢ : Cy — C; such that the squares

(CQ —c (Cl CQ —c Cl
I 1T
(Cl — (Cl Cl f) Cl

commute in £, along with the associativity diagram,

1x
Cy —= C,

(CQ—C)Cl

and the identity law diagrams

1c, t
(1c, te)

> Cy <
Cy

(selcy)

(Cl (Cl



Chapter 3
Internal Grothendieck Construction

In this chapter we define (the category of elements for) the (internal) Grothendieck
construction of a pseudofunctor D : A — Cat(€) where £ is an extensive category
and show that it is the oplax colimit of D. Section 3.1 defines the internal category
structure of the (internal) Grothendieck construction, D, of D. Section 3.2 proves the
associativity and identity laws for composition and shows it is an internal category.
Section 3.3 shows the existence of a canonical lax natural transformation from D —-
AD, and then proves the universal properties that show D is the oplax colimit of
D. We often consider how the usual proofs and definitions look in the case £ = Set
to help our readers follow the internalized definitions and results for an arbitrary

extensive category £.

3.1 Internal Category Structure

3.1.1 Classical

Let A be a small category and let Cat(Set) denote the 2-category of small categories,
strict functors, and natural transformations. This is a fully faithful subcategory of

Cat so for every pseudofunctor
A —2— Cat(Set) ,

the Grothendieck construction of D is the strict 2-pullback of D along the canonical

projection, 7, from the lax-pointed 2-category of categories, Cat, ; [7].

IF E— Cat*’g

ot

AT>Cat

The objects of [ D are pairs (4,a), where A € Ay and a € (DA)y. The morphisms
are pairs (¢, f) : (4,a) — (B,b) where p : A — Bisanarrowin Aand f : ¢(f)(a) —

7
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bis an arrow in D(B). Let 04 : D(14) = 1p(a) and 6y : D(¢¥) = D(¢)D(v)
denote the identity and composition natural isomorphisms associated to A € Ay and
an arbitrary composable pair ¢, in A; respectively. The identity morphisms in D
are the pairs (14,944) @ (A,a) = (A, a) where 64, € is the a-indexed component
the natural transformaiton d4. Two morphisms (¢, f), (1.g) are composable when
cod(D(¥)1(f)) = dom(g) in D(C). Then

f:D(e)ola) = b, g:D)(b) = d

and the following diagram

D()o (D(0)(0))) € D(it)ola)
D<w)1<f>l :
D(4)o(b) g > d

defines the composite

(0, /)W, 9) = (o, 64, D(¥)1(f)g)-
The so-called category of elements, [ D is an oplax colimit of D in Cat [6]. Next we

translate this into the language of internal categories.

3.1.2 Internal

Let D : A — Cat(€) be a pseudofunctor. In this section we give a suitable context,
E, for defining an internal category of elements, D, in Cat(&) for a pseudofunctor,
A — Cat(&), that is inspired by the usual category of elements. The context given
in the following definition can be thought of as a kind of ‘local extensivity’ condition

on &£ with respect to the pseudofunctor D.
Definition 2. We say £ admits an internal Grothendieck construction of D : A —
Cat (&) if

1. for every ¢ : A — B in A, the pullback

D, —*— D(B),

“°l l
—— D(B



exists in £.

. For any composable chain of maps ¢; : A; = A;1 in A, where 1 < i < n for

an arbitrary n € N, the pullback

D%;--wn - D@Dl mt ¥y mt X m D‘P"+1

exists in £.

. Let Ay denote the objects of A and let A, denote the composable paths of
length n > 1 in A. The coproducts

Dy = [] D(A)

AeAy

and

Drym) = H Dg.;..om

(pi)i €A

exist for all n > 1 and are disjoint, with coprojections:

: D

Lo som -

— Dy

P15--3Pn

. The coproducts, D), are stable under pullbacks of source and target in the

sense that

DH(”) gﬂ)l tXSDI (Xg e tXSID)l :Dn

where s,t : D; — Dy are uniquely induced by the source and target maps.

t
]D)l """"""""" > ]D)O
D
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These conditions allow us to define the objects and structure maps of our internal
Grothendieck construction, D. The last condition above should be thought of as an
extensivity condition that allows us to to define the composition structure and prove
D is an internal category.

For the rest of this section we will assume that £ admits an internal Grothendieck
construction.

Define the object of objects to be

Dy := [ D(A)o.

AcAp

Remark 3. When £ = Set, we can think of the elements of Dy as elements a €
D(A), for each A € Ay. This implies that every element of Dy can be represented
as a pair (A, a) where A € Ay and a € D(A)o.

For any ¢ : A — B in Ay, we have the pullback

D, —*— D(B),

ﬂol l

D(A)o 57 P(Bo

which is used to define the object of arrows:

Remark 4. When £ = Set an arbitrary element of D is an element of D, for
some unique ¢ € A;. In this case elements of D, are pairs (z, f) where x € D(A)o,
f € D(B); and D(¢)o(x) = s(f). In this way every element of ID; can be represented
by a pair (¢, f) where f: D(¢)(x) = y in D(B).

To define source and target maps for D, it suffices to define them on the components,
D,, for each ¢ € A;. Let

S, by 1 Dy — Dy

be defined as the composites on the top and left in the following diagram.
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to

D, —"— D(B), —— D(B)y 2= Dy
_
ﬂol ls
Sp D(A)D m} D(B)O

LA

Dy

These induce the source and target maps s,t : D; — Dy by the universal property of

the coproduct ;. Their pullback defines the object of composable arrows, Ds.

t
]D)l """"""""" > ]D(]
Lo /
©
D,

For any ¢,v € A; we also pull ¢, back along s, and denote the object D.;. If ¢
and 1) are not composable in A then s, and ¢, land in different components of Dj.

In that case D, is trivial because coproducts are disjoint in &.

Using the universal property of the coproduct Dy we describe composition in D by
defining composition on the cofibers D,,.,. Suppose ¢ € A(A, B) and ¢ € A(B,C).
Then oy € A(A,C) and the outsides of the following diagrams commute

Dgy ——— D, —— D(B),

L Chi.
pol ..~.___‘_5"<<p,w> lD(lb)l
A

D, D(C)y —2— D(C), (%)

of e

D(A)y — D(C)1 —— D(O)s
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and

Deo;w L Dw st
. Czpw \
|
D, D(C)y —2— D(C); - (%)
o[ s

D(B)y 50 D(C) — D(C)y

To see the first diagram commutes we can check directly that

Pomodyut = pomoD()oD(¥)o (Def. 0y4)
= pom1sD(1))o (Def. D)
= pom1 D(¢)15 (D(1) an internal functor )

and to see the second square commutes it suffices to show that the canonical monic

Lo = D(C)g — Dy coequalizes both sides of the diagram.

pom D(¢)itie = = pomitD(¢)oto
= PoT1tLB Xy
= PotyXy
= P15y Xy
= P1TolB Xy
= p1moD(Y)otc

= p1mSlc

Since ¢ is monic, we can conclude that the outer squares above commute and induce
the maps ¢, and ¢, by diagrams (xx) and (+x). Let goi, qi2 : D(C)3 = D(C)s
denote the pullback projections of D(C)s. Notice that

Cfpnﬁqo = Cg;(w;w)ql

so there is a unique map
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5(<P¢)
wa

2<—D 3—>D

which we can postcompose with triple-composition in D(C') (given by associativity).

Notice that

PomoD(p1)o = Py, S (Def. d,.4)
= Chi(pw) 405 (Def. o))
= C5. 0901005 (Def. ¢y
= Ch. i CS (source-composite law in D(C'))

so there exists a unique ‘cofiber-wise composition’ map as shown in the following

diagram.

D,y —— D(C);

K lo_m(%)

Define composition in D as the universal map out of the coproduct Dy induced by

the family of maps {cyptep F(pw)cds-

The identity structure map

€:D0—)D1

is defined as the universal map out of the coproduct Dy induced by a family of unique

maps €4
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| [

D(A)(] T) DlA

where €4 = (1p(a),,04) is induced by the components d4 : D(A)y — D(A); of the
natural isomorphism D(14) = 1p4) and the identity map 1p(a),. This is well-defined

because

5,48 = D(lA)O

by definition of 9 4:

DlA L D(A)l

ﬁol l

D(A)o m D(A)o

The following commuting diagram shows that the source and target maps of I are

compatible with these identity maps.

DO—E>D1

N

NS
LA iy /N
Dy

D(AO —> DlA

~,

DO—E>D1

N

LA iy /N
Dy

LA

D(A 0 —> DIA

™~ I

LA
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The top squares commute by definition of €, the bottom squares commute trivially,
and the squares on the right commute by definition of s;, and ¢;, respectively. The
left front triangle commutes by definition of €4 and the right front triangle commutes

by definition of d4. More precisely, on the left we have

6A7T1t = (5At = 1D(A)0'

3.2 Associativity and Identity Laws

3.2.1 Classical

When £ = Set, the identity arrows of the usual Grothendieck construction are pairs
(14,04,) for each object (A, a) where A € A and a € D(A)y. The coherence law be-
tween the natural isomorphisms, 61 ,.,, 04 and d,1,, 0 respectively, says that pasting
the 2-cells 0;,,, and d4 and the 2-cells .1, and dp is equal to 1p(, respectively.

This means that at the level of components we have a commuting diagram

SRR ¢)D(1p)) (a)
51430, a \ 63 D(¢)(a)
(D(14)D (a) —5Aa> D(p)(a)

in D(B) for each a € D(A)y. The upper and lower triangles are necessary for proving
the right and left identity laws for the Grothendieck construction respectively. For
example, the lower coherence precisely cancels the isomorphisms we pick up in our

definitions of identity and composition in order for the left identity law to hold.

(14, 040)(2, f) = (La®, 01,4100 D(9) (0a,0) f) = (9, f)

The associativity law relies on the other coherence law for D that gives the
following commutating squares for every composable triple, ¢, 1, and ~, involving

the components
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%ww,al l‘swmmw)(a)) :

D(¢6)D(1)(a) o5 D) D) D(3)(a)

3.2.2 Internal

Now we give internal translations of the proofs of the associativity and identity laws
for the Grothendieck construction. The following proposition states that the identity

map € : D; — Dy of the internal Grothendieck construction satisfies the identity laws.

Proposition 5 (Identity Laws for D). Given the following pullbacks,

Dl X Do DO —_— DQ

_
Po
> DO

D() XDy Dl a > Dl
I

let {po€,p1) and {po,p1€) be the universal maps induced by the pairs of pullback pro-

jections with € postcomposed respectively. Then the following diagram commutes.

Dy xp, D1 Poemz D, gpo p1€) Dy xp, Do

o AT

Proof. For each A € Ay and each ¢ € A, we have the following commuting diagram
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pOl r - ’
Do xXp, Dy —2 Dy —— Do
D, : Dy
]D)l DLP 7r1t>< D(B)O _> D(B)O - DlB

r r r

D(A)O 1><7I'0 D@ pl ’ DS@ 1t > D(‘B)O
R
. .
D(A)o D(A),
leA
Dy,

where the dotted arrows are all coproduct monos by stability of coproducts under
pullback. Let (poea,p1) and (p1,poea) be universal maps out of Dy ,., and Dy,
induced by the pairs poea, p1 and pg, p1ep respectively. We have a similar diagrams

for each of the triangles in the proposition.

poemm)
D,
AP
\ \L:IA ¥

and so it suffices to show the component triangles commute. Each case similarly

D(A)o Xp(a

follows by the universal property of the pullback D, so we only show the proof for
the diagram above. By the pullback square defining D(A)o X p(a), D, above we have
that

poD(@)o = plﬁoD(@)o = P1718.

This induces the unique map in the following commuting diagram.
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It suffices to check that plugging in (poea,p1)ci,;, and p; as the dotted arrow both

make the triangles above commute. By definition of D(A)y X pa), D, we have that

P17To = Do

and we tautologically know p;m; = pym so we only need to check what happens

when postcomposing (po€a, p1)ci . With my and 7. First notice that

(€4, 1p,)C1u0Tota = (€4, 1D,)C1 405 (Def : s,)
= (€4, 1p,)PosS1, (Lemma 81)
= POEAS1, (Def : (ea,1p,))
= Po€AToLA (Def : s,)
= Pola (Def : €4)

implies that

<p0€A7 p1>01A;¢7T0 = Do

since ¢4 is monic. Now by definition of ep

sept = s

and this induces a unique map (seg, 1)D(B); — D(B), which factors uniquely as
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(sep,1) = (s,1)(ep,1).

Recall that composition in D is defined cofiber-wise and is in part induced by com-
position in the internal category associated to the codomain of a composable pair in
A. It’s reasonable to think that the family of composable pairs of arrows in D(B)

indexed by the composite (poea, p1) should simplify in terms of identity maps,

/
ClA;SD
ep, at the internal level. More precisely, we claim that

<p06A7p1>C/1A;(p = P11 <86B7 1)

and for this we use the universal property of the pullback D(B),. By pasting com-

muting squares we have that

P1

/\

D(A)O XD(A)) D‘p Dgo

T (poea,p1) P
T
-

Po ‘DlA?‘P

. /
ClA;w

D(A), ™ D(B); —*— D(B),

commutes. Now

p17T1<5€B, 1>Q1 = P17

and
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mmi(sep, 1)qo = p1misep (Def (sep, 1))
= pmoD(p)oen (Def D)
= poD(¢)oen (Def D(A)o X p(ay, D)
= poeaD(p); ((internal) functoriality)
= poeami D(p) (Def €4)

so by uniqueness we have that

<]90€A7P1>C/1A;¢ = pimi(sep, 1).
This allows us to consider the following cone

P1
D(A)o X pa, D@/\ D

T (poeasp1)

»

po I

51Aw>

which is construcucted by pasting commuting squares and triangles. Notice that

(P0€A; P1)C5 11 400 = (D001 4305 POOAD(P) 1, P17T1)

where the left and right components can be seen in the commuting diagram above

and the middle component is verified by checking that
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(Po€4s P1)C5 (145001 = (Do, P1)Pom1 D ()1 = (Po€a, P1)cy 0 00-

In fact

<p0€Aap1>Po7T1D(90)1 = pOGAﬂlD(SO)l = p05AD(<P)1

shows what the middle component must be in the composable triple. After forming
the composite of this triple in D(B) we should have the coherence isomorphisms
canceling by the coherence law for ¢;,,, and 04, and we formalize this internally
by using associativity in D(B) first along with the coherence law for the structure

isomorphisms of D that say

(01450, 04D(p)1)c = eaD(p)1

and

<P051A,¢7PO5AD(90)1>C7 p17T1>C
Po <51A ey 5AD( )1>C,p17T1>C

pOeAD( )17p17T1

<P0(51A;¢7 5AD(90)1,1017T1>

c

)
= POD( )0€B,p17T1>C

= (mmoD(p)oes, p171)c (Def. D(A)o X D(A)o D,)

= (p1m1sep, pim1)C

o~ o~ o~ o~~~

and now we can put our calculations above together to see that

(Po€a; P1)C1 4301 = (P0€4; P1)Ch1 4,0C (Def: ¢1,:)
= <p051A;¢7P17T1€B,p17T1>C (above)

= P17 (above)
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and by the universal property of D, we can conclude

<p0€A7p1>ClA;go = P1-
O]

To see that D is an internal category in £ with the structure defined above it only
remains to show that composition is associative. This proof is long and technical,
follows by a similar pattern to the proof for the identity laws, and ultimately relies on
proving associativity on the cofibers of the composable triples coproduct and using

the universal property of coproducts.
Proposition 6. Composition in D is associative.

Proof. By extensivity of &£ it suffices to show that cofiber composition is associative
and this is shown using several lemmas along with the universal property of each
cofiber of ;. A complete proof can be seen in the appendix, precisely in Proposi-

tion 85. [
This brings us to the main theorem of this section.

Theorem 7 (The Internal Category D). The objects, (D, D), along with the struc-
ture maps s,t : Dy — Dy and ¢ : Dy — Dy defined above form an internal category
in &.

Proof. The required objects, structure maps, and pullbacks exist by definition of
& admitting an internal Grothendieck construction. The associativity and identity

laws follow from Propositions 6 and 5. ]

3.3 Internal Grothendieck Construction as an Oplax Colimit

In Sections 3.3.1 and A.3 we define the 1-cells and 2-cells of a canonical lax natural

transformation

{:D = AD

respectively. In Section 3.3.3 we prove that a lax transformation D — AX
corresponds uniquely to an internal functor D — X. Section 3.3.4 shows modifica-

tions of lax transformations D =— AX correspond uniquely to internal natural
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transformations of internal functors D — X. Section 3.3.5 combines these results
with functoriality to give an equivalence of categories that establishes ID as the oplax

colimit of D.

3.3.1 Canonical Transformation 1-cells
Classical

For a diagram of small categories D : A — Cat(Set), for each A € A there is a
functor £4 : D(A) — D. On an arbitrary object a € D(A)y, it is defined as

la(a) = (A, a).

For an arrow f € D(A)(a,b), it is defined as

Ca(f) = (1a,040f)
because $(044f) = 5(04,4) = D(14)(a).

5Aa

D(14)(a) —== a

[~=3

S

b

Identities are preserved by the identity law in A in the left component along with
coherence in the right component, for any ¢ : A — B in A and any f : D(p)(a) — b
in D(B)l

KA( )( ) 1Aa6Aa)(§07f)
14, 01400 D(¢)(044) f) Def.

o, f) Coherence

©lp, 0p1,aD(18)(f)0Bs) Naturality
¢, f)(1B,0B4) Def.

(
= (
= (
= (1B, 641 5.a0B,D(¢)(a) f Coherence
= (
= (
= (. /)ls(Le).
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Similarly, composition is preserved in the left component because it is defined as
composition in A, and in the right component we only need naturality of the identity

coherence isomorphism. For any f:a — band g: b — cin D(A);, we have that

Ca(f)la(g) = (1a,044f)(La,049) Def.
= (1ala,01,4514,0D(1a)(04,0f)04,9) Def.
= (14,01 4;14,a0(14)(64) D(14)(f)dB29) Functoriality
= (14, 01414,0D(14)(4)04,0f9) Naturality d4
= (14, 614:14,004,0(12)(@04,af9) Naturalityd 4
= (14,04.4f9) Coherence
= (La)(f9) Def.

Internal

The definitions and proofs above can be internalized within an arbitrary extensive

category &£ as follows. For each A € Ay, notice that

S5At = SlD(A)o =S5 = 1D(A)13

so there exists a unique map (séa, 1p(ay,) : D(A)1 = D(A); in £. Now

(804, 1p(ay,)cs = (804, 1p(a),)q0s = 645 = sD(14)o

induces a unique map (£4)} := (s, (504, 1pay,)c) which we can use to define {4 =

((€a)o, (€a)):

D(A), —A0=a DAy, —“ L p
LA

Lemma 8. Identities are preserved by £4. That is, the diagram

D(A)y —= D(A

(fA)ol l(ZA)l

Doﬁﬂ)l
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commutes in E.

Proof. First compute

ea(la)imo = eas = lp(a,

and

ea(la)im = ea(sda, 1p(ay,)c
= <€A35A,€A1D(A)1>C
= <(5A,6A>C

by the identity law in D(A) and then see

ea(la)] = (1p(ay, 0a) = €a,

by definition of €4. Now post-composing with ¢;, and using the equality above along

with the definitions of €4 and € gives

eala)r = ea(la)itr, = €at1, = La€
as required. O

Due to extensivity and our definition of D involving coproducts, in order to prove
composition is preserved by ¢4 we need to prove that composition is preserved by ¢,

at the level of cofibers. This is done in Lemma 86 in the appendix.
Lemma 9. For each A € Ay, composition is preserved by €. That is, the diagram

{(@0(£a)1,q1 (h)l)l l(@A)l

Dgﬁﬂ)l

commutes in E.
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Proof. First notice that

(q0(€a) a1 (La)1)t1,1000 = (Q0(La)1,q1(€a) 1) Dot 4 Def. Dy,.1,
= qo(La)1t1,
= qo(la) Def.
and

(@0(La)1q1(Ca) )t aap1 = (@o(€a)1,q1(€a)1)p101,
=q (gA)llblA
=q1 (fA)l

so by the universal property of D,

<QO(€A)1 1 (gA)1> = <QO(£A)/17Q1 (€A>/1>L1A;1A'

Use the equation above along with Lemma 86,

= <Q0(€A),1aQ1(€A)/1>ClA;1AL1A Def. ¢
i, Lemma 86

la)y Def. (€4);

to see the square in question commutes. O]
The following proposition is the main result of this subsection.

Proposition 10. For each A € Ay, {4 : D(A) — D is an internal functor.

Proof. Tt preserves identities by Lemma 8 and it preserves composition by Lemma 9.
O
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3.3.2 2-cells of Canonical Lax Transformation
Classical

When £ = Set, for each ¢ € A(A, B) the natural transformation ¢, is defined with

components

Uy = (0, 1D(p)(a))

such that for any f:a — bin D(A), the square

1 a
@ T2 D))
(1A:5A,af)l l(lBa(SB,D((;)(a)D(‘p)(f))
b ——— D(p)(b)

(RO

commutes. This calculation looks like

1A7 5.4 af)(%lD b))
(;051A<pa (5Aaf)1D b))

(
= (
= (0:01430,0D(0)(4,0) D) ([)) Functoriality
= (¢18,0p:15.098.0(2) (@) D () (f)) Coherence
(9013, 15,0 D(18) (1p(0)(0))98,0(0)@ D (@) (f)) Functoriality
= (¢, Lp(e)@) (18, 0B,0(p)(a )D(so)(f)) Def.

and can all be internalized to an arbitrary extensive category £. Note that the class
of cartesian arrows in the usual Grothendieck contruction are pairs (¢, f) : (4,a) —
(B,b) such that f is an isomorphism. The components of ¢, are a special subclass
of these which are actually a set when A is small and these are typically called the

canonical cleavage of the cartesian arrows.

Internal

Define the internal natural transformation ¢, : {4 = D(¢){p as the composite
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(1p(ayy-DL(p)oer)

D(A)o > Dy
x [
D,
and we can immediately check
lys = (1p(aye:D(p)oen)ies
= <1D(A)0>D(90)063>7TOLA Def. Sy
= Ipayeta
= (L4)o
and
g@t = <1D(A)07D((p)063>bgot
= <1D(A)07D(90)06B>771UB Def. t,
= D(g&)geBtLB
= D(¥)olp(B)ts] Def. ep
= D(¢)o(!B)o Def. (g
= (D(SD)EB)O Functoriality.

This shows us that /., is well-defined in terms of its source and target. Now we
need to check that it satisfies the naturality square. This is done in the proof of the
following proposition as a big calculation that involves manipulating pairing maps of
pullbacks. References to a few side calculations appearing as lemmas in Section A.3
of the appendix are included on the side along with references to definitions, internal

category structure laws, functoriality, and coherences.

Proposition 11 ((Internal) Naturality of ¢,). For each ¢ : A — B, the map {, :
D(A); — Dy defines an internal natural transformation, {4 = D(p)lp in the

sense that the diagram,



commutes in E.

D(A)l Dy
<(4A)1¢€v>l lc
Dy ———— Dy

29



Proof.

((Ca)r, tly)c

= ((€a)itr, » t{1p(aye, D(@)oes)ip)c

= ((€a)1 5 t(1p(aye, D(®)oeB))t1450C Lemma 87
= ((€a)} , t{1p(aye, D(©)oeB)C1 a0ty Def. ¢
= (s, (801430, 864D ()1, D(0)1)C)1y Lemma 89
= (s, ({0141, 0aD(@)1)c, D(p)1)c)iy Assoc.
= (s, (5(0p1,, D(®)odB)c, D(p)1)c)ty Coherence.
= (s, (0451, sD(9)od, D(p)1)c)ty Assoc.
= (s, (04515, sD()o(D(1p)o, 0)p1, D(@)1)c)ty

= (s, (800115, 8D(@)o{D(18)0: I5){poen; p1)c, D(p)1)c)ty Id.-Law
= (5, (804515, 5D(p)o(D(1B)oen, d5)c, D(p)1)c)ty

= (s, (0415, sD(p)olesD(1p)1,05)c, D()1)c)i, Func’y D(1p)
= (s, (8045155 8D(@)oesD(1p)1, (sD(¢)odn, D(p)1)c)e)i, Assoc.
= (s, (8045155 5D(@)oesD(1p)1, (D(p)1505, D(p)1)c)e)i, Def. D()
= (s, (804515, 5D(@)oesD(1p)1, D()1(s0p; Lp(B),)C)C)lyp Factor
= (s, (0415, sD(p)oesD(1p)1, D()1(¢p)1m1)C)te Detf. (¢5)}
= (s{Lp(ay,, eaD(p)1)  (sD(p)o. D(9)1(Cp)171))Coitpty Lemma 91
= (s{Lp(aye, eaD(p)1) » (D(p)18, D(9)1(Cp)171))Cpiapty Def. D(p)
= (s(1p(ay: eaD(@)1) s D(@)1{s, (lB)im1))Coiple Factor
= (s{Lpay, eaD(p)1) . D(#)1(lB)1)cppty Uniqueness
= (s(1p(ay: eaD(@)1) . D(0)(€p)1)tgnsc Def. ¢
= (s(Lp(ayo, €aD(@)1)ty » D(9)1(lB)1t1,)c Lemma92
= (sly, D(¢)1(Cp)1) Def. £y, (€)1
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3.3.3 Universal Property for 1-cells
Classical

Suppose £ = Set and v : D = AX is a lax natural transformation. That is, there

are functors

Z'AD(A)—>X

for each A € Ay and natural transformations

T, x4 — D(p)rp

for each ¢ : A — B in A that are coherent with respect to the pseudofunctor’s
structure isomorphisms. More concretely, for each a € D(A)q and each composable

v, € A where A = dom(p) we have

Tira = Ta000) o Tepatc(Oppa) = Tpay,D(g)(a):

Then we can define a functor  : D — X on an object (A,a) in D as

0 (A a)) =24 ((A,0))

and on a morphism (¢, f) : (4,a) — (B,b) in D as

0((¢.f) = 2p0rB(f).

Identities are preserved by this assignment because the diagram
2405 04,0)=2a(la)=Ls , (a)

TN

£a(G31) ra(Gag)
za(a) —3 24(D(1a)(a)) =23 24(a)
0((14,64,a))

commutes in X and composition is preserved by the following commuting diagram

in X.
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zo (D(gy)(a))

Toip,a

/

a)) —2POD o (D(9)D(1)) (a))
zc (D) (f))
)

The top square commutes by coherence, the triangles on the left commute by defi-
nition of ¢, the middle square commutes by naturality of z,, and by functoriality of

rc we know the bottom right triangle commutes so we can see

0((0, )0V, 9)) = Top.atc(Opw.a)Te(D()(f)g) Def.
= Zyyp.ac (0o D(V)(f)9) Functoriality ¢
= 0(, 5,10 D) ()9)) De. 0

=0((p, ) (¥, 9))-
Notice that
0(la(a)) = 0((A, a)) = za(a)

and

0(0a(f)) = 0((14,04,1))
- $1A,axA(5A,af)
= 2404 )7a(0a0f) Coherence

= 2404 0aaf) Functoriality

xa(f) Functoriality
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so {40 = x4 for each A in A. Moreover, for any functor w : D — X and any
¢:A— Bin A one can get a natural transformation

Wy law = D(p)lpw

by whiskering. Componentwise this amounts to defining

We.q = wW(lyq).

Functoriality of w makes w, coherent with respect to composition in A,

Wepa = W(lpyp.a)
= Wlyaly.p(o)0)lc (0 s a))
= W(ly.a)w(ly, D)) (o 0k )

= Wy,aWy,D(g)(@) ((Low) (6pp,a))

and with respect to identities in A

Wiga = w(l40) = 0(La(04,)) = (Law)(d,)-

The assignments above are inverses to one another. On one hand if we start with
a family of natural transformations {z, : x4 = D(¢)Tp}eca(a,p), consider the
induced functor € and its induced lax natural transformation. For each ¢ : A — B

in A, the natural transformation

0, Law = D(p)lpw

has precisely the same components as the natural transformation z, from the family

we started with since {4w = x4 for each A in A.

Opa = 0(lypa) = 0((0, 1D(o)(@)) = TpaB(1D(p)(@) = Tpa

Now if we start with a functor w : D — X, get the natural transformations w,, :
law = D(p)lpw, and then let 6, : D — X be the induced functor, we have that
for each (A,a) € D(A),
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0., ((4; a)) = (Caw)((4; a)) = (w(la(a)) = w((4; a))

as well as

0. ((¢. f)) = wy,a (Lpw)(f))
= w(lya) (Lpw)(f))
=w (lpalB(f))
(: 1np)@) (18, 98, Do) @) )
#18, 0015, D(18) (10(g)(@))08,D(p)(@) /)

(
(0, 00115.00B.0(0) (@) f))
(

where the last equality is by coherence. This shows that 6, = w and it follows that

the assignments

{zp :24 = D(p)xBlpcaan — (0:D—= X)

and

(W:D— X) = {w,: baw = D(p)lpw}ocaan)

are inverses of one another. In particular, every functor D — X corresponds uniquely

to a lax natural transformation D = AX.

Internal

Let € be an extensive category and let X be an arbitary internal category in £ with
{4 : D(A) — D} an Ap-indexed family of internal functors and {z, : 24 =
D(p)zp} an Aj-indexed family of internal natural transformations that satisfy the

following (internalized) coherences with respect to the pseudofunctor isomorphisms

(1,,0a(za)1)c=ea(za) , (T oy, OppTo)Cc = (Ty, D(p)oTy)c.
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Define 6y to be uniquely induced by the maps {za}aca,

and define #; to be uniquely induced by the family of composites

D, s X

L(p C -

X

—_—
¥ (mozp,mi(zB)1)

on each component. The following lemma shows 6 = (6, 01) preserves identities and

will be used later to conclude 6 is an internal functor.
Lemma 12. The assignment (0, 0;) : D — X preserves identities.

Proof. By the universal property of the coproduct, Dy, it suffices to see the following

diagram commutes.

Dy /—\XO e 4¥,

.............................. >

. (za)o (a1 (za)o
A c
(z14.04(za)
D(A) —> D(A //\; X
( 0 (1p(a)y-04) A (mox1 4 ,m1(zA)1) 2
LA c
LlA
N2 . 91 N2
5 ID)I % 1

The top left two squares commute by definition of 6, and e. They show that the
composite fpe is uniquely induced by the family of maps {ea(x4)1}aea,- The other

two squares on the top commute by functoriality of x4 and coherence. In the middle
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on the left we have the source-identity coherence in D(A), and a short calculation

on the right using the universal property of X, shows that

<x1A’5A(xA)1> = <1D(A)075A><7T01‘1A7771(17A)1>-

Recall that e4 := (1p(A)g,d4) to see that the bottom left square commutes by
definition of € and the bottom right square commutes by definition of #,. Together
they show that ef; is uniquely induced by {€4(mot1,, Ta(z4)1)C}ae4,- Commutativity

above shows

ea(motsy, ma(za)i)e = eas(x1,,0a(za)1)c =ea(ra)

and therefore

601 = 006

by uniqueness. O

Lemma 13. The assignment (0y,0;) : D — X preserves composition.

Proof. By definition of composition in D and the map 6, the composite cf; : Dy —
X is uniquely induced by the family of maps ¢,y (T2 4y, m1(2¢)1)c, where ¢ : A — B

and 1 : B — C are composable morphisms in A.

By the universal property of the coproduct I it suffices to show that

C¢;¢<W2$@w,ﬂ1($c)1>c = <p0<77037¢,7T1(ZCB)1> ) p1<7709€w,7T1($o)1)>C

so that the middle pentagon (disguised as a triangle) in the diagram
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[)) € 130) PR LU y X,
Lpsap Loy c
D,. > D > X

:‘f’w Cosep ey <7r0$npw,7r1(mc)1> 2
(po(mozp,m1(zB)1) , P1(ToTy,m1(ZC)1))
Lo Xs ¢
C
Do v s X s X
2 (pob1,p161) 2 ¢ !

commutes. The remaining squares and triangle in the diagram above commute by
definition or by the identity law for composition in £. Let (550;_1;) : D(A)y — D(C)
denote the ‘family of inverse coherence isomorphisms’ associated to ¢, . In partic-

ular,

<5¢ 1p1)7 o) = D(p)oD(¢)oec

Coup (Mo iy, m(TC)1)C

= (pomoZy, PomoD ()0, p07To5;T¢1)(370)17 P70 (TC)1,
pom D(¥)1(zc)1, pimi(ze)r)e

= (poToZy, PoToD(p)ozy, pomoD(¢)oD(¥)o(zc)oe,
pomiD(V)1(ze)1, pimi(ze))c

= (pomozy, PomoD(P)oy, pomiD(Y)1(zc)r, prmi(ze)i)e

(poﬂoi%, PoT18Ty poﬂlD(@D)l(l"c)b p17T1(9CC)1>C Id. Law
= (poToZy, Pom1(TB)1 , PomitTy, P171(xC)1)C Naturality x,
<P07To% , pom1(7B)1, P1ToZyp, pimi(ze)r)c Def. Dy
= ((po(moxyp, m(xB)1)c, p1(moTy, m(Tc)1)c)c Assoc. & Factor
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Proposition 14. The assignment 0 = (0y,6,) : D — X is an internal functor.

Proof. Immediate from Lemmas 12 and 13. [

On the other hand, given an internal functor w : D — X, for each ¢ : A — B in
A define

wa =Llaw and  w, = Low.

Notice that wy is an internal functor (by definition of internal functor composition)

and we have that the source of w, is wa

Wys = lywy = Lyswy = (Ca)owo = (Law)o = (wa)o,

its target is D(¢)wp

w¢,t = @wlt = E@tWQ = (D(@)EB)OWQ = D(@)(EBW)O = D(QO)((UB)O,

and the (family of) naturality square(s)

(5000, (D(@)ws)1)e = (stpior, (D(@)mo)r)e

— (stwn, (D(9)lp) )

= (sly,, (D(p)lp)1)cwr Functoriality w
= ((La)r, tly)cwn
= ((La)1wr, tlywr)c
= (wa, twy)c

commutes 8o w, : wa = D(p)wp is an internal natural transformation. Putting
these families of Agp-indexed internal functors and A;-indexed internal natural trans-

formations together precisely defines an internal lax transformation

w' i D = AX

where AX : A — Cat(€) is the constant functor on X.
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Proposition 15. For each X € Cat(E), laz transformations D = AX correspond

uniquely to internal functors D — X.

Proof. Suppose x : D = AX is a lax transformation. Then for each object A in
A there exists an internal functor x4 : D(A) — X and for each morphism ¢ : A — B
in A there exists an internal natural transformation z, : x4 == D(p)xp that
is coherent with respect to the composition and identity isomorphisms of D. Let
0 : D — X be the internal functor constructed above, and then consider the induced

lax transformation 6*. As seen above we have that

QAZEAQZIA

for each A € Ay and for each ¢ € A; we have

0, = L,0, = x,

so 0% = .

On the other hand, let w* : D = AX denote the lax transformation constructed as
above from an arbitrary internal functor w : D — X. Let 6* be the induced internal
functor as above, then 6 is uniquely induced by the Aj-indexed family of internal
functors of w*. These are precisely the maps (wa)o and so 6} = wy by uniqueness.
Using functoriality of w and the definition of w* we can see that 67 is uniquely induced
by the family of maps,.,w;. We break the calculation up with terms on separate lines

due to their length. We start with the functoriality of w giving us

<7r0€<pw1,7r1(53w)1>c = <7TO€4,97 7T1(€B)1>Cwl
and then by definition of £, ,, the right-hand side is equal to
(mo(Lp(ay,s D(®)oen)ip, mi(s, (s65, 1pm))c)in)cwr.

The definition of ¢, says the last term is equal to

1p
<7TO<1D(A)07 D(¢)oen), mi(s, (s0p, 1D(B)1>C>>L<P21Bcw1

which is equal to

(mo(1peayy, D(@)oes), mi(s, (s0B, 1p(B),)C))Costplewr
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by definition of ¢, ,. The same definition gives that this is equal to

(0, (M0051 5, ToD(@)oD(1B)oen, T1(508, Lp(B),)C)C)lowr

which is equal to

<7T07 <7T06<P;137 Ty <S§B7 1D(B)1>C>C>L<Pw1

by the identity law in D(B). Associativity of internal composition gives that this is
equal to

<7TO7 <<7T05g0;15 5 7185B>C7 7Tl>C>L4p(,d1

which becomes

<7TO ) <<7T0550;137 7-"[313(90)053>Ca 7T1>C>L90w1

by definition of D,,. Factoring pairing maps makes the last term equal to

<7T0 ) <7T0<54p;137 D(¢)06B>C7 7T1>C>L80w1

which, by coherence of the structure isomorphisms for the pseudofunctor D, is equal

to

(o, (moD(@)oen, T1)C)Lpws.

The definition of D, and the identity law in D(B) allows us to see the term above
is really the left-hand side of the final equality:

<7T0, 7T1>LLPCU1 = wal
By the universal property of the coproduct ID; we have
9{ = W1

and it follows that 6* = w. O



41

3.3.4 Universal Property for 2-cells
Classical

When £ = Set and let X be a small category. Then any natural transformation

a: 0 = w where §,w : D — X induces a modification

a:xr=vy
where z,y : D = AX are the lax natural transformations corresponding uniquely

by Proposition 15 to § and w respectively. For each A € Ay and a € D(A)q we have

Gaa:2a(a) = yala)

defined as the component
A a(a) 2 0(0a(a)) = w(la(a)).

For any g : a — @' in D(A)o, the diagram

za(a)

- (g>l o(eA(g»l lww(g)) lyA(m

za(a’) == 0(€a(a"))

@y (a’)

™

commutes by definition and naturality of «. Similarly, for any ¢ : A — B in A and

any a € D(A)y we have that the diagram

2ala) m ya(a)
x‘/’v“l 9(&@,&)‘[ l"-’(&p,a) ly%a
D(p)zp(a) === D(¢)lpb(a) s> D(@)lpw(a) === D(v)yn(a)

\—/

QA q
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commutes. It follows that & is a modification x = y.

Alternatively, given a modification v : x = y between two lax natural transfor-
mations z,y : D = AX, let §,w : D — X be the functors uniquely determined by
x and y respectively. Then the middle two squares in the following diagram commute

by definition of ~

0((A, a)) === wa(a) —"— ya(a) === w((4,q))
0((.)) 25(D(p)(a)) 225 (D () (a)) (1))
xB<f>l lme
0((B,b)) =—= zp(b) ——,;— ys(b) =———= w((B,D))

and the left and right squares commute by definition of # and w respectively. This

means

7 :={744: (A, a) € D}

is a natural transformation # = w. Notice that the lax natural transformation &

has components

Q(Aa) = QAq = Qpu(a) = QAa)

so that & = o. The modification 7 has components

Yaa = Yeaa) = V(Aa) = VAa

and so 5 = v by definition. The bijection follows and by uniqueness it suffices to see
functoriality in one direction. Let v : x = y and let  : y = 2z be modifications, then

their composite yn has components

za(a) —— ya(a)

a
\ lnA,a
(ym)a

za(a)

YA,a
,a
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and so

M = {(M)aa: (A,0) €D} = {yaana.a : (A,a) € D} = (7)(7)

where the right-hand side is the composite of lax natural transformations.

Y n
0 w o

and #,w,0 : D — X are the internal functors uniquely determined by z,y, z re-
spectively. It follows that composition of modifications is preserved by the bijection

above and identities are trivially preserved because

(L’c)A,a = 11A(a)

for each A € Ay and each a € D(A)y by definition of the identity modification
1, ;2 = «x.

Internal

Let £ be a category that admits an internal Grothendieck construction of D : A —
Cat(€) and let X be an arbitrary internal category in €. Let av: § = w be an
internal natural transformation where 6, w : D — X are internal functors and further
let x,y : D = AX denote the unique lax natural transformations induced by 6

and w respectively. For each A in A define

o Lk,
N
X4

Proposition 16. The Ay-indezed family of maps &a : D(A)y — Xy defines an

D(A)

internal modification

Proof. First notice that

&AS = (EA)()CYS = (€A>090 = (EAH)O = ($A)O
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and
aat = (La)oat = (La)owo = (Law)o = (ya)o-
Then
(saa)t = s(ya)o = (ya)1s
and

(ZEA)lt = t({L‘A)O = t&AS

so there are two composable pairs given by the maps

(50, (ya)1), ((xa)1,taa) : D(A); = Xy

which coincide after composition in X.

((a)1,taa)c = ((£a)161,t(La)ocr)c Def. &, x4
= ((La)161, (La)1ta)c Functoriality/ 4
= (L4)1(01,ta)c Factor
= (La)1(s0r, wr)c Naturality o
= ((La)1sa, (La)rwr)c Factor
= (s(la)oax, (£a)1wr)cC Functoriality
= (saa, (ya)i)c Def. &,y

This shows a4 : x4 = y4 is an internal natural transformation for each A in Aj.

Now since {,s = (£4) and £t = (D(p)lp)o we have that

at = (law)o =y, . D(p)oas = (D(p)lal)o = z,t

by definitions of the induced internal natural transformations z,y : D — AX.

These give us the other two composable pairs which are equal in X after composition.
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(@, yp)c = ((La)oc, Lywr)c Def.
= (lpsa, lywr)c Def.¢,,
= Ly (sa,wr)c Factor
=l (01, ta)c Naturality o
= (U 01, ta)c Factor
= (01, D(¢)o(lp)oa)c Def. ¢,
= (2, D(¢)otip)c Def.

This last equality shows that the indexing of & is naturally compatible with the
components of the natural transformations x, and y,, for each ¢ : A — B in A. It

follows that & : x = y is a modification. ]

On the other hand, suppose v : z = vy is a modification between two lax natural
transformations z,y : D = AX. Let 6,w : D — X be the unique internal functors
corresponding to x and y respectively. Let 7 be the map uniquely induced by the

natural transformations of v indexed by Aj.

D[) """" 7 """ > Xl
2| %
D(A)o

Proposition 17. The map 7 is a natural transformation 6 — w.

Proof. For each A in Ay, the following diagrams commute by definition of 6 and ~.

oo oo w
]D)O """" 7 """ > X1—>X0 ]D)() """" 7 """ > X1—>X0
LAI U LAI U
D(A)O (za)o D(A)O (ya)o
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Naturality is all that remains to show and this is done using the universal property

of the coproduct D;. For each ¢ : A — B in A; we can see

Lty = mittpy = mityB

and

LpSY = TolAY = ToYA

and therefore

Lo(01, t7)c = (1,01, tot7)c

(Moxy, m1(zB)1)e, mtys)c

(¢
=
= (mozy, mi((¥p)1,tVB)C)C Assoc.
= (Toxy, m1(s7B, (y)1)c)C Nat. 7z
= ((moxy, msyB)C, T1(YB)1)C Assoc.
= ((mowy, ToD(p)ovm)C;, m1(YyB)1)c Def. D,
= (mo{wy, D(¢)ovB)C, Ti(YB)1)C Factor.
= (mo{74, Yp)C, T (Yn)1)C Def.v
= (mova, (ToYe, m1(yB)1)c)C Assoc.
= (tp57, tpw)c Def.
= Lp(s7, w)c Factor.

By uniqueness we must have that

<91 ’ t7>C = <87,W>C
and it follows that 7 : # = w is an internal natural transformation. [
Proposition 18. There is a one-to-one correspondence between modifications of lax

natural transformations D = AX and internal natural transformations between

the corresponding internal functors of Proposition 15.
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Proof. The assignments m and (—) are inverses. For any modification v : 2 — y

we have that for each A € A,

Ya = (a)o7 = ta7 = 74
and so 7 = 7 by definition. On the other hand for any internal natural transformation

alpha : 0 — w, and any A € A we have that

/,AE = dA = (KA)OOé = lAU

and by the universal property of the coproduct Dy, & = a. O

3.3.5 Internal Category of Elements as an OpLax Colimit

In the previous two subsections we’ve seen that internal functors D — X and internal
natural transformations between them correspond uniquely to lax natural transfor-
mations D = AX and modifications between them respectively. In this section
we put this together as an equivalence of categories that establishes ID as the oplax

colimit of D in Cat(€&).

Theorem 19 (D is the oplax colimit of D). Let £ admit an internal Grothendieck
construction of D : A — Cat(£), as in Definition 2. Then for every internal
category X € Cat (&), the category of lax natural transformations D — AX and
their modifications is isomorphic to the category of internal functors D — X and

their internal natural transformations.
D, AX], = Cat(£)(D, X)

Proof. The objects and morphisms are in bijection by Propositions 15 and 18 respec-
tively. We only need to show composition and identities are preserved in one direction
of the 2-cell correspondence. For any lax natural transformation z : D = AX,
the identity modification 1, consists by the family of identity internal natural trans-
formations 1,, for each A € Ay. Let # : D — X and 1x : § = @ be the internal
functor and internal natural transformation corresponding to = and 1x respectively.

Then
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talx == (Ix)a = 1o, == ea(xa)1 = (a)oe = tabpe

shows 1x is the identity natural transformation on 6.
Let v : * = y and ¢ : y = 2z be modifications of lax natural transformations
x,y,z: D = AX. Foreach A € Ay let y4: 24 = yaand 04 : y4 = za be

the internal natural transformations defining v and ¢ so the composite

YOI = 2

is defined by the composite of internal natural transformations

(Y0)a = 7404
Internally this is given by the composite
D(A), 2™ x,
YA0A ‘
X4

and now we can see that

LAY0 = (y0)a = Y404 = (V4,04)C = (LA, L40)C = 14(7,T)c.

By the universal property of Dy we have that

7o = (7,7)c
where the right-hand side defines the (horizontal) composition of natural transfor-

mations 7 : § = w , ow = v, where #,w,r : D — X correspond to x,y, and z

respectively. O



Chapter 4

Internal Category of Fractions

In this chapter we give a suitable context, £, and conditions on an internal category,
C, and a map w : W — C; that allow us to express a set of axioms for an internal
category of (right) fractions. We show that such a pair (C, w) satisfying our Internal
Fractions Axioms allows us to define an internal category, C[W™!]|, which satisfies
an analogous universal property expressed by Theorem 65. We write (C, W) for
the pair from now on, as the map w : W — C; will be fixed and implied by W.
The contextual conditions on (C, W) allow us to build the objects of diagrams in C
we need in the Internal Fractions Axioms and also represent the arrows and paths
of composable arrows in our internal category of fractions as equivalence classes of
spans and paths of composable spans respectively. The contextual conditions on
& then allow us formulate the Internal Fractions Axioms in terms of lifts of local
witnesses to the axioms. This local data can be glued together to give globally
defined structure maps provided a gluing condition is satisfied and we use this to
define the internal category of fractions, C[WW~!], along with its structure maps and
to prove it is an internal category. We will often give representations of our definitions
and constructions as they would appear in £ = Set to help our readers and we will
overload the symbols for structure maps of internal categories, namely s,t, ¢, and e.
We will also abuse some notation and language by referring to arrows W — C; as
representing ‘arrows in W’ when in general we mean it represents a family of arrows
in an internal category C indexed by W. The symbols, 7;, will be overloaded and
used for the i’th (pullback) projection of all pullbacks. Here ¢ stands for ‘number of

components to the right of the left-most component,” naturally.

In Section 4.1 we describe the conditions we require for the pair (C, W) in order
to state the Internal Fractions Axioms that culminate to Definition 28. In Section
4.2 we define the structure we need on the ambient category £ in Definition 33 and

present the Internal Fractions Axioms as part of Definition 34. We define the objects
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and structure maps for the internal category C[W '] in Section 4.3. We show that
internal composition is assocaitive and satisfies the identity laws in C[I¥ ~!], making
C[W~!] an internal category, in Section 4.4. In Section 4.5 we define the associated
internal localization functor and prove that it inverts w : W — C; in a suitable
sense. In the last section, Section 4.6, we prove the universal property of the internal

category of fractions as Theorem 65.

4.1 The Context

For an internal category of fractions, we need to work in a suitably structured cate-
gory &£ and with suitable internal categories C in £. The conditions on & will allow
us to define the category structure on our internal category of fractions, C[W™!],
and the conditions on the internal categories we consider, C, allow us to construct
objects necessary to describe the Internal Fractions Axioms and describe reflexive
internal graphs of fractions. The following definition will be important for defining

the context in this section and the Internal Fractions Axioms in the next section.

Definition 20. An effective epimorphism in a category £ is the coequalizer of its

kernel pair.

Effective epimorphisms appear in each of the Internal Fractions Axioms in Defini-
tion 34 and are used to define composition, source, and target structure maps for the
internal category of fractions. For the rest of this chapter we assume & has a class of
effective epimorphisms, 7, that is stable under pullback and composition. We call
these epimorphisms covers. We will see these in the next section when we give the
Internal Fractions Axioms in Section 4.2.

For the rest of this section we focus on the conditions we will impose on an internal
category C and an arrow w : W — C; in &€ in order to construct the building blocks
of our internal category of fractions, C[IW~!], as well as the objects of diagrams in
C that we use to internalize the axioms for a category of fractions. For example, let

spn denote the object of spans in C whose left leg is in W,
e —— -,

let csp denote the object of cospans in C whose right leg is in W,
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let Wa denote the object of pairs of arrows whose terminal arrow and composite

isin W,

)

and let sb denote the object of the following commuting diagrams (in C) that we

will call sailboats.

L

These are given by the following pullbacks in £ respectively.

spn — C, csp —— W Wp —=—— W sb —— C,
_

Wol - ls ﬂol - lwt Wol - lw Wol ls

W —— G C—/ G C x, W ——C Wa st Co

The following pullback,

w, ——— W

| - =

(Cl ¥ ws w wt X ws W — Cl

is the object of composable paths of length three where the last two arrows are in
W and their composite is again in W. In £ = Set, the elements of this set would be
composable pairs of arrows in the image of w : W — C; along with a pre-composable
arrow in C; such that their composition (in C) gives an element in the image of W.

We use this object to express a weak composition axiom for internal fractions.
The pullback

WD —)ﬂl Cl tsz

”Ol B le

ths(cl — )Cl
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represents commuting diagrams in C that will be referred to as Ore squares:

B —

t 4

B e A

The arrows marked with o denote arrows in the image of w : W — C;. This object
is used to express the internal (right) Ore condition. Let P(C) denote the object of

parallel arrows in C given by the pullback of pairing of source and target maps:

P(C) —2— ¢,

_
ﬂol l(s,t)

CIWCOX(CO

Let P.4(C) and P.,(C) be the objects of equalized and coequalized parallel arrows in
C (that don’t satisfy any kind of internal universal property) given by the equalizers

leq (mow,m1mo)c
Pey(C) ———— W ¥, P(C) —= C,

(mow,m1m1)c

and
(momo,m1w)e

P.y(C) NN P(C) X W ———= G

ws
(mom1,miw)e

in £ (with the usual universal property). Let P(C) denote the following pullback

P(C) —" Puy(C)

“Ol - |

Pey(C) —— P(C)

1

representing diagrams of the form:

where the o marked arrows represent arrows indexed by W. This will be used for
internalizing what is sometimes called the ‘right-cancellability’ or ‘lifting’ condition
for internal fractions. In this thesis we refer to this as ‘zippering’ in order to avoid
confusion with the lifts in the Internal Fractions Axioms and because of the way

it witnesses commutativity of parts of diagrams that don’t commute prior to its
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application to make new ones that do commute. The best place to see this is in
the process of defining composition and proving the associativity and identity laws.

Note that these equalizers can be given as pullbacks of pairing maps

(1, (momo, mw)e), (1, (momy, mw)c) = (P(C) ;X s W) = (P(C) ;X W) x Cy

ws ws

(1, (0w, mymo)c), (1, (mOw, mymy)c) : (W, x, P(C)) = (W ,,x, P(C)) x C;

when they all exist in £ with the pullback projections being made equal by the iden-
tity maps in the left-hand components of the pairing maps above and the equalizer
condition being forced by the right-hand components respectively. The constructions
above allow us to formalize the axioms for a category of (right) fractions and we now
give a name to the collection of internal categories, C, of £ and maps, w : W — C;,
in £ for which this happens. The next definition describes a setting in which we
can internal the Internal Fractions Axioms. We'll be overloading notation for the
structure maps of an internal category, and suppress w : W — C; when describing

internal composition with arrows in C indexed by W.

Definition 21. Let C be an internal category in £ and let w : W — C; be an arrow
in £. We say the pair (C, W) is a pre-candidate for internal fractions if the following
pullbacks



csp —— W spn —— C,

L -

ls

(Cl—t)(cﬂ WT)CO

W %, C ——= W

S .

1
Cl X ws W — (Cl

ls

le)(jo WT)(CO
Wog —— W ,,x,C W x, W "0 W

S o -

lws

Ci X W ——— € W ——— G
Wy, == W x, W W, —— W
of 1 e of 0]
C——GC Wy — G

Wy —— W sh —— C,

S |-

ls

Cy x, W ——= C, Wa st Co
P(C) —— ¢ W X rs P(C) —— P(C)
o 2 e o e
Cy W Co x Cy W——GC
P(C) pyXus W ——= W P(C) —— P, (C)

T .

P(C) —a— G Pey(C) —— P(C)

exist in £ along with the equalizers,

Leg (mow,m1mo)c
Pey(C) —r——— W %, P(C) —= C,

(mow,m1m1)e
and

Leg (momo,m1w)c

Pey(C) ———— P(C) X (s W ——< C; .

ws
(mom1,miw)c

o4

These pullbacks and equalizers give us the building blocks we need to construct an

internal category of fractions so for the rest of this chapter we assume that (C, W) is

a pre-candidate for internal fractions. Our construction requires a bit of ‘scaffolding’
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however, in the form of a family of reflexive internal graphs encoding the data for an
equivalence relation we hope to define on spans and paths of composable spans. At
this point we can only define the first one given by the two maps pg, p; : sb — spn,

defined explicitly as the pairing maps

Po = (7T07T(l771>771)> b= (7T07T1,(7To7To7T0,7T1)C)

by the universal property of the pullback spn. These maps represent projecting two
different spans out of a commuting diagrams (in C) which we call a sailboat. The
idea is that coequalizing these will produce equivalence classes of spans that are
related by being part of a common sailboat. For example, when £ = Set, the maps

po and p; can be seen to project sailboats in sb to spans in spn like this:

/l : po=(momom1,m1) X [ ) - . }

/ l . p1=(mom1,(momom0,71)C) . / . \
A

The dotted arrow on the left-hand side is just emphasizing that the pair is composable
(in C) in order to make the mapping more clear. The arrows in a category of
fractions are equivalence classes of spans, where two distinct spans represent the
same equivalence class whenever there exists an intermediate span and two sail-
boats such that the intermediate span forms the p; span projection of two different
sailboats whose py span projections are the original two spans. For £ = Set the
coequalizer of py and p; describes precisely this set of equivalence classes of spans.

The following lemma shows py and p; form a reflexive pair in general.
Lemma 22. The parallel pair

Po

sb ——=< spn

p1

is reflexive.
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Proof. Define a map,

s spn — sb,

by the pairing map

¢s = (((mowse, mp), mo), ).

The component

wsmo = ((mowse, mg), ) = spn — Wa

is well-defined by the identity law for composition in C:

(mowse, mow)c = mow(se, 1)c = mow

The other component is well-defined because

PTTS = TS = WS = PsT(S.

To see that ¢ is a common section of pg and p; we get

PsPoTo = PsToToT1 PsPoT1 = PsT

:7]'0 :7]'1

by definition and by the identity law in C we also get

PsP1To = PsToT1 Psp1m1 = s (Mmoo, M1 )C
=T = (mowse, m)c
(m1se,m)c
m1(se, 1)c
1.

By the universal property of the pullbacks sb and spn

PsPo = ]-spn = PsP1-
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To define the source, target, and composition structure maps, and prove associativity
and identity laws we need to reason about paths (or zig-zags more accurately) of
composable spans and sailboats. In the following definition we give a sufficient

condition for obtaining these as reflexive internal graphs.

Definition 23. We say that a pre-candidate for internal fractions, (C, W), in &,

admits reflexive graphs of fractions if the source and target maps on spn and sb,

sb sb

spn spn
s t
Towt w1t TomoTL Wt w1t
Co

Co

admit pullbacks along one another.

The following lemma shows precisely which reflexive graphs are being referred to in

Definition 23.

Lemma 24. The pairs

Py
$bh X ... X, b ? SPN Xy oot (X, SN
1

are reflexive for each n > 1 where n = 1 s the case py,p1 : sb — spn and
Pl = (ToDi, T1Piy ooy Tn_1pi) 1S the unique map determined by the iterated pullback

projections and the map p; for i =0,1.

Proof. The proof is by induction on the number of pullbacks. The base case, n = 1,
follows from Lemma 22. Assume pj and p} have a common section ¢?. Let sb”
denote the n-fold pullback of ¢,s : sb — Cg, similarly for spn”, for each natural

number n. The induction step follows from the following commuting diagram:

spn™tl s » sb™ ! spn™tl

1
J/ p;hL l

PG XPo
n n n
Spn” ;X Spn ———— sb™ ;X sb ————=<¢ spn™ ;X spn

\\_y

1R
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The bottom commutes by the universal property of the pullbacks in the bottom row

above:

(¢ X @) Py X po) = (mowy, T1ps) (Toph, T1Po)
= (W0902p37p1905p0)
::(ﬂ07ﬂl)

1

= (mo, 1)

= (Tos Py P1psp1)

= (mowy, m1s) (mopt, Tip1)
= (¢ X o) (Pt X p1)-

This implies the top commutes and we get a reflexive graph:

1
pyt

/\

sb X ... X, sb L Spn X, ... ;X spn
p'iH»l
The result follows by induction. ]

The arrows and composable paths in the internal category of fractions should be the
coequalizers of the internal reflexive graphs in Lemmas 22 and 24 respectively. For
this we need to require the existence of these coequalizers and the pullbacks of the
induced source and target maps on the coequalizer of pg and p;, and we need them to
coincide. The following definition is used to restrict our focus to internal categories

for which these coequalizers exist.

Definition 25. We say (C, W) admits internal quotient graphs of fractions if the

coequalizer,
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Py "
sb X, ... X, sb == spn ,X,... X ,spn ———s C[W], ,
pY
exists in & for each n > 1.

The coequalizers in Definition 25 are named suggestively. In particular C[W™!]; is
how we will define the object of arrows for the internal category of fractions. Using
its universal property we can define source and target structure maps by the following

lemma.

Lemma 26 (Source and Target Structure for C[W~1]). The source and target maps
for C[W 1] are determined by the universal property of the coequalizer C[W ], and

more precisely induced by s’ = mowt and t' = mt.

Cl—t>CO

Proof. This is well-defined by the following calculations.

pos’ = (momomy,m1)s’ pot = (momomy, m1)t'
= (momom1,m1 ) Towt = (momom1, m1 )1t
= momomwt = mt
= momocCt = (momomo, m1)ct
= momwt = (mom1, (momomo, T1)C) 1t
= (mom1, (Tomomo, T1)C)ToWt = (w1, (Tomomo, 1))t
= (mom1, (Momomo, 71 )C)S’ = pit’
= 1S’

O

Now we define the pairs, (C, W), that admit internal quotient graphs of fractions in

& for which the pullbacks of the induced source and target maps on the coequalizers
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C[W 1, exist. Notice this only requires the coequalizer of the pair pg, p1 : sb — spn
so these could exist without the other reflexive graphs. Being able to construct proofs
for coherences for associativity of composition for longer paths of arrows becomes un-
clear without the universal property of the coequalizers of the other internal reflexive

graphs, py and p7.

Definition 27. We say the pair (C, W) admits paths of fractions if the coequalizer
C[W1; exists and € admits pullbacks of the induced source or target maps, s,t :

C[W™!]; — Cy, along one another as well as the source and target maps of spn and
sb.

The next definition is the last one in this section and describes all the structure we

need for the internal categories we consider.

Definition 28. We say the pair (C,W) is a candidate for internal fractions if it
satisfies Definitions 21, 25, and 27 and the induced left and right product functors

on the slice category for each of the source and target maps for sb, spn, and C[W 1],

(=) xs: tx(=):&/CH— E/Cy

preserve reflexive coequalizers.

For the rest of this thesis we will assume the pair (C, W) is a candidate for internal
fractions in £. The remainder of this chapter consists of general lemmas which are

combined to state that the coequalizers
pn
sb X ... ;X sb :0§ Spn X, ... X, spn ———s C[W~],
24

exist in & for each n > 1. The following lemmas hold very generally and combine in
Proposition 32 to show how the coequalizer, C[IW ']y, of the reflexive pair, p3 and
p?, above coincides with the pullback, C[W~!]; ,x  C[W~!];, of the induced source

and target maps in Lemma 26.

Lemma 29. For any category &, the underlying-structure functor, U : £/Cy — &,
which maps objects A — Cqy in E/Cy to objects A in € and is defined similarly on

arrows, reflects coequalizers.
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Proof. Suppose we have a commuting diagram

\770

such that

f
A—/——=B—" ¢
g
is a coequalizer in £. Now suppose there exists an arrow z : X — Cy and another

arrow ¢ : B — X such that the diagram

commutes in €. In £ we get a unique map 0 : C' — X such that 8z = ¢ by the

universal property of the coequalizer:

I
A;;B#C

Co
This implies that for any ¢ : b — z in £/Cy, there exists a unique 6 : ¢ — z such

that the diagram

f
a ——=b—"— ¢
g :
AN
x
commutes. It follows that U reflects coequalizers. [

Notice that the proof above holds for reflexive coequalizers as well, since a section

for a reflexive pair in £/Cy is a section of the underlying reflexive pair in £. Next
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we restate and prove Lemma 4.7 from [2]. It will be used in the proofs of Lemma 31

and Proposition 32 immediately after.

Lemma 30. In any category, if the top row and right column are reflexive coequaliz-

ers and the middle column is a reflexive parallel pair, then the diagonal is a coequal-

1zer.

h//

2
C/I

Proof. Let x : B' — X be any arrow in the category such that
fflz=gg.

We claim the following diagram commutes where the notation for the sections, s, is

suppressed:
f \
A ¢ B h > C
g
g/ f/ 9..._3;// f//
B’ —h—,> c’
x 14
s6
~ \._L\ h
X <o e "

Pre-composing the common section of f and g gives
flx=qgx
and induces the unique map 6 : C' — X such that

ho = flz =g



by the universal property of the coequalizer C. Then
hqg's0 = g'h's0 = ¢'shf = ¢'sg'v = ¢'x
and similarly
hf's0 = f'z
which implies

hg"s0 = hf"s6.
By the universal property of the coequalizer C', we have that
g"s0 = f"s0
which induces the unique map v : C” — X such that
h'~y = s0.
Now we can also see that

Wh'y=h's0 =sh) =sf'lzv=u
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and it is unique by the universal property of the coequalizer, C”, in the right-hand

row. It follows that the diagonal is a coequalizer and it is reflexive with the section

given by composing the common section of " and ¢’ and the common section of f

and g.

]

We now apply Lemmas 29 and 30 to get the coequalizers we need to form the internal

category of fractions.

Lemma 31. The pullback

CW1; ,x,ClW1, —— CIW™ 1,
C[Wﬁl]l ? C0

1$ also a coequalizer

pQ
sb %, sb :;)i spn X, spn ——4— C[W 1), ,x, C[W~1];
Py

m &.
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Proof. Since (C, W) admits internal quotient graphs of fractions we know that the

object C[W™!]; is a reflexive coequalizer of py and p;. By Lemma 29, the diagrams

sb #; spn —— C[W™1];
Co

and
sb # spn ——s C[W~1];
Co
are coequalizers in £/Cy. These coequalizers are preserved by the left and right
product functors on £/Cy induced by the source and target maps for sb,spn, and

C[W™1]; in £/Cy. This means the top row and right column in the following diagram

are reflexive coequalizers in £ /Cy

1><p() 1><q 1

sb ,x, sb &=———=—= sb ,x,spn > sb ,x, C[W~1]
1xp1

p1x1|||pox1 p1x1 ||| pox1

-1
_

spn ;X spn o7 spn x, C[W~=1]

gx1

CIW=1 <, CW 1y
where we suppress the arrows into Cy given by the commuting pullback squares.
The middle row is a reflexive pair whose coequalizer, ¢ x 1, is just not drawn in the

diagram. Lemma 30 says the diagonal is a coequalizer in £/Cy:

p2
sb ,x, sb :Z§ spn X, spn ——— C[W~1;, ,x, C[W~1],
P1
lﬂot
mot ot
Co

Let ¢ : spn ,xspn — C[W™!]; denote the coequalizer of p3 and p? in €. Notice the

following diagram commutes in £
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p2
sb ,x_sb - spn X spn —=— % C[W1],
t™s > ts

ri :
s 5 Eﬂ-iq
axq 5
<
Po
sb ¢ spn » C[W 1,
P1 q

by the universal property of the coequalizer, C[W~!],, in £&. The same universal
property induces the following unique map between the coequalizer and the pullback

in the following commuting diagram:

p2
sb ,x, sb :Z; spn X, spn £ s C[W 1),
P :
ot me
ot axq
Co < CW ' x, CW™y

ot

More precisely, since myt coequalizes p2 and p? above, the universal property of
C[W 1]y says there is a unique mot : C[W =], — Cy such that g7t = mwot. In
particular

ot = (Toq X T1q)mot = Toqt

Now the diagram

p2
sb ,x,sb :Z; spn X, spn ——4 C[W 1]y ,x, C[W~1);

p1

ot ot

— N\l

ot
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commutes in £ and induces the map ~ on the right by the universal property of the
coequalizer, mot : C[W ™, ,x, C[W~; — Cy, in £/Cy. In particular we have that

g2 = q X qv. Finally we can see

¢2(Toq X T1q)y = (¢ X q)7 = @2
and
V(Toq X T1q)mot = YToqt = mot.
By the universal property of C[WW 1], we have that
(Toq:m1q)Y = lew-1),
and by the universal property of the coequalizer, C[W 1], ,x, C[W~!];, in £/C,
Y(T0q,71q) = Lew -1, < .cow-1); -

It follows that

CW 1, =2CW 1 ,x,C[W ;.
O

Proposition 32. The paths of composable arrows of length n in C[W ™ given by
pullbacks

CIW ™y X, ... X, CW ™),

of n copies of CIW ™1y are coequalizers of the parallel pairs

Po
SbXg o X 8 /X spn X ... X, spn,
by
for every n > 2.

Proof. This proof follows by induction on the length of path of composable arrows.
Use Lemma 31 as the base case. Assume the result holds for paths of length n. Then

the following diagram is a reflexive coequalizer,

sb" === spn" ——L C[W ]y X, ... X, C[W 1, ,
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where sb™ and spn” are pullbacks defining paths of composable sailboats and spans
of length n respectively. On the right we have iterated pullbacks of n copies of
C[W~!];. By Lemma 29, we can view these as reflexive coequalizers in Cy using
the induces source and target maps given by taking the left-most or right-most
pullback projections and applying the source or target maps on sb, spn, and C[W 1],
respectively. Since (C, W) is a candidate for internal fractions, the top row and right

column in the following diagram are reflexive coequalizers in £/C,,

n 1xPo n 1xq -1
sb ;X sb" &=——= sb ,x, spn > sb ,x, C[W~1],
1xp1
p1x1||[pox1 p1x1|||pox1
-1
spntxsspnnl—xq>spnthC[W ln
gx1

CW=1h o, CW 1,

and the middle column is a reflexive pair with common section ¢, x 1 : spn,x spn” —

sb ,x, spn”. By Lemma 30, the diagonal is a (reflexive) coequalizer. Then

CW i Z CW 1, CIW 1, Z CW 1, (CW 1 X e x W)

and we can drop the brackets on the right-hand side due to a canonical isomorphism

encoding associativity of taking pullbacks. ]

4.2 The Axioms

Here we give an internal description of a weakened version of the axioms in [5] that
allow for the construction of a category of fractions. In particular we internalize
weaker conditions for the class of arrows, W, which we intend to invert by not
assuming that T contains identities nor that it is closed under composition. Instead
we assume that every object in Cy is the target of some map in W, and that every

composable pair in W can be pre-composed by some arrow in C; to give a composite
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in W. The purpose of this, as shown in [15], is to allow for a smaller class of arrows to
be inverted when constructing the category of fractions. In particular, when applied
to the Grothendieck construction, this allows us to invert a cleavage of the cartesian
arrows in the category of elements rather than all of the cartesian arrows. This saves
us some work in Section 5.1 because there is a convenient cleavage of the cartesian
arrows that is easier to describe than all of the cartesian arrows.

These axioms generally sound like, ‘for any diagram of a certain shape, there
exist some filler arrows that make a larger diagram commute.” Internalizing these
statements in a category of spaces like Top becomes an issue because, while we can
form the objects representing such diagrams in Set and give them topologies, picking
out the arrows to fill in the larger diagrams can rarely be done globally and continu-
ously. For topological spaces one might work with effective descent covers to witness
local information on a space that, when it satisfies a certain gluing condition, can be
pasted together to give global information. In general we ask that our category & has
a class of effective epimorphisms, 7, that are stable under pullback and composition.
These give a way of witnessing the fractions axioms in C locally and continuously
and then construct global maps with them provided their coequalizer condition is
satisfied. The coequalizer condition for these amounts to saying constructions we
wish to define, such as composition of spans for example, are well-defined. Stability
under pullback and composition is required in order to witness multiple applications

of the Internal Fractions Axioms.

Definition 33. We say (£,.J) is a candidate context for internal fractions if J is a
class of effective epimorphisms that are stable under pullback and composition. We

will refer to the elements of J as covers.

With a candidate context for internal fractions, (£, ), and a candidate for internal
fractions, (C, W), we can formulate the Internal Fractions Axioms below and begin
to ask whether (£,7) is a context for internal fractions, for a given candidate for

internal fractions, (C, W) as defined in Definition 28 in the previous section.

Definition 34 (Internal Fractions Axioms). Let (£, J) be a candidate context for
internal fractions, as in Definition 33, and let (C,W) be a candidate for internal

fractions in &, as in Definition 28. We say (C,W) satisfies the internal (right)
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fractions azioms or admits an internal category of fractions (with respect to w :

W — C,) if the following conditions hold.
In.Frc(1) The identity map 1¢, : Co — Cp, admits a lift along wt : W — C,.

w

T T
L wt

CO;CO

In.Frc(2) There exists a cover U —/— W ,x W that admits a lift, w : U — W,

along momig : Wo — W ;X s W.

Wo

5

W lﬂ'oﬂ’m

U # thstW

In.Frc(3) There exists a cover U —/— C; ;x,, W that admits a lift, § : U —

W, along (momy, mm) : Wo — Cy %, W.

In.Frc(4) There exists a cover U —/— P, that admits a lift, § : U — P(C),
along m; : P(C) — P (C).

P(C)

¢
5 lﬂl

U ﬁ% Pey(C)

The lifts in the axioms above represent the existence of fillers for diagrams in C
represented by codomains of the covers. In order to prove our composition is well-
defined, associative, and satisfies the identity laws, we want to have a notion of base

change. The following lemma shows how this works with stability of covers under
pullback.
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Lemma 35. If u: U -» B is a cover that admits a lift along f : A — B, then for

any map g : X — B, there exists a cover, u' : U - X, such that the diagram

commutes in E.

Proof. Since covers are stable under pullback, taking the pullback of the cover w :
U -» B along the map g : X — B gives a cover v/ : U’ -+ X. Then the desired lift
(.U — A; is given by post-composing the pullback projection with the lift ¢. This

is seen in the following commuting diagram:

U}ﬁ%X

u

]

Lemma 35 allows us to apply the axioms In.Frc(1) - In.Frc(4), in Definition 34 a
little more broadly. For simplicity in notation in later proofs we will typically supress
the pullbacks in Lemma 35 and just write u : U — X for the cover v’ : U' — X with
lift 2.

4.3 Defining the Internal Category of Fractions

In this section we define structure for an internal category of fractions, C[W ™!, for
a pair (C,W) that admits an internal category in a context for internal fractions,
(€,T), as in Definitions 28 and 34. Before we begin we should mention that the
proofs in this section and Section 3.2, using axioms In.Frc(1) - In.Frc(4), can be
difficult to follow so we have labeled and colour coded diagrams in a particular way.
The diagrams labeled with capital letters, (A), (B), (C), ..., are representing diagrams

in C which contain the data of the usual proofs for the case £ = Set. The ‘cover
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diagrams’ labeled with stars, (x), (xx), ..., describe the corresponding applications
of In.Frc(1) - In.Frc(4) whose covers and lifts allow us to witness the arrows
represented by the diagrams (A), (B), (C),.... Any reference to these diagrams or
equations should be interpreted ‘locally” within the scope of the proof in which the
reference occurs. We use covers to define the composition structure for the internal
category of fractions and we also use the fact that they are epimorphisms to show
other maps out of spn , X spn are equal by showing the can be equalized by covers
or their composites with other epimorphisms (such as coequalizer maps).

The composition, source, target, and identity notation for internal categories
is being overloaded, as well as notation for pullback and product projections. We
have included colours in both kinds of diagrams mentioned above as well as the
corresponding equations for the maps in £ of the star-labeled cover diagrams. The
reference scope between these diagrams is contained within respective lemmas and
propositions so there should be no issue with re-using labeling and colour patterns for
diagrams in different lemma and proposition representing these two things similarly.

The object of objects is that of Cy, and the object of arrows is the coequalizer

from Lemma 31:

CW ™)y = Cy, ( sb % spn —— C[W~ '], )

The source and target maps s,t : C[W~!]; — C[IW 1], are defined by the universal
property of C[IW™1]; as seen in Lemma 26:

Cl—t>C0

T it

sb % spn ——» C[W~');

ml ‘s
\:f

W ——C

To define the identity map, e : C[W 1] — C[W 1]y, it helps to think about the
case when £ = Set for a moment. In this case, the identity for an object, a, in a

category of fractions is represented by any span with two of the same legs in W:

a<+6—b—&—a
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By In.Frc(1), we have a section, «, of the target map wt : W — Cy we can use to
define the identity structure map. Take the unique span o, = (a, aw) : Cy — spn
induced by a and aw and post-compose it with the coequalizer map to define the

identity map for C[W 1.

Cy —22— spn

| i

Now we will prove that this definition does not depend on the choice of section,

a:Co—W,of wt: W — C,.

Proposition 36. The identity map, e : C[W~t)g — C[W ™|, does not depend on the

section, o : Co — W.

Proof. Let a and (8 be two sections of wt, and let

0o = (@, qw) , os = (B, Bw)

be two spans Cy — spn. We will show that o,q = 0gq by finding a cover, u : U — C,,

to witness a family of intermediate spans o,5 : U — spn for which

UOT nq = O'agq = uaﬁq.

Since u is an epimorphism, this will imply o,q¢ = ozq. Notice that a(wt) = 1¢, =
B(wt) so there is an induced pairing map (aw, 3) : Cy — csp which is a section of
both mpt and mwt. By In.Frc(3), there exists a cover, u; : Uy — Co, and a lift, 0,4
of uy(aw, )Cy — csp, along the cospan projection, W — csp, in the bottom right

of the following diagram:

W, TR W W

v f— Up ——— Cy &)
§9a5 l(awﬁ)
W csp

(mom w,m71)
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By definition of Wy, we have that
Oopmomowt = Oapmomis = uy(aw, B)mes = uyaws

inducing the map Uy — W ,x, W in the diagram abovel. By In.Frc(2), there exists
a cover, uy : U — Up, and a lift, w,s : U — W, to make the square in the upper
left of the diagram above commute. When £ = Set the process can be represented
by the following picture with labels of arrows corresponding to the arrows in the

diagram above that would be witnessing those below internally to C.

{WaBTOTOTO

~

ugbppmomo T uofepmimo
©
L u

T uow uf

where, since covers are stable under composition, we let u = ugu; denote the com-

posite cover of uy and u;. Note that by definition of W (ie. the Ore condition)

WapT = (WapToToTo, UpBapTomMow, UCW)c

= (wapmomomo, (UobapTomow, uaw)c)c

= (wagﬂ'oﬂ'oﬂ'o, (upbapmomow, u09a,37r07r1)c)c
= (wagﬂ'oﬂ'oﬂ'o, (uobapmimo, u09a57ﬁ7rlw)c)c
= (wa57T07T07T0, (uobapmimo, uﬁmmw)c)c

= (Maﬁﬂoﬂoﬂo, eragﬂ'lﬂ'o, uﬁmmw)c.
So the outer span in Diagram (A) can be represented by the map, 0,5 : U — spn,

defined by the pairing map

OaB = (Waﬁﬂ'la (waﬁﬂ-(]ﬂ-()ﬂbu a1 o, U57T17T1w)0)

whose right component is the composite
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(wapmomoT0, UOaT1T0, UBTITIW)C
s C
7 3
c -
0aBT1 l
C

This composite represents the internal triple composition in C of the arrows repre-

U

sented on the right side of Diagram (A) above. Now let

ta = (WapToToT0, UobapToTo)C , pp = (WapTomoTo, UoBapmiTo)C

and notice the map ¢, : U — sb given by

Pa = (((/vbou ua), waﬂﬂ—l)7 uaw)

is well-defined by associativity of composition and the definitions above. Similarly

we can see

PaPo = ¢a(7T07T07T177T1) = (UOJ,UOM)

= uo,
and

PaP1 = ¢a(7T07T1, (7T07T07To,7T1)C)
= (walgm, (,ua,uozw)c)
= (Uaﬁﬂ-maaﬂﬂ-l)

= 0af-

On the other hand we have another map g : U — sb given by

os = (((n; uf), wapm), upw)

for which

PYpPo = s05(7T07TO7T1,7T1) = (uf,upw) = uog



75
and
wpp1 = wa(mom1, (Tomomo, T1)C) = (Wa,b’ﬂ'la (Mﬁvuﬁ’w)c) = (0apT0, 0apT) = Tagp-

From here we can conclude that

UTaq = PaPoqd = PaP1q = Oapd = PpP1q = PpPoq = U034

and since wu is epic

0aq = 084.

]

We can immediately see that the identity structure map, o,q : Co — C[IW 1], is a

section of both the source and target maps:

0498 = (o, aw)gs oaqt’ = (o, aw)qt
= (a,aw)s = (o, aw)t
= (a, aw)mowt = (a, aw)mt
= aqwt = awt
=1, = l¢,

The composition structure map needs to be defined out of the following pullback,

CIW=, x,CIW™], == C[W™ ),

”Ol - l :

(C[W_l]l > (CO

t

in order for C[W~!] to be an internal category. Since (C,W) is a candidate for
internal fractions, by Lemma 31, this pullback is also the coequalizer of the parallel
pair p3, p? : sb X, sb — spn X, spn. When £ = Set we can see how p2 maps a pair

of composable sailboats

i
S

Are
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to the pair of composable spans

-

and how p? maps a pair of composable sailboats

to the pair of composable spans

NN

where the dotted arrows are just used to point out the composite of the arrows in

g
AN
~

[E—

N
4

the sailboats respectively that make up the right legs of the spans being picked out
by pi.

The first thing to do is to use the Internal Fractions Axioms to obtain a cover,
u : U — spn ,x, spn, of composable spans which witnesses the span composition

operation in the form of a map
U —"- spn .

When £ = Set, span composition for fractions is defined by applying the right Ore
condition followed by the weak-composition axiom to get a span whose left leg is in

W, as shown in the following figure.

SN
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To internalize this we construct a diagram of covers below, starting with a map,
spn , X, spn — csp, picking out a cospan whose right leg is in W from a pair of
composable spans and apply Int.Frc.(3) along with Lemma 35 to get the cover
uy : Uy — spn ;X spn that makes the bottom right square below commute. Next
consider the map which picks out the composable pair in W from the Ore-square
filler and the left leg of the first span in the original composable pair and apply
Int.Frc.(2) along with Lemma 35 to get the cover uy : U — U, that makes the top

left square below commute.

(mom1,mom2)

W, > W XCo %74
WT T(Gﬂoﬂmulﬂoﬂ‘o)

U = / y Uy ——=—F > Spn X, Spn
lao Gl l(ﬂom ,T1T0)
spn Wn > CSp

(mom1,m171)

Since covers are stable under composition we can take u = upu; : U — spn ;X spn

as our cover, and define o, : U — spn by the pairing map
0o = (uﬂrl, (wmememo, O, U7T17T1)C).

We claim the construction represented by o, is well-defined on equivalence classes in
the sense that for any two choices of fillers for the Ore-square and weak-composition
conditions above, there exists a sailboat relating them. Internally this is translated
as independence of the choice of filler-arrows in the lifts, § and o, and is proven in

Lemma 37 by finding a cover @ : U — ker(u) and two families of sailboats,
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900:U—>sb , 901:U—>sb,
which witness commutativity of the square

keruy ———— U

ml laoq

U Tq> C[Wﬁl]l

in £. The proof is rather long and technical but full of colourful pictures. The cover u
is an effective epimorphism so it is the coequalizer of its kernel pair and in Lemma 38

we use this universal property to induce a composition map on spans

d :spn ,x,spn — C[W™ '],
such that the square

U—> 5 spn

o I

spn % spn > CW),

commutes in €. Finally, in the proof of Proposition 39 we show how to find an even
finer cover @ : U — sb,x ;sb witnessing that the map ¢ respects the sailboat relation.

More precisely, the proof of Proposition 39, shows how to construct sailboats

(IOiZU—)Sb

witnessing equivalences between the spans

oj: U — spn

so that

@POC/ = Tp00q = PYoPoqd = Pop1q = ... = PaPo = TM100q = ﬂplcl-

Then since @ is an epimorphism, we can conlude that po¢’ = p; and induce the
composition map, ¢ : C[W 1]y — C[W~!];. For the rest of this section we prove the

lemmas and propositions we required to define composition.
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Lemma 37. There is a cover @i : U — ker(u), together with two maps

@o: U — sb , @1 : U — sb

, which witness that the composite .q coequalizes the kernel pair of w: U — spn X

spn. That is, the diagram

commutes.

Proof.

We are essentially showing that any two choices of fillers above represent equiv-

alent spans. Classically this can be done with the data in the following sketch.

e Take two composites (pictured in and teal below) of a single pair of

composable spans

e Apply the right Ore condition (corresponding to In.Frc(3)) on the cospan

determined by the left legs of the composites

e Apply the zippering axiom (corresponding to In.Frc(4)) to the parallel pair
which, after post-composing with the left leg of the first span in the original

composable pair, gives the two sides of the commuting Ore-square

e Apply zippering (corresponding to In.Frc(4)) to the parallel pair which is
coequalized after post-composing with the left leg of the second span in the

original composable pair

e Apply weak-composition (corresponding to In.Frc(2)) three times to obtain a

span whose left leg is in W.
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To translate this internally to &, first note that the definition of o, implies myo, and

m10, have the same source.

T00oS = Toumymowt = mMumyTowt = 1068

Now take covers to witness the application of the axioms above in that order as fol-
lows. First take the Ore-square and zippering lifts given by In.Frc(3) and In.Frc(4)

respectively:

P(C) —= Pe(C)
(.
0, —= /s Us = f— U, o /— keru ’ ()
sll 5 gi l( ——
P(C) —— P(C) Wh ————

and then take the weak-composition lifts.
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TOT12 o712
— —
W, WX ws W W, W iXws W
L:)o Two QQT w2
g aO \ g 17/1 \ 7 a2 \ g **

The first vertical map representing cospans with right legs in W, seen on the right-

hand side of Diagram (x), is witnessing the following cospan of Diagram (A).

Axiom In.Frc(3) along with Lemma 35 then give the cover and lift

[74 a%‘—> ker u
(il
Who

that make the bottom right square in Diagram (x) commute. The map Jy is induced
by a map, &) : U — P(C) ,x,, W, which can be found by expanding both sides of

the commuting Ore square equation

~ (@mﬂrow, s 7T0'LU)C:((:’T('17T0, UsT1OoTOW)C

U4 ? (Cl

The arrows involved in this calculation are pictured:
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On the bottom we have

(éﬂ'g’ﬂ'ow, ﬂ5ﬁ(|0'571'0w)c
= (éﬂ'oﬂ'ow, ’1157()&77'111})0
= (()71'07'('010, U5 0 (WMo, WTETW, WTETaW)C)ce (4.1)
= (()71’07'('011), U570 (wmomo, wolmemow, zm(m()u})c)c
= ((97r07row, Us oW T, Us Tl Temew)c, 115m)’{17r07r()'1,1f)c

and on the top we have

M1, UsT|0ToW)C

Il
—~~ —~ —~

TITW, UsTWTIW)C
Omimow, Usm (wWmromy, WTeTIW, ’W'7TQ7T21U)C)C (4.2)
Omimow, Usm (wmomg, Ugfmemow, "u,m)m,ur)c)c

(Omimow, Usmwmm, UsTUodTemew)C, %mummow)c.

Since mou = mu : keru — spn X spn by definition of ker u, we have the equality

nd USTOUTQTOW=UST1UT)TQW
U. 4 > Cl

between the final components in the bottom lines of calculations (1) and (2) which
says there is an arrow in W coequalizing a parallel pair in C. This determines a

unique map, 0y : U, — P(C) Xws W, by the fact that

Somom = (Ommow, Usmiwmemg, UsT UolTemow)ce,
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5/ o7 = ;7 Tl TToTl TTo T
0/t0/10 ( 0 0w7 U/5 0710, U5 0 0w>cv

and

! ~
0Ty = UsTToUT(T0;

and that the equality

8o (momo, mw)e = & (mom, Tw)e

holds. The map §, uniquely determines the map Jy : Uy — Poy(C) for which the

equalizer diagram

(momo,miw)c
W —=C

(mom1,m1w)c

Poy(C) —=— P(C) ,x

ws
AN

S
. %
Uy

commutes in £. By In.Frc(4) and Lemma 35 the cover and lift

P(C)
q
(73 ﬂ%’—> U,
from Diagram (x) exist. Similarly, the map d; is induced by a map 0} : P(C) ,x,,W.
For readability purposes, let @;.; = ;U;y1...u; for 0 <7 < j < 5 with @ = @o5. Apply-
ing the zippering axiom and Ore conditions as we did above gives another equation,
from the definitions of P and W, which internally expresses the commutativity in

the following picture:
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(( (]7TO[/eq7TO; ﬂ4é7To7T0’w, 'L~L4;5 ToTo, ﬂ4;5 7T17T0)C, 'le4;57T()U7T[ ll')C
((S()ﬂ'oLeqﬂ'o, U4()7T07TOU) U4 -5 ToT0, (&4;5 170, U4 5ToUTT TToW C)C
= ((5()7TOLeq7ro, U4H7T07T0’LU U4 .5 ToT0, <ﬁ4;5 ToToW, U4 5TToUTT QT C)C
= ( &moLquo, U497T07T0’LU U4 .5 o070, 114;5 ’/Toﬂ'g"LU)C U4 5’/T0’LL7T07T1)C (4 3)
= ( 8()7TOLeq7r(), 497T17T0, U4 ;5 TTOW T T, U4 57T0’11097T07T0’LU)C U4 57r0u7r07rl)c '
= (8)7T0L€q7ro, G0 o, s BTIWTT, (U457 UoOTeToW, UasToUTOT) )c
(5)7robeq7ro, G0 o, s 5TIWTT, (Ta5m1 00T T, U, 5/((umm)u')c)c

= ((507fobeq7To7 0T To, TasmiwTomo, Uasmiuglmimo)e, Uy ToUT ToW) €
The first and last lines in equation (4.3) correspond to the concatenations of the
‘inside” paths in Diagram (C). They imply the existence of a map, 0] : Us
P(C) ,x,s W, uniquely determined by the projections

! N ~ N ~ ~

810y = (00 ToleqMo, WallToMow, U570 T, Uas T170)C,
S momy = (6, lia0) i li571 o0

177 = ((()Wobeqﬁo, UAUTT1 Ty, Ug;5TWTQTT, U4:5771UQ 7T17T0)C>

!
171 = U4 5TToUTT 1 TToW

for which

81 (momo, mw)c = 8 (momy, mw)e

represents the inner cyan-colored arrow in Diagram C. The map ¢} induces the unique
map &; that makes the following equalizer diagram

Leg (momo,miw)c
PC‘I(C) — P(C) t X ws 1
N (mom1,m1w)c
51

N 5
Us

commute in €. By In.Frc(4) the cover lift

[7211%,_)03
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in Diagram (x) to make the bottom left square commute. The covers and lifts

W, W
J .
U s U,

U2 T
// 7 U2

oy opr U1y
/ /UO /

o|

W

in Diagram (x+) are given by In.Frc(2) and Lemma 35. It suffices to define w; : U; —
W iXws W, in Diagram (#*) that pick out composable pairs in W. The relevant

representative diagram in C to keep in mind is:

i\%
(D)

The maps w; : U; — W ,x,, are defined in sequence as follows. First, the pair
of arrows obtained from the two diagram-extension conditions (colored in cyan in

Diagram (D)) are composable by definition of P(C):

01 T0beqMoWE = 01 TolegT1 08 Def. W ., x, P(C)
= Slmbcqwoﬁos Def. P(C)
= U301LcqToT0S Def. o,
= U301 TS Def. 6,

= ﬂgd()ﬂoLeqﬂ'QS Def. 5,1
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This uniquely determines the map

~ wzi((glﬂ'oLeqﬂ'o,ﬁg(S()ﬂ'()quﬂ'())\

U2 7 thX

w

ws

which gives the lift &, : U; — W, in Diagram (+%). The composite (in W) witnessed
by @y can be composed with the arrow in W (colored olive in Diagram (D) ) that

filled the Ore square because

WoT Wt = WeTgT12T Wi Def. W,
= Uswym Wi Def. &,
= ﬂg;g(imoLeqﬂowt Def. wy
= {lig.300Moleq 108 Def. W ,,x, P(C)
= ﬂg;gS('}Wlbcqﬂoﬁos Def. P(C)
= a2;450ch7T07T08 Def.
= a2;456W0708 Def. (50
= '&2;4(}7'('071'(]’(1)8 Def. 56

and it induces the pairing map

~ w1=(@271,82;40m070)

Us

y W X e W

This gives the cover @y : Uy — U)1 and lift &, : Uy — W, in Diagram (+%). Finally,

the composite witnessed by w; can be composed with the left leg of the original span

(colored in orange in Diagram D and) witnessed by 1.5 : U, — spn because
J)ﬂrlwt = @17T07T127T1wt Def. Wo
= ﬂlwlmwt Def. (:Jl
= 711;4(;71'07Towt Def. Ql
= 17/1-5 Tows Def. 0.

)

This gives the unique pairing map
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~ wo=(&171,71;5 70)

U2 > W

x W

wt N ws

which induces the cover ug : U — Uy and lift & : U — W, in Diagram (xx). Now let

w=(WomoTo, UoW1TO™0,Un;1W2TIW)C

U )(Cl

witness the composite(s) of the three vertical violet-colored arrows and the two hor-

izontal cyan-colored arrows in Diagram (D):

By zippering we get commutativity of the following piece of Diagram (A)

l
N

Internally we can use associativity of composition, definitions of the pairing maps

involved, and the definition of P(C) to write this commutativity by the equation:

(CU, 1]0;4071'071’0'11}, U 7T1>C: (w, 710;4071'171’0, €L7T1007T1)C. (44)

or the commuting diagram
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(w, To;a0m1m0, UT10671) .

U 7 Cg
(w, fto;4(77r07r0w, I Wl)l [
C > (Cl

C

For readability we define py and gy by composition in C

(w, o, 401 Tow)

(w, 120;4@7r07r0w) .
4

\)é \

to internally represent the composites in the following piece of Diagram (A):

\' o |
/ :

Note that equation (4.4) above gives two descriptions of the right leg of an interme-

U

diate span og;, : U — spn given by the pairing

001 = (@071, 00171'1);

where the right-hand component can be rewritten as either one of the terms in the

following equation:

(Mo;ﬂ 7T1)C = 00171 = (Ml,fmlgoﬁ)c

The different representations of the right leg of this intermediate span can be seen

by the two paths in Diagram (A) given by combining Diagrams (C) and (E). Now
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by expanding internal composition in terms of pairing maps; by associativity of
composition in C; and by the definitions of W,, P(C), and W5 we can represent the
left leg of the intermediate span oy by:

(o, @ To)c = wWomy = (p1, UT106T0)C.

Note that the sources of the composites (in C) in the previous two equations are the
sources of the maps po, 1 : U — Cy, which have a common source in ws : U — Co.
We can now give well-defined explicit descriptions of the two sailboats, U — sb, using
the universal property of sb. The first sailboat represents picking out the following

piece of Diagram (A):

This is determined uniquely by the components in the pairing map:

Yo = (((/‘LOa U 7T0)a (207"-1)7 U 7T1)-

By definition of ¢y we can compute

WYoPo = 900(7T07T07T1,7T1) = (U o, U 7T1) =u

and additionally with the definition of 0y, we can see
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wYop1 = 900(7TO7T1, <7TO7TO7707 7T1)C)
= (@om1, (po, Groo.m)c)
= (@Womm1, 001mM1)

= 0p1-

The second sailboat represents picking out the following piece of Diagram (A):

l
N

This one is uniquely determined by the pairing map:
1= (((11, amioom), @om), Urioem).

By definition of ¢ we get

PY1Po = <P1(7TO7TO7T1,7T1)
= (Umo.mg, Umoom)

- ﬁm(ro



and by definition of ¢

WYop1 = 900(7T07T1, (momoo, T1)C)

= (@omy, (po, Wryo.m)c)

= (W1, 0o17M1)

= 0o1-

Putting the previous few computations together we can see

and since u is epic:

That is, the diagram

commutes.

q = YopPoq
= $Yop19
= 0014

= ©1P19

To0oq — 10,4

Def. ¢
Def. q
Def. g
Def. ¢,
Def. ¢
Def. ¢
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]

Lemma 38. There exists a unique ‘composition on representatives’ map ¢’ : spn X,

spn — C[W ™|, such that the diagram

commutes in E.

U —+— spn X, spn

Jo ;C/
~

spn ——» C[W1];
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Proof. This follows by the universal property of u being the coequalizer of its kernel
pair and Lemma 37 showing that o,q : spn ,x, spn — C[W™!]; also coequalizes the

kernel pair of w. O

Having defined composition on representative spans by a map ¢ : spn X, spn —
C[W™1];, the next thing to do is to check it is well-defined. This is translated
internally by the following proposition.

Proposition 39. The composition operation on spans,
d :spn ,x, spn — C[W ™,
is well-defined on equivalence classes in the sense that the square

b p
sb X, 8b ———— spn X spn

spn X spn —— C[W ™1,
commutes in E.

Proof. By Lemma 40

aped = popoq = papoq = Upic

and since 1 is epic

20 21/
PoC = PiC

O

A direct consequence of Proposition 39 is it induces a unique composition map c :

C[W~1]y — C[W~!]; such that the diagram

spn X, spn —=s C[W ],

commutes in £, by the universal property of the coequalizer C[IWV ~1],. Lemma 40

is doing all the heavy lifting for showing that ¢’ is well-defined and subsequently
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defining the composition map ¢ : C[W 1]y — C[W~!];. We now prove this lengthy

and technical lemma.

Lemma 40. There exists a cover U — sb X, sb, and four families of sailboats,

Vi : U — sb for 0 <1 <3, such that the diagram

Py

sb? —= spn?
g
U—=U

WSHSOO lo’o

sb —2— spn — C(W™]

commutes in the sense that
A Ay N
YoPoq = TpO0o(q = ToUC = UpyC,

~ ~ / VN
PaPoqd = T10o4 = TLUC = UP,C,

and the sailboats glue together along comparison spans

PYoPoqd = PopP1q = ¥1P19 = P1Poqd = P2Poq = Y2014 = ¥3P14 = ¥3Poq-

Proof. The main idea is to use the explicit definition

O = (wm, (wmomomo, UeOm1T0, u7r17r1)c)

and post-compose it with the maps pZ and p? to get two different spans. To show these
two spans are equivalent we construct a comparison span from the data involved in
each of their constructions and show they’re both equivalent to the comparison span.
Each of these equivalences in turn requires constructing an additional comparison
span and a witnessing sailboat. This accounts for the four sailboats.

To do this we need a common domain for the covers so take pullbacks of v : U —

spn ;X spn along p2 and p? to get two covers of sb ,x sb

_ - - _
U(] > U < U1

U$J # L#I (1)

sb ,xsb 2 SPIL X, Spn < — sb ,x,sb
0 1
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Now take a refinement

v ——57,
lX ¥ @
ﬂo —F— sb ,x,sb

by taking a pullback of uy and u; to get a cover of the pairs of composable sailboats.

Note that

— 2 2
Upg = ToToPy = ToT1U

projects out the composable spans represented by

while

=02 2
upy = mM TP = T TU

projects out the composable spans represented by

PAEe

From this point the usual set-theoretic proof can be translated into a chain of covers

and lifts. The outline is that for any pair of composable sailboats,

L

the composites of the spans represented by up2 and up? are equivalent to the com-

posite of a comparison pair of composable spans,

The following figure shows the construction of three different composites being con-

structed.
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~

To internalize this we define the maps that pick out each of the three spans and their
composites by finding a corresponding cover U % U . Two of the spans can be
given in terms of the composition, o,, on the cover U but the comparison span needs
a finer covering to witness applying the Ore and weak composition conditions to
arrows from both of the first two spans. Denote the comparison pair of composable

spans by v and define it by the universal property in the following pullback diagram.

2
J RN P
> _
U — / sb ,x sb spn X, spn
L
?\ T
u -
~ Y ~
T 3
sb ,x sb spn ;X ,Spn —————— spn (3)
p(z) Tr()J/ S
spn ;X spn _ > Spn - > Co

The following diagram of covers shows how the intermediate span is constructed by
a similar span-composition construction for . Note there is another way to do this
by taking a pullback of the pairing map (mopo, mip1) : sb ,x, sb — spn,x, along
u : U — spn X, spn and a refinement with the previous refinement of covers of
spn , X, spn above, and then using the span composition o, : U — spn to obtain
the intermediate span o, in Diagram (%) below. Both approaches lead to the same

result.
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(mom1,mom2)

W, > W oxe, W
w’)T T(GWWOWO(&Y}/WOWO)

U o // > UO “ / > U (*)
U«l ) o1 Qﬁi l(“/ﬁom S YTT1T0)

spn Wog ——— Cy  x W

(mom1,mimy)
The left and right curved arrows, o, and o, into spn in the bottom left corner are
defined by applying the composite of spans, o,, to the composable spans given by
applying p2 and p? to the pair of composable sailboats. Since o, is only defined on U
we need to pass through the appropriate cover. The colours in the previous diagram
and following equations indicate which of the three different span compositions in

Figure (A) the arrows in the following equations are witnessing.

(4.5)

and

0] = Um T 0,
(4.6)

= Umm (wrl, (WWQWU;UU@F]?T(),?I/Wlﬂl)C).

The arrow into spn on the bottom left side of the cover diagram is the universal map

0~y = (wwﬁ,(wwroﬂo,ﬁ’@wﬂlﬂo,ﬁﬂp%mm)c).

/

The data necessary to construct witnessing sailboats for the equivalences between the
pairs of spans 0, 01, and o0, can be obtained by applying the Ore condition, followed
by the diagram-extension twice, and then weak composition three times. Internally
this corresponds to a chain of six covers and lifts. All of this is color-coded below
using olive and brown for the Ore condition and cyan and violet for the zippering and
weak composition step(s) that follow. Note that in both cases the first zippering is
done to parallel pairs of composites that can be post-composed by the left leg of the
bottom left span. The second zipper is done to parallel pairs of composites that can

be post-composed with the left leg of the bottom right span in the pair of composale
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sailboats. Weak composition is then applied three times in to get comparison spans,

00~ and oy -, whose left legs are in W.

i/ /l

Internally this is given by finding a cover U %@ U that witnesses application of
the Ore condition, zippering, and weak composition in that order. The first three
covers, s, Uy, and ugz, witness the Ore condition being to each of the two cospans

and the two applications of zippering that follow from each Ore-square.

P(C) —— P,y (C)

Oxy wﬁko /\1w)\0

~ @ ~ @ ~ @ ~

L NN § F. SV ) A NV E j (%)
5pludpo plu/)u ()a,lu(/f,() (ﬂ]ﬁ()ll'.ﬂ'nWu)u(ﬂ'()ﬁ(;u\ﬂ'ﬁ?m)

P(C) —— Pey(C) Wo e €y W
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The covers, s, U, and g, witness three applications of weak composition in each

case as seen in the following continued sequence of covers:

(mom1,mom2) (mom1,mom2)
Wy ——— W X, W W, W Xc, W
w1,0 | |w0,0 wg’o/ﬂ\u(’,_” w1,2ww‘u.z w{,QW'@{,‘Z
ug o (5 2 Ug 3
/ > Ul / > U2 // > U3

w1,1uwo.1 wi 1uw()_l

Wy —— s Wxe, W
(mom1,mom2)

E=

(% % *)
The diagrams above will allow us to extract four sailboats that relate the three spans
above through two new intermediate spans, o, and o, . All of these will be defined
after we justify the maps in Diagrams (xx) and (x x x) above. The maps, Ay and \
are induced by maps A, and \| which pick out two parallel pairs of arrows in C along
with a post-composable arrow in W that coequalizes them (in C). The following

figure serves as a guide to defining these.
H .

G

o
o .

|

7

The explicit definitions are obtained using the universal property of the equalizer
P.,(C). This is done similarly as in Lemma 37, by specifying two maps (on the left
below) that also equalize the parallel pair on the right below.

)‘/1 (7T07T0,7T1’w)c

U; —— P(C) x¢, W ——= C,

b (mom1,miw)c
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The maps A and \| are uniquely determined in a similar fashion to d; in Lemma 37,
namely by descending through the covers above and expanding both sides of the
Ore-square equations witnessed. The calculations are lengthy and technical and can
be found in Lemma 93 of Section B.1. The proof shows that the map A is uniquely

determined by the projections

I ~ o~ 2
AT = UsUToToPyToTo
/ A~ A~
Nymomo = (0., momow , Usll T , Usl ToToW)C

/ ~ N~
Nymomy = (0, mmow , Usw,momo , UsU O, momow)c
and that the equalizer diagram

(momo,miw)c

Py ——2— P(C) X, W —= C;

(7r07r1 ,TT1 ’LU)C
/\()T
Ao

commutes in €. The map )\, inducing A\; in Diagram (xx), such that the equalizer
diagram
(momo,m1w)e

Py ——=— P(C) X, W —= C,

(mom1,miw)c

commutes in £ can be derived by a similar computation to the one in Lemma 93

in the appendix where one replaces 0., with ¢ and factors through the cover U,

)

instead of Uy to access the arrows used to construct the span o;. The map )\, is

uniquely determined by the following maps Uy — Cy:

/ N~ 2
AT = UsUToToPyToTo,
/\/177'07'('0 = (F/Alﬂ'gﬂ'ow s ﬁ5ﬂ7T17T1w7T07T0 s ’&5’(271'171'171,0677'07?021) s ﬁ5ﬂﬂ7r07r07ro7ro)c,
Nimomy = (0, mmow , Usw,momo , Usll' 0 momow)e

Applying In.Frc(4) along with Lemma 35 twice gives two covers and two lifts, one

for each of Ay and \;. Since covers are stable under pullback and composition we
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can take a common refinement by pulling one cover back along the other and get the

cover and two lifts

P(C)
%w‘%
U4 ﬁ—4/—> U5

in Diagram (xx).

The violet and cyan arrows in the figure below are witnessed by post-composing
the maps, 0,, and 0,,, with the projection my : P — P, (C). There are two pairs
of parallel composites that begin at each of these arrows whose codomain is that
of the vertical arrow in the second of the composable sailboats. These pairs are
determined by the legs of the brown and olive spans respectively. As a consequence
of commutativity of the teal and purple Ore squares along with the previous diagram
extension, both parallel pairs are respectively coequalized after post-composing with
the left leg of the bottom span in the second of the composable sailboats. The parallel
pairs py and p; can be seen beginning at each e and ending at M in the following

figure with their common coequalizing arrow in W having domain H:

%
2N

I

L~ A~
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Let @;,; = ;t;q1...u; for 0 <4 < 7 < 5 to make composition of covers a bit easier
to read, where @ = 4,5. Internally, we use Figure (C) as a blueprint for defining the
maps ), py : Uy = P(C) in termds of parallel pair of arrows in C, Uy — P(C),

which are coequalized (in C) by an arrow Uy — W:

~ p,1 (7r07r0,7r1w)c
U —t P(C) xe, W —= C,4

/)() (71'071'1,71‘1’LU)C

completely determined by the following maps:

/ ~ ~ = 2
PoT1 = Ug;5UUPGTIT,

/ ~ ~ A~y ~A o~
PoToTo = (6/\0 TolegTMoW, Ugl~,T1 T, Ua;5W~TT0TT0, Ug;5U 9,\/71'171'0, U4;5UU7T17T()7T07T0>C,
/ ~ ~ ~ ~ ~ ~
pomom1 = (0, ToleqMoW, Ugto-, ToTo, Ua;sl TOT0, U5l T1T0)C
Another lengthy but straight forward computation that comes down to the definition

of 0 Leq : Uy — P.y(C) and the Ore-square can be found in Lemma 94 of the appendix

and shows that

/ / / /
(Pomomo, poym)e = (pymom, Py )C

implying the equalizer diagram

(momo,m1w)c

PCCI((C) >L‘+‘1> P(C) tst

. (mom1,miw)e
PO
/
~ Po

Us

G

commutes in £. The map inducing p; is a map p} : U — P..,(C) similarly defined

but replacing 0,, with ¢,, and 0., with ¢ . It is uniquely determined by

/ ~ ~ 2
P11 = Ug,5UUPHT1 Mo,

/ ~
P1T0To = (5)\17TOLeq7TOw7 Ug~, T T,

~ A~ ~/ A~ ~_
Ug;5WA T, Ug;5U 077177'07 U4;5UU7Tl7To7To7To)07
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/ ~
P1ToT1 = (5)\17T0Leqﬂ-0w’ Uyl To o,

IAL4;5Z~LT('17T1(U7T07T0, 714;51177'17'(’1'&0671’177’0, ﬂ4;5ﬂﬂﬂ1ﬂ0ﬁoﬂo)€

and a similar lengthy but straightforward computation found in Lemma 95 of the

appendix shows that

(P70, prm1)e = (pimom, pim)e.

(momo,miw)c

Poy(C) —=— P(C) ;X e W (:); C,

p1
p1

Us
Applying In.Frc(4) along with Lemma 35 twice gives two covers and two lifts, one
for each of py and p;. A common refinement given by pulling one cover back along

the other gives the cover and two lifts

Ug a%‘—) U4
501&%)
P(C)

in Diagram (%*). It remains to define the ‘weakly-composable maps’ being picked
out by wj; for i = 0,1 and j = 0,1,2 in Diagram (x x x). First we have maps

Us — W ;X W given by

/ C ~ / ~
Woo = (()/)()W()Leqﬂ(),Ug(S)\“Wobeq?T()) w172 = (5p17T0Leq7T(),U36)\17T0Leq7T0)

and by applying In.Frc(2) and Lemma 35 twice and taking a common refinement

of covers we get the cover and lift

W

w1,2/H\’w'().2
A ,az A
Uy —F— Us

in Diagram (% ). Next we have maps Uy — W X, W given by
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Wiy = (W2, Uyl momo)
= ((’w'o.ﬂo?To, ﬁgw{),zc)c, tig.40, ToT0)

= ((’wo.ﬂoﬂo, U0, ToLeqT0, U300, TolegT0)C, U2;49m7T07T0)
and

wy g = (Wi 27, Ugal, momo)
== ((wljgﬂ'oﬂ'o,fLQWLQC)C s ﬂ2;4(‘)1]7’l’07’(’0)

= ((W1,27TO7707 u25p1 ToleqT0, U2;35A1 WobquO)C, U2;49~ I 7T07To)

that, by applying In.Frc(2) and Lemma 35 twice and taking a common refinement

of covers, gives the cover and lifts

A ﬁl A~
U1 ﬁL) UQ
wl,luwu,l

W

in Diagram (% ). Finally, we have maps U; — W X, W given by

L, N
Woo = (W'(J.l'/rla Uy;5 7T07TO)

) 7 [ v/ 7
((wo.lﬂoﬂoaulwo,lc)C, U5 7T07T0)
((w(,)ﬂTo?To, U W0 2 TTOTQ, U1;20 5 ToLegT 05 Ut;30 ) TolegT0, U1;49¢()7T0770)C,

U5 7T07To)
and
[ . A~
Wio = (w1171, U1,5017)
A / ~
= ((w1,17T07T0,U1w171C)C, U1;5017T0)

= ((w1,17T07T0, U1W1,2TT0TT0, U1;25p1 ToleqT0, U1;35/\1 ToleqT0, U1;4(/~ | 77'0770)67

U1;5017T0)
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that, by applying In.Frc(2) and Lemma 35 twice and taking a common refinement

of covers, gives the cover and lifts

W

w1 ,ow’wo,ﬂ
U % Ul
in Diagram (x x x). The object U witnesses five spans, U — spn related by four
sailboats, U — sb, via the covers, ;5 - U— UjH, and lifts in Diagrams (%), (*x),
and (xxx), and the covers and projections in Diagrams (1) and 2). The original three
spans o, 4o, and 4o, are immediate; and two intermediate spans, o( . and oy ,
defined in technical Lemmas 96 and 97 in Section B.1 of the appendix. Lemma 98

in the same section shows that the sailboat ¢ : U— sb, defined by the pairing map

A ~

Yo = (((H(), o), woom), @ 7T1)

is well-defined, where

Mo = (’w'o, &0;497“%0%0)0.

The same lemma shows that ¢ : U — sb relates the spans o, g, : U — spn in

the sense that

$opo = Po(momom1, T1) wop1 = po(mom, (momomo, 71)C)
= (ﬁ 77'0,@ 71-1)6 = (W(L()Wlﬁfo.qiﬁ)
= = 00y,
and so
Uo0q = PoPoqd = PoP1qd = 004 (4.7)

Lemma 99 of Section B.1 in the appendix similarly shows that the sailboat, ¢y, :
U — sb, defined by
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Yo,y = (((Nom fwv/WO)a Wo.071 ), 71‘7771)
where
foy = (wo, ol mimo)C
is well-defined and relates o, to oy - in the sense that
¥o,vPo = 'LALO-W ©Po4P1 = 00,5-
This implies
00,4 = PoyP1q = PoyP0q = UT~q. (4.8)

By Lemma 100, the sailboat, ¢ : U — sb, defined by

$1r = (((:ub @Uﬂo)a w1,07T1), 71017T1)

where
H1 = (Wla Up;4"7) 17T07T0)C

is well-defined and relates the spans oy, 04 - : U — spn in the sense that

$1Po = U0y P1P1 = 01,4

This implies
Uo1q = P1Poq = P1P1q = 01,44 (4.9)
By Lemma 101, the sailboat, ¢ 5 : U — sb, defined by

P1y = (((Mlm o mo), Wi0m1), fwﬂl)

where

1y = (w1, Goal, mmo)e



relates the spans 0., 01, : U— spn in the sense that

P1,yP0 = UOT, P14P1 = O1-

It follows that

0179 = P149 = P1~yP04 = 0+4.

Equations (4.7), (4.8), (4.9), and (4.10) imply

Uoq = Popoq
= YoP1q
= 00~q
= YoP19
= ¥o,yPoq
= Uo~q
= ¥P1,4P0q
= P1yP19
= 01,4
= 1019
= ¥1Poq

= IALO'lq.

By the definitions of ¢ : spn? — C[W~!]; in Lemma (37) and the spans o7,
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(4.10)

U —

spn in (4.5)and (4.6) above along with commutativity of Diagrams (1), (2), (3), and

(%) we can see
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Gttupic = dtm mpic

= aummuc

= UUT1T106q

= Uuo.q

= Uoq

= UUTGT106q

= ﬁ'&ﬂomuc’

= lAL?]’/Toﬂ'OngI

= Qaupac.
where @it : U — sb X, sb is a cover because covers are closed under composition.
The result follows by renaming the ¢; : U — sb for 0 < i < 3 to match with
©0, Po~, P14 and 1 (in that order). The cover 4 : U — sb ,x, sb in the statement

of the Lemma corresponds to the composite uuu mentioned above and constructed

in the proof. [

4.4 Associativity and Identity Laws

This section consists of technical proofs of associativity and identity laws for compo-
sition that are required to see that C[W '], as defined in Section 4.3, is an internal

category in £.

4.4.1 Associativity

The proof for associativity of composition in the internal category of fractions is
rather involving so we have given it its own subsection. Before we prove associativity
we give a remark about induced projection maps for the quotient objects of the
reflexive graphs of fractions and prove a Lemma to give explicit descriptions of the

two possible compositions

Ixcex1:CWs— CW 1,
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in terms of the representative composition, ¢ : spn — C[W 1]}, and the first quotient
map ¢ : spn — C[W™!];. We use these to differentiate between which maps are being
composed first for a triple composite in C[JW 1] and then prove that they are equal

using the universal property of the coequalizer C[W™!]5.

Remark 41. By definition, the canonical pullback projections commute with the

coequalizer diagram maps:

Po

sb¥ :k§ spnf —% 5 CW 1),

Po
¢ _
sb ? spn’ ——» C[W '],
1
Before we can prove associativity we need to define the maps that show up in the

statement. We use Proposition 32 and the universal property of the coequalizer to
do this.

Lemma 42. Let ¢ x 1 = (mg1¢,m3) and 1 X ¢ = (my, m2¢) denote the pairing maps
CW=Y3 — C[W™1Ys, and let

g x ¢ = (moq,mec) and ¢ xq= (701, m2q).

The diagram

spn
gxc iq3 ' xq
CW s ¢y CW s o S,

commutes in E.

Proof. On the right we have

93(0 X 1) = (CI37T01C, Q37T2) = (7T01920, 7T2Q) = (7010,,7T2€I) = x q

and on the left we have

q3(1 x ¢) = (g3mo, q3m12¢) = (Moq, T12qaC) = (WOQJHQC,) =qgxc.
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Now we can state and prove the associativity law. This proof is long and technical but
follows a similar pattern to the proofs in Section 4.3. Recall that diagrams labeled
with capital letters are guides for the usual proofs when £ = Set and represent
diagrams in the internal category C, with diagrams labeled with stars giving the

internal translation involving covers and lifts from the Internal Fractions Axioms.

Proposition 43. The diagram

CW1); =L W1,

xe| le

C[W_l]z —c> C[W_l]l
commutes in E.

Proof. The plan is to show there exists a cover U — spn® with two sailboats, ¢; :

U— sb, with a common sail-projection, pop; = ¢1p1, so that

ugz(1 X c)e = popoq = Pop1q = P1p1q = P1Pog = Ugs(c X 1)c.
The result then follows from the fact that @ and g3 are epic. First we find rep-
resentative spans for the equivalence classes of spans being picked out by (¢ x 1)c
and (1 x ¢)e, then we build a comparison span and two sailboats witnessing their
equivalence.
Begin by taking pullbacks of the projections, 71, 712 : spn® — spn?, along the cover,

w: U — spn?, that witnesses the span composition construction

2

3 3
spn 7T—Ol> spn T spn

and since the outer squares are pullbacks, as seen in [8] we also have

= o1 m12 o
U() y U < Uy

S 2

3 2 3
spn 7|'—01> spn T spn
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and then taking a common refinement

This induces two maps, 0. X 1 and 1 X a,, U — spn? defined by

0. X 1 = (moT10¢, ume)  and 1 X o, = (Umg, T T120).

Taking pullbacks of these induced maps along the composites that make up v : U —

spn? once again gives

and taking a common refinement of the covers on the left and right

U% [71
| \\$ (5)
Uo ﬁ U

gives a cover 4 = @i : U — spn® that witnesses representatives for the two ways to

compose a composable triple of spans. Let

oo:U —spn and o;:U — spn

be defined by

g9 = 7T07T'010'C and 01 = T{T120¢.

To see o represents the equivalence class of tigs(c x 1)c : U — C[W~; we use
the left squares in the diagrams and definitions above along with the definitions of

d :spn? — C[W™!]; and ¢ : C[W~!], — C[W~!]; to compute
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00 = T0T010¢q
= moToruc
= motp(o. x 1)
= molig(0e X 1)gc
= Tolo(ToT010c, UT)qC
= 7T0U0(7T07T01ch, U7T2Q)
= molo(moToruc , Umaq)c
= 7r0u0(7r0u07r01c U7T2Q)
= 7T0160(7T0U07T01C U7T2Q)
= u(umgLc, Umaq)c
= wi(m1c, maq)c
=a(d x q)c
= agz(c x 1)c.

A similar computation using the right squares in the diagrams above shows the spans
o :U— spn represent

o1q = uq3(1 x ¢)c.

To see these representatives are equivalent we will show there exists a cover, u : U —

U, along with two sailboats ¢; : U — sb for i = 0,1 such that

@opo = U0y,  Yop1 = L1p1 and  p1py = Uoy.

.The following algorithm outlines the necessary steps for constructing the cover

0:U—=U

e Apply the Ore-condition to the cospan consisting of the left legs, oomy : U — W

and oy : U = W

e Apply three zippers, one for each left leg of each span in the composable triple

in order from initial to final.

e Apply weak-composition four times to get a span whose left leg is in W
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The figure below illustrates it.

o

A

Internally taking the Ore-square and zippering three times corresponds to applying

In.Frc(3) followed by In.Frc(4) four times to get the chain of covers and lifts:

P(C) LN P (C) P(C) s Py (C)
52? T&g ?50 T&g
03 o // > 04 % // > U5 o // > A6 i / > U (*)
51 l‘si Ga l(o’oﬂ'ow,alﬂ'o)
P(C) —— P,(C) Wo —— csp

(momy,m171)

where 0} is induced by the map 0/ : Us — P(C) ,,XwsW that can be found by taking
the equality



ea(7To7T0, 7T07Tl)C = 9a(7T17T07 7T17T1)C
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from the definition of Wg; expanding the second components using the definitions of

O, 0. x 1, and 1 x 0. with the definition

0. = (wmy, (wmmg, ughmi 7o, um T )C) : U — spn

and finding a common final arrow in W in this expansion process. This arrow is

the left leg of the initial span in the original composable triple of spans and can be

seen in Figure (A) above. The composite obtained from the teal upper half of the

figure is longer than the other as it requires factoring through two weak-composition

triangles. This is formalized by expanding

0a7r07T1 = Uy0ToW
= a77T07_T()10'C7T0U}
= 1_L77T07_T01M7T1U)
= UrmoTo1 (WToTo, UeOTeTow, uTemow ) C
= a77T0(7_1'01w7T07T0, 7_7'01U0¢97T07TOU}, 77'01U7T07T0'U))C
= ’I_L77TU(7_T01U)7T()7T0, ’I_LO:07_T0;0167T07TOU}, 7,_60(0'6 X 1)71'07'('0’(1])0

and similarly

O,mim = Uro1T

= 1?077'('1 (77'12&]71'071’0, ﬂ0;17_r0;126’7ro7r0w, ﬂ1<1 X O'C)7T07T0’U))C.

Now recall that
e X 1 = (moTo10.,ume)  and 1 X 0. = (umg, mT120.)
and we have
(O’c X 1)7’('07'('0’11] = W0ﬁ01UCW0w
= 7T07?'01(.U7T1w

= 7T077'01 (Wﬂ'oﬂ'o, erﬂ'oﬂ'o'w, U?Toﬂ'ow)c

(4.11)

(4.12)

(4.13)
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where the last map, U — C; in this composite is:

7T077'01'LL7T()7TOU) = Woﬁoﬂ'olﬂ'oﬂ'ow
= ﬁ7r017r07row
(4.14)

= 1~L7T07T0w

= (1 X o.)memow

The definition of the cover 4 from Diagram (5) and equation (4.14) imply the final
component of the internal composition defining 6,77 in equation (4.12) is the final

component of the internal composition defining 6,mm; in equation (4.11):

QAL77T017L07T077'()1U7T07T01U = ’&771'1@17'(‘077‘01U7T07T01U ( )
4.15

= ﬂ7ﬁ1ﬂ1<1 X O'C)’YT()T('()UJ.

With these calculations and the commuting diagrams defining the covers above we

can see there exists a map 0 : Us — P(C) ,;XwsW, uniquely determined by the

maps
(56/71'1 = ’&7@(1 X O'C)7T07T0,
" — = - =
0 ToTo = (9a7T17T0, U77T1(7T1QW7T07TO, U0:17T0:1297707T0w)0)07
and

56/71'077'1 = (Qaﬂ'g’ﬂ'o,
Urmo(To1wToTo, Uo:0To:010Tomow,
ﬂg(’ﬂ'oﬁ'gl (u)ﬂ'(]’ﬂ'o, UOHT('()?T()U))C )C )C
= (9a7T0707

11771'0(77'01(,(}71'071'0, 'L_Lo;oﬁ'o;()leﬂ'oﬂ'ow, ﬂo(O'c X 1)7707r0w)c).

Moreover, the equations five equations above imply
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8o (momo, m1)C = (9a7r17r0,
Uy (T12W 0T, Uoa To:120momow)c,
ru(1 x 0.)memo)
= (0,m17m0, Oym171)C (4.16)
= (0,mom0, Oumom)C
= (amomo,
Urmo(Torwmo ™o, Ug.0To.010ToTow, Ug(0e X 1)7r07r0w)c)c

= 0y (o7, ™1 )C.

By the universal property of the equalizer,P.,(C), equation (4.16) induces a unique
map &) : Us — Pey(C) such that the diagram

"
5()

commutes in £. Next, to define the map &, : Us — P,(C), we start by considering
the definition of the pullback, P(C), that says

doToleq(To, M1 )C = OoToLeq(To, M1 )C U5 —C

are equal in £ and represent that same family of arrows in C. We can post-compose

these internally to C with the family of arrows

ﬁ(jgﬂﬁﬂ'o’ﬂ'l Uy — C,

and after re-associating the internal composition to find each of the two Ore-squares

arising at the two different covers in the following diagram.
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Oi.0

This diagram commutes in the sense that the two maps on the outside, Us — C4, are
equal. In the figure above this corresponds to the statement that the two left-most
Ore-squares on the top and bottom agree on the projection, mom; : Wo — C;. Notice
[y o represents one of the two Ore-squares in Diagram A of the triple composition
construction on the top (in teal) while represents the second of two Ore-squares
in the triple composition construction on the bottom (in orange). Now compute the

projection

T = g7 71 Up:1 To: 120171
= U777 Up:1 T:12U1 T T
= U771 T12UUL T
= g7 7T 12U T

= ﬁ6;7 ’ljl<1 X 0'c>7T17T0

= ﬁ&fa(l X O'C)7T17TO

= U7 U T120:To

= ﬁ6;7ﬂ71'17}12w7'(1 .

Since wmy = (wWmyTo, W, WM )¢ With wmgme = umym by definition of w : U — W,

we can expand and notice that the final map,
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ﬁ6;7a7T17~1'12w7T07T2 : U5 — W

is equal to

d6;7ﬁ7r17~r12u7ro7ro = D1,07T17Tl : U5 — W.

This induces a unique map &/ : Us — P(C) X sW determined by the map Us — W
given by

1/7T1 = Uy omim,
and the map 0"m : Us — P(C) whose left projection, 6”mym, is the pairing map

(60Leq7TOw7
g0 T,
U771 T12W T T,
T, 771 T12UoBT T,
U7 W T 12W T,
ﬁ6;7ﬂ ﬁlzuoeﬂ'oﬂ'ow)c
and whose right projection, 6wy, is the pairing map
(50Leq7TOwa
U0 ToToW,
Ug, 7T M1 WTOTQ,
Ue,7ToTo1UpIToToW,
U7 UT 1 TTo1W T,
aﬁ;ﬂ_ﬂToﬁ'()lUOeﬂ'lﬂ'o)C.
The fact that 6] satisfies the equalizer condition for P,,(C), namely
1 1
51 (7T07T0, 7T1)C = (51 (7T07T1, 71'1)0,

follows from the calculations above. This induces the unique map 97 that makes the

following diagram commute:
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—
5
5y

Us
Finally, the map &, : Uy — Pu(C) is similarly induced by a map 6 : Uy —

P(C) ;x,sW which can be deduced expanding the right and left-hand sides of the

equation

O1teq(mo, MT0)C = O1teq(momiTr)C

whose common target is the middle object of the original composable triple of spans,

post-composing with the arrow

ﬁg,;@ﬂ’ﬁﬂ'lﬂl : U4 — Cl,

which is final map given by applying the projection mym; : Wy — C; of the Ore-

squares

> WD
lﬂ'lﬂ'l
U, %Y 0 s O 2T Ly
4 —7 7 spn® —7/— _ (mm)
T,
7 / \ 7 \ \
Ul Ta0:1 UO:I To:12 UO 0 7 WD

Picking out the composable pairs in W to get a cover witnessing a family of spans
whose left leg is in W is done in order from right to left in the diagram before. This
is identical to how it was done in the proof of Lemma 40 from Section 4.3, except
this time an extra zippering step leads to an extra composable pair in W. The chain

of covers and lifts are given by applying In.Frc(2) four times as seen in diagrams
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(mom1,mo72)

W, W, XwsW
N
w1 T(W()Trlyﬁ3;560beq7r0)
IR RN § N Ni; )
1 7 ” 2 7 ” 3
wo l(62beq7r07ﬂ451Leq7r0)
<
Wy ——— = W XusW
°  (momi,moma) wt 7 ws
and
(momy,mom2
WL W
A
w3 T(wzwl,ﬂlﬁaoﬂo)
A ﬁo A ﬁl A
U // > U[) // > Ul ’ <***)
w2 l(wuﬁﬂb;aeaﬂoﬂo)
<

Wy ——= W i XwsW

(mom1,mom2)

At this point we can define two sailboats, g, @1 : U — sb, whose deck-projections

give the two composite representatives we care for,
$oPo = U0y , P1Po = U0}
and whose sail-projections agree,

YoP1 = ©L1P1

by virtue of zippering. To define these explicitly we first expand both sides of the

equation

ﬁ0;352beq(7T0, 7T17T0)C = ﬁo;3(5zbeq(7fo> 7T17T1)C

into composites and post-compose both sides with the map represented by
ﬁ’afbﬂ'g’/ﬁ : [7 — (Cl.
This gives two equal representations of the right leg of the intermediate span,

PopP17T1 = P1P171,

and by re-associating the composites in both representations we can get
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WYop17T1 = (Mo, ﬁUom)C

and

oipim = (p, oy my)c

for two maps, po, f41 : U — Cy, which represent the masts of the sailboats being

picked out. This gives the maps U — sb defined by the pairing maps
Yo = (((Moafbao), w2771)7 ZAL<707T1)
Y1 = (((Mlﬂlal), waTt), fwﬁrl).
It follows that
Uoog = popoq = Pop1q = P1P1q = P1Poq = Uo1q

and since 4 is epic,

0oq = 014.

4.4.2 Identity Laws

The only conditions left to check in order to see that C[J¥ '] is an internal category
are the left and right identity laws for composition. This rest of this section is
dedicated precisely to this. The identity laws are typically proven, when £ = Set,
by looking at the composites
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and

and producing the sailboats

s

. & . <
S S

5 . g

~
~

that relate each composite to the span (f, g) respectively. Since proving the identity
laws requires a lot of source and target maps for different objects and we have been
overloading their notation, for the rest of this section we rename the source and
target maps for spans and sailboats to keep our calculations somewhat more legible.
Let ', : spn — Cg denote the source and target maps for spans, given by the
pairing maps s’ = mowt and t' = w1t respectively. Also let s”,t” : sb — Cy denote the
source and target maps for sailboats given by the pairing maps s” = mwomt = momomyt
and t” = mt. Internalizing this will require covers that witness composition of spans

along with the canonical left and right identity inclusions,

(s'oa,l) (L,t'oa)
Spn —— sSph ;X Spn spn —— spn , X, Spl
and
(s"¢a1) (Lt"¢q)
sb —— sb ,,x ., sb sb —— sb ,,x,sb ,

induced by o, = (o, aw), @, = (((aswe, a),a), aw), and the fact that « is a section
of wt. The following lemma is used to define the identity inclusions C[W~!]; —
C[W1]; ;x, C[W~1; used in the identity law statement.

Lemma 44. The diagrams
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Ppo q

sb ¢ spn » CIW 1,
p1 .
(s”cpa,l)l l(SIUD”l) ;(5671)
p2 '
$b X g1 b :z; spn X, spn —— C[W =y x, C[W 1]
pP1 q
and
p
sb po ¢ spn 1 » C[W1),
1 .
(1,t”goa)l l(l,t’aa) “(Lte)
p2 ~
b X g1 sb :Z; spn X spn —— C[W ™1y, x, CW1];
Py q

commute in the sense that for i = 0,1

(S”()OOU 1>pz2 = pi(slo'a, 1) ) (t”@a, ]-)p? = pi(tlo-om 1)7
which uniquely determines
(se, 1) and (1,te)
respectively.

Proof. To see the squares on the left commute first notice that

poS/ = po?'('owt = 7T07T07T1'wt = S// = 7T07T1'wt = plﬂ'owt = p15’

and
pgt, = pgmt = 7T1t = t” = p17T1t = plt/.

Now for ¢z = 0, 1 we have

(SHS%, ) (SHQOaa )(Wopz‘, Wlpi)

S SOOU Wopza (S”@aa 1)771])1)

s"Papi, Di)

s"(a, aw) pi)

((
(
(s"(
(s"00; pi)
=(p
bi

s Uom pl)
(§'04, 1)
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and similarly

(t" 0, 1)p; = pi(t'cq, 1)

showing that the squares on the left commute as described. Then since piga = p?qa

we get

p0(8'00,1)¢° = p1(s'0a, 1)g

2
and

pO(latlaa)qz = pl(latlaa)qz
inducing the unique vertical maps on the right in the lemma’s diagrams by the
universal property of the coequalizer C[W™!];. Now we show these are precisely
(se,1),(1,te) : C(W™1]; — C[W1]; ,x, C[W~!];. Notice the outer squares of the

following pullback diagrams

commute because s’ = ¢s implies
et = o,qt = o4t = o,mt = (o, aw)mit = awt = 1¢,

and similarly ¢ = gt implies

es = 0,08 = 0,8 = awt = 1¢,.
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The triangles in the left diagram commute because
(5'00,1)¢*72 = (5'04,1)T0q = §'00q = s'e
and
(5'00,1)¢*72 = (5'00,1)m1q = ¢

and a similar calculation shows the triangles on the right commute. Then we have

(s'0a,1)q" = (s'e, q) = (gse, q) = q(se, 1)
and

(1,t'00)" = (q,t'e) = (g, qte) = q(1,te).

as required.

Lemma 45. The diagram

5,0'0471) (17t/004)
Spn —— Spn t/XS/ Spn <—— Spn

N

(C[W_l]l
commutes in E.

Proof. We show the left triangle commutes, the argument for the right triangle is
similar. Pullback w; along (s'o,,1) and then pullback along wuy as shown in the
diagram below to obtain a cover of spn that witnesses the entire composition process
of an arbitary span and a pre-composable span representing the identity in C[I¥ ~1];.

The following diagram commutes by definition.

1 Oo
U~ y U > spn
.
1 o\
uo
* 1
Uy —— U q

L -
Uy
u* uyl

SPIL — o SPIL X SPIL ——— Cw—1],
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By commutativity of the outer square above and since u* is epic, it suffices to show

u'mo.q = u'q.

This can be done by translating the usual proof of the left identity law for span
composition and defining a sailboat ¢ : U* — sb such that

ppo =u" and @p; =m0,

to give

u'q = ppoq = PpP1q = T10.q.

First compute

MOs = Ty (wm, (wmoTy, upfm Mo, u7r17r1)c)
= (mwm, (mwmm, Tuedmim, TumT)c)

* *
= (mwm, (mwmemy, uym 0T T, U 7r1)c).
Now notice that

mumemow = u*(s'cy, 1)memow

= u*(s'0q4, 1)momow
= u*s'o,mow

x /
= u*s'aw

x /
= U S0,

* * !
= uyui(s'oq, 1)mom
= Uy UL T,

= uym Omem

and use this in the third line of the following calculation along with the definition of

W5 (the Ore-condition) in the fifth line.



126

THWm = (71'1&]71'071'0, W W, 7T1M7T07TQUJ)C
= (’/le7ro7ro, 7r1u097r07r0w, 7r1u7r07r0w)c
= (mwmemy, ugmlmemow, ugm Omemy)c

TWTTo, Uy (Omomow, 97r07r1)c)c

TWTTo, Uy (0m1 0, Q7T17T1U))C)C

(mwmmo, ugmbmimy, usmlmmw)e

= (mwmTo, UuGmOTIT, UGTIUITITOW)C

= (mwmomo, ugmOmimy, u*(s'oq, 1)mmow)c

(

MW, Ugm0miTy, u mow)c

The last calculation shows that the sailboat ¢ : U* — sb defined by

0 = ((((mwwoﬁo,uz‘)mﬁmﬂow)c, u*mg), mWwm), u*m)

is well-defined. Clearly we have

PYPo = 80(7T07To7Tl,7T1) = (U*%,U*m) =u*

and the first calculation along with associativity of composition in the last equality

below shows us that

wp1 = @(mom, (7T07T07T077T1)C)
= (7'('1(,4)71'1, ((mwmomo, ugm Om1m0)C, u*m)

— TM10,.

Proposition 46 (Identity Laws). The diagram

(se,1) (1,te)

Cw~1, CW™1; ,x,CIW™; «+— C[W™],
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commutes in E.
Proof. By Lemma 44, the diagrams

spn l s C[W—1,
(s’o’ayl)l (5671)

v

and
spn 1 » CIW 1,
(l,t/aa)l (1,te)

spn ;X spn —— C[W™1; ,x, C[W™1];
! z
C[W_l]l
commute and by Lemma 45 the composites on the left sides are both equal to ¢. It

follows that the right-hand sides are identities by uniqueness. O

4.5 The Internal Localization Funtor

In this section we define the (internal) localization functor, L : C — C[W '], prove
it is an internal functor, define what it means for an internal functor to invert an

arrow w : W — C;, and then show that L inverts w : W — C;.

Defining the Internal Functor

The localizing internal functor, L : C — C[W™!], is defined on objects to be the
identity map, Ly = l¢,, because C[W ™!y = Cy. On arrows we use the section
a: Cy — W along with the source map and the identity to get a (family of) span(s)
which can be mapped to C[IW~1]; as follows.

(sa,(saw,l)c)
C; ——— 5 spn

o b

Cw—1,
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When &£ = Set this says L; maps an arrow f :a — b in C; to the equivalence class

of spans represented by the span

ala)f
ol T
a < a o a 7 b .

Identities are preserved since es = 1¢, and by the identity law, (1,te)c = 1¢,, in C

el = e(sa,(saw,1)c)q

where the last line is the identity structure map, ¢ = (a,aw)q : C[W 1y — C[W 1],
for the internal category C[W~!]. This shows the diagram

Lo

(Cl L—1> C[Wﬁl]l

commutes in £ so L = (Lo, L) preserves the identity structure. Composition is

preserved in a less obvious way. We need Lemma 47 to see

cly = c(sa,(saw,l)c)q
= (esa,(esaw,c)c)q
Tosa,(mosaw,c)c)q

/

To(sa,(saw,1)c), 7 (s, (saw,1)c))c

To(sa,(saw,1)e)q, T (s, (saw,1)c)q)c

(
( ),
— (mo(ser (saw,1)c), m (s (saw,1)e)) (g x q)e
( )
(

and conclude that the diagram
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C; =55 CW

Cl L—1> C[W_l]l
commutes in &. It follows that L = (Lo, L,) is an internal functor.
Lemma 47. The diagram

<7ro (sa,(saw,1)c),m1 (sa,(saw,l)c))

Cs ¢ spn?
(7r0 sa,(mo saw,c)c)l lc’
spn Z » CIW 1),

commutes in E.

Proof. Internalize the following figure
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where olive coloured arrows are fillers of Ore-squares, violet coloured arrows W-
composition fillers, and magenta coloured arrows are zippering fillers. To do this

internally, start by taking the pullback

1@ (0)

> spn?

)
3
3

IS

&

(Wo(sa,(saw,l)c),w1(sa,(soaw,l)c))
to give a cover witnessing span-composition along with the representative spans for
L;. In Figure (A), this gives access to the teal and black coloured arrows. We begin

by internalizing the ‘inner’ part of Figure A

o ala)f (b) a(b)g

Ao Ty @ e

a < K(a,)a f,b/ O‘(b),b T C
. b

!

We can build diagram (1) below by noticing
TUTTy = UToS (a)

which means there is a unique map (umysaw, Tumym) : U — csp. Applying the
internal Ore condition, Int.Frc.(3), witnesses the first (family of) Ore-square(s),

0o : Us — W, and using diagram (0) and equation (a) above we can rewrite

Ugmumem; = UgUmo(saw, 1)c = (totmpsaw, Uglimy)c = (Qomimiw, Uglmg)c
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and see its source coincides with the target of fymmg : (js — W by definition of Wp.

This induces the unique map

(907T17T0,7TU7T071) : Ug — (CQ.

Now the target of mumym : U — C, is the target of wumimg : U—Ww by definition

of spn?, and this gives rise to the map

((007r17ro, TUTT)C, 7Tu7T17T0) : Us — csp

in diagram (1) below. Applying Int.Frc.(3) here witnesses the second (family of)
Ore-square(s), 0 : U — Wa. The map representing pairs of composable arrows in
W, that induce the cover s and the lift wy : Us — W, by Int.Frc.(2) in diagram (1)
below, are pretty self-explanatory. The one inducing w : Us — W, can be justified
by chasing through the already established parts of diagram (1) below. First notice
that

ﬂ7;8907r07r1 = ﬂ7;9fmosaw

and

Wom = (woﬂoﬁo, O momo, U8907TO7TO)C-

The target of this last composite is the target of the last arrow which is the source

wgmwt = 127;8907r07rowt = 7:1,7;89071'077'18 = ﬂ7;9ﬂ7T080éw8.

Applying Int.Frc.(3) induces the map w; : 45 — W, and all together we get a

commuting diagram of witnesses to the the inner part of Figure (A).
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(momy,m171)

Wg ———— c¢sp

()1T T((eoﬂlﬂ'(),ﬂg’n'uﬂ'()ﬂ1)C,fbgﬂ’uﬂfn’o)
A~ Qg N g ~
U7 // e U8 / e U
()(J\L (@ saw,Tumomo)
Wn > CSp

(mom1,m171)

(mom1,mom2)
W, T W
u)]]\ T(woﬂl,ﬁpgﬁﬁosa)
~ iig ~ fir ~
Us 4 > Us 7 » Uz
woi (elﬂoﬂo,ﬂggoﬂ'oﬂo)l

Applying Int.Frc(3) once followed by Int.Frc(4) twice gives local witnesses to the
existence of the outer Ore-square and zippering arrows in magenta from Figure (A).
Note that the first and second magenta arrows equalize the parallel pairs obtained
by going around either side of the Ore-square and ending at the domains of a(a) and

a(b) respectively.
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For the additional Ore-square added in (C) recall the construction of the cover w :
u — spn? and notice that target of the left leg of the composite coincides with the

target of wymy : U5 — W,

7:66;97TO'O7TOwt = ’Zl&g’ﬂ'tdﬂ'lwt
= ’ll&gﬂ"dﬂ'oﬂ'o’d)t
= Ug9sawt
= W17T07T2U)t

= wymwt.

This induces a unique map (w7, UeoTooT) : Us — csp which in turn gives a
witnessing map 6, : U; — Wi in diagram (2) below. The map X : Uy — P,(C)
is induced by N’ : U — P(C) ot XsW, which itself is induced by the universal
property of the pullback P(C) . ,x,W and can be defined explicitly as a pairing
map by expanding each side of the equality determined by commutativity of the last
Ore-square. Internally this is captured by the definition of W and the lift 6, from
Int.Frc.(3). On one side of the equality we have

(6271'071'0, 9271'071'1)6
= ((927T07T0, ’&50.}17'('1)0
927T07T0, Us CU17T07T0, U6(JJ07T1, UG 9U7T080é”LU)C) C

= (fomomo, Usw1 ToTo, UsiewoTr , Usg Umosaw) ¢ (4.17)

(927T07T0,U5w17T07T0,U5 6(‘«007707707“7917'(07707“7 gbomomo)C, Us, 9U7T08047~U)C
(927T07T0,U5w17T07T0,U5 6W07TO7TOaU5 701 oo, Us; 8(907To7Tow UQUWOSOZUJ)C)C

= (Oamomo, Usw1ToT0, Us;6WoT0T0, Us;701 Moo, Us.sbo 170, Us, 9U7TOSCW))C

and on the other we have
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(O, Oomimw)c
= (Oymy 0, UsoTOToW)C
= (Oymy Ty, UsoTWTIW)C
(4.18)
(927r17r0,u5 o (WmoTo, UplTeTow, uTW)C )c
(927r17ro, Us, g TWTTOT, UsoTUOToToW, Us, 97ru7r0w)
= (927r17rg, Us, g TWTOT, Us,gTUOTeToW, 715;9@#030410)0
Notice that the last coordinates of the internal compositions described in the last
lines of equations (4.17) and (4.18) coincide. Then the map X’ : Uy — P(C) ;xpsW

is determined by the projections

N'my = ds9tumgsaw
N\ = (0 U U .70 .80
o700 —( 2T oW, UsW1TpTo, Us,6W0TT0TT0, Us;701TT0TT0, Us;8 07T17To)0

/\//71'077'1 = (QQ?Tl’YT(), ’&5;97’(’&)’71’07'('0, ZAL5;97TU0Q7T07T0U))C.

The left-hand sides of equations (4.17) and (4.18) are equal by definition of W and
this induces the unique map X : Uy — P,,(C) such that the triangle

PCQ((C) <t P(C> tstW

commutes by the universal property of the equalizer P.,(C). By definition of the
pullback P(C) we have

)\ﬂ'obeqﬂ'l = >\7T1ch7TO = )\/chﬂ'o = )\”7'('0,
so that
()\W[)Leqﬂow, )\”7T07T0)C = ()\ngeqﬂ'gw, )\”7T07T1)C. (419)

Define

n = (9277'071'021), ﬁ5W17TQ7T0, ﬁ5;6wO7T07TQ, 1AL5;7917T17T0)C (Def 7’])
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and then by definition of the first two Ore-square maps in diagram (1) we have

)\”71'07'('0, 7:L5;97TU7T07T1>C
(927To7Towa UsW1TT0TT0, Us;6W0TT0TT0, U5;7917To7Tow7 u5;8007T17T0)Ca U5;97TU7T07T1) C
9271'071'011), UsW1TT, Us,6W0TT0T0, U5;7917707TOU), U5;8(907T17T0, U97TU7T07T1)C) C

= (927T07Tow> Usw T, @5;60J07T07T07 ﬁ5;7917T07T0U)> ﬁ5;7917T07Tl) c

(4.20)
= 927T07T0"LU, ’&50)171’07T0, ’(AL5;6(U07T07T0, ﬁ5;7(917T07T0"LU, 917T07T1)C) C
= 9277'071'021), ﬁ5W17TQ7T0, ﬁ5;6w07ro7r0, ﬁ5;7(917T17T0, 9177'171'110)0) C
= 9277'071'021), ZAL5(,<}17T07T0, ﬂ5;6w07T07T0, ﬂ5;7917T17T0, 1AL5;Q7TU7T17T0U)) C
= (0, UsomuUT TOW)C
It will help to define,
v = (0om1 70, Us.g MW, UsoTUoOT Tow ) C (Def. v)

and by definition of the Ore-square in the definition of composition on representative

spans, 0, : U — spn, we have
()\"7T07T1, ﬂ5;97ru7r07rl)c
(Oomy 0, UsoTWTOT0, Us.9TUGITeTOW)C, ﬁ5;97ru7r07rl) c

o110, Us,9TWTo T, Us.oTUo(Omemow, U17T07T1)C) c

0271'171'0, ’115;971'(,071'071'0, ZAL5;97TU0(97T17T0U), 07T17T1)C) C

= (9271'171'0, ’115;971'0.)71'(]71'0, 115;97ru0(97r07row, 07T07T1)C)C (421)
(0271'171'0, ?15;971'&171'071’0, ’115;971'1,60971'171'0?1), ’115;971'1671'171'0?1)) c
(

v, 'EL5;97TU7T17T01U)C

Putting equations (4.19), (4.20), and (4.21) all together gives

~ ~ ~ 7 A~
(ATToLeqmow, Uan), UggTum ToW)C = (AToLegMoW, Ug A ToTo, UssgTUTHT ) C

(ATotegmow, iy X' momy, Ugomumomy)e  (4.22)

(ATToLeqMoW, UaV, Uy g TUT TYW)C

and induces the unique map p” : Us — P(C),XysW which is determined by the

projections
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p'm = lggmummow,
/! ~
p'momy = (AoLegmow, Uan)c,

p'mom = (AToLegmow, Uyv)c.
equation (4.22) induces the unique map p : Us — P.,(C) such that the triangle

PCQ(C) S P(C) tstw

Uy —2f—s Uy —f » Uy —2—f—— Us ' 2)
/)l lp’ U;i l(wlm,ﬁe;gﬁooﬂo)
P(C) —— P(C) W —— csp

(momy,m1m1)

Applying Int.Frc(2) three times gives a cover that witnesses everything in Diagram
A, and from there we can find two sailboats, p, 1 : U— sb, along with a comparison

span, pp; = ¥p1, whose left leg is in W.

770771,7"0772 770771777071'2

W, W i XwsW Wy ———— W, XuwsW
T T(wsmﬂlg;swml) T pWOLeqﬂFOﬂLd)\"rOLeqﬂ'O)T
I S g, ©
l w:sJ( l(w2ﬂ17712;4927ro71'0)
Wy —————= W, XuwsW

(mom1,mom2)

For defining the sailboats above we should notice that commutativity of the first two
Ore-squares and weak-composition triangle along with the commuting forks given by

zippering imply that the composites of solid arrows in Figure B below are equal.
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afa)f a(b)g
a &8 PR O e (N i S ‘o— - o
r a(a) f ~ ab) 9
"o (B)
. b
O A

This is seen internally by first taking the equation

(PToLeqMoW, PToLeqT1T0)C = (PToLegMoW, PToLegT1TL)C

from the definition of the equalizer P,,(C), post-composing (in C) on both sides with

Uz, oTUT T Us — C, and using associativity to get the equation

(PTTOLegToW, PTTOLegT1T0, Ug,gTUTIT1)C = (PT0LeqMOW, PTolegM1T1, UsoTUTT)C, (4.23)

and then expanding the latter composites on both sides to get

(pToLeqmiTo, UsgTUTI T )C = (PT1LeqToT0, (UsoUm (sQw, 1)c )

3p LegT0T0, U3 9U7T180(U) U3 9U7T1)C

= (

= (tzp" oo, Us.oTUT TW), U3.9UT )C

(’[L (ATToLegmow, Uan)c, Ug.gmum ToW), Us, 9'U/7T1)C
= (

3(AToLegmow, Ugn, Ug.gTUT ToW)C, Us.gUT ) C
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from the left-hand side, and
(PToLegm1 T, Us oMU T )C = (PT1LegToT, Us,oUT (SQW, 1)C)C
’LAtgp begT0T1, U3 9U7T1806U) U3 gU’TFl)C

(

= (

= (tzp" mom1, Us.oTUT MW, U3.9UT )C

= (Ug(ATolegMow, Ugl)C, Ug.gTUT TOW, Ug.gUT )C
= (4

3(AToLegMow, UgV, Ug.oTuUT TOW)C, Us.9UT ) C

from the right-hand side. These expansions are used below in equation (4.24) where
we start establishing how the middle arrows for the sailboats picked out by ¢, :
U — sb coincide. These middle arrows will be picked out by maps, o, i1 : U— Cyq,
which will be internal composites, py = (W', Ug2py)c and gy = (W', Goapy)c, for the
arrow ' : U — C; that is defined after Figure (C). The map picking out the part of

the middle arrows in the sailboats determined by ¢ : U —sbis

/ A ~ A A
Ho = (pT‘-OLeqT‘—Owa u3/\7TOLeq7TOw7 U342 moToW), Us,5W1 T 0, U3;6W07T1w)0

and by expanding the composites with the definitions of 6,6, and wy in 1 along

with the fact that Tumym = am(saw, 1)c from 0 we can see

(PToLeqToW, UgALeg MW, Us 47, U39 TUTHT)C = (,ug, Ug.gtc(saw, 1)0) c.

The middle of the sailboats being picked out by 1 are given explicitly by
py = (PToLegMoW, UsATolegToW, Us.402m1 70 )C.

Putting together equation (4.23) with the expansions and definitions of yuf, and p}
and the definitions (Def. n) and (Def. v) and the definition of o, : U — spn.

(ME), tz,9tic(saw, 1)0)0 = (PWoLquoM U3 ALegMoW, Us:47), Uz, g TUTI T )C
= (pwobeqwow, UsAleg MW, U4V, Us,gTUTL T )C- (4.24)
= (/,L/l,ag;gﬂ'O'o?Tl)C

The maps ¢ and 1 picking out the sailboats can be seen in Figure (C) below as the

appropriate composites of the solid arrows.
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Explicitly define w' : U — C; to be the composite of the weak-composition arrows
in (3),

w' = (W4T, UowWs o, tos W20 )€, (Def. ')

and then pg : U — Cy by
fo = (W', Tgaptg)c- (Def. po)
By definition of wy : U — W, we have
wymy = (o, wlmpsaw)c

so the map ¢ : U — sb, that picks out the sailboats in the bottom of Figure (C)
(consisting of orange and violet arrows and factoring through the bottom of the olive

coloured Ore-square arrows), given by

¢ = (((po, dtmosaw), wym ), tuc(saw, 1)c) (Def. )
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is well-defined. Similarly define

i = (W', dogapty e ( Def. p1)

By the first zippering, A : Us — P(C), in (2), in particular by Arg : Us — Peg(C)

and the equalizer in its codomain we have that

(fbg;glull, 7:60;97'('0071'07'('0, 7:L7TU097T07T0’IU)C
= (Uo;gpﬂ'obeqﬂ'ow, Uo;g)\ﬂ'obeq’ﬂ'o'w, U0;3)\7T[)Leq7T17T1)C

= (Uo;gpﬂ'ol,eqﬂ'ow, Uo;g)\ﬂobeqﬂow, UO;g)\ﬂ'oLeqﬂ'lﬂ'o)C

where the second to last line comes from the definition of x4 and the Ore-square
picked out by 6y : Us — Wh and the last line is by definition of wy : U — W,. This

allows us to see

1, UTOTW ) C

W', Ug.afty, UMW, UTUOToToW, UTUTHTOW)C

W', Tgafty , UTWTOTeUT U T ToW , UTUTHTW ) C

W', Uo;2PToLeq MW, Uo;3ATT0Leg oW, Up:3 AT Leq 1 T, UTUTTOW)C

! o~ !/~
W', Uo.a by, UTUTHTW)

(
= (
= (
:( !
= (
= (o, GumoSQW)

so that the map 1 : U — sb determined by

¥ = (1, Wmoomo), wam ), timoom ) (Def. )

is well-defined. Notice the intermediate spans picked out by ¢ and ¥ coincide due
to the composites in Figure (B) being equal. Formally, by (Def. ¢), (Def. 1), and

equation (4.24), we can see



wp1 = @(mom, (TomoTo, T1)C)
= (wamy, (po, Usptc(saw, 1)c)c
= (wamy, (W', Qo ptly, Usplic(saw, 1)c)c
= (wamy, (W', Goppt], UsygUmoem)c)c
= (w47r1, (1, ﬁﬂﬂaom)c)c
= (momy, (momoTo0, M1 )C)

= ¢m

Also notice that by (Def. ¢),

¢po = (momom1, 1)
= (@umgsow, dic(saw, 1)c)

= @i (msow, c(saw, 1)c)

and by (Def. 1),

Ypy = 1/1(7T07T07T1;7T1)
= (umosmo, UToomy)

= UT0o,.

Putting equations (4.25), (4.27), and (4.26) together gives

aﬂ(ﬁosaw, c(saw, 1)c)q = Vpoq
= ¥P1q
= piq
= ¥poq
= Umo.q
= amuc

= @i (mo(sa,(saw,1)c),m (s, (saw,1)c)) e

/
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(4.25)

(4.26)

(4.27)
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and since uu : U — C, is epic, we get

(mosaw, c(saw, 1)c)q = (mo(sa,(saw,1)e),m (sa,(saw,1)c))

as promised. O

Inverting the Canonical Cartesian Cleavage

Now that we know L : C — C[W™!] is an internal functor, we can show that it
satisfies an important property. The rest of this section consists of lemmas leading
to Proposition 55, which shows that the localization functor, L : C — C[W ™1,

inverts w : W — C; in the sense of the following definition.

Definition 48. We say a map = : X — C; is invertible if there exists a map

271 : X — C, such that the diagrams

-
™
Cy —— Cy >

”Ol l

(ClTMCl

x & ¢,
xJ{ lc , and

C17>(Cl

1

commute in €. In this case we say 7" s an inverse for x in C.

The next definition describes what it means for an internal functor to invert a class

of arrows in its domain.

Definition 49. We say an internal functor, F' : C — D inverts x : X — C; if there

exists a map F(z)™': X — Dy such that F'(z)~! is an inverse for the composite

X#Cl

PN 17
D,

in ]Dl-
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One might expect that internal functors preserve inverses, and sure enough the fol-

lowing lemma states and proves this:

Lemma 50. Ifz : X — C; is an arrow in € that has an inverse x= ! : X — C; and

F : C — X is an internal functor, then the composite

X%Cl

Fm lFl
D,

has an inverse given by

Proof. By functoriality we can compute

(F(X),F(X) Ye= (zF, 2 Fy)c
= (2,27 ")k,
= zsekF]
=xFise

= F(X)se
and

(F(X)™, F(X))e = (a7 Fr,aFy)e
= (271" cFy
= xteF)
= xlte
= F(X)te

and the result follows from Definition 49. ]

The following lemma shows how every span is equivalent to a canonical composite
of spans and will be useful for proving our main result, Proposition 55. The idea is

that every span, represented as
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!
c<+8—a > b,

is equivalent to a composite of the pair of composable spans, represented as

ala)f
c+e"—a a <—a(eb)— d ——agz)—> a ——-f--> b

in particular. This is translated to the following statement about internal categories.

Lemma 51. The triangle

(7r0,7r0wse , (mowsay, (Towsaw, 71'1)0)

\»

Proof. Let v : spn — spn? be the unique pairing map

> spn

commutes in E.

v = ((mo,mowse) , (mowsa,(mowsa,m)c)).

Take the pullback of the cover u : U — spn?, used to define ¢ : spn? — C[IW 1],
in Lemmas 37 and 38, along 7 to get a cover @ : U — spn that witnesses the span

composition process for the family of composable spans represented by ~.

U—"—U
L
spn —— spn’
It suffices to construct a (family of) sailboat(s) ¢ : U — sb such that
Ypo=u and Yp; = TOo,
because that would give
g = ppoq = ¢p1q = T0oq = Tuc = Uyd

and since u is epic we could conclude that

vd =g
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as desired. This family of sailboats will be constructed using the definition of the span
composition, but let us take a moment to consider how this works when £& = Set.
In this case, for each f:a — bin C; and u : a = ¢ in W we have a diagram that

looks like

which gives rise to the sailboat

hv'

o
~
IS
~+

showing that the span (u, f) is equivalent to the composite (u, 1) * (a(a),a(a)f).
The map picking out such sailboats internally, ¢ : U — sb, can be constructed by
picking out the corresponding arrows through the composition process witnessed by

the cover u : U — spn?. Explicitly, this is given by

0= ((((7‘(’0071’07'('0, Tuldmemow) e, umy), TOLMy), fml)

and this is well-defined because umy = uymomy and the definition of W, shows

MW, TUYOToTow )C, UTgw )¢ = (TWTTg, TUGHT1 T, UYToToW ) C
0 0
= (7Tw7T07T0, Tuglmomow, 7TU7T07T0w) c
= TWT 1w

= TO,ToW.
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We can immediately see that
wpo = p(momomy, M) = (Umg, umy) = U (4.28)
and by adding an identity map, U — Cy, given by

UTYWSE = UYTT, = TUT(QT1

into the following computation we can use the definition of W, the fact that

(ampwsaw, Um )c = wym = Tumy,

and the definition of o, : U — spn in Lemma 37.

p(momomo, T1)C = (<7Tw7T07T0, Tugfmomow)e, fml)c

= (mwmemy, TUHTeToW, U )C
(

TWTOTo, TUedTeTow, UTwse, UMy )C

TWToTo, 7TU06)7T()7TOU), UMY, fbﬂ'l)C

(

(rwmomo, (Tuedmemow, TUTT)C, Uy )C
= (rwmomg, (Tughm T, TUTITOW)C, UT )C

(

W, TUHT To, UTowsaw, Uy )c

7T(w7To7T0, erﬂ'lﬂ'o, ’lMTl)C

= TOLT.

Now we can easily see

¥P1 = <P(7TO7T17 (7T07T07To77T1)C)

= (moomo, TOoT1) (4.29)

= 0o,

The result follows from equations (4.28) and (4.29) as discussed at the beginning of
this proof. ]
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The next lemma is used to give an equivalent representation of the identity spans in

C[W 1] which we use in the proof of Proposition 55.

Lemma 52. The diagram

(Lw)

W ———— spn
wtl lq
Co Y Cw—1

a,aw)q

commutes, where o : Co — W is a section of wt : W — Cy from Int.Fre.(1).

Proof. By Int.Frc.(2) and Int.Frc.(3) there exist covers, @y and @, and lifts, @

and 6, that make the squares in the following diagram commute respectively:

(mom1,mom2)
SLLELLLEVINS (O

W,
5 1
i U nd [
U L > Up — > W
E l(l,wtoéw)
Wi > CSp.
o (mom1,m171) P

The map & : U — W results in an intermediate (family of) span(s), (O, Omw) :

U — spn and by definition of W5 and the maps in the diagram above we have that
om = (O, TioOmomow, w).
This gives a map U — W and since sb = W roms X s C1 we can see this determines
a sailboat, ¢ : U — sb, given by the unique pairing map
Y = (((((IJT(QTF(), aoéﬂ'oﬂ'ow)c, 7:6), (IJTI’l), ﬂw)
Similarly, we have
wm = (Wmemo, G0 o, twtow)
giving another unique map U — W, and determining a sailboat 1 : U — sb, by the

unique pairing map

((((@momo, Gigfmimo)c, wtar), oy ), awtaw).

P =
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First we can use the calculations and definitions above (along with the definition of

the pullback projections and how they interact with pairing maps) to see

and

as well as

and

PYpo = 90(7T07T07T1,7T1)

=u(l,w)

Yp1 = <P(7TO7T17 (7T07To77077T1)C)
= (@, wmw)

= (ZJ<7T1, 7T1'U})

Ypo = Y (oo, 1)
= (awta, twtow)

= (awt(a, aw)

Upr = ¢(7To7T1; (707T07T0, 7T1)0)
= (@Wl,ct)ﬂl’LU)

= (21(7'('1,71'1'11}).

Putting it all together shows

(1, w)q = ¢poq = ©P1q = VYp1q = Ypoq = wwt(o, aw)q

and since u is epic we get that

as desired.

(1, w)q = wt(a, aw)q

]

An immediate corollary to Lemma 52 is that the internal localization functor, L :

C — C[W '], maps the arrows from w : W — C; to arrows in C[WW '] that have left

mverses.
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Corollary 53. The map Ly : C; — C[W ™1, has left inverses with respect to w :
W — Cy, in the sense that the diagram

((1,wse)q,wL1>
WAL ey,

(Lw)l lc

spn ————— C[W™1],
commutes.

Proof. Consider the following diagram.

(1,wse)q,wL
((1,wse) , (wsaw,(wsa,w)c)) < ! 1>

~

((ﬂo,wowse) , (mowsa,(mowsaw,m1 )c))

spn Yspn2 — L C[WY,
\ VC, /
Clw—1;

The bottom left triangle commutes by Lemma 51; the bottom right commutes by def-
inition of ¢; the top left triangle commutes by the universal property of the pullback
spn?; and the top right triangle commutes by the universal property of the pullback
C[W 1]y along with the definitions of L; and ¢ x q. More precisely, post-composing
the upper right triangle with the projection 71 : C[W 1]y — C[W 1], gives precisely

(wsa,(wsa,w)e)g = w(sa,(sa,1)c)g = wly.
It follows that the diagram above commutes, in particular the outer square commutes.
0
Next we prove a lemma that shows the internal localization functor, L : C — C[W 1],

maps arrows coming from w : W — C; to arrows that have right inverses in C[I¥~1].

Lemma 54. The diagram

(le,(l,wse)q)
_—

|74 C[W_I]Q

ws(a,ozw)l lc

spn ————— C[W '],
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commutes.
Proof. Using the fact that
(wsa,(wsa,w)e)qg = w(sa,(sa,1)c)g = wly

and the universal property of the pullback C[W~!], we can see the top triangle in
the diagram,

(wLq ,(1,wse)q>

((wsa,(wsaw,w)c) , (l,wse))

W > spn2 — 2L 5 C[W1Y,
(wsa,wsaw)\[ lc’ / )
spn » C(W 1),

q

commutes. The right triangle commutes by definition so it suffices to show the
bottom left square commutes.
Let v = ((wsa,(wsaw,w)c) , (1,wse)) and take the pullback of the cover u : U —

spn? along 7.

i
W—— spn?

The cover @ : U — W witnesses the composition of the spans being picked out by
~. Thinking momentarily about the case when & = Set for visualization purposes,
this says that for every arrow v : @ — b in W there exists a point in U witnessing

the commuting diagram:
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In this case the parallel pair of arrows, hv'a(a) and hk being coequalized by v : a — b
allows us to zipper before applying weak composition for W to get a span whose left

leg is in W, as pictured in the following diagram:

a(a)v

The zippering axiom says there exists a map d such that
dhv'a(a) = dhk

and the weak-composition axiom says there exists a map ¢ in the diagram above
such that gdv” = v" is in W. This data gives rise to two sailboats with a common

projection,

,UN/

T gdhk o Tl gdhk
gdhv' gd’

44 a4 : 3 a
a(a) aofa) v hk

04— -

implying that the composite of spans, (a(a), a(a)v) * (v,1,) = (v”, hk), is equivalent
to the span (a(a),«(a)) by transitivity. Translating this argument to the internal
setting for € not necessarily equal to Set amounts to defining the map & : U — Py (C)

in the following diagram,

(mom1,mo72)
W, T g W
@T T(SﬂoLeqﬂo,ﬁlﬂUoﬂ'o)
A~ Qo ~ ~
U / > L > U

i
| Js
©)

1)
P(C ﬂ_—1> ch((C)
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applying Int.Frc(4) to get the cover @y : Uy — U and the lift § : U; — P(C), and
then applying by Int.Frc(2) to get the cover 1y : U — Uy and the lift & : U — W..

The map 6 : U — P.y(C) is induced by the universal property of the equalizer
Py (C) and the map & : U — P(C),XysW. The map ¢ is induced by the universal
property of the pullback P(C),x,sW and to define it we start by using the definition

of W to see

T (wmoTo, UgfdTemow, uTem )¢ = T(WTET, UgOT1 g, UT TW)C.

Since

Tumem = Wymem = t(wsaw, w)c

the left-hand side of equation (x) becomes
7 (wmomo, ugfmomow, umemy ) = (TWTETY, TUHTeToW, UWSOW, UW)C.
Rewriting equation (x) while recalling that mu = @y and ymmy = 1y gives
(Twmomo, TUEOTTeW, Uwsaw, tw)c = (TwmeTy, Tueldm 70, Uw)c
and induces a unique & : U — P(C) , X, such that

6,7'(1 =1u
/ _ ~
d'momy = (Twmome, TUOTETOW, WWSAW)C

d'mome = (Twmemg, TUEHTITH)C.
equation (xx) can then be simplified as
8 (momo, ™1 )¢ = &' (momy, 1)

which induces the unique map 0 : U — P,,(C) such that

The two (families of) sailboats, ¢, ¥ : U — sb, with a common projection, ¢m = 1,

can now be defined. By definition of
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Wo = (Cq ;Xps Wi Xws W) oXps W

ws ws

we have

Wy = (WTeT, UgOTolegToW, UTToTW)C

so let

o = (WTomg, UgdToLegMow)c

to determine the unique pairing map
) = (((,uo, Umoemy), wm ), um(wmem, u007r17ro)c).
Notice the last map in the composite
UTUTLT] = WLWSse

is the identity structure map for C. The identity laws in C[W 1] and C can then
both be used in the final calculation we need to determine the span projections for

YU — sh.

(Umwmomy, Umugdmmo)e = um(wmemg, ughmim)c

UT W, UTUOT1 0 )C

UTWT Ty, Umugdmime(1, te)c)e

UT W, UTUgOm1 70, UTugfm mote)c

UTWTT T, Ul To, UTUT ToWse)ce
UTWTT T, UTTUGH T To, UTUT T S€)C
UTWTT T, Ul T, UWlwsese)c

U
(
(
(
= (umrwmomy, Umudm T, UTUIT TIWSE) C
(
(
(
(Umwmemy, UTugdm Ty, Ulwse)c
(

UTWTT T, UTUOT T, UTUT T )C
= ZALTI'(WW()TF(), U097T17To, 'LL7Tl7T1>C

= UMOT
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Now we can see
po = Y(momomy, ™) = (UmooTo, UTOLT) = UTO,
and

pr = Y(momy, (momomo, T )e) = (@i, (po, Umwmomo, imugfmymo)C).

Forgp:U—>sblet

w1 = (pho, UmwmeTo, UTUYTHTOW )C

and notice on one hand that
(1, vawsaw)c = (g, Gmumgmow)c = (fo, UTT,ToW)C = Wy
and on the other hand that

(p1, Giwsaw)c = (WToTg, 0TlegTos OTolegT1T0)C
= (Wm0, OToLeqTo, OTolegM1T1)C

= (/,60, 7:L7Tw7To7To, 7:L7TUO97Tl7T0)C

Then define
Y= (((,Ula Uhwsw), Wy ), ﬁﬁwsaw)
and we get
©po = (momom1, 1)
= (Gtwsa, tawsaw)
and

Yp1 = 90(7707T17 (7To7To7T077T1)C)
= (d)m,,ul,aﬁwsaw)c)
= (L:)Tl'l, (/,60, 'LAL7TW7T07T0, 'LAL7TU097T17T0>C

= p1.



155
Combining our computations gives us that

A~

ti(wsa, wsaw)q = ppoq = Pp1q
= ¥Yp1g = Ypoq
= UTOoL(q
= Gmruc

= auyc
and since the composite uu is epic we can conclude

(wsa, wsaw)q = ¢

Now we prove the second main result of this section.

Proposition 55. The localization (internal) functor, L : C — C[W '] inverts w :
W — C,.

Proof. Consider the composite

1,wse)

44 (—> spn
ls
Cw—1],

I

In the proofs of Lemma 54 and Corollary 53 we have already seen that

(1, wse)qs = wilt, (1, wse)qt = wlys

so it suffices to show the last two diagrams from Definition 49 commute in this
setting.

First note that e = (o, aw)q : Co — C[W™!]; is the identity structure map on
C[W~1, and that the source map s : C[W~!]; — Cy is uniquely determined by the

map qs = mowt : spn — Cqy. Also recall that

wly = (wsa, (wsa, w)c)q
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and then compute

wlyse = wlys(a, aw)q
= (wsa, (wsa, w)c)gs(a, aw)q
= (wsa, (wsa, w)c)mowt (o, aw)q
= wsawt(a, aw)q

= ws(a, aw)q.

We can replace the left and bottom composite in the commuting square of Lemma 54

by the last equation to give the commuting square

wLy,(1,wse)
W ( L1 q) C[Wﬁl]z

lel |e

CWwW), ———— C[Ww 1},
in & and shows (1,wse)q : W — C[W™!]; satisfies half of Definition 49. For the

rest of it we recall that gt = mt : spn — Cy uniquely determines the structure map

t : CI[W~1; — Cy and similarly compute

wlite = wLit(a, aw)q
= (wsa, (wsa, w)c)qt(a, aw)q
= (wsa, (wsa, w)e)mit(a, aw)q
= (wsa, w)ct(a, aw)q

= wt(a, aw)q.
Putting this together with Lemma 52 gives
wlite = wt(a, aw)qg = (1,w)q

and allows us to rewrite the commuting square in Corollary 53 as

<(1,wse)q,wL1)
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This means (1,wse)q inverts (wL;) by Definition 49. O

4.6 Universal Property of Internal Fractions

The main result of this section is Theorem 65, the universal property of internal
localization. It is an isomorphism of categories between the category of internal
functors, C — I, that invert w : W — C; and their natural transformations, and
the category of internal functors C[W~!] — D and their natural transformations.
In Section 4.6.1 we prove that the objects in each category uniquely correspond
to one another in Proposition 60, and then in Lemma 63 we show that the 2-cells
in each category uniquely correspond to one another. In Lemma 64 we show that
the correspondence between natural transformations is functorial, and Theorem 65

follows immediately.

4.6.1 Correspondence Between 1-cells

The results in this subsection come together to prove that for any internal functor
F : C — X that inverts w : W — Ci, there exists a unique internal functor [F] :
C[W~!] — X such that the diagram

C r X

X T

w1

e\

commutes. First we define [F] and prove it is an internal functor, then we notice
how every internal functor C[IW '] — X corresponds to an internal functor C — X
that inverts W by pre-composition with L : C — X. Finally we show that these
assignments are inverses to one another to prove the main result of this subsection,
Proposition 60.

It’s clear how to define [F] on objects:

cw—, —° s %,
H

COT}XO
0
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On arrows we use the universal property of the coequalizer C[IW~1!];. By Defini-
tion 49, there exists a map F(w)™! : W — Xj that inverts wF; : W — X; in X.
That is, the diagrams

w w) ™t w) W
wFll lc wFll lc
Xy ———— X, X) ———— X,

commute in €. In particular we have that

F(w)™'t =wFys

and this along with functoriality of F' and the definition of spn = W , x, C; is

enough to see that the outside of the diagram,

spn — 0 i)
| RN

X2—>X1=

\ I
F(w) X3 — Xo

commutes and induces the unique map [F]" : spn — X,. This map is used to
define [F]; : C[W™!]; — X; in the following lemma by the universal property of the
coequalizer C[IW ;.

Lemma 56. The coequalizer diagram,

sb % spn ——» C[W™1);
1

[F]’l (Fh
XQ —c Xl

commutes in € and uniquely determines the map [F]; : CIW ', — X;.

Proof. The main idea here is that the left legs of the two spans inhabiting a sailboat,
represented by pg,p; : sb — spn, are arrows coming from W. These are part of a

commuting triangle represented by 7y : sb — Wa. More precisely, the left leg of the
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p1 projection factors through the left leg of the py projection by the arrow represented

by the map momymg : sb — C; in €. This is shown in the following calculation:

P1Tow = T w
= mo(momo, ToTIW)C
= (7T07T07T(),7T07T07T1'IU)C

= (7TO7TO7TOa powow)c

Functoriality of F' then gives

pimowFy = (momomo F, pomow FY ) c.

The internal functor F' inverts the arrows coming from w : W — C; so we can
internally post-compose with pymoF(w)~! : sb — X to give the following calculation.
This calculation uses associativity and the identity laws for internal composition in

X, along with the definitions of F'(w)~! and sb and functoriality of F.

(prmowFy, pOﬂ'OF(w)il) Tomomo L1, pomow F1, pOﬂ'OF(w)il)C
TomomoF 1, pomo(wF, F(w) ™ ")c)e

Tomomo 1, pomow F se)c

c=(
= (
= (
= (momomo F1, momemiwF se)c
= (momomoF1, Momomiws Fye)c
= (momomo F, momomot Foe)c
= (momomo F, momomo Fite)c

= momomoF1 (1, te)c

= 7T07T07TOF1

A similar internal composition involving the first and last terms in the equation

above with pymoF(w)™! : sb — X, gives
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(prmoF(w) ™Y, momomoFy ) e = (prmoF(w) ™, prmowFy, pomo F(w) ™ Y)e
= (p1mo(F(w) ™", wFy)e, pomo F(w) ™ )e
= (prmowFite, pomoF (w) *)e
= ( )" e

) e

)7)

1

pmimowt Fye, pomo F'(w
= (pomowt Foe, pomo F'(w
= (pomow Fite, pomo F'(w) ™ )c
= (pomoF (w) tse, pomo F(w) ™ 1)e
= pomoF(w) ' (se, 1)c

= poﬂ'oF('LU)il

Now we can substitute the last equation into the following calculation to see [F]'c

coequalizes the pair py and p;:

Po [F]/C = po(ﬂ'oF(U))il, 7TlF1)C

= (pomoF'(w) ™", pom1 F1)c

= (pmoF (w) ™', pim Fy)e
= p1(moF'(w _1,7T1F1)C
=p[F]c

The existence and uniqueness of the map [F]; : C[W™]; — Xj such that ¢[F|; =
[F]'c follows from the universal property of C[W~1];. ]

The next step is to show that [F] = ([Flo, [F]1) is an internal functor. First we show

identities are preserved by proving the following lemma.
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Lemma 57. The diagram

Co —2— X,

(a,oaw)ql le

-1
Clw—1, e X

commutes in E.

Proof. By the universal property of the pullback Xy, the definition of F'(w)™!, func-

toriality of F', and the fact that « is a section of wt we have

]

The following lemma shows that [F] preserves (internal) composition. When € = Set

this is saying that for any pair of composable spans

a<e—b rco—d >e
with composite span,
a $&; b f//>e,
the diagram
Fla) 225 o) 22 F(e)
[
f(v//)—l F(d)
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commutes in X. To see this we look at the composition data

and apply the functor F' to the weak-composition triangle on the left to get the

equation

F(") = F(h)F(v)F(v).

Since F inverts W, we can pre-compose both sides by F(v”)~! and post-compose

them both by F(v)™! to get the equation
Fv)™ = F(") ' F(h)F(vy).
Similarly, applying F' to the Ore-square gives the equation
F(vo)F(f) = F(k)F (V')
and post-composing with F(v/)™! gives
F(vo)F(f)F(v)™" = F(k).

Put it all together with functoriality of F' to see the square commutes.

F(o) ' F(HF @) F(f) = F@") T F () F(vo) F(f)F() T F(f)

Lemma 58. The diagram,
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where [Fly X [F]y = (mo[Fl1, m1[F]1) is the unique pairing map, commutes in X.

Proof. Recall that u : U - spn,xspn is the cover on which we defined composition,

with u = ugu, in the diagram constructed by the Internal Fractions Axioms:

(mom1,mom2)
W, > W oxe, W
WT T(QWOWO,Ulﬂ'OWO)
uo u1
U / > Uy / > Spn ;X Spn
l"o Gl l(ﬂ’(]ﬂ'lﬂrlﬂ'o)
spn Wn > CSp

(momy,m171)

We use this cover when we need to show certain maps out of spn ,x spn are equal.
More precisely, by showing it (or its composition with other epimorphisms) equalizes
two maps we are interested in proving are equal. We begin this proof with the weak-

composition triangle, w : U — W, and the equation encoding it is commutativity.

WoT1 = <WO7T07T0, u097r07r0w, U7T07TOU))C

By functoriality of F' we have

w7leF1 = <w07T07TOF1, 'LL097T()7T()U)F1, U7T07TOU)F1)C.

We can internally pre-compose both sides of X with the map wm F(w)™ : U — X,
and internally post-compose with umgmoF(w)™! : U — X;. Before writing down the

new equation however we do the following intermediate calculation:

(wm F(w) ™ wrmwF)e = wr (F(w) ™ wk)e
= wmwkFite
= wmuwtel]
= umgmowte
= umgmow Fite

= umomoF (w) *se

Using this along with the definitions of W, 6, and csp gives
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(umomow Fy, umomo F(w) e = umgmo(wFy, F(w) ™)
= umgmowF}se
= umgmowsekF
= upuymomwteF
= uplfmymowteF

= u097r07r0wF1te.

Now the pre/post-composed equation is

(umomo F'(w) ™' se, umomo F(w) ™ Y)e

== (wm F(w) ™}, wommo Fy, uofmomow F, ugfmomow Fite)c

where the left side simplifies via the identity law in X as

(umomo F(w) ™ tse, umgmo F(w) ) e = umgmoF(w) " (se, 1) = umomoF (w) ™

and the right side simplifies similarly as

(wm F(w) ™, womomo F1, ugfmomow Fy, ugfmomow Fite)c
= (WWlF(’w)il, (,LJ()?T()?TOFl, U097T07TOU)F1(1, te)c)c

= (me(w)*l, woﬂ'oﬂ'gFl, UO97T07TOU}F1)C

giving the simplified equation:

umgmoF(w)™! = (wrlF(w)_l , WoToToF1, u097r07r0wF1) c. (%)

Now take the Ore-square, ugf : U — W, and the equation describing commutativity,
(upfmomow, umgmy e = (upfm mo, um mOW)C,
and apply F' to get the equation

(ugfmomow Fy, umomy F1)e = (ugfmimo by, ummow Fy)c.
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Since F' inverts w : W — C; we can post-compose both sides with ummoF (w)™! :

U — X to get a new equation. The following computation showing how this is done

1

follows more or less by the definitions of F'(w)~' and 6 and functoriality of F":

(um mowFy, ummoF (w) ™ e = ummo(wFy, F(w)™)e

= ummowkFise

= ummowsek;

= uofm motel

= uofmmyFite
Adding internal composition with ugfmmoF; : U — X on the right of both side of
the internal compositions shown in the last equation and applying the identity law

in X gives:

(ufm mo Yy, um mow Fy, umimo F(w) ™) e = (ugfmimoFy, ugfm mo Fite)c
= ugfmmoF1(1,te)c

= U097T17TOF1.

Then by the definition of W we get the equation

1

(ugOmomow Fy, umomy Fy, umymo F(w) ™ )e
= ((ufmomow Fy, umomy Fy ) e, ummo F(w) e
= ((upfm mo Fy, umimowFy e, ummo F(w) ™ H)e
= (upfmomow Fy, umom Fy, ummo F(w) ™ 1)e
= upfmmo F}. (%)
which simplifies to the equality
(upfmomow By, umom Fy, umimo F(w) ™) e = upfmimo Fy. (5k)

which we use in following calculation that shows [F] preserves composition. By
equations (xx) and (x) along with functoriality of F' and the identity law in X we

have:
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(oemoF(w) ™t oum FY)e

= (wm F(w) !, wromo Fy, ugfmmoFy, umim Fy) e

= (wm F(w) ™!, wromo Fy, ugfmomow By, umom Fy, umi o F(w) ™ umm Fy) e
= ((wm F(w) ™, wmomo F1, ugbmomow Fy )¢, umom Fy, ummo F(w) ™!, umym Fi e
= (umomo F'(w ) ,umom Fy, ummo F(w) ™! umm Fy) e

(u7r (moF(w) ™, m FY)e, um (mo F(w) ™ 1,7T1F1)C)C
(

umo[F)' ¢, umy F]'c)c

I
2

(qu J1, mq[Fh )C
= u(g x q)([F1 x [Fi)e.

The composite u(g x q) is epic, so we get

as desired. O]

Proposition 59. The maps [Flg = Fy : Co — Xg and [F]; : CW™1); - X4
determine an internal functor [F] : CIW '] — X such that the diagram

C r X

commutes in E.

Proof. Functoriality follows from Lemma 57 and Lemma 58. To see the diagram

commutes we can immediately see

Lo[Flo = 1¢, Fo = Fy
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and then use the definitions of Ly, [F];, and [F]’, along with functoriality of F, the

identity law, (se,1)c = 1, in X, and the fact that « is a section of wt to compute

L[Fly =

sa, (sa ,1)c)(7r0F(w)’1,7T1F1)c

(

= (

= (

= (

= (saF(w
= (sa(F(w)™ wFl)C Fy)e
= (sawFite, Fy)c

= (sawteFy, Fy)c

= (sely, Fy)c

= (Fyse, F1)c

= Fi(se, 1)c

= I
]

Proposition 60. Every internal functor F' : C — X that inverts w : W — Cy

corresponds uniquely to an internal functor [F]: CIW ™! — X.

Proof. Lemma 59 implies the forward direction. Now notice that for any internal
functor G : C[W~!] — X, there is an internal functor LG : C — X given by pre-
composing with the localization functor L : C — C[W~!]. In Proposition 55 we saw
that L inverts w : W — Cy, with (wL)™' = (1,wse)q : W — C[W~!];. Functoriality
of G implies (wL)™'Gy : W — Xj is an inverse of wLG : W — X; in X so this
establishes the other direction of the correspondence.

For any F : C — X inverting w : W — Cy, let [F] : C[IW™!'] — X be the

corresponding internal functor. Pre-composing with L : C — X gives

LIF|=F
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so composing the assignments in one direction gives an identity. On the other hand,
for any G : C[W 1] — X, if we pre-compose with L : C — C[I¥ '] and then find the

corresponding internal functor C[W~!] — X we get that

[LG]: CW —» X

where ¢[LG| = [LG]'c : spn — X;. Now expanding this with the explicit definition
of

[LG) = (mo(LG)(w) ™!, 1 (LG)1)

we can use the definition

(LG)(w)™' = (wL)*Gy = (1, wse)qGy,

functoriality of L and G, the definition

Ll = (SOé, (SQ’U}, 1)C)Q7

a bit of factoring with pairing maps, the fact that goc = ¢’ : spn ,x spn — spn, and

Lemma 51 in the last line to see:

= (mo(LG)(w)~!, m(LG)1)e

= (mo(wL)™\Gy, m LGy )e

= (mo(wL) ™!, mi L1)eGy

= (mo(1, wse)q, m (s, (saw, 1)c)q)cGh
(0, mowse)q, (m1sa, (1500w, 71 )¢)q)cGh
(0, mowse), (mosa, (mosaw, m1)c)gacGh
= ((

T, Towse), (mosa, (mosaw, 7 )c)c' Gy

This implies that [LG] = G; by the universal property of the coequalizer C[IW ;.
We have shown that the assignments in either direction are inverses to one another,

so this correspondence is unique. O
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4.6.2 Correspondence Between 2-Cells

Next we show the 2-cell correspondence between internal natural transformations for
the internal functors in the 1-cell correspondence of Proposition 60.

In this subsection we see that internal natural transformations, o : I — G,
between internal functors, F,G : C — X, that invert w : W — C; correspond
uniquely to natural transformations, [a] : [F] = [G], between the uniquely
corresponding internal functors [F|, [G] : C[W~!] — X from Section 4.6.1. The main
result of Section 4.6 is the isomorphism of categories established in Theorem 65.

We begin with a lemma that shows one direction of the correspondence between

the aforementioned natural transformations,

Lemma 61. FEvery internal natural transformation,

Proof. Since C[W 1]y = Cy, define the components of [a] to be the components of

('S

cw-1, - x,
Lo

Co

To see this is well-defined we need to show the (naturality) square
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(C[W—l]l (slal,lg]1) X,

([f]l»t[a])l lc

X, ——— X

commutes in £. Let F(w)™, G(w)™! : W — X, denote the inverses of wF;,wG| :

W — X;. Naturality of o : I = G implies the diagram

(wsa,wG1)

w Xo
(wF1,wto¢)J/ lc
Xs T e— X

commutes in €. Using internal composition in X to compose with F(w)™' : W — X,
on the left and G(w)™! : W — X; on the right on both sides gives a new commuting

diagram,

—1 wsa
W (FW)= 2X2

(wta,g(W)_l)l } )

XQ%Xl

by cancellation using the identity law in X. It will also be helpful to recall the follow-

ing commuting diagrams from the definition of C[W~!] and its universal property.

spn 7 Cw—1

(waF(wrl,mFl)l [l
Xy — 5 X,
spn ——» C[W™']; spn ———» C[W™1]
wol s Wll t
w T> (CO Cl ﬁ (C()

Now consider the following diagram:
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Cw-1, ¢«—t— spn —L— C(W '],
([Fh,t[a])k k(S[a]’[Gh)
(alF1.qtla]) (gsla).alG1)

Xy Xy
Xy

The inside commutes by the following calculation which uses associativity of compo-
sition along with naturality of o and the definitions of [F];, [G];, and the pullback
spn=W %, Cy:

(q[F1, qter)e = ((moF(w) ™!, o fi)e, qtar)c Def. [FJ;
= (WOF(w>_1,771f1,771t@)C Assoc.
= (moF(w)™, m(Fy, ta)c)e Assoc.
= (mF(w)™", m(sa, Gi)e)e Nat. a
= (WOF(leaWISOMHGl)C Assoc.
= (moF(w) ™!, mowsar, mGh )¢ Def. spn
= (mo(F(w) ™", wsa)c, mGy)e Assoc.
= (mo(wter, G(w) e, mGy)e Nat. «
- (WOwtO‘aWOG(w)_laﬁlGl)C Assoc.
= (qsa, (WOG(U})_la 7T1G1)C)C Assoc.
= (g5, q[G1)e Def. [g];.

Since ¢ is an epi we can conclude that[a] satisfies the appropriate naturality condition:

([Flitla])e = ([ol,[Gl)e.

It’s source and target can be computed component-wise by the following commuting
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diagrams
Cw —4 5 x, cw —2 o x,
|| |~ |
CO T) XO CO —_— X[) )
0 Go
H [Fo H [Go
C[W_l]o C[W_I]O
It follows that [@] : [F] == [G] is an internal natural transformation. O

We continue with another lemma establishing the other direction of the correspon-

dence between natural transformations.

Lemma 62. Every internal natural tranformation,

Cw1] 8 X,
\K/‘

induces a canonical natural transformation:

1>

LH

7N
¢

N7

LK

Proof. The notation is suggestive of the fact that this these are given by composing
with the internal functors H, K : C[IW '] — X and whiskering the internal natural
transformation 3 : H = K with the internal functor L : C — C[W~!]. Note that
the components of the whiskered transformation coincide with those of 3 because L

is the identity on objects:

(COL—ﬁ>X1

A

CW—1,

Lo
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Lemmas 61 and 62 show us the two directions of the correspondence we need to
prove. Now we show the assignments described in the proofs of these lemmas are

inverses to get the correspondence we need in the following lemma.

Lemma 63. Let F,G : C — X be internal functors that invert w : W — C; in X.

Then the internal natural transformations

(bijectively) correspond to the internal natural transformations

[F]
/\
Cw Hm X .

N S

[G]

Proof. Let o : F = (G be an internal natural transformation between internal
functors C — X that invert w : W — C; in X. We will show whiskering the
internal natural transformation [a] : [F] = [G] with L : C — C[W '] recovers
a: P = G

L[F] F
R Y
C ﬂua} X = C ﬂa X
\[Gl/ N

L

By definition of [F], [G] : C[W '] — X we have

and the following commuting diagram in £ shows the components of L] : FF — G

are precisely those of a:
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C(] L Xl
Lo (o] )I\Oc
C[W1, Co

we can see that

/[ﬂl]\‘ /H\‘
Clw—1 ﬂ[w] X = C[Ww ﬂ/& X
[LK] K
by first noticing that the triangles,

X o FILH] C LLK] |«
v B

{ T ] LK]

L LK ,
C——F— (C[W 1 «——F—C

commute in € and imply that [LH] = H and [LK| = K by the 1-cell universal
property of the internal localization in Proposition 60. The following commuting

diagram shows that the components for the natural transformations agree too:

cw — 4 x,
H / Tﬂ
Cy =———— C[W 1

Lo
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The only other piece we need to prove Theorem 65 is that the correspondence between
2-cells in Lemma 63 is functorial. It suffices to show functoriality in one direction.
We show it in the direction of Lemma 61 and leave the other direction (involving

whiskering) as an exercise to the reader who wants to take a break.

Lemma 64. The assignment of natural transformations, o — [a], in Lemma 61 is

functorial.
Proof. For any internal functor f : C — X, we have

[F]

[F]

where the commuting diagram

Cw1], 5 X,
H
C Ir
H
Cw -1,

shows that the components of [15] coincide with those of 1j;. This means [1p] = 1ip
are the same natural transformation and so identities are preserved.
To see composition is preserved suppose we have two vertically composable internal

natural transformations:

C Gﬂ > X ——  CW & >y X
g
\% 5]

[H]
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We can see

(£
m [F]
T N
e — 9 . X - W ﬂ[am X
W S
(H]

by noticing that their components coincide via the following commuting diagram:

|
Co

aB
[of]

C[Wﬁl]o
O]

The following theorem is a direct consequence of all the lemmas that came before
in this section and formalizes the universal property of the internal localization,

Cw-1.

Theorem 65. There is an isomorphism of categories

[C, Xy = [CW ], X)°

between internal functors C — X in &€ that invert w : W — C; and their internal
natural transformations, and internal functors C[W =1 — X in € and their internal

natural transformations.

Proof. The objects are in bijection by Proposition 60, the arrows are in bijection by

Lemma 63, and functoriality follows from Lemma 64. ]



Chapter 5

Pseudocolimits of Small Filtered Diagrams of Internal

Categories

5.1 Application to the Internal Grothendieck Construction

Exercise 6.6, of Exposé VI in [1] states that the pseudocolimit of a filtered diagram
A — Cat can be obtained by localizing the Grothendieck construction with respect
to the cartesian arrows. A current paper in progress, [15], by Bustillo-Vazquez,
Pronk, and Szyld shows that with a weaker composition axiom for the category of
fractions, the class of arrows one needs to invert to get the pseudocolimit can be
reduced from all cartesian arrows to a convenient cleavage of them. For the rest of
this chapter we consider an arbitrary but fixed filtered diagram, D : A% — Cat (&) so
that every finite diagram in A° has a cone. The main theorem of this section states
that, in a suitable context &£, the pseudocolimit of a filtered diagram of internal
categories, A? — Cat(£), can be computed by forming the internal category of
(right) fractions of the internal Grothendieck construction with respect to the object

representing the canonical cleavage of the cartesian arrows.

Note that the axioms we gave in Section 4.2 are for a category of right fractions, so
we need to use the contravariant form of the internal Grothendieck construction for
a functor D : A% — Cat(€). In Section 5.1.1 we introduce the object representing
the canonical cleavage and show that it satisfies the Internal Fractions Axioms in
Definition 34. Section 5.2 is all about proving the main result of this thesis. Namely
that, when it exists, the internal category of (right) fractions, D[I¥ '], of the internal
Grothendieck construction with respect to the canonical cleavage object, (D, W), is

the pseudocolimit of the original filtered diagram D : A% — Cat(E).

177
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5.1.1 The Canonical Cleavage of the Internal Grothendieck

Construction

The internal Grothendieck construction we need for a contravariant functor and a

calculus of (right) fractions has an object of arrows defined by

D, —*— D(A),

D, = H D, where ﬂol - lt

e D(B D(A
( )Om> (Ao

whenever ¢ : A — B is an arrow in A. The subtle difference in this definition is
that the vertical map on the right is a target rather than a source and that D(y) :
D(B) — D(A) for ¢ : A — B in A. Another subtle but important difference is the
definition of cofiber composition for this version of the Grothendieck construction.

For p: A— B and ¥ : B — C in A, the cofiber composition is given by

Doy —— D (A

\ o
o pgat, DA

where c; i1 is the universal map

D(A)y —— D(A)
given explicitly by the triple:

Cip;w;(s*l = (’/To’/Tl, 71'1’/T1D(<,0>1, 7T17T0(5(;;1/)) (‘k)
in which 5;,2 : D(C)o — D(A); represents the inverse components for the structure

isomorphism of the pseudofunctor, D : A% — Cat().



179

When € = Set, the arrows represented by Dy are pairs (¢, f) : (4,a) — (B,b)
where b € D(B)p and f : a — D(p)(b) is in D(A);. The arrows being picked out by
w : W — Dy should correspond to pairs (¢, 1p) (D)) : (4, D(v)(b)) — (B,b) where
b € D(B)o and 1pm) @ D(p)(b) = D(p)(b) is the identity map in D(A);. The
following definition describes an extra condition on £ that we need in order to work

with an object of the canonical cleavage of cartesian arrows in ID.

Definition 66. Suppose £ admits an internal Grothendieck construction of D :
A? — Cat(E). Then we say that D admits a canonical cleavage of cartesian arrows

if for each ¢ : A — B in A, the top pullback

exists and the coproduct

w= 1] w,

peAY

over all ¢ € A; exists in £.

When D admits an object of the canonical cleavage of cartesian arrows as in Definition
66 we can use the universal property of the coproduct, W, to get the map w : W — Iy

in &€ as follows:

WMo Dy
W, %

This can be thought of as indexing the canonical cleavage of the cartesian arrows in
the internal category ID. From this point on we assume that D admit a canonical
cleavage of cartesian arrows. The first lemma we prove in this section shows that

(C[W1], ) satisfies Int.Frc.1. In the case when £ = Set, the sections of the
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target map are given by
(15, D(15)(b) : (B, D(15)(b)) — (B, )
which are completely determined by B € Ay and the objects of D(B).
Lemma 67 (Int.Frc.1). There exists a section of the target map wt : W — Dy.

Proof. 1t suffices to show that the cofibers w,m : W,, — D(B), have sections. For
cach B € Ay, the cofiber section, ap : D(B)y — Wy, of the target map on, w7 :
Wi, — D(B)o, is induced by the pair of maps 1p(gy,, D(1g)o : D(B)o — D(B)o.
This is shown in the following commuting diagram, where the outer square clearly
commutes and induces the dotted arrows on the left by the universal property of the

two pullback squares on the inside.

O D) D

(B)o

Using the universal property of coproducts, the section « : Dy — D is induced by
the family of maps {apt1, : B € Ap}. Since the map wt : W — Dy is induced by
the family of maps {w,m : ¢ € A;} we have that

tpowt = aply Wt = QW15 ToLB-

This means the diagram
]D)() 2 W

Nk

commutes by the universal property of the coproduct Dy and it follows that o : Dy —

W is a section of wt : W — IDy. O
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Before we prove the second axiom, let us consider the case when £ = Set. Here one

typically shows that any composable arrows

(4,0) 2% (B,b) 2 (€ 0)

in W C Dy can be precomposed by an arrow,

(1481 40000, D(14) Bponc) )

(4, D(po1)(c)) > (A a)
in Dy to make the diagram
(A, D(po ¢)(C)) (pop,1)

<1A761Ao(gpow),cD(lA)(&pow,c)>J/

(A, a) — D (B,b) ~—wn (C,c)

commute in D. A convenient way to show this is to first notice that a = D(¢)(b) and
b = D(v)(c) by definition, D(¢)(1pw)e)) = 1bwenw)e by functoriality of D(y),

and the composite of the two arrows in W is:

(4,a) —22 5 (B,b)

Now computing the composite

(IA151Ao(4pow),cD(1A)(&poa,b,c))

(A, D(¢ 0 ¥)(c)) . (A.a)

(0o 5 60y )
(poyp , 1)

in D is done by noting that 14 o (p 0?) = ¢ 09 in A% and checking that
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D(pov)(c) D(pov)(c)
61Ao(<po1j;),cl ]\ I_Ao(apow) c
D(14) 0o D(po D(14) o D(pov)(c) (%)
1AW) Aow o)
]-A O D

commutes in the category D(A). The bottom left triangle commutes by functori-
ality of D(14) and then the outer triangle commutes by definition of the natural

isomorphism 01 ,o(p0y). We now give an internal version of this proof.

Lemma 68 (Int.Frc.2). There exists a cover U —4— W %, W and a lift
:U — W, such that the diagram

Ly W

lﬂ'Oﬂ'IQ

U —f W oy XusW

commutes in E.

Proof. By extensivity we have that W, XwsW =[], 4)ca, Wew where the cofibers
are given by pullbacks

Wy —— Wy »——" Dy

- TI'we
o T 1
1

™0

Now using the component maps of the structure isomorphisms for the pseudofunctor
D : A? — Cat(€) we represent the composable vertical maps on the left-hand side
in Diagram (%) by the internally composable pair, D(C)y — D(A)2, determined by
the unviersal property of the following pullback:
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01 go(pow)

Specifying that such a pair comes from W, and composing with the composition
structure map of D(A) gives the internal version of one component of pre-composable

map in D that we need define the necessary lift:

T Wy TO

sw
W‘Pﬂ/) —> D(C)O Lﬂ}) D(A)Q

w
@orh l

8

To bring this together with the other component keeping track of the indexing, we
need to map into the proper cofiber, D;,, which can be done using the universal

property of the pullback:

Wso;w

T Way TO

along with the fact that
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oyl = 7T1’LU¢7T0(§$O¢625
= M WyT0popD(14)1t
= M WyTo0woptD(14)o
= mwymoD(¥)oD(p)oD(1a)o-

Now we need to compose the cofiber triple and show that it factors through Wi,

via some map cg,, in the following diagram.

(5?A;¢ow,ﬂow¢,w1ww>

Wy > D1y
cz;wl lclA;tp;d) (**)
Weoy Wopon > Doy

We break this up into a couple steps using associativity of composition. First we

compute the composite

(ﬂ—Owcerl"Z’) N
4

Dw P
lcso;w

D poy

W
-1
(7T1w1/)71'()77r1w¢71’0(5<p;w)

by calculating

(Woww,mww)c;%éfl ﬂoww,mww) (7T07T1, ’/T17T1D(30)1, Wlﬂ_oé‘;i/))

-1
ToW, T, 7T1’LU¢7T1D(<,0)1, Wlwwﬂo5w;w)

ToTpe, ToW,moeD (@)1, Wlwwﬂ'{)é;i/,)

= (

= (

= (mompe, mmyeD (o)1, Wlwwﬂoag;h)

= (

= (mompe, mow,moD(@)oe, 7T1w¢7ro(5;ip)
= (

-1
TOT,€, T e, 7r1w¢7ro(5¢;w)

and then using the identity law in D(A) twice in the last line below to see
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(Towe, MWy )y = (oW, M1ty ) (T17o, Clpry5-1€)

T1Wy T, Woww,mww) <p ¢.571C)

(
(7T1w¢7T07 TOTpE, TOT,E, Wlww7705<p w) )
(

= (T Wy Ty, 7Tl’LU¢,7T0(S<p 711)
Now to see that we can pre-compose
(Towe, MWy ) Co + Wepp = Doy

with 07 oy @ Wy — D, at the cofiber Dy, (poy), we check that

5%),4;3001[)7‘-0 = WlwwWOD(WOD(SO)O

= Wlwwﬁofsw;wt

= Wlwwﬂ'oa;iﬁs

= (Wlww’ﬂo, 7T1?1)¢7T05;;1/J)7T18

= (ToWy, T1Wy)CyprpT1 S-
To see this cofiber composition factors through W, we need to show that the arrow
given by post-composing with the first projection, my : Doy — D(A); is an identity.
To break this up a bit we first calculate

/
1asp0t Wow«paWlww)%;w)cu;(@ow). -

1 45009 Wow@77rlw¢)c<ﬂ'7/’> (ﬂ-oﬂ-h WlﬁlD(lA)l’ 7T17T051A LPOT/)))

(o7
(o7
= (0¥ sspop 71 MwyT00 .y D(La)1, T1WeT007 ) (oy)
(0% mwyT08 .y D(1a)1, T1wymo0, (o)

= (

71w¢W0§wowC 7T1w¢ﬂo(5@7/}D(1A)1, 7T1w¢7To(51A 4,00#)))

and then substituting it into the following calculation along with the definition

Sgw = (51A;0(s00¢7 5%11)D<1A)1)
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gives:

Lasporp ﬂ-owﬂo’ ﬂ-lwﬂ))csﬂ #’)ClA,(SDO?l))Trl

G

= (070 (TOWy, T1W)Coi) € o1
(7r1w¢7ro5 e 7T1ww7T05¢¢D(1A)17 7ledﬂroal,&; w0¢))c
(m1wyT0d gy e, mwymo(d, D(La)1, 07 ) o))
=7T1w¢7TO(51A'0(<p0¢)> O D(La)1, 6;;LD<1A)1’ 51A1(<P°1/’))
=7T1w¢7T0(51A,o(<po¢ <5so;wD<1A>1a 57.1 D<1A)1>C7 5;A§(<PO¢))C
:7T1w¢7T0(51A,0(<p0¢ (5so;w> 5sow)CD(1A)1’ 51:11'@01!)))0

= T1wyTo (01 4s0(p00)s €D(P 0 )1 D(1a)1, 07 o) €

= 1wy (01 4so(povys D(@ 0 VoD (La)oe, 07 L op)e

= W1w¢7T0(51A o(pots)» 01 4s0(on) €, 51A (<pow))

= T1WyTo (51A;o(<po¢)v 51/;1;(soow))c

= mwyTeD(14 0 (¢ 0 1))e

= mwymoD(p 0 P)oe.

This internalizes the commutativity of Diagram (%) and shows that for every com-

posable p : A — B and ¢ : B — C in A there is a commuting diagram

m1wy o D(porh)o

W@;d)
CU)

o)

o ]
<61UA weow (ﬂow%ﬂlww)cww) Wooy 2 D(A)

J
wapow]; I@
P C1 43(p0t) D‘PO¢ : D(A)l
The factorization we needed appears on the left of the diagram above and by asso-

ciativity of composition in D we can conclude that the diagram we originally wanted

(%) involving composable triples commmutes. This allows us to compute
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(5$;¢L1A, WOLZw, Wliotaﬁw)c

(
(

= (O t1.4> TOWplp, MWyl ) €
(020> MOWy, T1Wy) 1 45
(

5$;wa ToWe, Wlww) C1 a5050 bporp

= CipWpoylipoy

= CopplipoyW
and induce the unique cofiber lift, £, : W, — W5, by the universal property of
the pullback, W,, that makes the following diagram commute.

w

W Cosp N
N 7 oy
Loy Ly
poy
T g
Cr Y F W, > W
N Y
™0 w
Dy, . x (W, > Dy X ps(W . X s W) ———
14t s( smb) (7001 4% ) > Wy ws( wt N ws ()Tro,mfrow,mmwcl
m 12
Wiy o > W XwsW
%]

The universal property of coproducts then gives us the desired lift

R

V4 TOT12
W oy X s W b y Wy 22 W X W

[l
%wT %

Wso;w

where we take the identity map

Iw e Xws W

W i XwsW W i XwsW

as our cover. ]
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The next thing we need to show is the right Ore condtition. Taking a look at the
proof when & = Set will be useful for guiding the reader through the internal version.

Start by assuming there exists a cospan in D whose right leg is in W:

(C,D(¥)(b))
if(i/%lD(w)(b))

(A, CL) W (B, b)

Since A is filtered, there exists an object F € Ay and two maps ¢* : F — A and
Y* . ' — C such that the square

E-Y5 ¢

A

commutes in A. Now letting x denote the composition of arrows in the non-indexing

compenent of the Grothendieck construction we can consider the commuting dia-

gram:
D(¢*)(a) D(¢")(a) —FM s Do) 0 D(p) ()
lé;*l;%b
Lp(o*)my*f D(p* 0 ¢)(b)
grLo@® D(y* o 9)(b)
l‘sw*;w,b
D(¢*)(a) ——5—— D(¢*) o D(¥)(b) I D(*) o D(¢)(b)
where

g = D(w*)(f)ég;*l;go,b(xb*ﬂbyb'
In particular we have
9* Low)e) = Low-)m) * f

and so the square
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(E.D(¢")(a)) % (C.D(v)(1))
(90*710@;*)((1))% f(%lp(d))(h))
(A, CL) T) (B, b)

commutes in D. Now we show how to internalize this proof when £ is not necessarily
Set.

Lemma 69 (Int.Frc.3).
There exists a cover, U —4— Dy, XuW and a lift U BN Wo such that

the following diagram commutes:

O Wo
l(m)m ,T171)
U ﬁ%) D, tthW

where

Wo = (W 1 xsD1) Xe(Dy X s W).

Proof. Recall that csp = Dy ,x,;W and let csp(A) denote all the cospans in A for

simpler notation. Since £ is extensive we have the following isomorphisms:

csp & H D%xwwtwm
(p,9)€csp(A)
Dy XpsW = H Dy tw*xw¢5¢W¢
(V™ ¥)€A2)
thxs]D)l = H W‘P* W Lo XstSO

(90*’90)6"42)

Now we will define two families of maps

&P;w,l
Wy === Dy Xuysy

o0
W wwth%Dw — Dwthwwtw Wy,

before showing they agree after post-composing them each with the appropriate
cofiber compositions. The left-hand side is simpler so we start there. Consider the

following commuting pullback diagram:
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Pty wwtwww ™ Wy m> B
. 3
g}gwo } - \K
) WAO* —f D(E)O
bl
DSO Dgo* L} D(E)l

x D(A)y —— D(A)y —— D(E)q

D(¢*)o
The lower left commuting square above then induces the map we need, £,y o, by the

following commuting pullback diagram:

The map, £,.1, on the right-hand side is more involving to define, as we saw when
& = Set, because it requires defining the map ‘g’ by composing with several other

maps at hand. We first compute

Woﬂoé;*lws = ToM0yp st
= momoD(¢)oD(#")o
= momitD(p™)o
= mom1 D(¢")1t

to get one composable pair and then
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7T07T05¢*;¢t = 7TO7r06<p*;c,03

*

= momoD (@ 0 ¥*)o

= momo D (¢ 0 ¢")o

= oty D (Y 0 Y%)o

= muwylyD(Y 0 Y")
¥ )o

= muwyToD (¢ o

= T WyT0y*2pS

to get another with the same map in the middle. This gives a unique map

(mom1D(¢*)1, Woﬂoé;,}_w, LWy TO g% )

D, Wy * y D(E)s

ty Rty

representing compsable triples in D(E) whose composite we denote

D

* —1
SDt wd)th’L[} i : > D(E)3

The target of this composite is

gt = 7T110¢7T0(5¢*;¢t = 7T11U¢7T()D(77/J)0D(77/}*)0
so there exists a unique map, g, in the commuting pullback diagram:

D‘pt wwth¢

Dy — ™ D(E),

D(B)o D@ D(C)qo D)y D(E)o

191



192

The left side of the diagram above, along with the fact that s, = ms, allows us to
finally define the cofiber lift by the universal property of the pullback:

It only remains to show that the outside of the diagram,

D‘Pt W%Wtﬁ ’\

Lop* ><L //
> Dy XosW — Dw* Xuwys, W,
4
L0 o lc 1D¢*wa '

thXS]Dl c T/J*VL/)

LZZ*XL‘P \ Cyp*sep

_

W et e X5, Dy oo, D - > D@ o

commutes in & in order to induce the cofiber lift ... Then the universal property of
the coproduct, csp, will give the lift we need with the cover taken to be the identity on
csp. All of the arrows involved have been defined by universal properties of pullbacks
SO we use pairing map notation to expand and manipulate them. Starting with the
bottom composite, first we note, that by the universal properties of the pullbacks in

the codomains of the following maps we have

wy, X 1p, = (Towy+, m1), Corip = (T1T0; Clpr,p5-1C)

where similarly, by equation (x) at the beginning of this section,
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/ _ * —1
CGO*§<P§571 = (7T07T1,7T17T1D(§0 )1’7r17T0580*§<P)'

Then in one component of the bottom composite we have

Ciz,0(Wer X 1D, )CoripTo = Losp,0(ToWer, T1)CpripTo
= (€¢;w,07rowso* ) €¢;¢,07T1)7Tl770
= Ly,0m1 T
= To7o

= ﬂ-Otgo-

and in the other component we have

Copap,0(Wee X 1D, )CripT1 = Loy 0 (Wi , T1 ) Cpriip M1
— (0o 00 W Lo 01 )Cope i1
( ©;3,0TOWp* 7€@¢’O7rl) Copripi5—1C
= (l5 i), 0We s WO)C;*;cp;(s—lC
= (0. oWy, o) (momy, mm D(0" )1, mmod ) ¢
= (&

o, oWe*T1, 7TU7T1D(90*)1, 7T07T05;*1;¢)C.

Now the first component in the triple of the last line above can be rewritten using
the definition of the pullback W« along with the definition of £, ; and functoriality
of D(¢*):

Cogp0Wer™ = Loy o
= mom1sD(p™)oe
= momseD ().

Substituting this side calculation into the last line of the prior calculation and using
associativity of composition, functoriality of D(¢*), and the identity law in D(A)

allows us to finally see that
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€¢;¢,0(w@* X 1D¢)C<p*;¢ﬂ'1 = gowow@*ﬂ-l’ﬂ-oﬂ-lp( )1,71'07'('0(5(;*1;@)6

* —1
momseD ()1, mom D(¢™)1, 7ro7ro5g0*;@)c

7T07T15€D )1,7T07T1D((p*)1>C, Woﬂo(s;*l;w)c

o1 S€, 7T07T1)CD(Q0*>1, Foﬁo(s;*l;w) c

mom (se, 1D(A) YeD(¢")1, 7T07r05;*1;¢)c

= (t
(
((
((
(
— (momi D", momodh,)e.

By the universal property of the pullback D+, = Doy, we can write the bottom

composite as the following pairing map:

Lo 0(Wer X 1p,)Cprip = (Wotw (mom1D(¢")1, 7T07r05<;*1;¢)c)

For the top composite, we begin similarly by noting that

1D17) X Wy = (7T0,7T1UJ¢), Copryp = (7T17T0,Cip*;¢;5—10>

where similarly, by equation (%) at the beginning of this section,

C{Lp*n/);(;fl = (7T07T1> mm DY), 7T17T051;*1;w)-

Then in one component of the top composite we have

Cowp 1 (Lps, X Wy )CyryTo = Lop1 (0, M1ty CypeTo
= (Losp,170, Ly 1 M1y ) CypeiTTo
= (o170, Ly M1 Wy ) T1 T
= Lo 1 T1WyT
= Wy T

= Wlwwtw.

In the other component we get
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Cow 1 (Lpy X wy)Cypr T = Lo, 1 (Mo, MWy )y T
= (&9;%17?07 gw;w,lﬂlww)cip*;w;&lc
o1, 1705 Lprap 1 T1 Wy ) (7r07r1,7rl7r1D(w*)1,7r17r051;*1;w)c
o1 0T, Loy 11 Wy D (™ )1,£¢;¢717T1w¢7T05_*1;¢)C

= (¢
= (¢
= (gm1, mmpeD(Y*)1, mwymod ., )¢
= (g, mmpeD(P*)1, mwymedyl )
= (9

g, (mmpeD(¥)1, mwymod ., )c)c.

Now looking at the last line above recall the definition of g:

g = (7T07T1D( )1, 7T()7T()(5 71Wwﬂoé¢*;¢)c

©*3p)

By definition of the pullback Wy, functoriality of D(¢*), the definition of the struc-

ture isomorphism components 6_*1'1/)’ and the identity law for internal composition in

D(FE) we get

(WlﬁwBD(w*)l,’iﬁww’No5_*l; ) 7T17T1/,1D GD(w*)l,’/Tl’LUQpWo(SJ»};w)C

(
= (mmylpe eD(@Z)*)l,meo%};w)c
= (mwymeD(¢ )OeD(@Z)*)l,mwMoéJ};w)c
= (mwymeD(¢ )OD(gb*)Oe,mwwoéJ,};w)c
(7T1w¢71'0(5¢* 565 Wlwwwo%* )c

— W1w¢W051;*;¢(86, Lpe),)c

= 7T1w¢7ro51;*1;¢.

Taking these side calculations into account and applying associativity of composition;
the definition of the structure isomorphism components dy«., and 5_*1;1/,; the defini-
tions of ty, t,, and the pullback D, i, Xwyty Wy; the assumption that p*p = ¥* in
A which means @ o ¢p* =1 o* in A?; and the identity law for internal composition
in D(FE) gives:
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J, (WlﬂweD(@D*)l,Wlwwﬂo(sqz*l;w)C)C

= (mom D(p™)1, 7r07r05<p oy TTLWYTQOp* s 7T1U}¢7T051;*1;¢)C

*

1, 7T07T05

oo (T1WYTO0p .y, 7r1w¢7r05_*1;¢)c)c

*

1, 7r07r05<p (o T1Wy oGy, 51;*1;1#)6)6

*

1, 7r07r05¢ o 7T1w¢71'05¢*;¢86)0

*

1, 7r07r0(5¢ o Wlwwﬁoéw;wse)c

*

*

*

1, 7To7T05<p ) mwymeD (1) o w*)oe)c
2

06)

*

*

mot,D(p 0 p*)oe)c

)
1, T0T00 4y MWyt D(p 0 ©*)oe)c
1 Tomod 0. )

P*ip

*

1 Tomo0 - momoD(p 0 * 06)0

©*3)

*

15 7T07T05<p 0 7T07T05;*%0t€)6

*

1, (7r07r05¢, o Woﬂods;*l;wte)c)c

*

1, 7T07T06;*;¢(1D(E)17 tG)C)C

*

)
)
)
)
)
)
)1, 7r07r06@ o> MWy D(p 0
)
)
)
)
)
)
)1,

S € € € € € € € € € € € €

-1
7T07T05<p*;g0) c.

Putting all these calculations together along with the universal property of the pull-
back Do, = Dyoyp allows us to write the top composite as the following pairing

map:

Ew;w,l(lDi;, X w¢)6¢*;¢ = (7T1M¢t¢, (7T07T1D(g0*)1, 7T07T05;*1W)C).

By definition of the pullback D, X

both components in the following pairing maps agree:

wyty, Wy we know that myt, = mwyt, and so

&p;w’()(w@* X 1D¢>C<p*;<p = (7T0t4p, <7T07T1D(g0*)1, 7T07T05<;*1;<p)c)
= (7T1w¢t¢, (7T07T1D(g0*>1, 7T07T05;*1;¢)C)

= L1 (1pg X wy)Cyey.
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This finally shows that the outside of the last diagram commutes and induces the

cofiber lift

D W, —22 Wy

© to X Wop Ty,

The universal property of the coproduct csp gives a candidate for the lift we need:

Csp ............................ > WD
LWXL¢T %
zH
_D[p t watw W,/,

To see this is in fact the lift we need we need to see that the diagram

(momy,m171)

Wo ——— csp

Ly
4/’,71’]\ L‘PXLi

Dipthwwthw

also commutes. This can be done by considering the commuting diagram

DQp t watw Ww
;ew;w
<
Who
’fsa;w,o o
%74 wt X 5D1 z > Dl W
L:ﬁ* X"\
s
e
WAO* Wt pr X 50 Dgo Tiig Dl

and recalling that

gip;woﬂ'o = T and &0;1/,7171'1 = 7.

This allows us to see
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CLowp(mom, 1) = (LppTom, Loy ™iT1)
= (Lop,0mity, Ew;wﬂlblﬁ)
= (Toly, Tily))

_ w
_LLPXLQ,/J

and by the universal property of the coproduct csp we get the commuting diagram:

A

¢ ML, ML)
CSP v y Wg ——— c¢sp
L(p><L$T Coe
Dy, Xy, Wy o

The top triangle in the previous diagram shows that when taking the identity map

lesp : €Sp — csp as our cover, the map ¢ : csp — Wy is precisely the lift we need. [

The last condition we need to check is the internal right-cancellation property
which we have referred to as ‘zippering.” The objects in £ representing diagrams in
D that are important to recall for this part are those of parallel pairs, P(ID), parallel
pairs that are coequalized by an arrow in W, P, (D), parallel pairs that are equalized
by an arrow in W, P,,(ID), and parallel pairs that are simultaneously equalized and
coequalized by arrows in W respectively, P (D). The explicit constructions of these
can be reviewed in Section 4.1.

As is our tradition by now, we first review the usual proof for when £ = Set
before translating it internally to a more general category €. Consider the following

commuting diagram in D:

(Sovf) ('leD(-y)(c))
(4,0) —= (B, D(1)(9)) —== (C.0) -

By definition of composition in D, this means p oy =1 o~ in A% and the diagram
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D(v) o D(7)(c) +*— a —L= D(g)o D
D) L)) |P@o0@
D(¥) o D(x)(c) D(g) o D(7)(c) )
51;;1%6l lé;;ly,c
D(¢ 0 7)(c) D(po7)(c)
commutes in the category D(A). Since A is filtered, there exists a map p: E — A

(7)(c)

such that the square

E—— A
SO
A——> B
commutes in A and so ot = poy in A. There is an obvious candidate equalizing

arrow in W for the parallel pair, (f, ) and (g, 1), seen in the following diagram:

(. D) (@) “ 288 (4,0) === (B,D()(0) ()

To see this diagram commutes in I first notice that the diagram

D(p)(a) = D(w) 0 D(p) o D()(c)

)6 e) 51
wie,D(v)(c)

D(po)o D(v)(c)

5;0150;%6 (*3)

D(p)(9)

D(p) o D) o D(v)(c)

~

D((op)on)

D(po (¢oy))(e) D(po(pov))(c)

commutes in D(E). The top square commutes by functoriality of D(u) and commu-

tativity of diagram (x) above, the left and right squares commute by coherence of the
structure isomorphisms for the pseudofunctor, D, and the bottom square commutes
trivially because ¥ o v = ¢ oy in A. Then the outside of the previous diagram

commutes and implies that the following diagram commutes as well:



200

D(p)(a) D(p)(a)
b (a8 Lb(u)(a) Lo (a) Loy *f
D(p)(a) D(p)(a)
D(u)(9) D(u)(f)
D(u)o D)o D(3)(e)  D()o Dig)o D()(c) ()
80, D(1)(0) 8 o D))
Do) o D(3)(c) ——— D10 %) e D(x)(c)
Srovime Opovime
D((s0 ) 07)(¢) ———— D((j10%) 07)(c)

This shows that the original diagram (*x) commutes in DD and proves the desired

property in the case £ = Set.

Lemma 70 (Int.Frc.4). There ezists a cover U —4f— Pg(D) and a lift

> P(D)

U /s Py (D)

Proof. For a more general extensive category £ with a terminal object, products can

be written as pullbacks over the terminal object and equalizers can then be written

as pullbacks over products. In particular we have the pullback diagram

Poy(D) > > P(D) X s W
_
chI lﬂl 9
P(D) ;X ysW ——— (P(D) ;XusW) x Dy

where

Po = (1P(1D>)a(7T07T077T1w)C)
and

p1 = (lP(D)7(7TO77177T1w)C)'
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Note that each object is a pullback of coproducts, and since &£ is extensive each of
these pullbacks can be expressed as a coproduct of pullbacks of their corresponding

cofibers. The cofibers for the parallel pairs objects are denoted

P(D) ) = Dy (, X (s.) Dy

? (s:t)
The corresponding pullback diagram of the cofiber corresponding to the maps ¢, ¢,
and v in A such that ¢y = 1y is

Pea(D) o)y ——————— P(D) (o) , X5, W
”Ol - lpl,w;w)w ; (%)
P(D) o)  Xuwnss We izt (P(D) o) X5, Wa) X Dygery
where
P00y = (1PD) s x W+ (MO0, M1, ) Copiy )
and
P1e)r = (1PD) ) x W (TOT1, MW, ) Cir )

Similarly we have the pullback diagram for the object of parallel pairs that are

equalized by an arrow in W

Peg(D) ——=—— W, X, P(D)

_
Lqu l)\l )

W oy xsP(D) —— (W i xsP(D)) x Dy
where
Ao = (1pmy,(mw,memo)c)
and

A= (1P(D),(7le’7To7T1)C)-
The corresponding pullback of a cofiber indexed by a maps pu, ¢, and ¥ such that
e = pp in A is

Peq(D)u;(wb) — W, X (P(D)(wﬁ))

Kwyt, S
_
o Pw;(w,w ’ (**)

(PD)(pp)) ,— (Wu wut#XSP<D)(%¢)) X Dyoy

A0, 15(60,)

w,

Hawyty, X
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where
A0 pis(p0) = (IWuxP(D)(%w)7(7T0wm7717r0)0u;s0)
and

)\l,y;(go,w) = (1WM><P(ID>)(%¢) 7(7T0wu77T1771)Cu;w)-

We use the cofibers in Diagrams (%) and (%) to translate the usual proof for when
£ = Set and then the universal property of coproducts will give us the result we

want. Since A is filtered, there exists a map p: E — A in A such that the diagram

“w
—

RUPEL
UUT:B

P

commutes in A. Picking out the arrow we need to precompose was done by taking
the source of the parallel pair and applying D(u) to it. Internally this is done at the

level of cofibers by first considering the following commuting diagram,

Peq(D) i)y — Dy (s.) X (50 Dy ~— D, —— D(A),
o \
oo =B D(A)o
D(p)o
~ n x ~
D, (s,t)x(&t)Dw W, — D(E)o
w l - e
0 w
~ A - ~
D, D, —— D(E);
4
T Wol t
D(A) ; » D(A)o 557 D(Ao

The left side of the previous diagram then makes up the outside of the following
pullback diagram:
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Peg(D) o6):7 TO™o
égu,(%w)
Wi wt, Xs P(D) o) — Dy, X (s:yDy —— D

ond _
™0 s 1

wply

™0

o
There are two ways to compose the arrows in the diagrams being represented by
the previous universal map. To show they agree we show the the following diagram

commutes

by (0,0)
ch<D)(<p,¢);7 — W, wutMXsP(D)(%W

B (mowy,m171)
Zu,(«p,d’)l

XSP(D)(AOW) Dy

\ lc‘“w
, Ny ————
(Towy,m170) DMv‘P Crsep D

WH wyuty
pop
By definition of lzu,(%w) the first two maps on either both sides can be composed to

give the top and left arrows in the following square:

(€} wu,momoT1)

Peg(D) o)y ——— Dyuw

(Z}fwu,ﬂoﬂoﬂo)l lcu;w

D Hip T D Hop
To see that this square commutes we use the universal property of the pullback D,

It will help to recall the definition of cofiber composition in . In particular
Cuzp = (T170, Cppp5—1€)  and  cpy = (T170, Cpy5-1€)

where

c;;%éfl = (7T07T1,7T17T1D(,LL)1,7T17T0(5;;<1P)
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and similarly

C;mﬁ;é—l = (7T07Tl,7T17T1D(M>1v7T17705/;;3b)‘

To see both sides agree on the projection my : D, o ¢ — D(E) we can compute

(szwu,ﬂ'gﬂ'oﬂ'o)cuo@ﬂ'o = (ellfw#,ﬂoﬂoﬁo)ﬂlﬂ'g

= ToToT0To

and

(Eﬁwu,woﬂom)c“owﬂo = (Eﬁwu,woﬂom)mﬂo

= To7T7T1 7T

and notice that that the last lines are equal by definition of the pullback Peq(ID) (4.1):)-
To see that the other projection m : D, 0 ¢ — D(E), also coequalizes both sides of

the square is more involving. First notice that the diagram

P(]D)>(<P7¢) t vasv W'Y
T
™0
Do (s 5y X (s Dy ——— Dy
TOTO
o (m18,m0) (A)
~N g o
Dcp (m15.70) D(B)o X D(A)O
1
o D(A)()

commutes and precomposing with the projection

™0

Peg(D) (o7 — (Do (s.6) < (s:0) Dy) X5, Wy

gives the last line in the following side-calculation:
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w _ w
éuwum = EMTFMG
= momemom sD(11)pe

= momomom D (1)1 5€.

We use this side calculation in the fourth equality of the following calculation:

= (CYw,,,momomo) (momy, m1m D (1)1, 7T17T05;;<1P)C

w —1
= (Lwum1, momomomi D ()1, 7T07TO7T07T05”W)C

(7T07T()7T()7T1D )156, 7T07T07T07T1D(/L)1, 7T07T07T()7T()(5;;§10>C
(7T07To7T07T1D ) (5671)0, 7T07T07T07T06;;30)C

-1
= 7T07To7T07T1D )1, 7T07T07T07T()5MW)C

The last calculation we need requires a side calculation along with the coherences
for the structure isomorphisms of the pseudo functor D : A? — Cat(E). We start
similarly by noticing that the diagram

P(]D) (0,0) ¢ X woysy WW

TOTL
™0

~

Dy (X (syDy ———— Dy

o (m18,m0) (B)

N hd 18

D, ————— D(B)y x D(A)y

(m18,m0)

TOTO

0

~

18 D(A)O

commutes in £ and noticing that pre-composing with the projection

Peq(D) .17 — (D (s.) < (s:) D) X5, Wy
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gives the last line in the following side-calculation:

g;f?TM6 = 7T07T07T07TlSD(,U)0€
= momemmsD()oe

= momemm D (1)1 se.

Another side-calculation we will need can be seen in the following commuting dia-

gram:

™0 t
1

D, —=— D(B),

- W/\ 1 A
P(D)(%Qp) txw’ys’YW'Y > W’Y ™ > D(B)O (C)

Y _ Y
Trol _ Wey e

D, (s,t)x(svt)Dw D, —— D(B),
7r1l \ Sy s
t 4 4

D, — D(B)o D(E)

In particular we will use commutativity of the outside several times which says:
Tom1 T = T wW,moD (7)o

Coherence of the structure isomorphisms of the pseudofunctor D says that the dia-

grams

(Sp;0y 0wy D(1)1) ¢

D(C), » D(E),
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and
Spiowinys S
D(O)O (6popiy»D(7)00py) N D(E)Q
(Op;p07 50037 D(12)1) ¢
D(O)Q - > D(E)l
commute in €. Using the internal composition in D(E) to pre-compose with the
inverse structure isomorphism components 5;01%7 : D(C)g — D(FE); and 6;01@;7 :

D(C)o — D(E); respectively and then applying the identity law in D(F) gives new

commuting diagrams:

(5;olw;y’5u;w0w5wwD(ﬂ)1) Oipiry

and

(5;<>1¢wv‘suwow‘sva(N)l) iy
D(C)3 ——— D(E);
Taking inverses in D(E) then gives the commuting diagrams,

D(v)o

D(C)o D(B)o

—1 —1 -1
(611);7[)('“)1’5#;¢07’5#°ww) O

(5;;17D(M)1ﬁ;iaovvfsuoww) 5;;Lp

D(C)g ——— D(E)
which we will use in the calculation(s) below. The first of the latest side-calculations

along with associativity of composition and the identity law for composition in D(FE')
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allows us to see

(E wu,’ﬂ'o’]’roﬂ'l)Cuowﬂ'l

w
m
= (L jw, ™1 )C, Crprs—1C

= (0w, momom ) (mommy, mm D ()1, 7T17r05;;b))c

14

w —1
wy T, Tomemi T D ()1, 7T07T07T17T0(5H;w)6

-1
momom w1 D(p)1se, momomim D (1)1, 7T07T07T171'0(5mw) c

((momomymi D(p)rse, momomim D()1)e, momomimody,) ¢
(romomim D(1)1(se, Lp(e), )e, Tomomimod ) ¢

-1
7T07T07T17T1D )1’7T07T07T17T05H§¢)C

The second of the latest side-calculations along with the left square deduced from

the coherence diagrams allow us to see

(7T07T07T17T1D(,u)1, 7T07T07T17T0(5;;1p)0
= (7T07T07T17T1D(M)1, 7T07T1w77T0D(’7)05_.1 )c

= (7T07T07T17T1D(/J)1,7To7T1w77T0(5¢;7D( )1 (5M}/}07,(5#0¢;7)C)C

The next side calculation shows how we can replace the last line above. The first line
below comes from the definition of Py(ID) (). The second and third lines follow
from the definition of cofiber composition and the fourth line is a standard com-
putation using the calculus of pairing maps by the universal property of pullbacks.
The fifth, sixth, and seventh lines are consequences of the definition of W, and the
eighth line follows by definition of (5;;17. The ninth line comes from associativity of

composition, and in the tenth line we apply the identity law for composition in D(A).
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To\ToTo, T1W~ )C

/
T\ToTT1, T1 W~ C Dy 1CD(ILL)

( )¢,
7T1(7T07T177T1wv)0w,v7T1D( )

( )

m( )

(T, TIW, (7T07T1,7T17T1D<77/J)1,Wlﬁoéig}y)CD(pj)l
MMM, MT1WAT1 D ()1, 7T17T1w777'05;}y) cD(p)y
M mom T, T TyeD ()1, 7T17T1w77T0(5w 7) eD(p)q
7T17T07T17Tl,7T17T17T7D(77D>06,7T17T1w771'0(5;;) D(u);

M mom1 71, MW, T D (7)o D ()€, 7r17T1w77T051;;1y) eD(p)q

(
(
(
(
= (7T17T07T17Tl,7T17T1w77TO(5¢ -, se, 7T17T1w771'0(5¢ JeD(p)q
(mimomimy, mmwymodys (se, 1peay, )e)eD (i)
(mymomimy, s mod ) eD ()
=

7T17T07T17T1D )1,7Tl7T1’LU,y7To(51;;,YD(ﬂ)1)C

Functoriality of D(u) gives the final line in the computation above. Expanding the
composition in the last line of the previous calculation and recalling that that the
diagram

OO

:; <P(D)(‘P’w) txwvszW) X DSOOW

T1TT0

ch (D) (e )y

commutes by definition of the pullback P (ID)(, ), allows us to see that up to this

point we have:

(ﬁﬁwu,ﬂoﬂom)cuowm = (7To7T07T17T1D<IU)1,7T07T07T17T05;;b])0

- (%(”0707 T1Wy ) oy D (1)1, 7r17r1w77T05;1po~,5u0¢;7) ¢

A similar side calculation to the last one, where we can cancel composition with an

identity map in the middle, shows
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o (Moo, T1Wy ) iy M1 D)1
= 7T0(7T07T0, Wlwv)cfpm;fch(u)l

7o (om0, MWy ) (momy, mm1 D ()1, 7T17r05 )cD(,u)

= (7T07T07TO7T1, mom1w, T D ()1, Tomiw, Tl ) cD(p),

= (7T07T07TO7T1, TommyeD(p)1, 7T07T1w77r05(;;7) cD(p),

= (7T07T07T07T1D(,u)1, 7T07r1w77r05;;1/D(u)1)c.
Note that the parallel arrows

T

Pe. ( )(wﬁ)v : W

TOT1

are equal by definition of the pullback Pey(ID)(s.u):y- Since 1oy = poy and potp =
[ o @, composition in D(FE) is associative, the commuting square(s) deduced from
the coherence of the structure isomorphisms for D, and by diagrams (C) and (A),

we have that

(0w, Moo ) Cpoyy T
(7T07T07T07T1D 1,7T07T1w77r05;;17D( )1,7T17T1w77T05u¢075uo<p;7)C
(7T07T07TO7T1D 1)1, 7T07T1w777'05_.1D(M)l,ﬂ'gﬂ'lwvﬂ'géu soov(StOWW)C
= (momomom D(p)1, ToT 1WA T (0, D( )1, #}pw@wwﬁ)c)c

= ( u;so)c
= (

= (

momomom1 D (1)1, Tomom1m00,.,) €

(1)
(1)
(1)
momomom D() 1, momiw,moD(Y)od,
(1)
(1)1

-1
7T07T07T07T1D % 7T07T07T07T0(5M@)C

(@ U)u,7T07T07T0)CuO¢7Tl

It follows that

(07w, om0 ) Cpoyy = (€)W, ToT0T1) Cponp
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so there exists a unique map € o.4) © Peg(D) )y = Peq(D) (o) at the cofiber

level:
chaD)(%w)w
B ;eu;(eo;w) B
i) # i)
Wi e, % P D), Wi e, X sP(D) )
<1P([DJ)( )’ J(mowy, Wm /P@D)(IP) (mowp, 7r17r1)cu¢>
H wutu uocp

Since this is true for arbitrary parallel pairs (¢,) in A and an arbitrary 7 in A
which coequalizes them, the universal property of coproducts induces unique maps
g : Peg(D) — W ;< P(D) and £y : Pey(D) — Pey(D) such that the diagram

s W % P(D)

Lqu l(lp ,(7r1w,7r07r1)c)

W % P(D) » (W xsP(D)) x Dy

(1p(),(m1w,momo)c)

commutes in €. The lift we need is then given by the following pullback diagram

| P(D) —— P, (D)

_
0 LeqTO

Pe‘](ID)) LeqT1 P(D)
where the upper triangle shows we can assume the cover to be the identity map
Ip. @) : Peg(D) = Pey(D). The outside of the pullback diagram commutes because

by definition of ¢, we have
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w
EOLeqﬂ-l = 60 1

and then the following diagram

_ Ty

L(WMT TLE’ X(p,) Tw,w

Peg(D) o.6): FI W wHtMXSP(D)(%w) > Do (5,t>><(s,t)Dw

TOTO

commutes in £. O

The preceding lemmas in this section come together to show that the object of the
convenient cleavage of cartesian arrows we consider for the internal Grothendieck

construction can be formally inverted to give an internal category of (right) fractions,
DWW 1.

Proposition 71. Let D : A’ — Cat(€) be a pseudofunctor such that € is a candi-
date context for internal fractions and admits an internal Grothendieck construction,
D, which is a candidate for internal fractions. Let W = HSDG.Al W, be the object of
the canonical cleavage of the cartesian arrows we defined at the beginning of this

section. Then (D, W) admits an internal category of fractions.

Proof. Lemmas 67, 68, 69, and 70 come together to show that the Internal Fractions
Axioms of Definition 34 are satisfied and the result follows by Definition 27. [

5.2 Pseudocolimits of Certain Small Filtered Diagrams of Internal

Categories

The crux of our main theorem is an observation that in the correspondence between
oplax natural transformations D = AX and internal functors D — X for an arbi-
trary internal category X established in Theorem 19, the components of the natural

transformations factor through the family of arrows w : W — ID; that get inverted



213

by the internal localization L : D — D[W~!]. The oplax natural transformations
D = A are required here since we are dealing with a contravariant pseudofunctor

and constructing a category of right fractions.

Recall that there is a canonical oplax natural transformation D =— A whose

components are internal functors {5 : D(B) — D defined by:

For each ¢ : A — B in A, the internal transformation , ¢, : D(p)ls = {p
is defined by its components, f,t, : D(B)y — Dy, which factor through W, as a

consequence of the commuting diagram:

More precisely, the components of the natural transformation, ¢,, are picked out by
the composite {,p : D(B)y — Dy, which represents the arrows in the component
D,, which are given by applying the identity structure map, e : D(A)y — D(A4);,
after applying D(p)o : D(B)o — D(A)o.

Definition 72. For an arbitrary oplax natural transformation x : D = AX the
induced internal functor 6, : D — X is defined on components and then induced by

the universal property of the coproduct as follows:
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1)) y Xo Dy o S sy X4
LBI Ao WI TC
D(B)o D, r Xo

(7‘(1(1‘,4)1,7‘(033@)
The subtle difference here from the induced internal functor in Section 3.3.3 is the

map

(m (zA)l,TrO:cg,>

D, > Xo

which twists the order of composition in X to account for working with a contravariant
functor the covariant used in Lemma 19. Next we review how every internal functor
D — X induces an oplax natural transformation by whiskering. This is the same as
in Section 3.3.4 but we restate it for our reader’s convenience and the fact that we're

working with a contravariant functor and oplax transformations.

Definition 73. For an arbitrary internal functor F' : D — X, the induced oplax
natural transformation F*: D = AX has components that are internal functors

F} . D(B) — X defined by post-composition

¥
N
X
For each ¢ : A — B in A, the induced transformation F; : D(p)F* = F*is

defined by whiskering. More precisely, the components are given by post-composing

the components of £, with Fj:

D 0—>]D1
\ lFl

A similar proof to the one in Proposition 15 shows the assignments in Definitions 72
and 73 are inverses. The following Lemma shows that the induced internal functor

in Definition 72 inverts the cartesian arrows, w : W — Dj.
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Lemma 74. Ifx : D = AX is a natural isomorphism, then the induced internal
functor 0, : D — X inverts the family of cartesian arrows, w : W — D, as in

Definition 49.
Proof. By Definition 49 we need to show that the composite

WLIDH

0o (m lwz)l
X

is invertible in X as in Definition 48. It suffices to produce a map 6,(w)™' : W — X4
such that such that

(O (w) ™1, 0, (w))e = 0, (w)te,  (0x(w), 0. (w) e = 0,(w)se.

Since z : D — AX is a natural isomorphism, for each B € A, the components
z, : D(B)o — X are invertible in X. By Definition 48 there exists 2" : D(B)o — X
such that

_ —1;
T, 5 =Tpl, T, l=Tps

and

(" wp)e = aote, (m4,2,')c=z,se.

commutes in €. Define a candidate inverse for wd, : W — X; (with respect to

composition in X) to be the universal map induced by the family of composites,

W, >+ D, —> D(B),
e (W) [+
Xy

in & for each arrow ¢ : A — B in A. Note that by definition of z,, and 6,(W)!
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0.(W,)'s = wymox,'s
= W,ToX b
= wy(m(xa)1, Mox,)ct
= wy(02)11
= 1yw(0z)1

= 150 (W).

For the rest of our argument we need a nicer characterization of 6,(W) = w(#); :

W — the following commuting diagram

in &£, where the pullback squares commute by definition, the bottom right square
commutes by functoriality, and the bottom part of the diagram commutes by defini-
tion of the natural transformation z, : D(¢)z4 = xp. Use the previous diagram’s
commutativity along with the identity law for internal composition in X to compute

the composite



W (1 (2 4)1,m0T,)C

Now we can see the target of 6, (W)~

(wgﬂrl Ta)1 Wy TOLy,)C
(7T e(T4)1,W,ToTy)C
(mpete TA)1,WpT0Tp)C
(wgﬂToD Jo€(T4)1,Ww,Tox,)C
= (wemoD(p)o(xa)0€,wyToT,)C
= (w¢7'('01}¢$6,w¢71'0$¢)0
w,moT,(s€,1x, )c

= W,TpTp-

! is the source of 120, (W,) : W, — X,

0.(W,) 't = wymoz,'t

and get a convenient description of the cofibers of the map w(6,); :

shown in the commuting diagram:

= WL yS
= wy(m(xa)1, Toxy,)CS
= Wyty(0y)15

= 1yw(0z)15

= Lﬁ@I(W)s,

We

Now we can compute

217

W — X as
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as well as

g
AN
~
S
—
D>
8
S~—
—
S
A
X
(=)
8
S
N~—
o

(2 a)1, Toy)C, wwﬂox;l)c

we(m1(24)1, Mo, )¢, womex, e

= Wy, (T, x;l)c
= Wy,TMoT,Se

= 0,(W,) 'te

= Lﬁ@z(W)_lte
= 150, (W)se

and by the universal property of the coproduct W we get

(0, (W) 71, 0,(W))e = 0,(W )te
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and

It follows that 6,(W) has an inverse in X and that 6, inverts w : W — Dj. O

The next lemma we will need in our main result will help us establish that every
natural transformation induced by an internal functor that inverts w : W — Iy
under the equivalence in Theorem 19 is a pseudonatural transformation. This is
done by seeing that for each ¢ : A — B in A the internal natural transformation

obtained by whiskering ¢, with L,

D(B)
lB
D(p) / )
Lo
D(A) D — D[W ]

gives a natural isomorphism. The key observation to make here is that the 2-cells
from the canonical oplax natural transformation ¢ : D = D have components that
factor through w : W — ID; so that whiskering with the internal localization functor

L :D — D[W™!] inverts them to give a natural isomorphism after whiskering.

Lemma 75. For each ¢ : A — B in A, the internal natural transformation

EapL : D(QO)KAL - EBL

given by whiskering,

D(B) —£5 D —L DWY D(B) -5, pw Y
Ly 15 — oL
D(so)l s H L H D(«% i H :
D(A) D DWW D(A) i D[W 1]

1 an isomorphism.

Proof. Recall that the internal localization functor, L, inverts w : W — ID;. In par-
ticular (wLy)™' = (1,wse)q : W — D[W~!]; is an inverse of wL1 : W — D[W~1]; by
Proposition 55. Also recall from Definition 3.3.1 that the components of the natural

transformation ¢, are given by f,t, : D(B)o — Dy where £, = (1p(p),, D(p)oe) is
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the unique pairing map induced by the universal property of the pullback D,. Notice
this map factors through w : W — Dy since £, : D(B)y — D,, factors through W,

via the composite:

w

D 0—>W

N

Then since wyt, = tow : W, — Dy, we have the following commuting diagram:

o)

w
Lowe

D(B)y ———— D,
e;gu;;é bote lw (%)

~

W ——— Djy.

Abusing notation by reusing the label ¢,L we can see that the composite

LY w L
D(B)y —~"— D, —>—— D,

L
) l !

D[Wﬁl]l

represents the components of the transformation ¢,L : D(p){4L = (pL. Diagram
(x) implies these components are all invertible in D[IW™!] via an inverse given by the

composite

in £. To see this is really an inverse we can use the definitions and diagrams above

1

in the proof of this lemma along with the fact that (wL;)™" is an inverse of wL; to

see
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(CoL, (6pL) ™ e = (Cpwptp Ly, CFeg(wLe) e
= (Ziang,ﬁiog(le)_l)c
= (21 (Ly, (wLy) Y)e
= E’;’L";’Llse
= lJw,t,Lyse

= (l,L)se
and a similar proof shows
((6,L)" ' b, L)c = (L,L)te.

It follows that the whiskered transformation

E@L : D(QO)KAL — EBL

has an inverse, ({,L)"' and is an internal natural isomorphism between internal

functors for each ¢ : A — B in A. O

Lemma 76. Every internal functor F' : D — X that inverts w : W — Dy corre-
sponds to a pseudonatural transformation D = AX wia the oplax version of the

isomorphism of categories in Theorem 19

Proof. Suppose F' : D — X is an internal functor that inverts w : W — ;. Then
by the universal property of the internal localization, in Proposition 60, there exists
a unique [F] : D[W™!] — X such that L[F] = F. The natural transformation
corresponding to F' under the contravariant version of the isomorphism of categories

in Theorem 19 is obtained by whiskering

D(B)
lp
D(y) /
Lo
D(A) > D LN

La
for each ¢ : A — B in A. Since F' = L[F] this whiskering can be done in two steps.
Starting with
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D(B)
7]
D(y) / )
Lo
D(4) ——— D —L— DWW —— X
we can use Lemma 75 to get a natural isomomorphism
D(B
(B) .
D(y)
0L
D(A) —— s pw] —8  x
laL
and then we can whisker once more to get
D(B D(B
D(w)l - D(so)l

Recall that the components of £, are {,t, : D(B)y — Dy and notice that the com-

ponents of £, F" are precisely

¢,L
D(B mm) -1
(B)o > Dy » DIW

Lemma 75 shows that ¢,L : D(B)y — D[W ']y is invertible in D[W '] and since
[F] : D[W~!] — X is an internal functor, the total composite in the diagram above

is invertible in X by Lemma 50. O

The next two lemmas allow us to contextualize the previous two lemmas more pre-
cisely in terms of the oplax version of the isomorphism of categories in Theorem 19.
This helps us avoid many explicit but unnecessary details in the proof of the isomor-

phism of categories in our main result.
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Lemma 77. The underlying-structure functor

(D, AX]ps —Z— [D, AX] ope

15 fully faithful.

Proof. 1f two modifications, u,v : o — S between pseudonatural transformations
a, B D = AXare equal after forgetting the additional pseudonaturality structure
then they are the same modification by definition. This implies U is faithful. It is
clearly full because any modification between pseudonatural transformations is what

it is. ]

Lemma 78. The underlying-structure functor

D, X5, —< [D,X]¢
15 fully faithful.

Proof. Any two natural transformations «, 3 : f = ¢ between internal functors
f,9: D — X that invert w : W — ID; which become equal after forgetting that f and
g invert w : W — ID; must be the same natural transformations by definition. This
implies U’ is faithful. Any natural transformation between internal functors D — X

that invert w : W — Dy is precisely that, so U’ is also clearly full. [

The previous four lemmas come together in the following lemma which does most of

the work for the proof of our main theorem which follows immediately after.

Lemma 79. There is an isomorphism of categories

[D, AX],,, = [D, X[y

between the category of pseudonatural transformations D =—> AX and their modifi-
cations; and internal functors, D — X, that invert the cartesian arrows, w: W — D,

and their natural transformations.

Proof. By Lemma 74, every pseudonatural transformation D =— AX induces an
internal functor D — X that inverts w : W — I by the following composition of

functors
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(D, AX],s

(D, AX]ope —= [D, X]¢

where the bottom isomorphism of categories is the oplax version of Theorem 19. By

Lemma 75, the composite

K

[D, AX]ope +——=— [D, X]¢

factors through [D, AX],,. By Lemmas 77 and 78, we know [D, AX],, and [D, X,
are both fully faithful subcategories of [D, AX]oy and [D,X]¢ respectively so the
isomorphism of categories in Theorem 19 restricts to an isomorphism between these

subcategories. ]
We can finally state and prove the main theorem of this paper.

Theorem 80. Let A be a cofiltered category and let £ admit an internal Grothendieck
constructoin, D, for the pseudofunctor D : A® — Cat(E). If (D,W) admits an
internal category of fractions, D[W 1], then DW 1] is the pseudocolimit of D :
A? — Cat(€).

Proof. Under the given assumptions, we can apply Lemmas 79 and Theorem 65 to
get a chain of isomorphisms (of categories) which can be composed to prove the

result.

[D, AX],, = D, X]j, = DWW, X[



Chapter 6

Conclusion

Having given contexts for an internal Grothendieck construction and an internal
category of (right) fractions, we have implicitly described a context for computing
(op)lax colimits of certain diagrams of internal categories and another for computing
pseudocolimits of certain filtered diagrams of internal categories. The purpose of
doing this was to isolate and better understand the categorical constructions that
are used when working in the context of Set, with diagrams of small categories, and

to give a new formalism for gluing constructions in categories of internal categories.

For the internal Grothendieck construction of a pseudofunctor we required specific
pullbacks along source (or target) maps of our internal categories, and certain disjoint
coproducts that commute with these pullbacks. Any extensive category that has
these pullbacks will satisfy these conditions, for example Set, Cat, Top, and the
category of smooth manifolds all admit internal Grothendieck constructions for small
diagrams of their internal categories this way. We state these conditions so carefully
in order to include other possible examples of larger categories which may not be
extensive all around, or which may not contain all pullbacks, but which have these

coproducts and pullbacks that interact well with one another.

The internal category of fractions construction requires a collection of pullbacks
and equalizers in order to define the objects involved in the internal description of
(a weakened version) of the (right) fractions axioms, as well as the relations and
quotient objects which were required to define objects of paths of arrows with an

appropriate universal property.

An interesting part of our main result, Theorem 80, is that some of the inter-
nal fractions structure from the definition of the Internal Fractions Axioms (Defini-
tion 34) becomes trivial when the internal category being considered is an internal
Grothendieck construction. In this case we proved a formal gluing construction for

these internal categories by showing that the resulting internal category of fractions

225



226

is the pseudocolimit of the original diagram.

Future work in this area includes exploring more examples of diagrams of internal
categories arising in contexts that satisfy our conditions. We have plenty extensive
categories that allow for an internal Grothendieck construction, and it would be
interesting to find an example where the entire category is not extensive, but the
pullbacks and coproducts we have interact nicely for other reasons.

We hope to use our construction to eventually study the homotopy theory of
certain generalized spaces called stacks. These are special pseudofunctors that can be
represented by internal groupoids and a proposed topic of PhD research in the coming
years. Another direction for future work is translating this result into the language
of a proof assistant, like Lean or Agda, in order to make the lengthy calculations
easier to verify and accept. Having this framework would make it more feasible to
consider diagrams of internal higher categories and try to replicate higher categorical
colimit constructions such as in [15] by extending the notion of internal fractions

appropriately.



Appendix A

Internal Grothendieck Construction

This section of the appendix contains technical lemmas used in Chapter 3.

A.1 Associativity of Composition

This first lemma we need states that the source and target of a composite coincides

with the source and target of the first and second map in the composite respectively.

Lemma 81. For any composable pair (p,¢) € AW, X) x AX,Y) in A we have
that ‘the source (target) of the composite is the source (target) of the first (second)
map (respectively).’

Complpy = P1ly ) CopSpyp = P0Sep-

Proof. By definition of tuy, Spy, Chpps Coypr a0 Cpp.

Coploy = CoypTitly CopSpy = CorpTolw
= CuupTitly = PoTolw
/
= CpppClly = PoSe
/
= CsppTi2qutly
/
= Copilty
= p1mitly

= pity

This next two lemmas contain calculations that show how to compute cofiber com-

position of the first and last two maps of a composable triple in the internal category
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of fractions, D. These results are used to prove associativity of composition in D in

Proposition 85.

Lemma 82. For any ¢,,y composable in A

06103;%0;7 = (p01p07T05¢¢m p010i;;¢;¢CD(7)1a P12p171)

where

Cs. o CD (V)1 = (P70 D (7)1, Pom1 D ()1 D (7)1, prmi D(7)1)e

Proof. By the universal property of the relevant pullback of ‘composable-triples,’ it
suffices to check that

o A
€01C85001v 90190 = C01C6;(p1p) 90
o
= Co1P0T00pysy
= P01Cp;T00 iy

= p01p0705¢¢m

€01 0191 = €01 (o) 1
= C{npoWlD(V)l
= p010¢;¢7T1D(’7)1

and

o A
Co1Cs5007y 11291 = C0165;0917T1200
A
= Co1Cpypn Tt
/
= Co1P1T1

= P12P171
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respectively. By functoriality of D(v) and associativity of composition the middle

component in that triple composite factors

Cg;<p;¢CD(’Y)1 = CZS;¢;¢(QOIQ1D(7)1> o101 D(7)1, G2 D(7)1)c
= (P07To5ga;wD(”Y)1,poﬂlDW)lD(’Y)l,p17T1D(’Y)1)C-

Lemma 83. For any ¢,1,~ composable in A

CQQCSMM = (p01p0705<p;¢7, porpom1 D(Y)1, p1203;¢;¢76)-

Proof. By the universal property of the relvant ‘composable-triples’ pullback, it suf-
fices to check that

0,120:5;¢;¢7C‘J01QO - 6/1263;90;71}76101‘10
= Cll?d?;(w;@bv)qo
= ChoPoT00p:sm
= CI12PO7T05¢;¢7

= Pmpa%%;ww

C1aChippy G011 = C1oChipiyy Q0101
= ClaCly(pm) 11
= opom D ()1
= porpom D(Yy)q,

and
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ro o
C12Cs50my 11291 = C12C0y 1
/
= C1oP171
= P12Cy;4 T

. /
= P12Cp7C-

The last lemma provides some calculations using the internal coherence for the com-
position natural isomorphisms associated to the pseudofunctor along with natural-
ity and functoriality. In the classical Grothendieck construction (when £ = Set),

Lemma 84 internally encodes the intermediate step

OpyaD (V) (Op.a) D(V(D(D)(D(@)(f))) = Sppma D7) (D () (f)) sy

for each a € D(A)y when proving associativity of composition.

Lemma 84. For any ¢,,y composable in A

(7705901/);% 7To5so;wD(7)1, T (D()1D(7)1))c = (770590;1#77 T D (), Wlt(sw;v)c

Proof. By coherence of composition isomorphisms for the original pseudofunctor, D,

we have that

(5%1/)% D(‘P)O5w;7)c = (5@!};% 5@;¢D(’Y>1)C;

and by definition of the natural isomorphism dy., : D(¢y) = D(¥)D(7)

(D(y)1, L0y )¢ = (804, D(¥0)1D(7)1)c.

Putting coherence and naturality together with associativity we get the following

equality of triple composites
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(T85> M0 D (7)1, T (D(¥)1 D(y)1))e
= (T0(0pus7, O D(Y)1)e; (D(¥)1D(7)1))e

= (M0 (03, D(P)o0ysy)c; mD(¥)1D(7)1)c

= (T00psy, (T D(9)00ysy, M D ()1 D(7)1)c)e
= (T00pipy, (T180y, M D ()1 D(y)1)c)e
= (M0, M1 (0, D(0)1.D(7)1)c)e
= (M0, T1 (D (7)1, t0ysy)C)C
= (

7T05<p Wy 7TlD(¢’Y)17 7T1t5w 7)

We’re now ready to prove associativity of composition in .
Proposition 85. Composition in D is associative.

Proof. The object of composable triples is given by pulling back the pullback pro-
jections pg, p1 : Dy — D;. Denote its canonical maps by pf, and p} respectively. By

Definition 2 we have

D3 = H Dy
(Lpﬂ/)fY) E-/43

where Dy, is given by pulling back the projections p; : Dy, — Dy and pg : Dy, —

Dy,. More precisely, for any composable triple

W x_ Y,y _ T,z

we have the following commuting diagram where the squares on the front and back

are all pullbacks.
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By the universal property of the coproduct D3, we have maps cg; and ¢15 which rep-
resent composing the first two and last two maps in a composable triple respectively.
These are uniquely determined on cofibers by the maps ¢, and ¢}, respectively. The
following diagrams are pastings of commuting cubes that show how ¢}, and ¢y, are
related. The coproduct inclusions from left to right are suppressed for readability

but are indicated with the bent dotted arrows.

Dwm ’ Dzm P1 7 ID)2 2 ]D1
l 661 N‘;w)w
Ppo1 s
4 (co1)
D Dioiyy —2 D ]D — ]D)
(R (e)sy ol 1 0
|
Pol lsv
ot Dyy — D
PP o 0

A similar diagram shows the relation between ¢}, and ¢;o and in particular the

following squares commute by the universal property of Ds.
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c c
]Dg — Dy ]Dg — Dy
LwnﬂwI Ibwww Lw;w;WI Ibw;d}v
Doy ch » Doy Doy s » Doy

To show that composition is associative, we need to show that the front of the

commuting cube below commutes.

C12
Dg > ]Dg
Ls:;V LV
Cla
Dw;ww 7 DWZW ¢
Co1
Cospy
o1 ]D2 c > ]D)l
Av Av
\
Dy Covin > Doy

We'll use the universal property of the pullback D,,. First notice that

D(W)w = Dsodw = Ds@(dn)

because of associativity in A. That is,

()Y = (¥y)

so we drop the parentheses and just write @iy for the triple composite in A without

loss of generality. On one hand by Lemma 81 we have

P01CTTot A = Po1CSpyp = P01P0Se — Po1P0oTolA

and since ¢4 is monic,

Po1CTo = Po1PoTo- (*)

Now recall by the definition of cofiber composition we have

Coviy = (p0ﬂ07 c:S;gmbwc) Copy = (p()'ﬂ'[), Cg;cp;tbwc)
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and so for the 7y projection we get:

C01CoyinT0 = Co1P0T0 Def. ¢y
= Po1CTo Dgm. (cg;)
= Po1PoTo Eq. *
= ciaPoo Dgm. (cg)
= CloCon o Def. cppy

For the 7; projection we have the following calculation split up on separate lines for

readability. By definition of cgy.,:
/ A
€016 ™1 = Co1C85001C
then by Lemma 82 the right-hand side is:

(Po1P0T00 iy pOICZS;@anD(’)/)la P12P17L)C

The definition of CZS;«p;w says this is equal to

(Pmpoﬂodpwm Po1 (Poﬂoéga;wD(’Y)la pOﬂ'lD<w)lD<7)17 P17T1D(’7)1)C> P12p17Tl)C

which, by associativity of internal composition (and factoring out a py from the

pairing map into the object of composable paths of length 4, C,) is equal to

((pmpoﬂo%wm p01p0(7r05¢;¢D(’y)1, WlD(w)lD(’Y)l)C)Cv p01p17T1D(’7)17 p12p17T1)C-

More associativity of internal composition and factoring pg;po from the pairing map

being post-composing with internal composition gives

(p01p0(705<pw;77 (705¢;¢D(’Y>1, WlD(ID)lD(’V)l)C)Q p01p17r1D(fy)1,p12p17r1)c

By associativity of internal composition and the definition of D..,., this becomes:

(Po1P0 (M08 oy s 0Oy D ()1, T D (1)1 D(7)1) ¢, prapomi D(Y)1, prapimi)c
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By Lemma 84 this is equal to:

(]901p0(7705<p;w7, 7T1D(¢7)1, 7T1t5¢;”/)0, P12p17T1)C

By associativity of internal composition we get

(p01p07T05<p;¢w P01p07T1D(¢7)17 p01p07T1755¢;77p12P07T1D(’Y)17 p12p17T1)C

and then by more associativity

(p01p07r05<p;w'ya Po1Pom™1 D (¢’Y) 15 (p01p07rlt5¢;'ya Pi2pom™1 D (’Y) 1, P12P1 7T1)C)C

By definition of D, this becomes

(Po1P0T00 1, Po1P0T1 D (1Y) 1, (Po121T00y:y, P12P0™1 D (7)1, prapimi)c)c

and by definition of D.,., we get

(p01p07T05go;m7 p01p07TlD(1/W)1; (plzpoﬁofswm p12p0771D(7)1a p12p17T1)C)C

Factoring gives

(p01P07T05¢;m; p01p07T1D(¢7)17 P12 (p07T05¢m ]907T1D(7)1; p1771)0)0p12

and the definition of cim says this is equal to

(p01p07T05<p;¢m p12pom1 D (7)1, porpomi D(¥y)1, plz(Cfs;(ww) 4o, Ci;;(zm(h, C:,M%)C)C

The definitions of Def. cj,,. and C:S;(dm) imply the last term is equal to

(pmpoﬂo%;ww Po1pom1 D(Yy)1, pl2(d5;qp;7QO1QO7 Cf;;q,;ﬂOlQl, cg;wwaqu)C)c

and the definition of cf,, makes it

(Po1P0T00 055 Po1POTL D (Y0y)1, p12ds;¢,;70)0
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By Lemma 83 this is equal to the left-hand side of the final equation
ClaChippn € = ClaCoupn M
which follows from the definition of c,,,. Then the universal property of pullbacks

says

/ o
Co1Copiy = Cr2Cpy-
This shows composition is associative on cofibers/components of the coproduct. As-

sociativity of composition in ID now follows by the universal property of the coproduct

Dj. ]

A.2 Lemmas for 1-cells of the Canonical Lax Transformation

The following are technical lemmas used in Section 3.3 of Chapter 3.

Lemma 86. For any A € Ay:

(QO (KA)ll d1 (KA)Il)ClA;lA = C(€A>/1

Proof. First compute the 0’th projection:

(90(£4)1,@1(Ca)1) 15140 = (g0 (£a)1,1(€a)1) P00 Def.
= qo(£a)} 70 Def.
= qos Def. (£4)]
=cs Def. ¢
= c(la))mg Def. (£4);

For the first projection we break up equalities on separate lines and provide justifica-

tion for each step in between once again for readability. Starting with the equation,

(q0(£a)1,01(La)1)ci1am = (q0(€a)1,q1(€a)))Cn 41,6
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the right-hand side is equal to
(QO851A;1A7 qO(S(SAa 1D(A)1>CD<1A)1 7q1<85A7 1D(A)1)C>C
by definition of ¢} ;. By functoriality of D(14) the last term is equal to

(90561 45145 q0(504D(1a)1, D(14)1)c, q1(804, 1p(ay, )c)c

which, by associativity of internal composition, is equal to

(9050145145 Q0504D(14)1, (gD (1a)1,q1504)c, q1)c.

The definition of D(A),; makes this equal to

(C]0851A;1Aa QOS(SAD(lA)la(CIOD<1A)1aQUt5A)Ca Ch)c

which, by factoring maps with respect to pairing maps, is equal to
(9080145145 G050aD (1)1, qo(D(1a)1,t64)c, q1)c.
Naturality of 64 makes this equal to

(QOS(SlA;lA, QOS(SAD(lA)la QO(S(SA, 1D(A)1 )Ca Q1)C

and by associativity we get

(qo551A;1A7 (qo55AD(1A)1a QOS(SA)Cv qo, q1>C.

Factoring with respect to pairing maps gives

(0501 41145 905(04aD(14)1,64)c, o, q1)c

and associativity then gives

(9059141490864 D(14)1)c, GoS0a, o, q1)c-

By factoring again we get

(qos(01,4:1,,94D(14)1)e, oS04, o, q1)c
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and by coherence of the structure isomorphisms for the pseudofunctor D this becomes

(qosea, qosda, qo, q1)c-

By associativity of internal composition we have equality with
(q08(€a,04)c, qo, qu)c
and by factoring with pairing maps we get equality with

(qOS(lD(A)ou 614)(6147 ]-D(A)1)07 qo, QI)C]

The identity law in D(A) makes the last term equal to

(qos(1p(aye: 04)P1, Qo, 1)cC

and by definition of the pullback projections we get

(qoséa, qo, q1)c

Definition of internal composition gives equality with

(csda, qo, q1)c

and associativity gives

(csda, (qo,q1)c)c.

The universal property of the pullbacks D(A), make this equal to
(eséa, 1pay,c)c
which becomes the left-hand side of the final equality:
c(s6a, 1peay,)c = c(la)im

The result follows by the universal property of the pullback D,,. O
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A.3 Lemmas for 2-cells of the Canonical Lax Transformation

Lemma 87.

((Ca)itas » t(paye D()oes)io) = ((Ca)i  H1(ay, D(#)oen)) e

Proof. By the universal property of Dy it suffices to compute

((€a)} 5 t(Xp(aye D(@)oer))tiawpo = ((La)] » t(1pay, D(w)oes))pot1,

= (La)it1,

and

((€a)1 5 t(Ipeayy, D(@oes)) et = ((€a)) » t(1p(ay, D(@)oer))pity

= t(1p(a),, D(¢)oen)iy-

]

Notice the following computation contains the first functoriality argument for the

naturality proof above in the case & = Set.

Lemma 88.

((€a)1; t(1paye: D(#)0eB))Cs1 40 = (8014500 (564D(0)1, D(9)1)e, teaD(p)s)

Proof. By the universal property of D(B)s it suffices to check three equalities. First

we have

((€a)}, t(Ipayy, D(9)oeB))Csa 4000190 = ((€a)1, t(1p(ayy, D(®)oes))Pom001 430
= (£a) 17001 43

= SélA;SD

where the first equality is by definition of ¢, , .., the second line is by definition of

the pullback projection, py, and the third line is by definition of (£4)}. Second,
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(£a)1, t(1p(ay. D(#)oer))pomiD(p)s
La)1miD(p)

$04; 1p(ay, )eD(ph

s64D(p)1, D(p))c

((€a)1, t(1peayy, D(@)oer))Ch1 4 000101 =

(
=
=
=

where the first line is by definition of cj,, , the second line is by definition of the
pullback projection py and the pairing map it is precomposed with, the third line is
be definition of (£4)), and the last line is by functoriality of D(y). Finally we can

see

(€A) (1D (A)o> D(SD)OGB))CllA;(pQI
(¢ ) (1D (A)o» D(p)oen))p1m
(1p

D(p)oer)m

(
(
t

= tD(SO)oeB
= t@AD((p)l
= D(p)

where the first line is by definition of cf, ., the second line is by definition of ¢} , .,
the third line is by definition of the pullback projection p;, the third line is by
definition of the pullback projection p;, the fourth line is by functoriality of D(y)
and the last line is by definition of the identity structure map, e4, of D(A). O

The previous calculation is an intermediate step for the following lemma which we

use in our naturality computation at the end of this subsection.

Lemma 89.

((€a)1 s t(L(ays D(@)oes))crae = (8, (801405 504D (9)1, D(p)1)c)

Proof. By the universal property of D,, it suffices to compute the pullback projections

and check that they’re equal. First we can see
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((€a)} s t(Apeay, D(@)oes))ciapmo = ((£a)) , t(1pcay,, D(¥)oer))pomo
= (La)1m0
=5
by definition of the pullback projections, pg and 7, and the map (£4)]. Next we can

see

(L)1 5 t(1peay,, D(w)oen))cr e
(L)1 5 t(1pcaye, D(9)oen))Chin ,.0C
= (801,4:0, (804D(9)1, D(@)1)ec, teaD(p)1)c

()1s (
(¥)1. (Ipea 1>teA)CD( 1)e
= (801,450, 564D(¢)1, (1p(ay,,t)(po,prea)cD(p)1)c
(©)1, (Lpgay,s t)poD(p)1)e
= (801450, 04D ()1, D(%O)l)c-

where the first line is by definition of ¢; .., the second line is by Lemma 88, the
third line is by associativity of composition, the fourth line is by functoriality of
D(yp), the fifth line is given by factoring a pairing map, the sixth line is coming from
the identity law in D(A), and the last line is by definition of the pullback projection

Po-
]

The remaining lemmas are side calculations that show different ways of representing
internal compositions involving certain pairing maps. We used them to prove results

about the 1-cells of the canonical lax natural transformation, .
Lemma 90. The cofiber composition, D(A)y — D, given by the term

(s(Lp(aye, eaD(@)r), (sD(9)o, D(9)1(€)171)) 50,

1s equal to

(8015, 5€aD(0)1D(15)1, D(@)1(lp)1m)
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Proof. By the universal property of D(B)s, it suffices to check the three projections
D(B); — D(B);. First we have

(s(1p(aye: €aD(9)1), (sD(@)o, D(0)1(£B)171))C501 590140
= (5(Lpay,, €aD(@)1), (sD(p)o, D(0)1(CB)171))PoT000;1,
= 5(1p(ay,, aD(9)1) 0041,
= 50,15

Second we have
(s(Lp(ayes €aD(@)1), (sD(p)o, D(#)1(€B)171))C 1, d1240
= (s(1p 07€AD(<P)1)7 (sD(p)o, D(¢)1(¢B)1m1))pom D(1p)1

= 3(1D(A)07 eaD(p)1)mD(1):
= SeAD(SO)lD(lB)l )

and finally

( )1); (8D()o, D(9)1(£B)171))C5. 1, 12
s(1p(ay, eaD(@)1), (sD(#)o, D(¢)1(¢p)\m1))p1m1

Lemma 91. The pairing map

(s, (80415, 5D(@)oesD(15)1,sD(¢)ods, D(p)1(Ls)im)c)

is equal to the cofiber composition

(s(Lp(aye, eaD(@)1), (sD(9)o, D(9)1(€5)171)) g1
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Proof. By the universal property of D, it suffices to check that

(s(1pay,, eaD(@)1), (sD(9)o, D(#)1(L5)1m1))cp1,T0
= (s(Lpay,, eaD()1), (sD(p)o, D(¢)1(€p)171))PoTo0
= 5(1p(ay,: eaD(p)1)mo
= slpay,

=S

and by Lemma 90 and functoriality of D(yp) we have

(s(Ip(ay, eaD(p)1), (sD(p)
= (s (1D(A)076AD(90)1% (sD(¢)o, D(©)1(€B)171))Ch.p1 €
= (801, 5€4D()1 D D
= (6,

—_
S
~—
=

907137 ( )OeB‘D

Lemma 92.

(s(1p(ay, eaD(9)1), D(©)1(€B)})tpns = (5(1p(ay, eaD(#)1)ty, D(@)1(€B)it1,)

Proof. By the universal property of Dy, it suffices to check

(s(Lpayg, eaD(@)1), D(@)(€)1)ton500 = (s(Lnay, eaD(@)1), D(@h(€s)1)poty
= 5(1p(ayy, eaD(P)1)ty

and

(8(1p(ayes €aD(9)1), D(0)1(€))) w1 = (5(1p(ay, eaD(p)1), D(©)1(€p)})pit1y
= D(p)1(£B))t1,



Appendix B
Internal Category of Fractions

B.1 Defining Span Composition on Representatives

This appendix consists of technical lemmas which are really just computations used in
the proof of Lemma 40 in Chapter 4. We use these to define the composition structure
of the internal category of fractions and prove it forms an internal category. They
are heavily dependant on their context in that lemma so we restate the beginning of
that proof and include the diagrams of covers that define the lifts from the fractions
axioms being referred to in the lemmas.

First, pullbacks of u : U — spn ,x, spn are taken along p2 and p? to get two

covers of sb ,x sb that witness composition of the sailboat projections, p2 and p?:

_ - - _
Ug : y U < ! U1

uiJ # L#I (1)

sb ,x sb 27 SPIL X, Spn < — sb ,x, sb
0 1

A refinement

U —" 7,
\\ {o (2)
—F— sb ,x,sb
UO

is given by a pullback of uy and #; and provides us with a common cover domain
for the cover. Next we need to describe composition for the intermediate pair of

composable spans:

The following figure shows the construction of three different composites being con-

structed.

244
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[N

i

~

We define composition for this intermediate span similarly to how we defined o,. This
could actually have been done by taking a pullback of the cover,  : U — spn X spn,
witnessing span composition in general and finding a common refinement for this with
the previous refinement. The same result holds either way. Denote the comparison
pair of composable spans by v and define it by the universal property in the following

pullback diagram.

2
J VAN 1
> _—
U — / sb ,x sb spn X, spn
S
?\ 1
u .
~ Y ~
T 3
sb ,x, sb pn , X, spn ————— spn (3)
p(2) WOJ/ S
spn ;X spn —- > Spn - > Co

The following diagram of covers shows how the intermediate composite span is con-

structed for 7.

(mom1,mom2)

W, > W oxe, W
"J’YT T(GWWOWO#QVYWOWO)

U “ / > [70 “ / > U (*)
UvJ{ ) o1 9Vl J{(‘/Wom YTLT0)

spn Wo Cirpxu W

(mom1,m171)
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The left and right curved arrows, o, and oy, into spn in the bottom left corner are
defined by applying the composite of spans, o,, to the composable spans given by
applying p3 and p? to the pair of composable sailboats. Since o, is only defined on U
we need to pass through the appropriate cover. The colours in the previous diagram
and following equations indicate which of the three different span compositions in

Figure (A) the arrows in the following equations are witnessing.

and

01 = UM T10, (B.2)

== /&771/71 ((,Uﬂ'h (LUTF()WQ;UQHWVTQ, UTF17T1)C) .

The arrow into spn on the bottom left side of the cover diagram is the universal map

_ ~/ ~ =2
oy = (wym,(w,ywoﬂo,u Hwﬂlwo,uuplmm)c).

The data necessary to construct witnessing sailboats for the equivalences between the
pairs of spans 0, 0y, and o, can be obtained by applying the Ore condition, followed
by the diagram-extension twice, and then weak composition three times. Internally
this corresponds to a chain of six covers and lifts. All of this is color-coded below
using olive and brown for the Ore condition and cyan and violet for the zippering and
weak composition step(s) that follow. Note that in both cases the first zippering is
done to parallel pairs of composites that can be post-composed by the left leg of the
bottom left span. The second zipper is done to parallel pairs of composites that can
be post-composed with the left leg of the bottom right span in the pair of composale
sailboats. Weak composition is then applied three times in to get comparison spans,

00~ and oy -, whose left legs are in WW.



247

/

The corresponding diagrams of covers and lifts which witness the arrows in the Ore

squares and zippering in Diagram B are:

P(C) —*— P, (C)

5/\1W5A(] /\1w)\0
Ug 3 / > 04 i / > U5 e / > 0 (**)
6p1u/6/)[) Pluﬂo 0, u(ﬁu (o1mow,o4 ﬁ())u(ﬂuﬁo w,o~0)
P(C) —5—— P,(C) Wog ——— Cy  x,, W

(momy,m171)

The covers, 19, U, and 1y, witness three applications of weak composition in each

case as seen in the following continued sequence of covers:
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(mom1,moms) (mom1,mom2)
W, W Xc, W W, W Xc, W
w1,0| |wo,0 wy O/H\vu(m Wlﬂwwlli wi.gww(),z
o 2 (5 3 2 3
/ > Ul / > U2 // > U3

U
wl,luwo.l wi;uwﬁ.i
sb

W, ——— W xg, W

(momy,mom2)
(% * )

The following lemmas refer to the labeled diagrams and equations above.

Lemma 93. The maps
U—— PC) X, W
Ao
are defined in a similar fashion to 6y in Lemma 37, namely by descending through

the preceeding covers and expanding both sides of the Ore-square equations witnessed.

Proof. To define \|, we expand both sides of the Ore-square equation

(670%07?011) , (77”71'071'1)0 = (Hﬁ,(,wmow , (77“7'('171'111))0

On the left-hand side we have

0., momow 07(}7?0%1)0

0., momow , Us 7T0w>C

0., Tomow , Ust onw)c

0., Tomow , Ust 7T1w)C

0., momow , Uzl 7T1w)C

0. momow , Usl (wmemo , UefTemOW UﬂT(ﬂT(ﬂU)C)C

0., momow , (st T , Usll Tomow , TUs U UTHToW)C) C
()7”71'07'('011) s ’11571 ToTo , ’115’& ToToW 715’1171'07'('1U7T07To’w)c

~ o~ A~ N~ 2
()7“71'07'('011) , UsU ToTo , UsU ToToW U5U7To7Top07To7Tow>C

|
e N N e N N s N e N

(05,“71'07'('011) s ?AL5'L~L ToTo , ﬁg,'ljb 7T07TOUJ)C s ’&5127'('0770]937’(’07’(011})0
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and on the right we have

0T ToW (TA,“7T17T1U})C
0., mmow , 115(77770111)0

'LAL5(A)A/7T1U)) c

A
3
[e]
g

0507'('17'('0?1] s i, W~TTo /11/6771'071'011} y 7:6’}/7'('07'('0?1])6)6

= ((L T1ToWw 'LAL5((A)A/7T07TO , WyToTM W w,yﬂ'oﬂ'g’w)C)C
( 1
( 1 ToW U5(w771'07f0 y ﬁlﬁﬁ/mmow s ’EL7T07T1U’/T07T0’LU)C)C
( “ T oW U,5(w77T07T0 s ﬂ’F)wrmrow s ’L~L7T07T0p(2)7T07T02U)C)C
=0, mmow , Us(w,momo , U6 memOW aﬁgwopgﬁoﬁow)c)c

= 0., mmow , Usw,ToTg , Ust O, momow ﬁ5ﬂ7ro7ropg7ro7row)c

. Ny . 2
= ((97“7'('171'0’[1] , Usw oo , UsW O, meTow)C u5u7r07rgp07r07row)c

The last lines in equations (1) and (2) uniquely determine )|, by

/ N~ o~ 2
)\071'1 = UsUTTgToPyTToToW
)\/ o (_) A~ A~
\momo = (0, momow , Us ToTo 5 Usl TeToW)C

/ ~ A~
Nymomy = (0, mmow , UswTomo , Usl' O, Tomow)c

The map \) is similarly determined by expanding both sides of the Ore-square equa-

tion:

(Qwﬂ'oﬂ'ow s 0'7171'()77'1)0 = (Hnﬂ'lﬂ'o’w s mlmmw)c

On the left-hand side we get
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ToToW, (7717'('071'1)6
0., momow, 125017T0w)c
01]71'07'('010, 715’117'('171_10'77'0’(1})6
0., momow, 1151]7rl7rlw7rlw) c

07 T W, 1?65?27T17T1W7T1U])C

U5 UTT T W T, UsUT T UoOTomow, ﬂg,ﬂmmuwoﬂow)c)c

(
(

= (F)ﬁ‘,()wowow, UsUWTT T W T, UsUTT T U0 TeToWw, ﬂ5ﬂ7r17r1u7ro7row)c
(H<,]7r07r0w, UsUWTT| T W T, UsUTT T UnOTemoWw, 1l5ﬂ7r17r0p§7r07r0w)c
(

ﬂ5127r17r0p§7r07r0w)c (B-5)

= ((Ha“lﬂ'oﬂ'ow, ﬂ5ﬂW1F1WWOW0, ﬁ5ﬁ7T17Tl'lL0€7To7TOw>C,
’1157]7T17T07T07T07T1w)0

= ((07]71'071'011}, 11511717'(10071’0770, ﬁ5ﬂ7f17f1U097To7TOU))C,
ﬁ57:67jL7To7T07T1w)C

= ((()7,17r07r0w, UsUTT T W T, UsUTT T U TeToW)C,
(ﬁ5aﬂ7T07T07T07T0, ﬁ5ﬁﬁ7T07To7T07T12U)C)C

= (((ﬁ,lwoﬂow, UsUTT T W, UsUTT T U TeToW, UsUUTHToTT0)Cy
ﬂ5ﬂﬂ7ro7ro7ro7r1w)c

= (((ﬁ,lwowow, Us QT T W T, UsUTT T U TeToWw, UsUUTTTeTo)C,
ﬂ5ﬂ7r07r07ro7ro7r07r1w)c

= ((6)5,|7r07row, Us QT T W T, UsUTT T U TeToWw, UsUUTGToTeTo)C,

115117T07T0p87ro7rgw) c

and on the right-hand side we have
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(Hﬂlmwow , frnmmw)c
= (HA‘mWOw , ’lAL5O'77T0w)C
= (Hﬂmﬂow , ﬂg,wwﬂrlw)c
= (Hﬂmﬂow , Us (W T 5 Wy MW W,Y7T07T2w)C)C
= (H»,mlﬂow , Us(w,momo , U0, momOW fmwoﬂgw)c)c
(B.6)
= (H,,‘mwow , Us(w, oo , U0, momOW 117T07T1u7ro7r0w)c)c
= (0, mmow , Gs(w,momo , WO, MoToW , UTeToPGTOTOW)C)C
= (0, mmow , Gs(w,momo , WO, MoToW , UTGToPTOTOW)C)C
— (()717'('171'0?1) s ”115&1777071'0 s 11511'977071'010 s ﬁ57jL7To7Topg7T07T0w)C
= ((()7,17'(171'011) s a5ww’/To7T0 s ﬁ5€6/9»y7T07T0'LU)C N ﬁg,ﬁ’/’(oﬂ'op?ﬂ'(oﬁoﬂ))c
The last lines of equations (3) and (4) uniquely determine the \| by
)\/17T1 = 7:65@7T07T0pg7T07T07
)\/171'071'0 = (()A‘Iﬂ'()ﬂ'o'w s ﬂ57~L7T17T1W7To7TO s 7157~L7T17T1'1L097Toﬂ'0’w y 'LAL517/717T07TO7T07T0)C,
)\/]71'071'1 = (()~|7T17T0'w s 1?65&)77'('0770 s 115'&'97%07?010)0
O

Lemma 94. The equation

holds.

/ / / /
(pomomo, pym)e = (pymom, pymi)c

Proof. This follows from equality between the first and last lines in the following

straightforward but tedious calculation. We repeatedly use associativity for internal

composition in C along with the definitions of the arrows and objects in Diagrams

(%), (%), and » % %) of Lemma 40 in this calculation.
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. . R -, o
((())\()W()Leqﬂ'ow, Uyl T, Ug 5wy ToTo, Us5U 0T T, UgsUWUT ToTOT)C,
L~ 9
Uy- 5UU,p07T17T0’lU)C
A~ ~ ~ ~/

(((),\Uﬂ'gbeqﬂ'ow7 Uyl 1T, U5~ ToTo, UssU 0, m170)C,
(Tg5TUT ToTOT0, TassUUPRTITOW)C )c
= ((0r,Toleqm 4l 0 l4.5' 0 )

0leqToW, U4V~ T1T0, Ug;5WATT0TT0, Ug;5U U4TT1T0)C
ﬁ4;5aﬂ7T17T07T07T0, ﬁ4;5ﬁﬂ7Tl7T07T07T1w>C)C

N ~ ~ ~ o~
((()/\')WOLquOw, 'U,4H»:“7T17T0, Ug;5WATT0TTo, Ug;5U 9771'17'('0)0,

4: 5U'LL7T17T07T1U})C

((),\L)W()Leqﬂ'gw 'LL4()A 1T, U4 5CL)A7T07T0)C

Uy- 5’&/977'(171'0, ??64;5111_”'('17?07(11(])0) C

Ug.5U'0, 170, Uy, 5uup17r17row)c)c

U
(@
(( ,Wobeqﬂow, ﬁ467[,7T17T0, ’&4;50)771'07T0)C,
(

(03, ToleqMoW, Ul 1T, UaswWToTo)C,

Ug.5U' 0, momow, Uy, 5uup07r07rl) )c

(( Ao T0beqgToW, Ugly T, Usgy5WsToT0)Cy
~/0 ~ ~_ 2
(U500, Momow, UasUUPGTOTL)C)C
= ((O/\”W()Leqﬂ'ow g0, 10, Ug5w,ToTo, Uasl' O, Tomow)e,

ﬁ4;5ﬂﬂp(2)ﬂ'0ﬂ'1) C

= (((5/\')7TOLeqﬂ'0w, 'LAL4H»:“7T07T(], ’114;5’171 ToTo, 7:L4;57:l, 7T(]7T0'U}>C,
Uy 5uup07r0771)c
((())\()W[)Leqﬂ'ow 'LL4(L 0T, U4 5u 7T07T0)C,
( 475’& ToToW, 114;5111?Lp07r07r1)c)c
((()/\()’Nobeq’irow U,46 070, U45U 7T07T0)C,
(Ta50 170, ﬁ4;5ﬂﬂpg7rl7rgw)c)c
((()/\()Wobeq’ﬂ'()’w U,49A 070, U4 5U ToTo, ﬁ4;5ﬂ 7T17T0)C

ﬂ4;5ﬂﬂp(2)71'171'0w) c

uniquely determine the map p[,, for which
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/ ~ ~_ 2
PoT1 = U4;5UUPGTTI T

and p(m is the parallel pair with components

/ A ~ A~ ~/ ~ ~_
LPoToTo = ((5,\0 ToleqToW, Ugl~, 1T, Ua;5WATT0TT0, Ug;5U evﬂlﬂo, U4;5UU,7T17T07T07T0)C

and

/ N A A~ A~
PomoT1 = (0x, ToleqToW, gt~ ToTo, U5 oMo, Ua.50 T170)C.

This means that the first and last terms of the calculation above precisely says

/ / / /
(pymomo, pom)c = (pomom, poyT1)C

Lemma 95. The equation

(P’17T07707 P/17T1)C = (P/17TO7T1, ,0/17T1)C

holds.

Proof. This follows from the first and last lines of the following computation which

is saimilar to the one in Lemma 94:
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~ A ~ ~/ ~ ~
((5,\17T0Leq7T0UJ, Uyl T M0, Ug;5Wy T, Ug;5U 977T17T0, U4;5UU7T17707T07T0)C,

4;51101)8#17?010) c

U

= (((5)\17T0Leqﬂ'0’w, 'LA(,4H»:17T17T0, ’114;5(,0771'071'0, 7:64;57110771'177'0)67
(ﬁ4;57]7?b7T17T07T07T0, ﬁ4;5ﬁﬁpg7rl7r0w)c)c

= ((5)\17'('0Leq7'('0w, 'LAL4()A(17Tl7T0, ’114;5(,()771'071'0, 7:L4;5'L~L/€,Y7Tl7T0)C,

(114;5&7171'1#0%#0, 1?64;51]@71’17’(’071’071’111))0) C

~ ~ A~
(((5,\17T0Leq7row, U4()«1’/T171'0, Ug;5WAT0TTY, Ug;5U 977T17T0)C,
4;5’&11’/T17T07T11U>C

U
= ((5,\17T0L6q71'()’w, Uyl T, Ug 50~ ToT0)C,
(IAL4;51~L/Q77T17T0, ﬂ4;5ﬂﬂ7r17r0771w)c)c

= ((5)\17T0Leq71'0w, Uyl ™10, g 5WToT)C,
Ly PO
(U500, momow, u4;5uup07rg7rl)c)c

= (((5)\17T0Leqﬂ'0’w, 'LL40717T17T0, U4;5MA/7T07T0)C,

~ ~/ ~ ~— 2
(500 Tomow, UgsUUpgmoT)C)C

This calculation continues below, we just had to separate because it wouldn’t fit on
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one page.

((5)\17T0Leq7row, ’LL4H“7T17TQ, u4;5w77r07r0)c,
a0 ~ o~ D
(G50 0, momow, UasUUPYTHTL)C)C
~ ~ ~ o~
= ((5)\17T0Leq7T0’LU, U4(9”7T17T0, U4;5WA 0T, U4;5U 977T07T0w)6,
a9
u4;5uup07r07rl)c
= ((5,\17T0Leq7row, Uyl T, g5 Uy T WTOT,
a4;51~1,7T17T1’LL097T07T0w, 7:64;512@77'071'071'077'0)0,
W D
u4;5uup07r07rl)c
= ((5,\17T0Leq7row, Uyl Moo, Ugs U TIWTOTg, g 50T T U TeTOW)C,
I W D
(g5 Ut mOTOTO, u4;5uup07r07rl)c)c
= (((5)\171'01/6(171'011), ’11407]71'07'('0, '114;5117T17T1M7T07T(), 'IAL4;5’117T17T1U097T()7T0’U))C,
o D
U4;5UUP17707T1)C
= (((5)\171'0[/6(171'011), U40<17T07T0, U4;51TL7F]7T1LU7T07T0)C,
(€L4;5ﬁ7ﬁ 1 ’U/()97T1’/T0, ﬁ4;5&ﬂpf7rl7row)c) Cc
= ((5)\17T0L5q7ro’w, U40A‘J7T07T0, u4;5ﬂ7r17r1w7r07r0, U4;5&7T17T171,097T17T0)C,
a2
U4;5uup17rl7row)c
= ((5)\17T0Leq71'0w, Uyt ToTo, Ugs U TIWTOTY, Ua5UT1 T UHTIT)C,
(QAI,4;51~LZZ7T17T07T07T0, ’lAL4;5’l~L’a7T17T07T07T1’lU)C)C
= ((0x, MotLegmow, Tiall,, moTo, Thas Ui WO,
TTL4;5’I~IJ7T17HU097T17T0, 124;5’[67]71’177’071’07’(’0)0,
1?64;5’&@71’17’(’071’077’111))0
= ((5,\17Tobeq7TOTU, Uyl T, Ugy5UTT T1W T,
7:L4;5'[L7T17T1U097T17T0, 7:L4;5'L~L’Z_L7Tl7To7T07T0)C,

'LAL4;57:L’I_L]?37717T0?U) C.
Unsurprisingly we get the same coequalizing arrow in W for p) as for p|,

/ ~ ~— 2
P1T1 = Ug;5UUPHTT1 T

and the parallel pair p|m is given by the pair of components
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/ ~ ~ ~ o~ ~ o~
P1T0To = ((5)\171'0[/6(171'0’(1], Ug~ T, U4;5WATTOTT0, Ug;5U 9771'171'0, U4;5UU7T17T07T07T0)C
and

/ ~ ~ ~
PoTo7T1 = (5/\17Tobeq71'0w, U4()5K7T07TO, Ug;5UTT T WTTTTQ,

114;511%"1 T ’llr()eﬂ'lﬂ'o, 1?64;511717'('171'071’071’0)0

The first and last terms of the big equation above being equal then reduces to

(P'17T07T0; /0/17T1)C = (ﬂ/17T07T1, P’17T1)C-

Lemma 96. There is a unique map oy ., : U— spn determined by

00,~To = Wp,071
00T = (wo, Uoul-,momo, Uoom)C

= (woy, Ugub,mmo , UoyT)C

where wy : U — W, is defined by

Wy = (wmﬂfoﬂo, UpWp, 10T, Uo;Mo.zm)C

Proof. First, by definition of W, we have

WS = Wp,0TeTpS = Wp,0TM1S =

showing that wy -, : U — spn is well-defined. Now let w] : U — C; be defined by

’ V/ P 70 YA N IR PR 9 /.,
Wy = (wu“oﬂoﬂm UpWo,1 T, Uo;lwo.ﬂoWo)C-

By definition of W, wy, and w/, we have
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(W'o ) ToTo, Uoo, 1 ToTo, U, lw(JQWI)C
(W'o 0T, UpWo, 1T, Uo 1W0 2TOT0, U 20, vC)C

= (W 00T, U, 1T, Uo 1W0 2 TOTg, Uo; 2()/)()7T0Leq7T07 u03(>)\()7T0Leq7T0) (B-7)

(
(o

= (W), 10;2(0,,ToleqT0s UsOx, T0leqT0) )

( Wo,0To 7o, oo 1T, Uo 1W 2T, u02(5/)()7T0Leq7TO)C u03()/\()7TOLeq7TO)

Notice that by definition of o and p{mom; and the refinement of covers w : U —

sb ,x, sb, we have

.
(pomomy, Uy UUpymIT)C
(((nuwooeqwow Uyl ToTo, UssT , UgsUmom uefmImo)C
7:64;517, )C
(B.8)
= (0, Motegmow, b, moTo,
<U4;5?1 s U4;5ﬂ s U4;51~L7T07T1U7T17T1)C)C

= (())\“7'('0[,6(17'['011), U405‘“7T07To, Uyg;5 7T1)C

and similarly by definition of o, and p{ 7o

([)67’(’071'0, 124;511’977r17r0)c
= ((6/\()7T0L6q77'0w, IAI/497U7T17T0 s 1TL4;5W,Y7T07T0, ’LAL4;5?1/977T17T0, 1AL4;51~ME7T17T07T07T0)C,
114;5?171'077'1[67’('171’1)6
= (((SA(,Wobeqﬂow, ’&497']71'171'0 s ﬂ4;5w7W0W0, ’114;5’21/977'('171'0)0,
(’114;5’111]71'171'077'071'0, 714;5’1171'071'1U7T17T1)C)C
= (((5)\077'0[,6(177'011}, ﬂ4()7,'J7T17T0 s ﬁ4;5w77r07ro, ﬁ4;5ﬁ/97ﬂ'17‘f0)0,
ﬁ4;5&ﬂp17r17r1)c
= (0, Motegmow, Gyl mmo ,
(’&4;5&2771'077'0, ﬁ4;51~1,/977T17T0, ’&4;5121]]917’(’171’1)6)0
= ((5)\()7TOLeqﬂ'0w, ’a497(]ﬂ'17’(’0 s ’lAL4;5O'W7T1)C.
Also notice since P(C) is a pullback of P.,(C) and P.,(C) over the object of parallel
pairs in C, P(C), we have
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()Poﬂ-obeqﬂ-l = ()/10 TleeqT0
= U3P0lceqgT0
o~
= UzpPyTo

and then by definition of P,,(C) the composable pairs

) i N o,
0o Toleq (0, T170) = (0,0 T0LeqT0, O py TolegT1T0) = (0,0 ToleqTos U3 P ToT0)

and

i ) ) o
0poTobeq(T0; T171) = (0 Toleg0, 0 py TolegM11) = (0, TolegTo, Uz Py ToT1)

are equal after post-composing with the composition structure map in C, ¢ : mCy —

(Cli

(0 ToleqTo, Uz P00 )C = (0, ToleqTo, UspToT1 )C (B.10)

Associativity of composition and equations (B.7); (B.8); (B.9); and (B.10), allow us

to see
() 3 Y — (/) ” Y
(w(), UO;4()A‘,“7707T0, u 7Tl)C— (w(), Uo;g()p(]ﬂ'ol,eq’ﬂ'o,

UQ;g(())\UTFoLeqTFow, U4HAJU7T07T0, U4;5 7T1)C)C
’ y/ 2 S

= (Wm uO;Z()/m’/TOLeq’/TOa
~ / ~ ~
Uo;g(/)oﬂo’irl, U4;5U7T07T1U7Tl7T1)C)C

—f, 7 ~ )‘ ~ /

= (wy, Uo:2(0,,ToleqTo, UspyTom1)C,
7:&0;57?L7T07T1U7T17T1)C

_ , '/ A (S A !

= (Wm Uo:2(0p, TolLeqTos U3 PT0T0)C,
120;5117r07rlu7r17r1)c

— oy ¥ (5

= ((Wm U0;20,, T0Leq ),
~ / .
togs (Pl oo, Usslimomumm)c)c

— o ” (5

- (W(h u0;2—/)(.7T0//eq7T0)C>
UO;g(O)\OTI'()LquOw, U4Hn“,“7T17T0, U4;5O’»Y7Tl)C)C

= (wo, Ugul-,mmo , UoyTy)C



Lemma 97. There is a unique map o1, : U— spn determined by

014To = W1,071
O14T1 = (wl, UQ;4W~, T T, UO’17Tl)C

= (wl, U4~ 1T, UO',Y7T1)C

where wy : U — W, is defined by

wp = (w1,07To7T07 UpW1,1TT0TT0, U0;1w1,27T1)C

Proof. Similarly define

/ A ~
Wy = (W1,07T07T0, UW1,1T0T0, U0;1w1,27T07To)C

and we have:

wp = (w1,07T07T07 UoW1,1TT0TT0, U0;1W1,27T1)C

= (w1,07T07707 UoW1,1TT0TT0, Up;1W1,2TT0TT0, U0;25p17T0Leq7T0, U0;35>\17T0Leq7T0)C

/ ~ ~
= (W1» Up:2(9 5, TolegTo, U3(5)\17T0Leq71'0)c)0.

By definition of oy and p)mym;:

259
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/ N TV
(pymomy, u4;5uup07r17r1)c
= ((5)\171'01,8(171'010, U4H¢J7T07T0, U4;5’L~LTF17T1LU7T07T0, U4;5’&7T17T171097T17T0, U4;5ﬂﬂ71’17T07T07T0)C,
N~ 9
u4;5uup07rl7r1)c
= (5)\17T0Leq71'0w, U4HA“7T07T0, U4;51~L7T17T1W7T07T0, U4;5ﬂ7T17T1U087T17T0,
P A~ 9
(g5 Uty T, u4;5uup07r17rl)c)c
~ ~A o~ A~ A~ 9
= (5)\17T0Leq71'0w, U4H5,‘7T07T0, Ug;5UTT THWTTY T, U4;5U7T17T1U097T17TQ, u4;5uup17r17r1)c
= (6)\17T0Leq7T0w7 Ugl-, moo,
Ugys (U T WTTY, Uy UeOT T, fmlwopfmm)c)c
= (6)\17TOLeq7TOw7 4., mo,
Qg5 (U T WTeTY, Uy Ty UOT T, ﬁmmumm)c)c
= ((S)\lﬂ'obeqﬂ'ow, U4()«(17T07T0, U4;50’17TI)C

(B.11)
Similarly by definition of o., and p)mymo:

/ ~ ~— 2
P1T0T0, u4;5uup07r17r1)c
~ ~ ~ ~/ ~ ~_
= ((5/\17TOLeq7T0w7 Uy, TT1T, Ug;5WATTOTT0, Ug;5U 977T17T0, U4;5UU7T17T07T07T0)C,
NP
U4;5UUPO7T17T1)C
A ~ ~ ~/
= (6)\17T0Leq7T0wa U, TT1T, Ug;5WATTOTT0, Ug;5U 977T17T0,

(’114;5’&@71'177'071'071'0, @4;5ﬂﬂp37r17r1)c)c (B]'Q)

N A~ A~y A~ 9
(6,\17r0Leq7row, Uglo, T, UasWy T, UssU 0,170, u4;5uup17rl7r1)c
= (5,\17r0Leq7T0w, Ugw-, T T,
~ ~/0 ~ = 2
U5 (W, Tomo, WO, m1T, UUPTTITL)C)C

= ((5)\17T0Leq7'('0w, Uglw-, T T, u4;5077rl)c

Since P(C) is a pullback of P.,(C) and P, (C) over the object of parallel pairs in C,
P(C),
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01 ToLeqT0 = O py T1leeqTo
= U3P1lceqT0
N
= U3pP17o
nition . m ir
By definition of P.,(C) the composable pairs
N
5p17T0beq(7T0,7T17T0) = (5p17TOLeq7T075p17TOLeq7Tl7TO> = (5p17T0Leq7TO7u3p17TO7TO>
and

~
5p17T0Leq(7T077T1771) - (6p17TOLeq7T07 5p17T0Leq7T17rl) - (6p17T0Leq7TO7u3p17T07T1)’

are coequalized (in &) by the composition structure map of C. This implies

(6p17TOLeq7T07 ﬁgp/]ﬂ'(]ﬂ'o)c = ((5p17r0Leq7r0, ﬁgp/]ﬂ'oﬂ'l)c (Blg)

Now the span

O1y = (wo,lﬂ'h 01,77T1)

is well-defined because

W1,0MWSs = Wy 0TS

where the right leg, oy 7, is given by the composite
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() ~ _ S
(wla Ug;4W~, TToTT0, UO’17Tl)C_ (wh u0;26p17T0[/6q7TO,
03 (05, Mol eqTo, Thats, ToTo, Uss0171)C)C
_ / ~ 5
= (W), 020y, TotegTo,
N , R
u0;3(P17T07T1, U4;5UUPO7T17T1)C)C
/
= (wb
(8 .,
uO;Q( p17r0[’eq7r07 U3p17f0771)6,
)
UO;SUUPOWNH) c
/
= (wl’
(8 .,
U“O;Q( p1T0leqT0, U3p17T07r0)c,
o5 UlpymITL) €
_ / ~ 5
= (W1, U0;20p,TToleqT0,
N , R
u0;3(Pl7TO7707 U4;5uup07rl7rl)c)c
_ / ~ 5
o (wl’ U0;20p, TT0leqT0,
N , R
u0;3(P17TO7707 U4;5uup07rl7rl)c)c
_ / ~ 5
= (w], U0;20p, TolegT0),
03 (00, Mol eqMoW, st Mo, Ua50,T1)C)C

= (w17 UO;4QJA‘,17T17TO’ UUWT;[)C

]

Lemma 98. There exists a sailboat @ : U— sb, uniquely determined by the pairing

map

Yo = (<(“07 UWogTy), Woom), U 771)

where

fo = (wo, Tty momo)c
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such that

Yopo = U
®YoP1 = 00

Proof. Recall that sb = Wa . x Cy, where Wa = (Cy x,,, W) .x,, W so to see
©o U — sb is well-defined we need to show that

((po, woomo), woom) U— WA

is well-defined and that

Uo(TS = ot = Uo(TyS.

By definition of py and the lift 0. : Us — Wi we have

ot = Ug.4l- Tomowt = U WS = U\ TS

showing that (ug,toom) : U — ¢ X s W are composable with respect to the
internal composition structure of C (after appliying w : W — C; in the right-hand
component) and that @0, is well-defined in the right-most component. It remains
to see that the ¢opy : U— W is well-defined. For this we use the definitions of ug
and the lifts in Diagrams (xx) and (%) along with associativity of composition in C

to compute
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(po, UooTg), Wo0T1)T1 = Wo 0T
= (wo.oﬂoﬁo, Wo,0T071, ’w'o,o7T07T2)C
= (wo,0moTo, Uowo, 1 T, U To)C
= (wo.oﬂoﬂo,
fto(wo.ﬂoﬂo,wo.ﬂom,’w‘o,17To7T2)C7
fm(mo)c
= (“ 10,0070, 710¢V‘<’),17T07T07 @owo,ﬂo?ﬁ, ﬁowo,ﬂom, fmtﬂTo)C
= (Wo,(ﬂToWo, ﬁowo,NTo?To? aO;le.Qﬂ-la ﬁ0;49~,<.7T07T07 7:WMTO)C
= ((wo,oﬂoﬂo, ﬁowo,ﬂToWo, ﬁ/O;lWO,QWI)Ca
’110;4(%07'('071'0, fLO’Hﬂ'o)C
= (w(), 1?60;407“71'07'('0, ﬁﬂ()ﬂ'o)c

= ((wo, G40, moTo ) ﬁ”()ﬂo)c

Lo, WooTo)C

= (#0, ﬁ%ﬂo), wo.o7T1)(7T07T0,7T07T1)C-

This gives that

PoPo = (HO) ﬁ(ﬂﬂTo), ’W‘(),(ﬂTl) U — Wa

is well-defined. Similar techniques allow us to see

(Mo,ﬂ%m)cz ((wo, ﬂo;49<,<)7T07T0)C, ﬂfm?ﬁ)c
= (Wo, u0;46‘:uﬂ-0ﬂ—07 U()‘(,?Tl)c

= 004T1-

which shows
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®opo = po(momom1, T1) YopP1 = 900(7T07T17 (7T07T07To77T1)C)
= (toymg, Woomy ) = (wo.0m1, (po, 4o )C)
=1u = (Wo,0m1, 00, T1)
= 00-

[

Lemma 99. There exists a sailboat pq ~ U — sb, uniquely determined by the pairing

map
Yo,y = (((/'I’O,fy, 710'771'0), (A}(—),[—)ﬂ'l)7 ao_”/ﬂ-l)
where
Hoy = (Ld(], /&0;407“71'171'0)0
such that

PoyPo = UT~
Po~rP1 = 004

Proof. First note that the components of the pairing map defining ¢y , : U — sb are

appropriately composable with respect to the internal composition structure of C:

ot = Ugal), T Tt = U0, Tows = U T1S.

By Definition of p, and the lifts, wq : U — W, and 0., : U5 — Wh, we have

0.0m = (wo, Ugal-, momow, U 7T0U))

wo, (g4l momow, U Wow)c)c

Wo UO4() 1T, ’U/O',Yﬂ'()’w )C

(:
(w0,
(w0,
((W(), Ugal-, mm0)C, UO,YWO’LU)C

= (o, W mow)c.
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showing that the map

PYo~To = ((Mom a%ﬂo), wo.(ﬂﬁ) : U — Wa

is well-defined. Then by associativity of composition in C and the definitions of p

and o, we get

(po,, Uoymy)e = ((;u(,, Ug.a0-, m170)C, fwnﬂrl)c

= (;uo, U400, m1T0, uawm)c

00,~T1-

The previous equation implies the unique pairing, U — sb, given by

Yo,y = (((Mom o, mo), Wo0m1), 11077?1)

is well-defined. From here it is straightforward to calculate

Yo,yPo = @0,'\/(77'077-071'17 ) Po,yP1 = o,y (7TO7T1, (momoTo, 7T1)0)
= (G0, mo, Woy ) = (w()fom, (uomﬁawﬁ)c)
= 71(77 = (Wo‘(ﬂTl, (70;}71)
= 00~

Lemma 100. The sailboat, 1 : U — sb, defined by

L= (((Mh U0 To), W1,071), fwﬂﬁ)

where
H1 = (Wla Uo;471 7T07T0)C

is well-defined and relates the spans 01,0 5 : U — spn in the sense that

P1po = U0 P1P1 = 01,4
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Proof. First notice that the components defining ¢, are apporpriately composable

by checking

/,th = ’llo;4”,r|7To7Towt = ’110'17'('18 = '110171'011)5.

Now to see that the component

1po = ((p1, wo1mg), Wi o) : U — W

is well-defined we use the definitions of the lifts w;  : U — W, and 0., : U5 — Wh

to see

W1,0M = (W1,07TO7TO7W1707r07T17W1707r07r2)c
= (wl,oﬂoﬁo,ﬁoleWl,ﬁUﬂTo)C
= (w1,07T07T07
ﬂo(w1,17To7To,w1,17T07T1,w1,17T07T2)C,
ﬂaﬁro)c
= (W1,07T07T0, ftow1.,17T07To, Uow1,1 T, ﬁow1,17To7T2, 11017T0)C
= (W1,07T07T0, ﬁ0W1717T07T0, 7~AL0;1W1,27T1, 7~AL0;4H:]7T07T0, ftUNTo)C
= ((W1,07T07T0, @0W1,17T07T0, ﬁ0;1w1,27ﬁ)07
’110;4()A17T07TO, '110'171'0)0
= (wl, 1?60;407]71'07'('0, ﬁ(flﬂo)c
= ((wl, 110;40“‘1%770)0, 1:60'1771'0)0
= (,Ul,'&(fﬂfo)c.

This shows ¢ : U — sb is well-defined. By definition of p; and oy, in Lemma 97

we have

(/Ll,"fmlm)c: ((wl, ﬂ0;4()n,17T07T0)C, ’110'177'1)6
= (wl, ’110;40517'('071'0, 71017'('1)0

= 01471



268

which implies

¢1po = p1(momom, 1) 1p1 = p1(mom, (momomo, M1 )C)
= (oo, oy )C = (1, toymy)C
= Uuo, = (w1,07ﬁ701,77T1)
=01,

Lemma 101. The sailboat, @1 - : U — sb, defined by

Y1y = (((Mlm @0770), W1,07T1)7 fwym)

where

M1~y = (Wh U04H 7T17T0)

relates the spans 0., 01 - : U — spn in the sense that

P1yPo = UTy P1aP1 = O15-

Proof. First use the definition of pg1, the lift 0. : Us — W, and the span o, to see

that the components of ¢, ., are appropriately composable in C:

ulﬁt = ﬁo;4ﬁj,J7T17T0t = ﬁawwows = ﬁmﬂrls.

Now use those definitions to compute

(wl, Ug.40-, TomoWw, u017T0U))

(w1 (Tl momow, fwmow)c)c
(wl, (Gg.a0, MMy, UC,mOW)C )c
((wl, Ugall-, mm0)C, UO,YWO’LU)C

= (1,4, WO moW)cC.
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This shows that the component
01,0 = ((f1,4, WoyT), Wi om) : U— Wha
is well-defined. Similarly,

(,um,ﬁaw,m)c: ((wl, ﬁ0;4()n,]7T17T0)C, ’ZAJ/O'A/ﬂ'l)C

= (Wl, UO;4()A,17T17T0, ’U/O',Yﬂ'l)C

= 01,4T71.
implies
P1,yPo = <P1,~y(7To7To7Tl, ) P1yP1 = L1y (7To7T17 (7TO7TO7T0,7T1)C)
= (’&0}/71'0, ’&O',yﬂ'l) = (W1707T1, (;ul,'ya ﬁavm)c)
= U0, = (wl,oﬂl,(ﬁ;ﬂrl)

= O1,-
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